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Abstract

In this paper we consider level-set-based methods for anomaly reconstruction
for applications involving low-sensitivity data concentrating specifically on
the problem of electrical resistance tomography (ERT). Typical descent-based
inversion methods suffer from poor reconstruction precision in low-sensitivity
regions and typically display quite slow convergence. In this paper, we
develop a method for constructing the level-set speed function that is capable of
overcoming these problems. In the case of the gradient-descent-based level-set
evolution, the speed function is defined in terms of the dot products of residual
and sensitivity functions. For Gauss—Newton-type methods, however, the speed
function is the solution of the linearized inverse problem at each iteration. Here
we propose a projection-based approach where the displacement of the level
zero, i.e. estimated anomaly contour, at each point depends on the correlation
coefficients between the sensitivity of the data to conductivity perturbations
and the residual error. In other words, the proposed velocity field is invariant to
the absolute amplitudes of both residual and sensitivity, but rather is a reflection
of the angle between these two quantities. We demonstrate that our method is
a descent-based reconstruction and we relate the mathematical formulation of
the projection-based speed function to that of the gradient-descent method
and the Gauss—Newton-type approach. The comparison suggests that the
proposed technique can be seen as a diagonal approximation of the Gauss—
Newton formulation. Using a quasi-linear source-type formulation of the
forward problem, we describe an efficient implementation of the projection-
based approach for finite-domain imaging problems. The proposed algorithm
is simulated with numerical 2D and 3D data and its performance and efficiency
are compared to those of the gradient-descent method.
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0266-5611/07/062375+26$30.00 © 2007 IOP Publishing Ltd  Printed in the UK 2375


http://dx.doi.org/10.1088/0266-5611/23/6/007
mailto:mkmiled@ece.neu.edu
mailto:elmiller@ece.tufts.edu.com
http://stacks.iop.org/IP/23/2375

2376 M K Ben Hadj Miled and E L Miller

1. Introduction

The objective of electrical resistance tomography (ERT) and its close counterpart electrical
impedance tomography (EIT) is to reconstruct the electrical properties within a medium of
interest based on measured boundary electric currents and electric potentials. The idea dates
back to the Schlumberger and Wenner electrode arrays used as resistivity probing systems
to detect earth subsurface structures [1]. Potential applications now range from medical
imaging [2-9] and non-destructive evaluation [10-13] to geophysical exploration [14, 15]
and environmental monitoring [16—19]. The conductivity reconstruction problem, based on
complete boundary electric signals, was first formulated by Caldéron [20] and the solution was
shown to be unique [21-24] under a variety of assumptions. The inverse problem is known to
be highly ill-posed [25, 27]. The ill-posedness is mainly due to the low dimension of measured
data vectors compared to the usually much larger number of unknown conductivity grid points,
in a discretized medium, and the very sensitivity of observation data to conductivity variations
atregions far away from sensor electrodes. The scope of this paper is a reconstruction approach
for anomalies (i.e. well-defined regions that are, in a sense, ‘different’ from some nominal
background) that is less prone to low-sensitivity effects.

In the literature, several iterative and noniterative reconstruction methods have been
proposed for addressing the conductivity reconstruction problem (see the topical reviews
[25-27]). Noniterative techniques include the backprojection algorithm [28-30], layer
stripping methods [33—-35] and the 9 method [36, 37]. Another method is the NOSER algorithm
[9, 31, 32] which is a single Gauss—Newton step regularized with a diagonal approximation of
the Hessian. The work by Briihl and Hanke [38, 39] characterizes conductivity inclusions in
terms of point-dipole sources embedded in a homogeneous background medium and having
the same support as the anomalies they characterize. The reconstruction in this case is a
localization of such sources using a MUSIC-type approach.

Iterative full pixel/voxel reconstruction of the conductivity is usually formulated as a
constrained [40-42] or an unconstrained [19, 43—45] least-squares optimization problem.
Gradient-based algorithms are then used to minimize a cost function incorporating data misfit
and prior information as a regularization term. In particular, the conjugate gradient approach
has been widely used. However, recently there has been considerable work concerning
alternative Newton-type methods for general large-scale distributed parameter estimation
designed to achieve improved computational efficiency and faster convergence [46-50]. Given
an a priori model of the conductivity, the regularization is then achieved by penalizing
a distance between the estimate and a priori models [19, 43, 45]. Beyond this penalty,
the methods in [40—42] restrict the conductivity update, at each iteration, to a pre-defined
subspace. Another regularization approach is to enforce some smoothing behavior on the
solution [44]. In the variationally constrained approach [53] the set of admissible solutions
is constrained by both Dirichlet and Thompson feasibility conditions whereas inversion with
basis constraints [54] restricts conductivity distribution to a function subspace defined by a
set of basis functions. Other techniques include statistical inversion [55, 56] and multigrid
methods [57-59] where reconstruction is performed at different resolutions starting with the
coarse one where the inverse problem is less ill-posed.

In recent years there has been significant interest in shape-based reconstruction of
anomalies via the level-set approach [60—65]. The level-set method is believed to regularize
the ill-posed problem in ‘a topological fashion’ [61] with the flexibility to reconstruct an
unknown number of disjoint regions with no increase in algorithmic complexity. In most
of the proposed level-set formulations, the evolution of the anomaly interface is driven by a
gradient-descent velocity field defined in terms of the inner product of the forward and adjoint
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fields [64, 66, 67]. A regularization term penalizing either the length of the estimated interface
or the variation in the conductivity map is usually applied to enforce a smooth boundary of the
estimated anomaly. The common observation about the gradient-descent evolution is the slow
convergence. In [68], we suggested a speed equalization technique where steepest-descent
velocity is scaled in such a way as to shrink its range and relatively enhance the interface
evolution at low-sensitivity regions. Other level-set methods apply a Gauss—Newton-type
[69, 70] or a Levenberg—Marquardt [71] velocity field. These approaches are usually associated
with a computational burden as they require, at each iteration, the evaluation of the Jacobian
of the forward model and the inversion of a relatively large matrix. However, a narrow-
band implementation of the level set method can reduce the computational cost significantly
[70]. In addition, efficient implementations of Gauss—Newton-type methods are described in
[48]. Recent work on level-set methods for large-scale distributed parameter estimation [72]
compares Gauss—Newton and Levenberg—Marquardt methods. Several variants of the total
variation approach are proposed for regularizing the level-set function by forcing it to be as
close as possible to a signed distance function. For more on level sets, the reader is referred
to the topical review [73].

In this paper we propose a speed function that, empirically, converges much more rapidly
than gradient descent without the computational burden of a Gauss—Newton-type approach.
Considering a variational formulation, the gradient-descent speed function can be described
in terms of the sum, over all data sets, of the dot products of sensitivity and residual error
functions evaluated at receiver electrodes. This results in a very slow evolution of the interface
in low-sensitivity regions of the domain, e.g., in areas far from sources and detectors or deep
within concavities of a conductivity anomaly. We introduce a new speed function defined as
the summation of the corresponding correlation coefficients, instead of dot products, between
sensitivity functions and residuals. This projection-based level-set method is shown to be a
descent approach. We clarify the intuition behind the proposed inversion technique by relating
it to the gradient-descent and Gauss—Newton methods. Using a source-type description we
outline a numerical approximation to transform the inverse problem into multi-source inversion
in an unbounded medium given dense sampling of boundary data. Such a transformation makes
it possible to compute sensitivity functions analytically and therefore saves us an excess of
forward or adjoint solves. Using simulation data, we compare the results of the projection-
based approach to those of the gradient-descent method. In our comparison we focus mainly
on relatively complex anomaly structures characterized either with deep concavities, usually
associated with low sensitivity, or multiple objects. Relative to the gradient-descent approach,
our results show that the projection-based level-set method has a much faster convergence to a
more accurate reconstruction. The proposed approach is also stable, even with an initial guess
that is far from the actual anomaly, and robust to additive noise.

The paper is organized as follows. In the next section, we formulate the forward and
inverse problems and we introduce the quasi-linear source-type formulation. In section 3 we
introduce the projection-based level-set approach and we relate it to the gradient-descent and
Gauss—Newton methods. We also lay out a very efficient implementation of the proposed
algorithm. Finally, simulation results are presented and discussed and the paper is concluded.

2. Problem formulation

2.1. Forward model

Consider a medium D € Rd, d = 2 or 3, with a boundary dD. We denote by o (r) > 0 the
conductivity distribution inside D. Throughout this paper, we consider piecewise constant
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conductivity distributions of the form
op + 0y for reQ

) (D
op for r e D\Q

o(r)=
where o, is the background conductivity value. The domain €2 represents the inhomogeneity
region and o, is the contrast in conductivity between anomaly and background regions. The
sub-domain €2 is assumed to be the union of a finite number of disjoint, but simply connected,
compact subsets of D. We define I' as the interface separating anomalies from background,
ie. I =0Q.
Given a current density f across D, the resulting potential function u is defined by the
Neumann boundary value problem

ou
V- (oVu) =0, oco—=1f, 2
on
where n is the outward unit normal on dD. The current density function f obeys the
conservation of charge relation

ygD f(r)ds(r) =0. 3)

The forward problem defined by (2) and (3) has a unique weak solution u, up to an additive
constant. In this paper we consider solutions with a zero-mean boundary potential, i.e.
Fop s (r)ds(r) = 0.

In the boundary value problem described in (2), the electric potential is a nonlinear
function of o. However, in the case of a background medium with constant conductivity, i.e.
o (r) = oy for every r € D, the forward problem is linear in terms of background resistivity
Pb = 0p 1,

abAub = 0, Oop—— = f (4)
on
In other words, the nonlinearity is introduced by conductivity inhomogeneity. The effect of
the anomalies on the electric potential is defined by the scattered potential u; = u — u;. In
appendix A we show that u, can be described as the solution of a quasi-linear*‘ 1 homogeneous
boundary value problem, i.e.

—opAug = o,(v - Vu), op %I: =0, 5)
where v is the outward unit normal on I'. The term o,(v - Vu) represents a continuum
of secondary sources distributed on the interface I". In [38, 39] a different source-type
characterization based on point-dipole sources spanning the inside area (or volume) of
conductivity anomalies is described. The secondary sources in (5) are single-pole sources
with amplitudes that are linearly dependent on the conductivity contrast and the component
of the total electric field that is in the normal direction of I". Note that « in (5) represents the
total electric potential, which is the solution of the forward problem (2). Figure 1 illustrates
the distribution of secondary sources for a rectangular conductivity anomaly under the effect
of horizontal and vertical cross-drive current flows. Numerically, the scattered potential is
computed first and then oj, Auy is evaluated to find the distribution of equivalent sources as
described by (5). The results clearly illustrate the facts that the support of secondary sources
is restricted to I" and that their amplitudes depend on the electric field direction with respect
to v, i.e. the unit normal on I'.

3 Quasi-linearity means that the nonlinearity here is not associated with the higher-order term in the differential
equation.
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Figure 1. The distributional behavior of equivalent secondary sources, for a rectangular anomaly,
under the effect of horizontal and vertical cross-drive current flow. The + and — signs indicate
the locations of, respectively, positive and negative primary current sources at the boundary.
(a) Conductivity map, (b) secondary sources under horizontal current flow and (c) secondary
sources under vertical current flow.

The summation of (4) and (5) leads to a source-type quasi-linear formulation of the
forward problem, i.e.

d
oy Au = 0o, (v - Van), a,,a—” - f (6)
n
In this source-type description, the information about the anomaly shape and location is
embedded in the secondary source term o, (v - Vu). The analytical solution of (6) can be

described, for each point » € D, by the source-type integral equation

. dg(g.r)
u(r) = pp P c(q)g(g,r)ds(q) + u(q)a— — o f(q@)g(q,r) ) ds(q), @)
r D n

q
where c(q) = o,(v(g) - Vu(g)) is the secondary sources term and g(g, r) is the Green’s
function of the Laplacian operator. The first term on the right-hand side of (7) represents the
electric potential generated by the secondary sources if they were embedded in an unbounded
homogeneous medium. The second term however describes the contribution of the medium
boundary, i.e. D, to the total electric potential. In sub-section 3.2 we make use of (7) to
provide an efficient numerical implementation, specifically for problems involving bounded
domains, of our correlation-based level-set speed function.

2.2. Inverse problem

The goal in this paper is to identify conductivity anomalies based on observations of the static
boundary potential u|;p. We assume that both background and anomaly conductivity values
op and o, are known a priori and the inverse problem is to reconstruct I'. We consider L
experiments each with current density f; and boundary observation z;,/ = 1,..., L. The
inverse problem can then be described as a minimization of the cost function

1 L
Jmy=33" 7£D ur(q) — 21(q) P ds(q) + yﬁ ds, ®)
=1

where the functions u; represent the computed potential, using a numerical forward model.
The second integral is a penalty on the length of I" and y is a small positive real number [64].

The regularization term in (8) penalizes anomalies’ perimeter and therefore enforces a
smooth interface. In this paper, the focus is mainly on a new descent approach minimizing
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the residual mismatch error with respect to observation data. The proposed approach can also
be implemented with other regularization techniques such as total variation [66, 67] or its
variants [72]. Such implementations are beyond the scope of this paper.

3. Inversion

3.1. Level sets

For the reconstruction of I" the level set approach, which was first introduced by Osher and
Sethian [74], provides a flexible and efficient framework based on topological evolution of
interfaces. Considering the level-set function ¢ (r,1),t > 0,r € Rd, estimates of 2, I and
o (r) through time are then defined as

Fi={reD:¢@ 1) =0}, €))

Q={reD:¢ 1) <0}, (10)
op + 0, for r,t) <0

oy =1""" =9 (1)
op for ¢(r,t) >0

The level-set evolution is defined by the Hamilton—Jacobi system [76]
d¢
¥+V(rvt)'v¢:()’ ¢)(I’,O)=¢O(}’), (12)

where V(r, t) is the velocity field at time ¢ and ¢ (r) is the initial level-set function. The
velocity field enforces an evolution in the normal direction of I';, i.e. V (r, ) = v(r, t)v where
v is a scalar speed function and v = % is the unit normal on ;.

Consider a2 D grid {(x;, y;)}i=1,...n,,j=1,...n, Where n, and n, are the numbers of grids in
the x and y directions, respectively. The numerical implementation of the first-order hyperbolic

differential equation (12) can be described as
O (xi, yjstir1) = G (xi, i, ) +v(xi, v, )V (i, yj, )|, (13)
where 0 =) <t < --- < t,, = T is the time grid and t; is the time step at each iteration.

Building on previous work [65, 75], the level set implementation used in this paper applies
the CFL condition to maintain a stable Hamilton—Jacobi solver , i.e.

Temax [v(x;, yj, k)| < h VkelO,...,m—1] (14)
¥

where £ is the typical spatial grid size. The stability constraint applies similarly to a 3D grid
and is meant to prevent the interface from moving by more than a pixel/voxel length at any
iteration [76]. In our implementation the time step t; is computed as

h
n ,
max; ; [v(x;, yj, )|

where 0 < 1 < 1 and at each iteration the value of 7 is defined by a line search algorithm.

Tk = (15)

3.2. Projection-based velocity field

A key component in any inversion method is the sensitivity of the data to variations in the
unknown to be reconstructed, in our case o (r). The sensitivity functions ”E,r’ which describe
the change in potential functions u; due to conductivity perturbation at a location r, come into
play in the functional derivative of the cost function. Assuming that y = 0 for a moment,
from (8), it is easy to show that the functional derivative of the cost function is
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7 <& ,
Py Ziv uy ,(q)(ui(q) — z1(q)) ds(q) (16)
=1
L
= Z(Mﬁ,r, U — 21)sp, (17

where (-, -)yp represents the dot product of two functions evaluated on dD. It is important
to note at this point that the evaluation of u;, on 9D requires solving the boundary value
problem (B.2) for each experiment—location pair (/, 7). By applying the chain rule, as in [67],
the shape derivative of the cost function with respect to variations in the level-set function ¢ is

dg dJ do
dp  do dg
L

= % <Z (] oy — Zl)zm) oau(r, 1) ds(r). (18)
r,

=1

According to equation (18), the level set formulation provides considerable flexibility in
defining the speed function as long as the latter guarantees a non-increasing cost, that is,
7 <0
dp 7

One natural choice, for the speed function, is the gradient-descent approach [60, 64, 65]
with

L
Vea(r, ) = —sign(oy) (Z(u;,,, w — Zl)av) : (19)

=1

The main term in the gradient descent speed function is the summation, over all experiments, of
the dot products of boundary residual and sensitivity functions, i.e. u; —z; and u; ., respectively.
These dot products can be described as

Uy o ur = 20)ap = |ugrllu; — 21| cos(@y,,), (20)

where |u; — z;| and |u; | represent the L£,-norms of the residual and sensitivity functions,
respectively, and cos(6;, ) describes the cosine of the angle, or correlation coefficient, between
the same functions.

In our approach we propose the use of correlation coefficients, instead of dot products, as
a metric for the projection of sensitivity functions onto residual signals. In other words, we
consider the speed function

. (Ml o U —2D)ap
v,(r, 1) = —sign(o,) Z ] M " @D
L
= —sign(oy) Y _ cos(f,,). (22)

=1

As described in (19), the projection-based speed function is very much dependent on the
similarity between normalized sensitivity and residual functions but invariant to the sensitivity
and residual norms. This invariance makes the approach less prone to spatial variation in
sensitivity amplitudes and changes in residual error energy with respect to distinct data sets,
i.e. experiments.
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The projection-based method, described in (21), is a descent approach. Substituting
equations (20) and (21) into (18), the latter can then be re-written as

dj L L
30 = |aa|y§ (ZZ luj g — zl|cos(91,r>cos<9m,r)> ds(r) (23)
Te \i=1 m=1

=lo,| @ (a’Ba)ds(r), (24)

I

where a’ = [cos(fL ) - - - cos(f1 )] and B is the semi-definite matrix, of rank 1, defined as

luy Mur —zil ool Mur — 22
B = " : : . (25)
|y Moy =zl oo Juy N — ze
The integrand in (24) is non-negative and so is the derivative of the cost function %.

3.3. Projection-based approach versus classical level-set speed functions

In this subsection we relate the proposed projection-based speed function to gradient-descent
and Gauss—Newton-type velocity functions. The goal is to highlight the relationship between
our approach and these methods and to provide an intuitive explanation why the proposed
projection-based approach is expected to converge faster compared to gradient-descent level-
set evolution.

3.3.1. Projection-based approach and the gradient-descent method. In the literature, e.g.
[64, 67], the shape derivative in (18) is usually described in terms of the adjoint potentials
defined as

9
V. (6Vuw) =0, aa—w’ —— (26)
n

Using the fact that (u;‘r ,ui—z1)ap = Vuy(r)-Vw;(r) (see appendix B for a detailed derivation),
the gradient-descent speed function is expressed as

L
Veq(r, 1) = —sign(o,) (Z Vu(r) - Vw,(r)) . 27

I=1
Computationally, the expression in (27) involves solving one adjoint problem (26) per
source/data set, whereas the variational formulation (19) requires, upon discretization of the
inverse problem, solving the boundary value problem (B.2) for each experiment—location pair
(I, r) in order to evaluate u; .. Considering the adjoint formulation (27), the projection-based
speed function can also be described as

L _
. Vi (r) - Vi (r)
v,(r, t) = —sign(oy,) —_— (28)
,, T
where W is the solution of the adjoint problem (26) with boundary current flow equal to ﬁ

instead of u; — z;.

The variational formulations (19) and (21) provide a better distinction, in our view, of
our approach with respect to the steepest descent. The correlation coefficient is basically
a normalized measure of the similarity between the residual and sensitivity functions.
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Figure 2. Illustration of the difference between gradient-descent and projection-based speed. (a)
shows the actual conductivity map (in gray) and the boundary I'; (in black) of a hypothetical estimate
of the conductivity distribution, (b) and (c) illustrate the vy, gradient-descent and the projection-
based v, speeds, respectively, evaluated at I';. While projection-based speed is consistent with
mismatch between actual and estimate conductivities, the gradient-descent speed function has
significant values only in high-sensitivity regions, i.e. at portions of I'; that are closest to dD. (a)
Resistivity maps, (b) gradient-descent speed and (c) projection-based speed.

Alternatively, from (19) the gradient descent approach provides an un-normalized descent
direction. More specifically, the presence of |u; — z;| indicates that large residuals are a major
influence of the gradient-descent level-set evolution. Similarly, |u; | provides greater weight
to regions where there is high physical sensitivity. Though, perhaps, one may think that these
are precisely the drivers one would want for evolving the level-set function, in practice they
tend to dominate the evolution to the extent that (1) information content in data sets with
smaller residual is effectively ignored and (2) the evolution of the level-set function in regions
of low physical sensitivity is greatly slowed.

Figure 2 illustrates the difference between the two speed functions, for a given conductivity
map with three anomalies (an ellipse, a square and a rectangle), at a hypothetical estimate of the
conductivity distribution with three inhomogeneity regions each of which overlaps partially
with one of the actual anomalies. The speed functions are evaluated over a thin narrow-band
defined in the neighborhood of the boundary of the estimated anomalies. Positive values of
the speed function indicate that the estimated anomaly should shrink at the corresponding
portion of the boundary, i.e. velocity vector pointing inside the anomaly, whereas negative
values indicate that the boundary should move in the outward normal direction leading to
an expansion of the anomaly. As we see from these figures, the projection-based speed
function clearly pushes the estimated anomalies to expand towards the actual ones and shrink
at the center of the medium where most of the mismatch, between the actual and estimate
conductivities, happens to be. The gradient-descent speed function, however, is significant
only on portions of the boundary I" that are closest to sensor electrodes. In addition, a mismatch
between actual and estimated conductivity maps that is close to sensor electrodes has a more
significant effect on the residual error than a mismatch that is deep inside the medium. This
fact makes the gradient-descent method much slower than the projection-based approach in
converging to the actual solution and in some circumstances it might even fail to converge.
Later in this paper, the performances of these two methods are compared in more detail.

3.3.2. Projection-based approach and the Gauss—Newton method. The new speed function
can be mathematically related to the Gauss—Newton formulation. For the sake of simplicity
we consider a configuration with a single source, i.e. single experiment, and therefore omit
the subscript / used earlier in the paper to indicate the data set index. We also use a discrete
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formulation of the speed functions. Such a representation implies no loss of generality but
rather provides a better description for the purpose of showing the link between our approach
and the Gauss—Newton method.

Let the vector vy represent a discretized Gauss—Newton speed function evaluated at
some estimate €2, of the conductivity map. Gauss—Newton-type methods solve the linear
problem

Jugn=u—2z (29)

at each iteration in an iterative reconstruction, where the matrix J is the Jacobian of the forward
model. The Gauss—Newton speed vector can then be expressed as

von =" DI w-2). (30)

In the Levenberg—Marquardt formulation the inversion of J7 J is regularized with an additional
term SR, where R is a positive definite matrix and g is a parameter that is dynamically adjusted
[70-72]. The linearized problem (29) implies that in a Gauss—Newton-type approach, one is
looking for a linear combination of sensitivity vectors that would best reconstruct the residual
error; however, in the proposed projection-based method we seek sensitivity vectors that
correlate best with the residual signal, i.e.

1

"~ lu—z

P (u-12), (31)

Ly

where P is the projection matrix whose rows are equal to the normalized sensitivity vectors,

’

. / Wony 1T . I . . .
ie. P = [ =Lt : ] , and u; ; 1s the sensitivity vector for a perturbation at grid point

(xi, yj)-

Considering the fact that the discretized gradient descent speed v,,, is equal to J T(u—2)
[60], both Gauss—Newton-type and projection-based speed vectors can also be considered as
scaled versions of v,,. According to (30), vy can be expressed as

vy =Ty, (32)

Defining G as the diagonal matrix with entries equal to |u; ;1» the projection-based speed vector
can be written as

1
= G v, . 33
|E — Z| ygd ( )

Yp

Recalling the form of the Jacobian as J = [u] ; ...u, , 17, then

—Ny.ny

G = /diagJ7)). (34)

In other words G is basically a diagonal approximation of J7J.

3.3.3. An efficient implementation of the projection-based approach. As described in (21),
the evaluation of the projection-based speed function at each iteration involves the computation
of sensitivity functions u; ,.. In other words, one would solve the boundary value problem (B.2)
for each location—experiment pair (r, /). An efficient narrow-band implementation of the level
set approach in a discretized medium would require L forward solves, to compute estimates of
measured potential, and L x M} solves of (B.2) per iteration, where M, is the number of grid
points within the narrow band at the kth iteration. We note that Gauss—Newton methods that
construct the Jacobian would require the same number of problem solves [69], adding to that
the inversion of the Hessian approximation matrix. However, the gradient-descent approach
requires only L forward and L adjoint solves per iteration [43] and efficient implementations
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of Gauss—Newton methods perform L forward and 2L adjoint solves as well as large matrix
inversion [48, 72].

Given the normalization by sensitivity vectors’ norms in (21), the projection-based method
requires the computation of these sensitivity vectors at least for each pixel/voxel on I" for
every experiment per iteration. This computational burden can be overcome through judicious
use of (7). Rewrite the analytical solution of the electric potential, for a piecewise constant
medium, as

u(r) = pb?g c(g)g(q,r)ds(q) + Bu, fi), (35
r
where B(u;, f7) is the contribution of the medium boundary 9D to the electric potential, i.e.
dg(g,r)
Blu. fi) = f (u(q)ﬁ —mf @3, r)) ds(q). (36)
aD 3nq
Note that the measured electric potential z; can also be written as
z(r) = Pbyg cz1(9)g(q, r)ds(q) + B(z, fi). (37
I,

where I'; and c,; represent, respectively, the anomaly boundary and secondary sources
corresponding to the measured data. Defining ii; = u; — By, f;) and Z; = z; — B(z;, fi), in
the projection-based inversion we propose minimizing

I = o,
J—Egygp @ — 2] ds(q>+yy§r ds (38)

instead of 7. This modification implicitly implies that the inverse problem is transformed
to an identification of the secondary sources as if they were embedded in a homogeneous
background medium. Note that the modified inverse problem (38) is a minimization of

P} =
7=25¢
Zgav

Sensitivity functions associated with data residual error in (39) can be expressed in terms
of Green’s functions. The derivations confirming this claim are provided in appendix C where
the functions u; , are shown to be linearly proportional to Vg(q, r) - v(g), where the Green’s
function g(g, r) for the homogeneous infinite-medium is known analytically. The next step
then is the computation of the boundary terms B(u;, f;) and B(z;, f7). Given the assumption
that both u; and z; are known on the boundary 9D, the main computational challenge comes
with the fact that the boundary-term integral is singular for a point » € 9D. In order to avoid
singularity, we propose the approximation where the integral is rather evaluated for a point
r’ € D that is a neighbor point of r but not on dD. This approximation is not necessarily the
most accurate; however, it is good enough not to degrade the reconstruction performance, at
least according to our simulation results.

Considering the definitions of ii; and Z; stated above, the corresponding projection-based
speed function can then be described as

2

?gc;(q)g(q,r) ds(g) — % dS(r)+Vf ds. (39)
I r

(Vg v, ity —Z1)yp
Vg - vllit; — Zilap

L

v, (. 1) = —sign(oa) Y (40)
I=1

Note that sensitivity can be analytically approximated with ¢;Vg - v, as described in (C.6);

however, in (40) use the term Vg - v instead and omit the unknown amplitudes of secondary

sources ¢;. This does not affect the final result of the speed functions because the correlation
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Figure 3. For a conductivity distribution with three disjoint anomalies, the projection-based speed
function is evaluated at three distinct conductivity estimates without approximation (second row)
and with approximation (third row). The first row shows the boundary of the true conductivity
distribution (black lines) and the conductivity estimates (gray regions). (a) Conductivity estimate
1, (b) conductivity estimate 2, (c) conductivity estimate 3, (d) speed function using (21) for
estimate 1, (e) speed function using (21) for estimate 2, (f) speed function using (21) for estimate 3,
(g) speed function using (40) for estimate 1, (h) speed function using (40) for estimate 2 and
(i) speed function using (40) for estimate 3.

coefficients are independent of the magnitudes of sensitivity functions and residual error.
In figure 3 we consider three distinct estimates for a conductivity distribution with three
disjoint anomalies. For each conductivity estimate the projection-based speed function is
evaluated without any approximation, i.e. as in equation (21), and displayed in the second
row of the figure. The last row illustrates the speed functions computed using equation (40).
Comparing the results in both rows, one can conclude a very similar behavior of the velocity
function in both cases. Specifically, along most of the boundary of a conductivity estimate
the speed values, computed both ways, have identical signs and a similar distribution of the
velocity magnitudes. Therefore, equation (40) results a significant reduction in computational
complexity, compared to equation (21), without significant distortion of the behavior of the
speed function. In section 4 further simulation results, using the implementation described
in this sub-section, are provided to illustrate the efficiency of the projection-based level set
approach in reconstructing conductivity anomalies.
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For the sake of clarity we emphasize that the method described in this subsection is only
applied to the 2D medium projection-based approach. In other words, considering a non-zero
v, the projection-based speed function used in the rest of the paper, for a 2D medium, is
defined as

(Vg v, il —Z)yp
Vg - vllit; — Zilap

L
v,(r, 1) = —sign(o,) (41)
=1

where « is the mean curvature. The gradient-descent speed function, however, is defined as

L
Veq(r, 1) = —sign(o,) (Z Vu(r) - le(r)> + YK, 42)
I=1
where u; and w; are the forward and adjoint potentials, respectively, in the /th experiment.
The 3D medium is modeled as a half-space with Neumann boundary conditions only on
the top surface. This is a typical geophysical geometry for the inverse problem. In this case
the analytical solution, i.e. integral equation formulation, of the forward problem involves the
mirror image of secondary sources. The analytical expression of sensitivity, in this case, can
be described with a point-dipole source and its mirror image; hence, no modification of the
cost function by subtracting the medium boundary effects is required in our 3D simulation.

4. Implementation and numerical results

In this section, we illustrate the anomaly reconstruction performance of the proposed
projection-based level set approach through numerical simulations. We consider a 2D square
medium of dimension 1 m x 1 m and a 3D medium with four boreholes, as shown in
figure 4. The 2D medium is discretized in 1 cm x 1 cm grids and has 32 source electrodes,
eight on each side of the boundary, that are shown as small black squares in the same figure.
In our 2D ERT data we have 28 different experiments each with a distinct dipole source. The
dipole sources are all chosen in a cross-medium configuration with eight horizontally, eight
vertically and twelve diagonally oriented. In figure 4 the electrodes, for each source dipole, are
connected with a dashed or a dotted line. The purpose behind such dipole configurations is to
enforce electric current through the medium, and crossing anomalies, in different directions.
We expect according to (5) that such a setup would lead to significant secondary sources on
distinct portions of I" and therefore producing data sets that are hopefully sensitive enough
to the position and shape characteristics of 2. In our simulations, we use the forward model
described in [43], which is based on a resistor-network implementation. For the 2D medium,
the model is modified to enforce Neumann boundary conditions on the whole boundary,
whereas for 3D simulations the exact model as in [43] is used with Neumann boundary
conditions on the top surface and mixed boundary conditions on the rest of the boundary.

In the first 2D set of simulations, we compare the performance of the projection-based
approach to that of the gradient descent in reconstructing a conductivity anomaly having
the shape of a half donut. The choice of such a shape is based on the fact that cavities
are usually associated with low-sensitivity regions and therefore are difficult to reconstruct.
The background and anomaly conductivity values are equal to 0.1 Sm~' and 0.001 Sm~',
respectively. For the projection-based approach we consider data sets with 1% and 5% additive
Gaussian noise. The percentage values are computed with respect to the scattered potentials
generated by the true anomaly. For the gradient-descent reconstructions, we also consider
inversions using noise-free data. The same initial guess for the anomaly region 2 is used
for both methods. In the implementation, the gradient-descent and projection-based speed
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Figure 4. The media considered in this paper: (a) 2D medium with 32 source electrodes, i.e.
eight on each boundary side (black squares), and 28 dipole-source configurations indicated in
dashed-lines. (b) 3D medium, with four boreholes and 13 electrodes in each hole, represents a
typical geophysical scenario.

functions are computed only within a thin narrow-band, i.e. at pixels defining the estimate
anomalies’ boundary, and the level-set function is re-initialized to a signed distance function
every five iterations. The value of y is chosen to be 0.01. This first estimate as well as the
final reconstructions, from both methods, is displayed in figure 5. All results represent the
estimates, in gray, at iteration 350. We also note that we use the same line search procedure, to
identify the best time step in each iteration, for both methods. The obtained results show that
the projection-based level set approach provides a more accurate reconstruction. In fact, the
gradient-descent method seems to have some difficulties in pushing the front part of the contour
to form a cavity. In figure 6 we plot three error measures, corresponding to reconstructions
with the data set having 1% noise, illustrating the differences in performance between our
approach and the gradient-descent level-set method. In figure 6(a) we plot the Logl0 of
averaged square residual errors (averaged by the number of iterations) for both reconstruction
methods. In figures 6(b) and (c) we plot the errors describing the normalized intersection and

mismatch areas between the actual anomaly €2 and its estimate €2;, at time #; corresponding to

. . . . AQ NQ
the kth iteration. The operator .4 is a measure of the area. The expression (#Q) represents

the intersection area between €2 and €2, normalized by the area of the actual anomaly 2.
The second expression % describes the false alarm area normalized by the area of .
In an accurate reconstruction the first expression should converge to 1, whereas the second
one should converge to 0. The plots in figure 6 indicate that the projection-based level-set
approach gives better reconstruction than the gradient-descent method with respect to the
three error metrics. We also note that since we run both methods for only 350 iterations,
the gradient-descent method, even if it converges, will require a lot more iterations than our
proposed approach based on these results.
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Figure 5. The reconstruction results for the projection-based approach and the gradient-descent
method. In all sub-figures, the actual contour I' is shown in black whereas the initial guess,
for both methods (a) and the final estimates of 2 after 350 iterations (b)—(f) are shown in gray.
The results indicate that the gradient-descent method has some difficulties to curve in the cavity
whereas the projection-based approach shows very good reconstruction within the same number
of iterations. (a) Initial guess and actual I', (b) projection-based method: final estimate with 1%
noise, (c) projection-based method: final estimate with 5% noise, (d) gradient-descent method:
final estimate with no noise, (e) gradient-descent method: final estimate with 1% noise and
(f) gradient-descent method: final estimate with 5% noise.
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Figure 6. The residual error as well as the normalized mismatch errors between actual and estimated
anomaly areas, for 1% data noise, at each kth iteration. Continuous lines show projection-based

approach results whereas dashed lines correspond to gradient-descent method errors. (a) Log10 of
AQy NQ) A(Qy \Q)

residual errors versus iteration index &, (b) ¥ 6] wEo)

versus k and (c¢) versus k.

In the second set of 2D simulations, the actual anomaly consists of three disjoint regions
positioned far apart from each other. The initial guess, as shown in figure 7, does not provide
any information or hint on the actual conductivity inhomogeneities. We make use of the same
background and anomaly conductivity values as in the previous simulations and measured data
with 1% additive noise. The speed functions are computed within a narrow band, as described
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Figure 7. The evolution of the estimated £2; using projection-based level set reconstruction and
measured data with 1% noise. The estimates of the anomalies are shown in gray whereas the actual
I' is shown in black in all sub-figures. The results clearly show a convergence in shape, position
and number of anomalies of the estimate €2, to the actual inhomogeneity region. (a) Iteration 0,
(b) iteration 50, (c) iteration 100, (d) iteration 200, (e) iteration 300 and (f) iteration 400.

above; the level-set functions are re-initialized every five iterations and y = 0.01. Figure 7
illustrates the evolution of the projection-based reconstruction whereas figure 8 shows the
estimates, based on the gradient-descent level-set method, at the same iterations. While our
proposed approach converges to the actual anomalies, the gradient-descent velocity field seems
to be driven mainly by the bottom-right rectangular anomaly which is closest to electrode
sensors. After 400 iterations the gradient-descent estimate is clearly far from providing a
reliable reconstruction of the three anomaly blobs. Figure 9 shows plots of residual errors
as well as those of normalized mismatch metrics between estimated and actual regions for
gradient-descent and projection-based level-set reconstruction. Our approach clearly indicates,
in this simulation, a faster convergence to a better estimate of the actual anomaly regions.

The 3D simulation is intended to show the capability of the projection-based approach to
converge even without much accuracy in choosing the time step t; in every kth iteration, e.g.
without line search but rather a constant value for . Such capability allows more computational
efficiency especially when the number of unknowns, i.e. N, is very large. The 3D medium
shown in figure 4 is discretized into 67 x 67 x 60 voxels each with dimension 5.08 cm X
5.08 cm x 7.62 cm, i.e. 2 in x 2 in x 3 in. Conductivity values for background and
anomalies are 0.05 Sm~! and 0.0005 Sm™!, respectively. Measured data sets correspond to
72 distinct dipole sources, i.e. 13 x 4 electrode pair combinations in horizontal cross-borehole
configurations. A 5% Gaussian noise is added to the data. In the 3D simulation, only
the projection-based level-set approach is tested. The speed function is computed only in the
vicinity of the level zero, and the level set function, in this case, is re-initialized every iteration;
however, no line search is applied for the time step. Instead the parameter 1 in equation (15)
is chosen to be constant and equal to 0.65. Figure 10 shows the simulation results for two
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Figure 8. The evolution of the estimated €2, using gradient-descent level-set reconstruction. The
estimates of the anomalies at iterations 0, 50, 100, 200, 300 and 400 are shown in gray whereas
the actual I' is shown in black in all sub-figures. The results show a failure to converge to actual
anomalies. Asamatter of fact, it seems from the results that the gradient-descent level-set evolution
is mainly driven by the bottom-right anomaly which is closest to sensor electrodes. (a) Iteration 0,
(b) iteration 50, (c) iteration 100, (d) iteration 200, (e) iteration 300 and (f) iteration 400.
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Figure 9. The residual error as well as the normalized mismatch errors between actual and
estimated anomaly areas, for 1% data noise, at each kth iteration of the reconstruction of three
disjoint anomalies. Continuous lines show projection-based approach results whereas break lines
correspond to gradient-descent method errors. (a) Logl0 of residual errors versus iteration index
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disjoint resistive blobs. Starting from an initial guess in the form of a sphere that does not
intersect with actual anomalies (see figure 10) the projection-based level-set approach provides
a reasonably accurate reconstruction of the actual conductivity inhomogeneity region €2. The
total number of iterations is 60, as shown in the residual error plot.
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Figure 10. The initial guess, actual and reconstructed conductivity anomalies for a 3D simulation
with two disjoint blobs as well as the residual error . The observation data has 5% additive Gaussian
noise. Starting from a single spherical blob as initial guess, the proposed algorithm succeeds in
locating both anomalies. (a) Initial guess, (b) actual anomalies, (c) reconstructed anomalies and
(d) residual error.

5. Conclusion

In this paper we proposed a projection-based velocity field for level-set-based reconstruction of
anomalies in low-sensitivity imaging modalities, specifically electrical resistance tomography.
We showed that our approach is a descent method and we related its mathematical formulation
to that of gradient-descent and Gauss—Newton-type methods. As described, the projection-
based velocity field is shown, through numerical simulations, to overcome the effect of
spatial variation of sensitivity on reconstruction performance. We also provided an efficient
implementation of the proposed speed function that does not require any excessive forward
or adjoint problem solves, as is the case for Gauss—Newton-type methods. In future work we
consider investigating other alternatives of defining the speed function from distinct correlation
coefficients, rather than using their sum, with more focus on 3D data. The formulation of the
inverse problem as a reconstruction of secondary sources, using other level-set methods, will
also be considered. Multi-source inversion can be carried in an unbounded medium which
would require numerical evaluation of the accuracy of approximations estimating the effect
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of the medium boundary on measured, or computed, electric potential. In the multi-source
reconstruction approach, the localization of secondary sources would hopefully lead to a set
of scattered points defining the boundary of conductivity anomalies.
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Appendix A

The conductivity distribution o (r) described in (1) is not differentiable across I'. In this
section we consider weak differentiability by defining the standard mollifier, for each space
dimension d,

Kd < 62 > f | |
— €X —_— or r<e

@e(r) = { € Plrp=e (A.1)
0 for |r| > e,

where € is a small positive real number and K, is chosen such that

/ @e(r)dr = 1. (A.2)
Rd
This family of functions is of class C§° (Rd). We then define the mollified conductivity o, as
o.(r) = / o(8)p.(r —s)ds (A.3)
Rd
/ ( )Kd < d (A.4)
= o(s)—exp| ——— | ds, .
b el TP\ sp—e

where B (r) is the d-dimensional sphere centered at r and with radius €. According to (A.3),
o, € C*®(Q)and o, —> o ase —> 0.
Given the differentiability of o, the corresponding forward problem can be described as

—o.Aue = Vu, - Vo, O = f. (A.5)
on

In the rest of this section we show that the limit of Vo, as ¢ — 0 is equal to o,v. Note that
with such a result and by subtracting (4) from (A.5), in the limit where € goes to 0, one gets the
source-type formulation in (5). For simplicity, we consider only the 2D case, the derivations

for a 3D medium are similar.
Letr = [x,y,]" bea point in D and B, (r) be the disc with center r and radius €, where
€ is a small positive real number. Let s = [x,y,]7 be a point in the same disc (see figure A1l).
Considering equation (A.4), with d = 2, the derivatives of o, in the x- and y-directions can

be expressed as
00, / K> —2(x, — x;)€? €2
= ) o2 — | d A.6

v e @ D s P\ pme)d B0
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Figure Al. An illustration of the picture behind the derivations in appendix A.

and

0 € K -2 r— Js 2 2
o :f —za(s)(y—i);)zexp <6—> ds. (A7)

Wy Iy € (lr = sl [ —sl? — €

In a polar coordinate system, with origin at r, x;, — x, = Rcos6 and y; — y, = R sinf where
R is the distance between the points r and s and 6 the angle between the x-axis and s — r.
Equations (A.6) and (A.7) can then be written as

Ko | o /7 2Rl exp (=)o (R.O)R A0 dR

Voe(r) = €2 T —2e?Rsind (A.8)
N (RT—e2)? exp (7= eZ)G(R’Q)RdQ dr
K> ™ cos 6
= h (R) / o(R,0)| . df | dR, (A.9)
€? o sin 6
where
2¢2R? €2

In the case where r ¢ I', there exists an € smaller than the distance between r and I". In
such a case o (R, 0) is constant inside B.(r), i.e. equal to o}, or 0}, + 0, and hence independent
of & which implies Vo, = 0 since the integrals of cos 6 and sin6 over the interval [—m, 7]
are both equal to 0. However, if » € T" then o (R, ) is either equal to o}, or 0, + 0, depending
on whether s € D\Q or s € 2. For small €, we can approximate the regions B, (r) N (D\2)
and B (r) N 2 by the half discs separated by the tangent to I" at point r, as shown in figure Al.
Let o be the angle between the x-axis and the same tangent and define the integral 1, as

o cosf o+ cosf
I, = / (op+04) | . do +/ opl| . do (A.11)
a—7 sin 6 o sin &

—2sin«
= . A.12
O“[2cosa:| ( )
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The gradient of o, can then be described as
—sina | € 2K,
Vo, = o, / —he(R)dR. (A.13)
cosa |Jo €

Let us call the integral in (A.13) I,; then using integration by parts we have

Lo elpoo(—< Y] % / 2 LS (A.14)
=— ex — | =ex .
‘ €2 Plr—e o € Jo € Plrr—e

04 K2 [ K € Var (A.15)
= _— — X R — . .
Kie J_. € Plr_e

The integrand in (A.15) is the standard 1D mollifier and K is chosen so that the integral is

equal to 1. Thus I, = KLIZE and by substituting its value in (A.13) we can write Vo, as

K
Vo, = —>0o,v (A.16)
K]G

for r € I'. Note that the outward unit normal of I is equal to [— sin @ cos &]” and numerically
K, = K,. Considering both cases, i.e. whether r € I" or not,

Vo = lirr(l) Vo, (A.17)
e—
= 0,Vér (A.18)

where dr is the Dirac delta function with non-zero support equal to I'. This concludes our
proof. For a 3D medium, the derivations would be the same, except that B.(r) will be a
sphere and we have to use a spherical coordinate system, instead of polar, to evaluate the
corresponding integrals.

Appendix B

In this section, we derive the link between the variational (19) and adjoint (27) formulations
of the speed function by showing that (u;,r, u; — z21)sp = Vu;(r) - Vw;(r). Let do be the
conductivity perturbation at location r associated with the change u; , in the potential function
u;. The forward problem for the perturbed conductivity can then be described as

o(u; + u;,r)

V- (0 +80)V(u +uj,)) =0, (0 +80) = f (B.1)

Subtracting (2) from (B.1) and ignoring the second-order terms, “;,r is found to be the solution
of the boundary value problem
Oy _ g5 01 (B.2)
on an
Note that one needs to solve (B.2) for each sensitivity function associated with u; and a
location r.

In the adjoint problem description (26) the residual error is equal to a%. Therefore
using Green’s first identity the dot product (u;’r, u; — z1)sp is equal to

V- (0Vu,,) =—V- (S0 Vu), o

(u;,r, Uy —7))9p = / u;’,.V - (cVwy) +/ oVu;, - Vw (B.3)
D D '

= / oVu), - Vuy. (B.4)
D
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The first integral in (B.3) is equal to 0 because V - (o Vw;) = 0 according to (26). In the next
step, we apply Green'’s first identity to (B.4) using o Vi, as the vector field of interest. The
result is

!/

ou
Uy, ur —2)op =j£ wio —Lds —/ wV - (oVuy,) (B.5)
' D on D '
8u1
=— widoc— ds+ | w; V- (SoVu) (B.6)
9D on D
dup,

where (B.6) is obtained from (B.5) by substituting —80% for o —* and —V - (80 Vu,) for
V- (0 Vu; ) based on the boundary value problem (B.2). Applying Green’s first identity, once
more, to the contour integral in (B.6) implies

a
% wléai ds = / w;V - (6aVuy) +/ doVwy - Vu. (B.7)
9D on D D

Finally by substituting (B.7) in (B.6) we end up with

W)t — 2)ap = — / 55 (q)Vw; - Vuy d(g). (B.8)
D

In the case where §o is equal to the dirac delta function at the point r, the sensitivity functions
can be related to the adjoint potential as (u;‘r, u; — z1)sp = Yuy(r) - Vw;(r). The use of the
dirac delta function for the conductivity perturbation is possible in the weak differentiability
sense.

Appendix C

Let ¢ be a time instance and 8¢ a very small time interval. We define I';,, as a slightly deformed
version of T';:

Tisi = {q:q = q' +v(q, 1)8tv where ¢ € T';}, (C.1)

where v(q’, t) is a scalar velocity function and v is the outward unit normal of I';. In an
unbounded medium, the difference in scattered potentials corresponding to I';,5, and I'; can
be described, according to (7) and (35), as

B ) =T, () = p f

Trise

ci(q, 1 +50)g(q. ) ds — py 7§ ci(q, Dg(q. r) ds, C2)
ry

where / here represents experiment, or data set, index and ¢; describes the equivalent secondary
sources corresponding to the anomaly. Using the definition in (C.1) and assuming that §¢ is
very small, equation (C.2) can be re-written as

) =k, (r) = —pbyg clq'.t)glg', r)ds
I,
+ 0p f (g +v(g’, t)vét, t)g(q" +v(q', t)vt, r)ds. (C.3)
I,

Let ¢(q’, 1, t, 8t) be the integrand of the second integral in (C.3). By applying a first-order
linear approximation ¢ can be expressed as

3
¢ =(alg',n)+a(q' (g, 1)st) (g(q’, N+ 3—§v(qﬁ t)8t> , (C.4)
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where ¢; represent the variation in the amplitudes of the equivalent secondary sources due to
the contour deformation and g—i is derivative of the Green function in the normal direction v
of I';.

In order to evaluate sensitivity, analytically, we consider a localized contour deformation.
In other words assume that v(qg, ¢) is non-zero only within a very small neighborhood of a
point p € I';. In such a case the change in the equivalent sources’ amplitudes is negligible
given the small change in total potential (see the expression of secondary sources in (5)).
Under this assumption, we substitute (C.4) in (C.3) with ¢,(¢’, 1) = 0, which leads to

u ) =y ) = —phyg alq' . Dglq' r)ds

I

+ 75 c(d’.Ng(q', r) ds
ry

0 ‘.
+f c(gs ) 89D o st ds
T, av

, L 0g(q’,r)
=7§ a(q ,I)%&] ds. (C.5)
T, v

The term 8q" = v(q’, t)8t describes the displacement of the contour and is non-zero only
within a small arc centered at p. As the contour displacement becomes restricted to a point
p € I'y, i.e. 8¢’ = v at point p and O elsewhere, the sensitivity of the scattered potential to
such localized displacement is

uy ,(r) =ca(p,)Vg(p,r) - v. (C.6)

This formulation implies that sensitivity in this case is linearly proportional to the potential
function produced by a point dipole source located on I'; and in the same direction as v. In our
approach, and since we are interested in the correlation coefficient between sensitivity function
and residual error, we can ignore the multiplicative term ¢;(p, t) and just use Vg(p,r) - v
for sensitivity functions. This is not an approximation and it does not affect the resulting
projection-based speed function because amplitudes of both sensitivity and residual error get
washed out in computing the correlation coefficients.
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