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Conventional ultrasound transducers used for medical diagnosis generally consist of linearly aligned
rectangular apertures with elements that are focused in one plane. While traditional beamforming is
easily accomplished with such transducers, the development of quantitative, physics-based imaging
methods, such as tomography, requires an accurate, and computationally efficient, model of the field
radiated by the transducer. The field can be expressed in terms of the Helmholtz-Kirchhoff integral;
however, its direct numerical evaluation is a computationally intensive task. Here, a fast semi-
analytical method based on Stepanishen’s spatial impulse response formulation [J. Acoust. Soc. Am.
49, 1627-1638 (1971)] is developed to compute the acoustic field of a rectangular element of
cylindrically concave transducers in a homogeneous medium. The pressure field, for lossless and
attenuating media, is expressed as a superposition of Bessel functions, which can be evaluated
rapidly. In particular, the coefficients of the Bessel series are frequency independent and need only
be evaluated once for a given transducer. A speed up of two orders of magnitude is obtained
compared to an optimized direct numerical integration. The numerical results are compared with

Field II and the Fresnel approximation. © 2007 Acoustical Society of America.
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PACS number(s): 43.80.Vj, 43.20.Fn, 43.20.Rz, 43.20.Bi [TDM]

I. INTRODUCTION

Diagnostic ultrasound imaging systems typically employ
one-dimensional arrays to form two-dimensional B-scan im-
ages. In the axis normal to the image plane, the so-called
elevation plane, the elements have a fixed focus that is ef-
fected either by the use of elements that are curved or by the
use of an acoustic lens. In the image, or scan plane, the
elements in the array are electronically steered and focused
using delay and sum beamforming. In theory, these arrays
are capable of being used for ultrasound computed tomogra-
phy if the unbeamformed data can be recorded for each ele-
ment on the array. For ultrasound computed tomography to
be effective an accurate physical model of the acoustic field
produced by each element of the transducer in the tissue is
needed. The field can be expressed in terms of an integral,
however, practical computation of the integral is not trivial.

One method that is well suited for evaluating the field of
an ultrasound imaging system is the spatial impulse response
(SIR). The SIR is defined as the pressure wave at a point in
space in response to a velocity impulse on the radiating sur-
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face of the transducer.' The SIR may be convolved with the
time derivative of the normal particle velocity to obtain the
time pressure distribution. For ultrasound imaging systems,
where short duration pulses are employed, the convolution
can be carried out quickly. Exact expressions of the SIR have
been calculated for transducers of the following shapes: flat
pistons, flat sectors, flat polygons, and spherically focused
bowls (or segments thereof). An exact expression for the SIR
for the cylindrical elements used in imaging arrays has not
been forthcoming. Wu and Stepinski4 proposed modeling cy-
lindrically concave elements as a row of narrow strips, which
can be considered as planar rectangular transducers whose
exact SIRs are available. This technique still results in two
integrals, the convolution in time and the summation over
the subelements, but has been effectively employed by the
Field II program.5

One issue with the SIR is that it cannot directly simulate
the field in an attenuating medium. Frequency dependent at-
tenuation (and its concomitant dispersion) has a significant
impact on ultrasound propagation in the human body. In the
SIR approach, attenuation is typically handled by determin-
ing the pressure waveform for a lossless medium and then
correcting the waveform by applying a filter, the material
transfer function® (p. 207), to compensate for attenuation.
The implicit assumption is that attenuation and diffraction
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are uncoupled. A time domain method that can be applied to
attenuating media is the discrete representation array
modeling (DREAM) procedure, which models arbitrary
transducer surfaces as a discrete number of point sources’
and can be used to model power law type attenuating me-
dium as is appropriate for soft tissue. However, DREAM is
computationally intensive as it “trades simplicity, clarity, and
generality for increased computational time.”’

In the frequency domain, the field from an arbitrary flat
transducer can be evaluated by means of the angular spec-
trum technique.8 However, the angular spectrum technique is
very computationally intensive and for transducer elements
that are not flat it is necessary to migrate the source condition
to a plane. An alternative frequency domain approach is to
employ the Fresnel approximation® (p. 140), which is com-
putationally efficient but restricts the solution to points that
are close to the axis and not too close to the transducer.

We seek a rapid method for calculating the spatial re-
sponse of a cylindrical radiator in lossy media. Our tech-
nique was instigated by the work of Theumann et al.,” who
considered the field inside a cylinder transducer and were
able to reduce the surface integral to a single integral in the
time domain for which numerical methods were employed to
obtain the result. The philosophy here is similar except that
the problem is cast in the frequency domain and, for a small
cylindrical concave element, a mild approximation to the in-
tegrand allows an analytical solution for one of the two in-
tegrals to be obtained. The remaining integral is expanded as
a truncated series of Legendre polynomials, which are inte-
grated exactly term by term. The resulting response is repre-
sented as summation of a small number of Bessel functions
and compared to an optimized numerical routine.

Il. THEORY: SPATIAL IMPULSE RESPONSE

For a homogeneous fluid medium with a constant sound
speed and density, the acoustic field at frequency w and po-
sition r,, is calculated with the use of the velocity potential
O(r,, ») and imposing the appropriate  boundary
condltlons % For uniform excitation, the normal particle ve-
locity on the transducer surface is independent of the posi-
tion on the transducer, i.e., v,(w,r)=v,(w) where r, is the
vector traversing the transducer surface, and the velocity po-
tential is expressed as

e Jk‘r "tl
O(r), w) = vo(w)f 277|r dS (1a)
=vo(w)H(r,,k), (1b)

where k is the wave number. The integral H(r,,k) is the
spatial transfer function of the transducer and is the subject
of this paper.

In lossless media, k is a real valued quantity equal to
w/c,, where c, is the speed of sound. For a lossy medium, an
imaginary component is introduced,
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FIG. 1. (Color online) The geometry of the transducer and the coordinate
system.

k(w) = —jelw), (2)

w
co(w)
where a(w) is the frequency dependent attenuation coeffi-
cient and ¢,(w) is the dispersive sound speed that is related
to a(w) through causality. Closed form expressions for the
causality relationship exist for power law attenuation as is
appropriate for soft tissue.'!

The pressure generated by the transducer at point r, is
calculated from Eq. (1a) as

p(rpvw) = _jwpoq)(rpaw)7 (3)

where p, is the density.

lll. SPATIAL TRANSFER FUNCTION FOR THE
CYLINDRICAL GEOMETRY

For many commercial transducers, the source surface S
is a truncated cylinder with lateral dimensions /X and a
radius R—see Fig. 1. The focal point of the cylindrical ra-
diator is the origin of the cylindrical coordinates system, and
the center of the element is at (x=R,y=0,z=0), where the
negative x direction is the principal propagation direction.
The quantity r is the distance from a point on the transducer
surface (R, ¢,z) to the observation point p(r,,,,z,). The
spatial transfer function for this geometry is then

—]kr
p’ k) f S, (4)

where S is the radiator surface and ds=Rd¢dz. For trans-
ducer elements that are many wavelengths in size (as is typi-
cal for 1D ultrasound arrays), the kernel of Eq. (4) has a
highly oscillatory behavior.

The semi-analytical method (SAM) we have developed
to evaluate this oscillatory integral can be summarized as
follows: First a change of variable is employed to smooth the
oscillations of the kernel, which results in elliptical type in-
tegrals in terms of the angle ¢. For most imaging transduc-
ers, ¢ is small (bounded by the half angle of the element)
and the elliptical integrals can be approximated by quadratic
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type integrals for which closed form analytical solutions ex-
ist. The evaluation of ¢ integrals is carried out by dividing
the x—y plane into five regions (Fig. 2). Having reduced the
dimension of the integral, the line integral kernels will be
expanded as truncated series of Legendre polynomials,
which can be integrated exactly term by term. The resulting
spatial transfer function will be represented as summation of
a small number of Bessel functions. In this section, the initial
steps of our algorithm are introduced.

First the variable transformation is carried out by ex-
pressing the distance r in Eq. (4) in cylindrical coordinates as

P = (r, cos (¢,) = R cos ()% + (r, sin (¢,)
—Rsin (¢))*+ (z,—2)* =M($) + (z, - 2)°, (5)
where M(¢):r[2,+R2—2rpR(cos(d))cos(¢p)+sin(d>) sin(¢,))

contains all the ¢ dependent terms. Equation (4) is written
explicitly as

H(r,.k

hi2 —Jk\M(</> +(z), - M($)+(z, - 22
f Rdzd¢, (6)

w2 NM() + (z, - 2)2

where ¢y =arcsin (//2R) is the half-angle of the element in
the elevation plane with respect to the geometrical focus.

First, to simplify the integral, the element ds=Rd¢dz is
expressed as a function of r by eliminating the z dependence.
Taking the derivative of both sides of Eq. (5),

r

(Zp - Z)

dz=- dr. (7)
The sign of the element dz depends on the value of z,~z at
the observation point. The field point z, can have values
between [—o, 0] but the surface point z is limited to the
width of the transducer, h. Mathematically, (z,—z)

=\r*=M(¢) for z,>z and —\r*~M(¢) for z,<z. Hence

the new surface element ds is given as

ds= = Rddr (8)

VP = M(¢)

and the correct sign is determined from the observation point
and will be discussed below.
The integral now takes the form

Fy(¢)
H(r, k)= —f f E(r,¢) drddo, 9)

where
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The functions F(¢) and F,(¢) will be discussed below.

The surface S is now a function of r and ¢, and the new
integration limits must be calculated. To express the new
integrals, it is convenient to divide the half space in front of
the transducer into two regions. Due to the symmetry in x
—y and x—z planes of the radiator, the evaluation of H(r,,k)
can be restricted to one quadrant of the y—z plane with z,
=( and y=0. The two regions are defined as follows:

Region A (z,=h/2): If z,>h/2 (the maximum value of
z), then (z,—z) will always be positive and ds <0. The inte-
gral limits for r in Eq. (9) can be found by substituting the
limiting values of z, (-h/2,h/2) in Eq. (5), F,(¢)
=\M($)+(z,~h/2)* and Fy(¢)=\M()+(z,+h/2)%.

Region B (0=z,<h/2):If z,, is smaller than the limiting
value of z, the integral needs to be segmented into two re-
gions.

(i)  If-h/2=z=gz,, then (z,—z) =0 and ds <0. Substitut-
ing the limiting values of z, (—h/2,zp), in Eq. (5), the
integral limits in Eq. (9) are obtained as F(¢)
=\M(¢) and F,($)=\M($)+(z,+h/2)?

(i)  If z,=z=h/2, then (z,—z)=0 and ds>0. The limit-
ing values for z are (z,,,h/ 2) and the new integral is
defined with the limits F,(¢)=\M(¢p) and F,(¢p)

= \M($)+(z,~h/2)?

As a result, for this region SIR can be expressed as

R (%u l f VM($)+(z, + h12)?
2m)_y, | )

E(r,¢) dr

VM($)+(z, - h2)?
7 E(r,¢) dr} de. (11)
M(¢)

All the integrals are of the form shown in Eq. (9) with
the limits for the inner r integral given as

Fi(¢)=M(p)+A,,, (12a)
Fy(¢p) =\M(¢) + B,; (12b)

here A,, and B,, represent the region specific constants de-
fined by the z,, value of the observation point.

IV. INTEGRAL EVALUATION

Equation (9) is an elliptical type integral (in terms of ¢)
and we were unable to find an analytical closed form solu-
tion. For most imaging transducers the ratio of I/(2R) is
small enough that cos (¢) can be approximated with (1
—¢?/2) and sin (¢) with ¢. For example, the parameters of
the transducer used in this study are R=70 mm and !
=13 mm, and ¢=arcsin (140> 5°. By means of this small-
ness approximation, M(¢) can be described by

M(¢p) = (ri +R? - 2r,R cos (¢,)) = (2r,R sin (¢,))
+ (r,R cos (¢p))¢2. (13)

Ulker Karbeyaz et al.: Field of a cylindrical transducer



Employing the smallness approximation converts the el-
liptical integral in Eq. (9) into a quadratic type with respect
to ¢, which has a closed form solution. Therefore, it is nec-
essary to change the order of integration so that the ¢ inte-
gral can be calculated. For observation points on the z axis
(r,,=0) the kernel is independent of ¢ and this transformation
cannot be employed. Therefore, the points on the z axis will
be handled separately.

For the change of integration the x—y plane is divided
into five regions as shown in Fig. 2. Regions II and V cor-
respond to the points inside the cone subtended by the circu-
lar boundary of the transducer and its center of curvature.
Regions I and IV correspond to the points outside the ray
cone, except for a small cone around the y axis, region III.
For points close to the y axis, where cos (¢p) — 0, the coef-
ficient of ¢* in Eq. (13) becomes infinitesimally small and in
subsequent steps results in numerical instability. In region
111, cos (¢) was approximated as unity and the last term in
Eq. (13), with the troublesome cos (¢,) term, was dropped.
To minimize the error arising from this approximation, a
threshold ~ value for ¢, was chosen such that
2r,R sin (¢,) ) > 103(rpR cos(¢h,) ¢12L,. For the type of trans-
ducer used in this study, this threshold value, ¢, was
697/140 and region III was defined between 697/140 and
(7m—¢p,)=T17/140, which was the symmetric interval with
respect to the y axis.

The underlying principle to convert Eq. (9) into line in-
tegrals is very similar for all the regions. In this paper, the
mathematical details for regions I, II, and III are described.
The introduced algebra covers all the mathematical tools
needed to obtain the response at any observation point in
front of the radiator. The interested reader is referred to Ref.
12 for the mathematical derivations of regions IV and V. The
formulas for the spatial transfer functions for all regions are
summarized in the Appendix.

A. Case 1: regions | and Il 0= ¢, = ¢,

In regions I and II, M(¢), F,(¢) and F,(¢) are repre-
sented by

M(¢p) = (ri +R>- 2r,R cos (¢,)) — (2r,R sin (¢,)) ¢

+(r,R cos (¢,) &* (14a)
=a+bd+cd’, (14b)
Fi(¢) =Na+bp+cd+A,, (14¢)
Fy(¢) =~ Na+be+cd’+B,, (14d)

where, to simplify the notation, the equations will be repre-
sented in terms of a, b, and ¢ throughout this section. We will
first introduce the solution for region I, as it sets the basis for
the other solutions. The boundaries between the regions are
described in terms of tan ¢, and the reasoning behind this
choice will be explained in the next section.
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FIG. 3. The limit functions with monotonic decreasing dependence on ¢.

1. Region I: ¢y<tan ¢,=tan (¢,

The region of integration is shown in Fig. 3 and, to
facilitate the change of order, it was necessary to divide the
integral into three pieces (labeled as 1, 2, and 3 in Fig. 3):

du (Fad)
f E(r,¢) drdg
—¢g Y Fi()

Fy=dm) 5

= E(r,¢) do dr
Fi(=¢y) Y (-op)

Fi=dn) (F;0

+ f f E(r,¢) de dr
Fyld) I F' ()
Fy(dy) (o

+ f E(r,¢) do dr. (15)
Fi(op JF0)

The mapping functions from r to ¢, which are denoted
with F7'(r) and F‘Zl(r), are not single valued, e.g., F (o)
=\Va+bop+cd? +A,,, which is a quadratic with two roots. To
solve the problem uniquely, the correct root must be picked
and this motivates the separation into regions. The derivative
of the quadratic term changes sign at —b/2c=tan (¢,).
Hence, the boundaries between the regions are described in
terms of tan (¢,). For region I, tan (¢,) > ¢, and the appro-
priate results are

—b-\b2-4c(a +A,,— 1)
2¢

F'(n=¢= , (16a)

_—b- Vb? —4c(a+ B, -1

iy (16b)

F'(n=¢

Moreover, in this region, ¢ >0 and the integral with re-
spect to ¢ is given as"

f 1 id 1 ) ( —2ch-b )
= —= arcsin T,
N (a+bd+cd?) Ve Vb% + 4¢(r? = a)

(17)

hence Eq. (15) can now be written as
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¢y (Fad)
f f E(r,¢) drd¢
Fi(¢)

Fy(-¢p) )
= f e MW, (r) = Ws(r)] dr

Fi(=¢p)
Fl(_¢H) A F2(¢H)
. f T = V(1)) dr+ J
F2(¢H) F1(¢’H)
X e MW, (r) =W, (r)] dr, (9
where
W, (r)=— rarcsm( b2+ 472 — 4ac) (192
" L z 19b
,(r) arcsm ( 24 45% - 4ac) v
2 -b
- ( \/T ) (19¢)
N \rb2 =+ 4r C 4ac
1 —2cn—b
2L arsin ( Jl) . (19d)
\,"C \rb2 + 4r2C - 4ac

The transfer function in a compact form consists of four line
integrals:

R Fi(=¢p) i
=— f e M =W, (r)]dr
2| o

Pty Fcdp)
+f e MW, (r)] dr+f eIk

Fy(dp)

X[=W5(r)] dr+ f

e MW, (r)] drj| ) (20)
Fi(éy)

2. Region II: tan ¢,= ¢y

When tan (d)p) is smaller than the hmltlng value of ¢,
the inverse mapping functions F;'(r) and F,'(r) change sign
in the integral interval. Therefore, the integral in Eq. (9)
should be decomposed into two parts for a unique represen-
tation:

Fy(¢)
J J E(r (;b)d}‘d(ﬁ H1+H2

tan qu Fy()
f J E(r,¢) drdd
Fi(¢)

Fy(¢)
f f E(r,¢) drdd.
an () J Fy(0)

(21)

To obtain H,, the algorithm used in region I will be imple-
mented. The limit functions F,(¢) and F,(¢) are decreasing
functions of ¢ and the inverses of the functions are repre-
sented with the negative roots, hence the resulting integral
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has a form similar to the previous case and can be expressed

as
R Fi(-¢g) )
H, f - ()] dr

Tom

Fi(¢y)
Fa-dn) Fd)
+f e MW, (r)] dr+J eIk
F2(¢’l) Fl(‘¢[—1)
X[=W5(r)] dr} (22)

where ¢, =tan (¢,) and the W,(r) integral vanishes in this
interval.

To calculate H,, the same path will be followed with
minor modifications. For this case, M and r are the increas-
ing functions of ¢. The behavior of the limiting functions
with respect to ¢ is given in Fig. 4. After algebraic manipu-
lations, the resulting integral can be written as

Fi(¢p) )
f e M-, (r)]dr
Fi(¢y)

Fy(dp) .
+ J e MW, (r)] dr
Fy(éy)

Fy(dpy)
+f e MW, (r)] dr:| (23)

Fi(ép)

and the W5(r) integrals vanishes in this interval.

B. Case 2: region lll, ;< dpp=m-p,

As discussed previously, the approximation cos (@)= 1
is employed in this region, which is equivalent to setting ¢
=0 in Eq. (14a). The integral is divided up into three pieces
as was done for region I [Eq. (15)], where the mapping func-
tions are now

2
="t (24
75 (r) = +BE (24b)

The ¢ integrals can be evaluated as follows,
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f 1 J _2\/r2—(a+bd>)
\P—(a+bp) b

and the spatial transfer function for region III is

: R
" mw(-b)

Fi(-¢p) -
+ f e*\B,, - w’/14_q,] dr
Falép)

: (25)

H

Fol=¢p) .
f e M \/B_Zp —\Nr*=(a—bey)]dr
Fi(-ép)

Py
+ f e MNP = (a+bopy) - VAgldre,  (26)
Fi(¢g)

with the definitions

Vs(r)=\r* = (a—bey), (27a)
V() =\rr—(a+bdy). (27b)

The spatial transfer function is expressed in a compact

form as
R Fy(=¢p) ) J— Fy(-dp) )
e T [ o g [
(=D) | J rygp) Fi(-¢g)
Fy(dp) .
X[=Ws(r)] dr+ f e MW (r)] dr
Fi(éy)
Fi-dp)
+ j e M- V’Tw] dr} . (28)
Fi(¢y)

C. Case 3: on the z axis r,=0

For this case, Eq. (9) is written as
R (%u (F2 ik

- = — drdé, (29)
21T ¢y Y F, \”rz—M

where M=R> for r,=0, and F; and F, reduce to

\/R2+(zpih/2)2 where the sign depends on the region. The
integrand is independent of ¢ and Eq. (29) is expressed as

Rd’HJFZ e

7
T JF, Vr? - R?

H= dl". (30)

To remove the singularity caused by F;=R, the integration
by parts is employed and Eq. (30) is rewritten as

R A J—
H= ﬂl{e‘-”” In(r+ V=R |2
T

Fy

)

L)
- f (= jk)e ™  In (r + \r* = R?) dr:| . (31)
F

D. Polynomial approximation

The compact expressions for the spatial transfer function
of the cylindrical radiator involve line integrals, most of
which cannot be computed analytically. The integrals with
the nonlinear functions of r can be evaluated using a numeri-
cal integration technique such as Gauss quadrature. The
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drawback of such a time consuming implementation is that a
separate numerical integral routine must be used for each
different frequency value.

In this study, a faster approach is introduced. The inte-
grands were expanded as a series of Legendre polynomials.
The Legendre polynomials were chosen as the expansion
basis functions since the coefficients of the resulting series
can be obtained without an integration routine and a closed
form solution exists for the exponential integrands found in
the expressions here. The resulting spatial transfer function is
represented as summation of a small number of Bessel func-
tions.

The normalized Legendre polynomials P,(x) form a
complete orthogonal system over the interval [—1,1]. There-
fore function f(x) defined in this interval may be expanded in
terms of the normalized Legendre polynomials as

f0)=2 a,P, (), (32a)
n=0
where the coefficients a, are obtained from
1 —_
an=f P,(x)f(x) dx. (32b)
-1

If f(x) is smooth and well behaved, it can be represented
with a truncated series where the upper limit of Eq. (32a) is
replaced with N.

It can be shown that the coefficients of the truncated
Legendre series are given by14

n+l

ay= 2 W,P,(\)F\,), (33)
q=1

where A, are the zeros of the Legendre polynomial of order
N+1 and W, are the weights of the Gauss-Legendre quadra-
ture, that is, the coefficients @, can be obtained without in-
tegration.

The application of this series expansion to our algorithm
will be as follows. As a general representation, the integrals
that one needs to compute can be written as

b 1
J e (r) dr = Ae_jka e T (Ax + B) dx (34)
a -1

with r=Ax+B, A=(b—a)/2, and B=(b+a)/2. The function
W(Ax+B) is expanded in terms of the Legendre polynomials

n=N
V(Ax+B)= D a,P,(x), (35a)
=0
and, using the identity'® [p. 649]
1
f e P (x) dx = \4n +2(j)"j(k), (35b)
-1

where j,(k) is the nth order spherical Bessel function, one
obtains
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b N
f eV (r) dr = Ae Y, a\4n +2(j) " (Ak). (35¢)
a n=0

The resulting summation, Eq. (35¢), is valid for any wave
number and can be used to evaluate the remaining integrals
in Egs. (20), (22), (23), (28), and (31). From these one can
predict the acoustic fields in both lossless and attenuating
media.

V. RESULTS

We carried out numerical experiments to verify the SAM
introduced in this paper. Using the formulas given in Sec. IV,
the spatial transfer function of a cylindrical transducer was
calculated and compared with the results of direct numerical
integration of Eq. (6) using a brute force quadrature routine.
The SAM was also compared to Field II and the Fresnel
approximation along the axis of the element and perfor-
mance analysis is given. The element had lateral dimensions
13X 0.5 mm?2, a 70-mm elevation focal length, and a center
frequency of 3.5 MHz and was based on a clinical probe
(Model 8665, BK Medical, Wilmington, MA). To have a
reasonable sized problem the maximum frequency of the sig-
nals was limited to 10 MHz.

A. Direct numerical approach (DNA)

A number of direct numerical integration techniques
were applied to compute Eq. (6). The Gauss-Legendre
quadrature was found to produce the most accurate results in
the shortest time compared to other standard integration
techniques such as the trapezoidal rule and Simpson’s rule.

The 2D numerical routine can be summarized with the
following equation:

o IRNM(B,)+(z, = 2,)°

R U
H= ____221 :E: W Wy, = ’
277:1:1 u=1 V’M(¢n) + (Zp - Zu)z

where ¢, and z, denote the abscissas, and w,, w, are the
weights for ¢ and z, respectively. The number of terms is
determined according to the maximum frequency component
of the signal. In this study, 27 terms per minimum wave-
length were found to be sufficient for an accurate integral

(36)

evaluation. The number of terms for z was U
=round(27f.h/c,) and the number of terms for ¢ was

N=round(2R¢yU/h). The routine was implemented in
Matlab R14 on a Pentium 4, 3 GHz, 1 GB RAM machine.

For the transducer used in this study N=547 and U=21.

B. Comparison of SAM and DNA

A number of numerical experiments were performed to
evaluate the performance of our method. In this study, four
comparison results are presented. Figures 5-7 each show
contour plots of the envelope of the normalized wave forms
for two cases: (a) the simulated response calculated with the
semi-analytical method (SAM) introduced in Sec. IV and (b)
the simulated response computed with the direct numerical
approach (DNA) in Sec. V A without any approximations.
The error between the two simulated responses [(a) and (b)]
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FIG. 5. Amplitude of envelope of acoustic field at x=0 and y=0 mm. (a)
Fast semi-analytical technique. (b) Direct computational method. Contours
are at 5-dB intervals. Retarded time scale: t,=t—7r*/(2Rc,).

and the speed improvement in computation time are the most
important parameters to assess the performance of our
method. The measures that will be used to compare these
two results are defined as follows:

IISAM — DNAIl,
Error % =100—————, (37a)
IDNAIl,
Speed Improvement Ratio
Total time required to compute DNA
= (37b)

" Total time required to compute SAM

The real valued wave number used in these simulations
was equal to w/c,, where c,=1500 m/s.

Figure 5 compares the field predictions in the scan plane
(z axis) of the transducer element at the elevation focus. In
this case, 14 equally spaced observation points are chosen
between —26 and 26 mm. The time axis was adjusted to re-
move the curvature of the wavefronts associated with spread-
ing from the element. This allows for a detailed comparison
of the phase fronts. The error between the two simulated
responses was 7.5X 107% and the speed improvement ratio
1355. The total time required to compute SAM was 0.3 s.

In Fig. 6, the off-axis propagation in regions I and II was
investigated where the approximation for ¢ had the most
significant effect on the results. For this experiment, the ob-
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FIG. 6. Amplitude of envelope of acoustic field at x=6 and z=0 mm. (a)
Fast semi-analytical technique. (b) Direct computational method. Contours
are at 6-dB intervals.

servation points were 6 mm behind the focus and parallel to
the y axis. Forty-one equally spaced points were selected
between —4 and 4 mm. The error was found to be 0.12% and
the speed improvement ratio 225 times. The total time re-
quired to compute the SAM was 3.3 s.

Figure 7 shows the acoustic field in region III, on the y
axis, for z,=-2 mm. The observation points were selected at
19 equally spaced locations between —1.8 and 1.8 mm. For
this region, the error between two simulated responses [(a)
and (b)] was found to be 0.07% and the speed improvement
ratio 541. The total time required to compute the SAM was
0.7 s.

The numerical results presented here were also validated
with experimental measurements on the field from a single
element of the clinical probe. There was a good agreement
confirming that the small half-angle approximation was ap-
propriate for this transducer. The interested reader is referred
to Ref. 12 for the comparison results.

C. Attenuating media

A numerical experiment was performed to assess the
performance of the method in lossy media. The same experi-
ment described in Fig. 6 was simulated with a complex wave
number representing a power law attenuating medium. At-
tenuation was incorporated into the model by using «,
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FIG. 7. Amplitude of envelope of acoustic field at x=0 and z=-2 mm. (a)
Fast semi-analytical technique. (b) Direct computational method. Contours
are at 5-dB intervals.

=54(w/273.5 MHz)!* Np/m  [which
47(w/273.5 MHz)'?> dB/cm] and s
tissue.'> The wave number was defined as

corresponds  to
appropriate  for

2
) = 2 - jReate) (38)
c; c,
The predicted responses obtained with the two different
methods are given in Fig. 8. There is an excellent agreement
between two results. Quantitatively, the speed improvement
ratio is obtained as 225 times and the error between two
simulations is 0.08%. The total time required to compute the
SAM was 3.6 s.

D. Comparison with Field Il and the Fresnel
approximation

A numerical experiment was performed to compare the
performance of the SAM, with the Field II program and cal-
culations based on the Fresnel approximation. The subrou-
tine “xdc_focused_array” was used from the Field II package
with following parameters: no_elements =1, width =5
X 1074, height =0.013, kerf =1.6667 X 1074, Rfocus =0.07,
no_sub_x =1, no_sub_y =200, and focus =[0 0 0.07]. The
Fresnel approximation was implemented in Matlab 6.0.0.88
(R12) using the formula given in Ref. 6 (p. 157, Eq. 6.27b).

Figure 9 shows two plots of the amplitude of the 3.5-
MHz component of a pulse as a function of distance along
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FIG. 8. Amplitude of envelope of acoustic field in lossy medium at x=6 and
z=0 mm. (a) Fast semi-analytical technique. (b) Direct computational
method. Contours are at 6-dB intervals.

axis of the element from 0 to 69 mm in 0.5-mm steps. One
can see that around the focus of the transducer [Fig. 9(a)] the
Fresnel approximation gives an accurate result. However, in
the near field [Fig. 9(b)] the paraxial approximation fails to
capture the oscillations in the pressure field accurately. In
comparison Field II provides accurate results in the near field
while showing some discrepancy in the focal region. This is
consistent with reports that the SIR employed by Field II can
be inefficient in the focal 1region.4

Table I shows a comparison of the total computation
time and the estimated error relative to the DNA for Field 11,
Fresnel, and SAM on a computer with a Pentium 4, 1.6 GHz
and 768 MB RAM. It can be seen that the SAM is more
accurate than the Fresnel or Field II methods. The Fresnel
method was the fastest, as would be expected due to its use
of the paraxial approximation. The Field II program appears
faster than the SAM, however the bulk of the computations
in Field IT are carried out in a compiled C-file (Matlab “mex”
file), which is inherently faster than the direct Matlab imple-
mentation of the SAM (and the Fresnel method). A direct
C-implementation of the SAM should lead to at least an
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FIG. 9. (Color online) Prediction of the amplitude of the 3.5-MHz compo-
nent along the axis of the transducer. Comparison of Field II, Fresnel, and
SAM.

order of magnitude improvement in speed, making it equiva-
lent to Field II, and could potentially be another order of
magnitude faster.

VI. CONCLUSION

In this study, a fast method to compute the spatial trans-
fer function of cylindrically concave transducers in lossless

TABLE I. Comparison of Field II, Fresnel, and SAM.

Figure 9(a) SAM Fresnel Field II
Error (%) 0.08 2.10 2.4
Computation time (s) 4.05 0.33 0.22
Figure 9(b)

Error (%) 1.07 10.58 5.73
Computation time (s) 1.22 0.08 0.22
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and attenuating medium was introduced. For cylindrically
focused transducers, with small half-angles in the elevation
plane, the 2D surface integral was transformed from an el-
liptic type to a parabolic type. The integrals could be evalu-
ated by reducing the problem to a 1D line integral. The re-
maining integrand was expressed as a truncated series of
Legendre polynomials, from which it was possible to evalu-
ate the line integral as a sum of spherical Bessel functions.
The form of the line integrals is such that the coefficients of
the Legendre polynomials depend only on geometry and not
on frequency. They only need to be calculated once for spe-
cific elements and then the response at any frequency can be
determined by a summation where the number of terms does
not depend on frequency. This contrasts to direct integration
approaches, which need to employ finer discretization for
higher frequency components.

The method was compared to an optimized numerical
method, which evaluated the surface integral directly. The
speed of the new algorithm depends on the number of line
integrals that need to be evaluated for an observation point.
For the specific transducer used in this study, the speed im-
provement was between 40 and 1400 and the maximum error
between two simulations was found to be 0.4%. The semi-
analytical frequency domain method can predict the spatial
transfer function of a cylindrical radiator in lossy medium
simply by adding an imaginary component to the wave num-
ber.

In summary, a powerful semi-analytical method has
been presented that complements the numerical approaches
in the current literature. The approach can predict the acous-
tic field for a cylindrical concave transducer in attenuating
homogeneous media. The approach can be applied to deter-
mine the fields in classical beam forming and also for appli-
cations such as tomography, which do not employ delay and
sum beamforming.
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APPENDIX: ACOUSTIC FIELD OF A CYLINDRICALLY
CONCAVE TRANSDUCER

The type of the integral to be solved here can be ex-
pressed in the following form:

sz(d’) —jkr
drdao, Al
Fi@) \r*—M(¢) ¢ (Al)
where
Fi(¢)=\M(p) +A,,, (Alb)
Fy(¢)=VM(¢) + B, (Alc)
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M(¢) =r,+R*=2r,R cos (¢ — ¢,), (Ald)

where A, and B,, represent the region specific constants
defined by the z, value of the observation point.

1. Case 1: Regions | and Il 0= ¢,= ¢,

In this region M(¢), F,(¢), and F,(¢) are represented
by

M(p) = (rﬁ +R?>- 2r,R cos (¢,)) = (2r,R sin (¢,))

(A2a)

+ (r,R cos (¢,) ¢ (A2b)
=a+bd+cd?, (A2c)
Fi(@) =Na+bdp+cd’ +A,, (A2d)
Fy)(¢) =a+bp+cd*+B,,. (A2e)

a. Region I: ¢y<tan ¢,=tan (¢,)

The expression for the spatial transfer function is given

by
R Fi(=¢p) )
=— f e M=, (r)]dr
27 JF (o)
Fy(=¢p) ) Fy(=¢p) )
+J e RV, (r)] dr+f eIk
F2(¢’H) F|(—</>H)
Fy(op) )
X[=W5(r)] dr+ f e MW, (r)]dr |, (A3)
Fi(op)
where
L AGERE __deAy ) A4
1(r) arcsm ( Dt e — dac (Ada)
4 B,
W,y(r)=- r arcsin < ¢ ) (A4b)
b*+4r°c - 4ac
2cy—b
W,(r) = — —= arcsin ( —_—— ) (Adc)
’ F \b* + 4r%c — dac
1 . - 2C¢H -b
¥, (r) = — —= arcsin <,=> (A4d)
! \,'Z \b* + 4r%c — dac

b. Region II: tan ¢,= ¢

The expression is given as the summation of the two
responses:

Fy(¢)
J f drd¢=Hl +H2.
Fi(¢)

(AS)
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Fi(-dp) )
f e M=, (r)] dr
Fi(¢y)

Fy(~p) )
+ f e MW, (r)] dr
Fy(¢y)

Fa-dy)
+J e M W5(r)]dr |,
Fi(=¢p)

(A6)

where

¢ =tan (¢,). (A7a)

Fi(og) )
f e M =W,(r)] dr
Fi(¢#y)

Fy(éy) )
+ f e MW, (r)] dr
Fy(¢y)

Fy(op) )
+J e R W, (r)]dr|.
Fi(op)

(A8)

2. Case 2: Region lll, ¢< pp=7—;

R Fz(—¢1-1) ) J‘Fz(—‘ﬁy) )
H= e MT\B. 1dr+ ek
(= b) U [V ]

X[-W¥s(r)]dr+ f
Fi(¢p)

Fi(—=¢p)
+ f e‘]ki’[_ V/IA_ZP]:| s
Fi(¢g)

Fy(bp) )
e We(r)]dr

(A9)

where

Ws(r)=\r* = (a—Dbey). (A10a)

We(r)=\r* = (a+bey),
Fi(dp)=Na+bd+A,,

(A10b)
(A10c)

Fy(p)=Na+bop+B,,. (A10d)
3. Case 3: Regions IV and V n-¢;= =7

M(¢), Fi(¢), and F,(¢) have the same forms in Sec.
IV A as

M(¢) = (r;,+ R* = 2r,R cos (¢,)) — (2r,R sin (¢,)) ¢

(Alla)
+(r,R cos (¢,)) ¢ (Al1b)
=a+bd+cd’, (Allc)

Fi(¢) =VNa+bp+cd’+A,, (A11d)
Fy(¢) =~ Va+bp+cd’+B,,. (Alle)
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a. Region IV: tan ¢pp<-cy

r [ (Ao
H=— f e =W (r)] dr
27| Jryop
Fa-dp) F-dp)
+ f e Wo(r)] dr + j eIk
Fy(dp) Fi(=¢p)
Fy(bp) )
X[=Wo(r)] dr+ f e MW, o(N]dr|, (A12)
Fi(éy)
where
— ¢y =—arcsin (I/R), (A13a)
¢y = arcsin (I/R), (A13b)

1
\1’7(r) =T In (2\/_ CAzp + \"/bz - 4c(a + Azp - 72)) >
N=c¢

(A13c)

1 [
\Ifg(r) B \/?C In (2\/_ CBZP + \J’bz - 4C(a + sz - rz)) s

(A13d)

1
Wy(r)=——1In (2\/— c(P—a+bdy—cdp) +2chy
N=c¢

-b), (A13e)

Wyo(r) = /L— In (2\’/_ o(r’—a+bey- C¢12q) - 2cdy
V—¢
~b).

b. Region V: tan ¢,= -y
&

(A13f)

Fy(¢)
J drd¢=H1+H2. (A14)

Fi(e)
H:

H

_¢H
R| (Fidn

le—[ f e M- (r)] dr
27T F](¢H)

Fydy) Fy(dy)
+J ‘2 : e_fkr[\lfs(r)] dr+f a eIk
F.

2 Fl(¢)

Fi(
X[=W,(r)]dr+ f

«

) .
e MW ,(r)] dr} , (A15)

F\(ég)
Fi(¢)=a-bg +c(d*)+A,, (A16a)
Fy(¢)=\(a-b¢ +c(d*)*+B., (A16b)

1
\NGE — In (2\/— c(rP—a+bep, - cqﬁ%) -2co,
\V=-c¢

)
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1
V(r)=—=1In (2\//— c(rP—a+bgy— cqﬁ,) -2cdy

V-¢
+b), (A16d)
¢, =—tan (¢,) (Al6e)
H2:
R Fi(#,) )
Hy,=— J e =W (r)] dr
27| Jr(gp
Fyldy) Faldy)
+j e MTW(r)] dr+j eIk
Fy(dp) Fi(¢)
o)
X[=Wo(r)] dr+ f e KW o(r)] dr (A17)

Fi(ép)
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