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Abstract. We present a novel method by which the large dense forward matrix A involved
in a linear inverse diffusion problem can be decomposed into a number of sparse easily computed
matrices. We begin by introducing an errorless decomposition which is applicable to a wide array
of such imaging problems. Next, we incorporate interpolation into the construction of the matrices
to reduce the computational complexity involved in the matrix-vector multiplications necessary to
obtain an inverse solution. Error and computational complexity analysis are provided to support
these developments. We then present numerical results that illustrate the gain in computational
efficiency when the approximation is used in the Tikhonov regularized inverse problem, and show
that the use of the approximation has virtually no negative effect on the quality of the reconstructed
images. Finally, we discuss applicability to other imaging problems.
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1. Introduction. In diffuse optical tomography (DOT), near-infrared light is
introduced to the body from an array of sources on the surface and collected at
a number of detectors as it exits [3, 7, 8, 12, 15, 17, 26, 27]. The imaging problem
consists of determining images of photon absorption and/or diffusion in the body from
this measured photon fluence. In this paper, we consider the problem of efficient image
reconstruction from diffuse optical data. Using a linearized model of the relationship
between the data and optical absorption coefficient, the specific problem we consider
is the efficient solution of the Tikhonov regularized problem:

(1.1) min
f

‖Af − g‖2
2 + λ‖Rf‖2

2,

where the real Ndata × Nvox matrix A is a discretization of a Born-type linearized
inverse scattering operator in three dimensions (i.e., the discretization of an integral
operator), f denotes the vectored form of the absorption image to be determined, and
g denotes the measured data vector. The regularization term λ‖Rf‖2

2 is necessary to
dampen the effects of noise on the quality of the reconstructions as well as to ensure
uniqueness of the solution. We employ iterative algorithms as a computationally at-
tractive means to solve (1.1). The nature of these methods is such that the matrix
A need be utilized only for multiplications of the form Ax and ATx for an arbitrary
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vector x, and the problem can be solved efficiently for multiple values of λ simultane-
ously. This allows us to concentrate on optimizing for matrix-vector multiplications
rather than the more complicated matrix-matrix multiplications.

Though a number of different nonlinear algorithms are currently in use for DOT
[6, 7, 8, 29, 25, 27], the associated data sets are generally quite small (on the order
of several hundred data points). Technologically, however, sensor systems are rapidly
evolving to provide greater spatial density of sources and detectors as well as finer scale
sampling in time or frequency. Thus, the size of the data sets available for inversion is
increasing far beyond what is typically considered in the nonlinear inversion literature.
Scaling these algorithms to larger data sets, such as those considered in this paper,
drastically increases the required computational power and makes application of the
nonlinear inverse methods either completely infeasible or quite difficult—significant
effort and new research would be required in the implementation of these methods
on supercomputing-type platforms. Such efforts are indeed well beyond the capabili-
ties of many relevant research and industrial organizations (e.g., Advanced Research
Technologies (ART), who provided us with the phantom data used in this paper). In
such settings the linear solution is the only feasible approach to the problem. Thus,
though nonlinear methods for DOT are certainly under consideration, there remains
relevance to considering the linear form of the problem as well.

Toward this end, we point to recent research using linear methods for DOT and re-
lated areas where the results presented here may prove relevant [4, 9, 14, 16, 18, 19, 30].
Moreover, we emphasize that the methods we present in this paper are really only
loosely dependent upon the specific form of the Green’s functions. As long as (a) the
Green’s functions are smooth and display some level of spatial invariance and (b) the
data collection scheme is also regular, the methods detailed here will be usable. This
makes our work relevant to a wide range of problems, of which DOT is but a sin-
gle application. For example, the ideas here could be applicable to any large scale
diffusive-type inverse problem (where data set size and voxel dimensionality prevent
the use of nonlinear methods) such as diffusive-type electromagnetic induction imag-
ing arising in geophysical applications, photothermal/photoacoustic nondestructive
evaluation, bioluminescence tomography (BLT), and fluorescence molecular tomogra-
phy (FMT). As a specific example, take FMT [21, 20]. When imaging fluorescence,
the collected fluorescence data are approximately linearly related to the image, and
using methods such as the normalized Born ratio, it is possible to minimize the ef-
fects of inhomogeneities in the background optical parameters [28]. Moreover, for this
problem, the development of CCD detectors and tomographic data acquisition sys-
tems is leading to imaging problems even larger than those considered here. Thus we
would anticipate that large computational gains could be achieved using the method
in this paper.

The difficulty in practice with solving the Tikhonov problem is that the matrix A
is dense and extremely large, with Ndata and Nvox being on the order of 104–105. For
this work, we restricted ourselves to working with a system configuration consisting of
a slab transmission geometry using time domain data collection. In this configuration,
the region to be imaged is modeled as the volume contained between two parallel
infinite planes. The solution volume is then a compact finite section of this infinite
volume [12, 15]. Sources are located along one plane, directed into the volume, while
detectors are arrayed along the other plane to collect exiting light. At each source
location a picosecond laser is pulsed, and the time dependent intensity is recorded
at a number of detectors for time gates of several nanoseconds. Given that each
detector may collect hundreds or even thousands of time points for each source pulse,
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the total data set rapidly becomes extremely large. In systems of this sort, it is not
uncommon to see hundreds of thousands of data points collected in a single imaging
session. Thus, even with a very small number of voxels, the size of A rapidly becomes
prohibitive. Storing such a matrix in double precision can require gigabytes of storage
space and thereby renders useless any algorithm requiring the up-front computation
of A.

Therefore, our primary goal is to represent the full matrix A such that both the
time required for its computation and the necessary storage space are significantly
reduced. In particular, we look to exploit the structure of the matrix A so that re-
dundant matrix entries are not explicitly computed/stored. These redundancies arise
from a combination of the regularity in the data acquisition process and the structure
of the Green’s functions used to compute the matrix elements. As we will show, only
a relatively small amount of information is needed to implicitly represent every ma-
trix entry, so matrix-vector products can be performed on-the-fly simply by reference
to a particular source-detector pattern and the small amount of stored information.
However, even with a more compact representation, a significant amount of time is
still required to evaluate matrix-vector products involving these matrices. Given that
these products may need to be evaluated numerous times to obtain a solution, a sec-
ondary goal of this work was the reduction of the computational complexity involved
in executing matrix-vector products. To do this, we effectively replace the implicit
representation of A by an approximation that can be applied to vectors more quickly
without degradation of the reconstructed images.

To achieve the first goal, we take into account the spatial invariance of the integral
equation kernel from which A is derived. Using a change of variables, we are able to
exploit the matrix redundancies more readily. This allows us to represent A in terms
of the product of a single small matrix and a collection of sparse, easily computed
matrices. This decomposition is made possible by a regular sampling pattern and
planar shift invariance in the kernel.

To achieve the second goal, we introduce an interpolation approach, applied in
the aforementioned coordinate system, to further reduce the number of matrix com-
ponents that must be explicitly computed. The utility of the interpolation approach
arises from the smoothness of the kernel of the integral equation from which A is
derived. In turn, this suggests applicability to other diffusing imaging problems with
similarly smooth kernels. By choosing an interpolation method which is expressible
in matrix form, we are then able to achieve reduction in the amount of computation
required to implement the matrix vector products Ax and ATx. These gains are
shown to be directly proportional to the number of nodes used in the interpolation
scheme, allowing for a direct tradeoff between computation time and accuracy.

Applying these two steps to the overall problem at hand, we are able to obtain a
dramatic decrease in the amount of time required to obtain a solution to the problem
(1.1) using an iterative algorithm. We present several sets of numerical results, both
with and without the use of interpolation, to approximate A. Using phantom simu-
lations, we show that while the two solutions are not identical, visually they are very
similar, and mathematically they have effectively the same mean squared error with
respect to the true image.

This paper is organized as follows. In section 2, we provide an overview of the
physics and mathematics behind the construction of the matrix A. In section 3.1,
we show how to represent the matrix in compact form. Section 3.2 is devoted to
presenting an interpolation-based approximation to the matrix. Section 4 details the
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precise reductions in computational complexity. Inversion results using the algorithm
in [13] on a simulated data set are presented in section 5 along with an analysis of the
error introduced by the interpolation. Finally, in section 6, we summarize our results
and outline potential further extensions.

2. Problem description. The diffusion approximation model arises as an ap-
proximation to the radiative transport equation [5], and takes the form [2](

∇ · γ2∇− μa −
1

v

∂

∂t

)
Φ(r, t) = −q(r, t),(2.1)

γ2 =
1

3[μa + (1 − p)μs]
.

Here, Φ(r, t) represents the photon density at a location r and time t. Sources are
represented by q(r, t). The two physical parameters of interest are μa and μs, the
absorption and scattering parameters, respectively. Additionally, v is the speed of
light in the medium, and p̄ is the mean cosine of the scattering angle.

The goal in this work is to recover μa, assuming that μs is constant, given knowl-
edge of the sources. Since it is clearly a nonlinear problem to recover μa from (2.1),
the equation is frequently linearized by assuming that the overall system is approxi-
mately homogeneous. One can then use Green’s functions for the homogeneous case
to reformulate the imaging problem as one of finding the perturbation about some
known background absorption level. Therefore, we let μa, μs denote the known back-
ground values of absorption and scattering, and we use η(r′) to denote the unknown
perturbations of absorption about the known background value.

Assuming that the source term q(r, t) is a delta function located at position r
and time t, a solution Φ in the form of a Green’s function can be derived. For the
slab transmission geometry that we consider in this paper, the two-point time domain
Green’s function is [1]

g
(Φ)
slab(r, r

′, t, t0) =
exp

{
−
[
μac(t− t0) + d2

4γ2(t−t0)

]}
[4πγ2(t− t0)]3/2

×
∞∑

n=−∞

[
exp

(
−(z − 2zdn− z0)

2

4γ2(t− t0)

)

− exp

(
−(z − 2zdn + z0)

2

4γ2(t− t0)

)]
,

d =
√
x2 + y2, where r − r′ = (x, y, z),

zo = [(1 − ρ̄)μs]
−1.

(2.2)

This equation models the transmission of light from point r, leaving at time t0, and
arriving at point r′ at time t. The constant zd represents the thickness of the slab
in question and is used to generate the multiple image sources needed to satisfy the
boundary conditions of the system [11, 24]. The placement of these image sources
results in the Green’s function taking a value of zero at the boundary of the diffusive
medium. Finally, the distance z0 represents the source depth; because we use a slab
geometry model, all sources are located at this height. It is presumed that all light
from the source travels a short distance into the medium before proceeding to scatter
randomly. This is modeled by assuming the sources to be isotropic and placing them
one mean scattering length into the medium.
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These Green’s functions are used in a model of the sensing system based on
the first order Born approximation [22]. This approximation assumes that the total
received signal is the sum of the signal for a homogeneous system and a perturbation
due to η(r′), the inhomogeneities in μa:

(2.3) Γtotal = Γhomog + ΔΓ(η(r′)).

Using the background optical properties, Γhomog can be computed and subtracted
from Γtotal, leaving ΔΓ. We now concentrate on obtaining a description of ΔΓ as a
linear function of η(r′).

Under the first order Born approximation, ΔΓ is dependent only on first order
scattering; thus by integrating across Ω, the volume to be imaged, an equation for Ω
can be written as

(2.4) ΔΓ(s,d, t, t0) ≈ −
∫

Ω

∫ ∞

−∞
[g

(Γ)
slab(s, r

′, t′, t0)η(r
′)g

(Φ)
slab(r

′,d, t− t′, t0)]dt
′dr′.

Here, �Γ(s,d, t, to), the change in the photon fluence measured at location d at time
t due to inhomogeneities in the background absorption for a source at location s, is
equal to the integral of all first order scattering throughout the volume. The Green’s

function g
(Γ)
slab(r, r

′, t, t0) is the spatial gradient of g
(Φ)
slab(r, r

′, t, t0) with respect to a

unit normal extending out of the solution volume. This gives g
(Γ)
slab(r, r

′, t, t0) the form

g
(Γ)
slab(r, r

′, t, t0) =
exp

{
−
[
μac(t− t0) + d2

4γ2(t−t0)

]}
[4πγ2(t− t0)]3/2

×
∞∑

n=−∞

[
−2 (z − 2zdn− z0)

4γ2(t− t0)
exp

(
−(z − 2zdn− z0)

2

4γ2(t− t0)

)

+
2(z − 2zdn + z0)

4γ2(t− t0)
exp

(
−(z − 2zdn + z0)

2

4γ2(t− t0)

)]
,

d =
√
x2 + y2, where r − r′ = (x, y, z),

zo = [(1 − ρ̄)μs]
−1.

(2.5)

This relationship is necessary, as the photon density is not a directly measurable
quantity. By taking the gradient of the photon density, we obtain the photon fluence,
the intensity of the light exiting from the boundary at the location of the detector.
This fluence is a quantity which we are capable of measuring with detectors placed
on the surface.

Because the system is causal, (2.2) is zero for t < t0. Additionally, presuming that
the timescale can be adjusted such that t0 = 0, the second integral in (2.4) will have
support only for t′ such that 0 ≤ t′ ≤ t, and the dependence upon t0 can be dropped
from (2.4). Discretizing (2.4) in piecewise constant fashion for each voxel converts the
spatial integration into a summation. Combining these modifications results in

(2.6) �Γ(s,d, t) ≈ −
Nvox∑
i=1

dVi

∫ t

0

[g
(Γ)
slab(s, r

′
i, t

′)g
(Φ)
slab(r

′
i,d, t− t′)η(r′i)]dt

′,

where dVi is the volume of the ith voxel and the r′i’s are locations of voxel centers.
For simplicity and maximum computational gain, we assume that dVi is constant for
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all voxels and simply note it as dV . The above equation then serves as a basis from
which to construct the discrete linear model Af ≈ g, where f is the vector of unknown
absorption values at each of the voxels in the image. This equation is ill-posed in the
sense that a least-squares solution to the system would be hopelessly contaminated
by noise. Therefore, we solve instead the Tikhonov regularized problem (1.1).

From (2.6), we see that the entry in the matrix A associated with voxel (column)
i and row corresponding to source s and detector d at time t is

(2.7) J
(Γ)
i (s,d, t) ≈ −dV

⎛
⎝ Tt∑

j=1

wj

[
g
(Γ)
slab

(
s, r′i, t

′
j

)
g
(Φ)
slab

(
r′i,d, t− t′j

)]⎞⎠ ,

where in this case the approximation notation conveys the fact that the integral was
evaluated numerically using the composite trapezoid rule on a regular grid, and the
wj denote the weights of the composite trapezoid rule.

As mentioned in the introduction, it is not feasible to naively construct and
store each entry in A. However, it is clear from the above Green’s functions that
in a slab geometry there is some degree of spatial invariance in the kernels. In the
following section, we describe how to utilize the invariance to store only a minimum
of information to represent every entry in A, and to utilize the stored information
to perform the matrix-vector products necessary to employ an iterative algorithm for
solving (1.1).

3. Exploiting matrix structure. There is a significant amount of redundancy
in the forward matrix. By eliminating the excesses involved in computing the same
value multiple times, we can reduce the time required to generate the matrix. We are
able to store each computed value only once and reuse it as needed. This reuse takes
the guise of a series of selection matrices: extremely sparse, easily formed matrices
consisting entirely of ones and zeros.

3.1. Change of coordinates. In (2.2), (2.5), and (2.7), the X-Y coordinates
of the source-voxel and detector-voxel differences enter into the equation only as ra-
dial distances

√
x2 + y2. Because of this, the absolute X-Y locations involved are

irrelevant to the computation, and it is possible to change from the original absolute
Cartesian coordinates to a different coordinate system based on these radial distances.
Equation (2.7) expresses each matrix component as the convolution of two Green’s
functions with respect to time. Given the convolution involved in obtaining the ma-
trix components, this new coordinate system can be seen as two joined cylindrical
coordinate systems, with the central axis of one lying upon the radial boundary of
the other. To see this, let (Xs, Ys, Zs) represent the absolute location of the source
and (Xr, Yr, Zr) and (Xv, Yv, Zv) represent the absolute locations for the detector and
voxel, respectively. Define the new variables:

D1 = ((Xv −Xs)
2 + (Yv − Ys)

2)1/2,

Z1 = Zv − Zs,

D2 = ((Xv −Xr)
2 + (Yv − Yr)

2)1/2,(3.1)

Z2 = Zr − Zv.

These four values are sufficient for computing the value of (2.7), regardless of the
absolute position of the three initial sets of (x, y, z) coordinates. Further, because we
are modeling a slab geometry, the z-coordinates for the sources are fixed and known,
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Fig. 3.1. Dual cylindrical coordinate system. This illustration depicts visually the spatial
invariance of (2.7), which expresses the matrix values as the numerical convolution of two Green’s
functions. Here, the source is located at Rs, the center of the top of the larger cylinder; the voxel
under consideration is at Rv, the top center of the smaller cylinder; and the detector is located at
Rd, a point on the lower rim of the cylinder. Given this arrangement, the radial location of the small
cylinder with respect to the larger, and the radial location of the detector with respect to the small
cylinder, can both be changed arbitrarily without affecting the resulting value of (2.7). Additionally,
given a slab geometry of fixed thickness Zd, the entire system is shift invariant to changes along the
X-Y plane.

as are the z-coordinates for the detectors. Therefore, the only time that Z1 and
Z2 change is when Zv changes, and thus only one of Z1, Z2, Zv is needed in order to
compute the other two. As the locations of the source, detector, and voxel are allowed
to vary, these changes will be reflected in changes to the triple (D1, D2, Zv). This dual
cylindrical coordinate system is shown in Figure 3.1. Note that the two radial angles
θ1 and θ2 do not appear in (3.1). Clearly, (2.7) is independent of θ1 and θ2 and is
therefore invariant to changes in the angles. Therefore, given fixed t, for each source-
voxel/detector-voxel pairing in XYZ space which maps to the same (D1, D2, Zv) triple,
the corresponding matrix entry will be the same. Note that this means that all sets
of three points with the same voxel height and the same length x-y projections of the
source-voxel and voxel-detector distances require identical computations.

Using this new coordinate system, we now return to the original problem, with
all of the source and detector positions, and examine those positions within this dual-
cylindrical system. In practice, many source-detector configurations fall into one of
two categories: fixed array or raster scanned. For the fixed array case, two grids
are defined, one for the sources and one for the detectors. For each source location,
data are collected at all of the detectors. In a raster scanned system, a source grid
is defined, along with a number of detector locations, fixed relative to the source. In
both cases, high levels of redundancy in the (D1, D2, Z) triplets will be present. This
means that a large number of repeated operations are performed if each component
of the matrix A is explicitly computed. Table 1 shows redundancy levels for several
common source-detector configurations based on a raster scan and two uniform grids
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Table 1

Computational/storage improvements for a variety of source-detector configurations. This table
reflects the amount of redundancy present for three examples of common source-detector geometries.
The reduction is presented as the ratio of total to unique number of matrix elements. Thus, for the
second example given, explicitly computing every matrix element results in each unique computation
being done an average of 690 times. By eliminating these excess computations and simply computing
each unique element once, we are able to significantly reduce the amount of time required to compute
the forward matrix.

SD configuration Computational/storage reduction
7 × 7 Raster scanned 49×
5 × 5 Sources over
5 × 5 Detectors 690×

10 × 10 × 10 Voxels
10 × 10 Sources over
10 × 10 Detectors 3844×

10 × 10 × 10 Voxels

Table 2

Summary of index notation. Note that Npts ≤ NvoxNDNS .

Symbol Meaning
Nz No. grid pts in z-direction

Nvox No. of voxels
Npts No. of unique (D1, D2, Z) triples
NS No. of sources
ND No. of detectors
Nt No. of time pts

Ncomp No. of interp. nodes in 3-space

of sources and detectors.
Now we are ready to consider taking advantage of this redundancy to represent

the matrix A (see Table 2 for definitions of the dimension notation). The matrix A
has NtNDNS rows and Nvox columns. We order the rows of A such that the inner
loop is over time, then detectors, then sources. It will be convenient to consider the
structure of AT instead of A. Using Aij to denote the Nvox ×Nt submatrix holding
the entries given by (2.7) for the ith source and the jth detector, the matrix AT has
the block structure

(3.2) AT = [A11 . . . A1ND
A21 . . . ANSND

].

However, given the redundancy noted above, explicit computation of each Aij is
unnecessary. Let us assume that there are Npts unique (D1, D2, Z) coordinate triplets,
given all source-voxel-detector combinations. Clearly, Npts ≤ NvoxNDNS . Each of
these triplets is encountered again at each time step, for a total of NptsNt unique
evaluations of (2.7). Let As denote the Npts × Nt matrix containing these values.
Thus instead of computing and storing all NvoxNDNSNt entries in A, we will only
need to evaluate and store the NptsNt ≤ NvoxNDNSNt unique entries of As.

We can represent A in terms of As using a series of selection matrices of size
Nvox ×Npts, where each row consists of all zeros, except for a single “1” to select the
appropriate row from As. Placing these selection matrices into the previous expression
for A results in

(3.3) AT = [S11As . . . S1ND
As S21As . . . SNSND

As].

It is possible to rewrite (3.3) in a form which exploits the underlying Kronecker
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structure of the matrix:

(3.4) AT = [S11 . . . S1ND
S21 . . . SNSND

][INS∗ND
⊗ As].

We now have a compact representation of the matrix A that may be used inside the
iterative solver to produce the necessary matrix-vector products Ax or ATx. All
entries of the matrix A need not be explicitly formed.

Furthermore, there is structure present within the selection matrices themselves.
If As is arranged such that it has block structure,

(3.5) As =

⎡
⎢⎢⎢⎣

Z1

Z2

...
ZNz

⎤
⎥⎥⎥⎦ ,

where each block corresponds to the set of (D1, D2, Z) triplets sharing a particular Z
value, the selection matrices themselves have a Kronecker structure. This is because,
assuming a uniform grid for the voxels, the same set of (D1, D2) values will be required
from each Z-slice. Thus we have

(3.6) Sij = INz
⊗ S̃ij ,

where the matrix S̃ij is the selection matrix required to extract the appropriate rows
from any of the Zk matrices.

3.2. Interpolation. While this change-of-coordinates representation provides a
significant reduction in the amount of overhead required to compute and store the
matrix A, it does not provide any gains when that matrix is used in matrix-vector
multiplications. While operations on A can be done block by block, the overall size of
A is still exceedingly large. When used in an iterative scheme where multiple matrix-
vector products are required for each iteration, the time involved in each product
becomes a limiting factor. The desire to accelerate these products, as well as further
reduce the required initial computation, motivates the next step in our method.

Recall that even though we have reduced the number of distinct entries that need
to be computed to represent A, each of these distinct entries requires the evaluation of
the expression (2.7). These are clearly expensive to compute because of the numerous
evaluations of the Green’s functions and multiple summations. It is this function
evaluation whose explicit calculation we hope to minimize. Therefore, we propose to
use interpolation to aid in the function evaluation. Not only does this reduce the
overall amount of initial computation required to approximate each matrix entry, but
as we will illustrate shortly, it has the added benefit of speeding up matrix-vector
products.

We utilized interpolation expressible in the linear form

(3.7) As ≈ QV.

Here, Q is of size Npts×Ncomp and is the interpolation matrix, while V is Ncomp×Nt,
consisting of the smaller set of values which must be explicitly computed. Ncomp is the
number of nodes to be computed for use in the interpolation scheme and is chosen to
be significantly smaller than Npts. While all further results, including computational
complexities, will be shown with respect to the specific linear interpolation scheme
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Fig. 3.2. Graphical description of the sampling technique used with the interpolation. The sets
of red and blue points (asterisks and squares, respectively) show the two grids which were used to
sample D1 − D2 slices of the sample space. For each Z-value, one of the two grids was selected,
alternating as the Z-value was stepped from one value to the next.

we chose to use, this process could be used with any interpolation method that can
be expressed in matrix format.

Evaluation of the function in (2.7) will occur at a set of Ncomp interpolation nodes
in (D1, D2, Z) space at each of the Nt values {t1, . . . , tNt

}. The linear interpolation
we use is based on a Delaunay tessellation of the (D1, D2, Z) space. This tessellation
uses the interpolation nodes as vertices of a tetrahedral mesh. To determine the value
at each point on the more dense grid to which we interpolate, we first determine
inside which tetrahedron the point lies. Barycentric coordinates of the desired point
are then computed with respect to the vertices of the enclosing tetrahedron, and
those coordinates are used as the weights of the interpolation. For example, if the
coordinates of the four interpolation nodes comprising the encircling tetrahedron are

given by (D
(i)
1 , D

(i)
2 , Z(i)), i = [1, . . . , 4], with corresponding function values given by

vi, i = [1, . . . , 4], then the barycentric coordinates of the desired point (D1, D2, Z)
can be determined as

(3.8)

⎡
⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
D

(1)
1 D

(2)
1 D

(3)
1 D

(4)
1

D
(1)
2 D

(2)
2 D

(3)
2 D

(4)
2

Z(1) Z(2) Z(3) Z(4)

1 1 1 1

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
D1

D2

Z
1

⎤
⎥⎥⎦ .

These barycentric coordinates become the weights of the interpolation, to give an
approximate value v at the point (D1, D2, Z) of

(3.9) v = a1v1 + a2v2 + a3v3 + a4v4.

Arranging the weights in Q and the coarse grid values in V, the Npts × Ncomp

matrix Q will be sparse with only four nonzero entries per row, while V will be dense.
It remains to decide how to choose the position of the interpolation nodes.

Looking again at (2.2), there is an exponential relationship between the calcu-
lated value and the values of D1 and D2. Because of this, a linear sampling method is
unlikely to give acceptable results when combined with a linear interpolation method.
This is especially true when D1 and D2 are close to zero, where the value of (2.2)
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Table 3

Number of floating point operations for various matrix-vector products. This assumes that
multiplication by 1 can be done at no cost. The vector w is the component of v corresponding to
the data points from a single source-detector pair. Note that the use of As alone does not provide
computational gains when computing matrix-vector products. It is the combination of the selection
and interpolation matrices (the SijQ product) and the initial V w multiplication that provide the
reduction in total required computation.

Product Flops (in big-Oh)

AT v, A dense O(NDNSNtNvox)
Asw O(Npts ×Nt)

AT v = S(INDNS
⊗As)v O(NDNSNtNvox)

(SijQ)(V w) O(4Nvox + NcompNt)
Approx. A using Asw ≈ QV w O(NDNS(4Nvox + NcompNt))

is changing very rapidly. Initial experimentation confirmed that this held true in
practice. As an alternative sampling method, a grid with exponential spacing in D1

and D2 was developed, as illustrated in Figure 3.2. By clustering a larger number of
sample points near the origin, it was possible to achieve significantly better interpo-
lation results for the same values of Npts, with acceptable error levels in terms of the
quality of the resulting reconstructions. To efficiently sample the space, two grids,
red and blue, were established, with the nodes of one grid centered between the nodes
of the other. We alternated between the two grids as we stepped down the Z-axis, as
indicated by the red and blue grids in Figure 3.2. In order to ensure that the grid
covered all of the necessary space, the final slice always used the blue grid, even if
this meant that two adjacent slices utilized the same grid.

4. Computational complexity. To this point, we have been primarily con-
cerned with the up-front costs in terms of storage and computation time for repre-
senting the matrix. We decreased the storage for the matrix by exploiting redundancy.
With the interpolation approximation, we also reduced the initial time needed to rep-
resent entries in the (approximate) matrix, and the storage requirement for As has
decreased from NptsNt to 4Npts + NcompNt double values stored in memory. Fur-
ther, the addition of the interpolation step adds the potential to decrease the overall
computational complexity of executing each matrix-vector product involved in solving
the minimization problem. Because the computations in the matrix-vector product
that correspond to individual source-detector pairs are independent, we will simply
examine the computation required for a single source-detector pair.

As a benchmark, the number of floating point operations (i.e., multiplications
and additions) required for matrix-vector products using the dense formulation and
also the formulation in section 3.1 are given in Table 3. Note that the flop count
is not reduced over the dense formulation when using the sparse representation in
section 3.1. (Note: multiplication by the selection matrix requires no flops.)

The situation changes when utilizing interpolation. At each source-detector pair,
the equation to be evaluated is

(4.1) SijQVx.

Here, the first step is to combine the selection and interpolation matrices. Again, the
product of these two matrices can be computed at no cost. The reason for taking this
“product” first is that in general Nvox < Npts, and thus the resulting sparse matrix
will have only 4Nvox nonzeros as opposed to the 4Npts nonzeros that are in Q.

Therefore, we compute SijQV w in three steps:
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Table 4

The various matrices used in our approximate forward model, their sizes, and their number of
nonzero values. As is the small version of the forward matrix containing only the unique matrix
elements. Sij are the selection matrices used to retrieve the blocks of the full matrix from As. A is
the full weight matrix. Q is the matrix responsible for implementing the linear interpolation, and V
is a small dense matrix of unique values such that As � QV . For descriptions of other variables
used, see Table 2.

Matrix Dimensions Nonzeros
As Npts ×Nt NptsNt

Sij = INz ⊗ S̃ij Nvox ×Npts Nvox

A NDNSNt ×Nvox (Sparse rep.) NDNSNvox + NptsNt

Q Npts ×Ncomp 4Npts

V Ncomp ×Nt NcompNt

Approx. A NDNSNvox + 4Npts + NcompNt

• Form the product Wij = SijQ.
• Compute the matrix-vector product V w.
• Compute the matrix-vector product Wij(V w).

The first step is “free.” The second step requires O(NcompNt) flops. Since Wij

is Nvox × Ncomp but has only four nonzero entries per row, the product Wij(V w)
requires an additional O(4Nvox) flops. Thus, the cost of the product SijQV w is
O(4Nvox +NcompNt) flops. There is one such product for every source-detector pair,
and therefore products with the approximation to A formed by using As ≈ QV
cost O(NDNS(4Nvox + NcompNt)) flops. Comparing this to the total number of
flops required for the dense formulation, we can see that the reduction in required
computation is dependent upon the number of interpolation nodes Ncomp and the
total number of voxels Nvox. The computational costs and storage requirements for
the various steps are detailed in Tables 3 and 4.

5. Simulation results. For the regularization matrix R, a first order approxi-
mation to the gradient was utilized, generated as

(5.1) R =

⎡
⎣Rx

Ry

Rz

⎤
⎦ ,

where each of the three submatrices are discrete approximations to the first order
derivative along the associated axis.

Rather than simply run an iterative algorithm such as LSQR [23] with an aug-
mented matrix once for each trial value of λ in (1.1), we used the algorithm in [13]
so that the results could be run simultaneously on an array of λ’s. The number of
iterations was fixed at fifty, chosen by first running the algorithm without any regular-
ization and performing an L-curve analysis [10] across the iterations. It is reasonable
to presume that a given regularized system should have sufficiently converged by sev-
eral iterations past the corner of the L-curve for the unregularized problem. For the
regularized problem, selection of the appropriate regularization parameter was done
through the use of an L-curve analysis at the final iteration.

After some experimentation, it was found that for our first data set, where the
ground truth was known, the minimum error solution was consistently at a point
which would be considered underregularized according to the L-curve. Visual analysis
of a second data set, provided by ART, suggested that a similar situation existed
with that data. As such, the results shown for the known phantom are those at the
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Table 5

Interpolation levels, with corresponding number of computed nodes and the resulting error in-

duced in the solution for data set 1. Error is computed as ‖Computed−Actual‖2
‖Actual‖2

. The interpolation

level noted in column 1 denotes the initial number of interpolation nodes along each dimension of
the space. To eliminate unnecessary evaluations of (2.7), only those nodes needed to approximate
As were computed.

Interpolation Number of Induced
level computed points error
None 11760 0.7336

(40,40,40) 7188 0.7344
(30,30,30) 4659 0.7352
(20,20,20) 2109 0.7362
(15,15,15) 1098 0.7409
(10,10,15) 578 0.7294
(10,10,10) 402 0.7404

minimum error point, while those shown for the second data set were chosen to be
“underregularized” by a similar order of magnitude.

Of course, critical to determining the utility of the interpolation is evaluation of
the error introduced into the reconstructions. Interpolation levels are denoted in what
follows as a triplet (a,b,c), where the values define the number of grid points along each
of the (D1, D2, Z) axes, respectively. However, the rectangular grid computed using
the values will contain some nodes which will not be needed during the interpolation
step. Rather than compute their values and not use them, we simply eliminate these
nodes. The numbers in the second column of Table 5 give the number of nodes
remaining after this elimination.

We show results for two simulated data sets, each using a number of different
interpolation levels. For our first data set, where ground truth was known, we present
reconstruction images for two interpolation levels as well as the fully computed result.
Additionally, we report error levels for a further four interpolation levels. For our
second data set we present three reconstructions, two using interpolation and one
without, and give an analysis of relative error levels.

For each data set, relative error levels are computed with respect to the other
reconstructions and with respect to ground truth in the case it is known. All error
levels are computed as

(5.2) Efb(fa) =
‖fb − fa‖2

‖fb‖2
,

where Efb(fa) is the error in a reconstruction fa with respect to a reconstruction fb,
using the standard 2-norm.

5.1. Data set 1. In order to determine how the interpolation error affects the re-
sulting solutions, we first used a simulated data set generated using a known phantom.
The data was generated using the image in Figure 5.1(a) as freal to get g = Afreal,
with random noise added by the Matlab awgn() function at a signal-to-noise ratio of
10dB. Inversions were then run using six different interpolation levels with a number
of nodes ranging from 61% Npts down to 3.4% Npts. The specific interpolation levels,
and number of points computed, are shown in Table 5, along with the relative error
of each solution with respect to ground truth.

Images of reconstructions obtained using the (10,10,15) and (15,15,15) interpola-
tion levels, as well as the fully computed matrix, can be seen in Figures 5.1(b)–(d).
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Fig. 5.1. Results for data set 1. A known phantom was used to generate simulated data with
10dB white Gaussian noise. Inverse results were obtained for a number of different interpolation
levels. (a) Phantom used to generate simulated data. (b) Result with ( 10,10,15) interpolation level
( 578 explicitly computed points). Absolute error of 0.7295, error relative to (d) of 0.1128. (c) Result
with ( 15,15,15) interpolation level (1098 computed points). Absolute error of 0.7406, error relative
to (d) of 0.1035. (d) Result with fully computed matrix (11760 computed points). Absolute error
of 0.7336. Note that all three constructions are visually almost identical, and that while the relative
error between the fully computed and interpolated reconstructions is greater than 10, the absolute
error changes very little.

Visual comparison of the three images reveals little if any difference. Analytic com-
parison results in relative error in the (10,10,15) solution with respect to the fully
computed solution of 0.1128, while the (15,15,15) solution exhibits a relative error of
0.1035. Examining the errors with respect to ground truth, however, suggests that
despite their differences, the solutions using interpolation are of nearly the same qual-
ity as the fully computed solution. Decreasing the number of points computed from



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATRIX STRUCTURE IN LINEAR DOT IMAGING 1079

11760 (the full number) to 1098 (the (15,15,15) interpolation level) results in the rel-
ative error with respect to ground truth changing only 0.0070 from 0.7336 to 0.7406.
Interestingly, the (10,10,15) case, with only 578 points computed, results in a relative
error of 0.7295, which is actually a lower error than for the fully computed case. This
suggests that, given the ill-posed nature of the problem and the regularization occur-
ring in the inversion, the error induced by the interpolation has little consistent effect
upon the absolute error in the solution.

5.2. Data set 2. The second data set was generated by ART using an undis-
closed forward solver (background μa and μs were provided) and a proprietary noise
model. Reconstruction images are shown in Figure 5.2 for the fully computed matrix,
as well as (10,10,15) and (15,15,15) interpolation levels.

The results for this data set are similar to those of data set 1. Visually, the
three inversion results are nearly identical. Because the ground truth is not known
in this case, absolute error values cannot be computed. However, comparing the
two interpolated solutions to the fully computed one yields relative differences with
respect to the fully computed solution of 0.0947 and 0.0857 for the (15,15,15) and
(10,10,15) solutions, respectively. These numbers are similar to those seen in the
case of the known phantom, where it was shown that absolute error levels were only
slightly perturbed by the use of the approximated As.

6. Conclusions and future work. We have presented a method by which
the forward matrix A associated with a certain linearized diffuse optical tomography
problem can be efficiently computed and then effectively approximated. Our first step
utilizes a change of variables to enable us to represent A as a core data matrix As

and a number of selection matrices Sij . While As is small and dense, the selection
matrices are extremely sparse, enabling the entire representation of A to be stored in
significantly less memory. This decomposition also allows for matrix-vector operations
upon A to be performed in a sequential manner, drastically reducing the amount of
memory required to perform such operations.

Our simulated results indicate that the use of interpolation to approximate As

and thus A gives accurate solutions. While the solutions using interpolation result in
relative errors with respect to the fully computed solution on the order of 0.10, our
results indicate that these differences do not significantly affect the error with respect
to ground truth.

A further test of this work would be the application of our method to exper-
imentally collected data. Given that the mathematical models presented here are
inherently an approximation of reality, there will be an increased mismatch between
the data and the model. As such, the model errors introduced by our interpolation
scheme should have even less of an effect than they did in the results presented here.

This method also has applications beyond diffuse optical tomography. Any system
with a similar invariance to radial angle could potentially be rewritten so as to use
our referencing scheme. This includes problems such as continuous wave diffusion
imaging, heat transfer in solids, and other problems using omnidirectional sources.

One specific area of application is fluorescence-based optical imaging. Linear
models are capable of accurately modeling such systems and have led to systems
currently in use for basic in vivo research [21, 20]. Because these systems are optically
based using lasers at similar wavelengths, the mathematical details of the diffusion
approximation and Green’s functions detailed here carry over almost unchanged.

The interpolation could also be applied to other systems, especially those which
are linearizations of nonlinear systems. Presuming a reasonably smooth kernel along
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Fig. 5.2. Results for data set 2. Data set provided by ART with known background optical
parameters, but unknown forward and noise models. The images compare results using different
interpolation levels. Note that absolute values for the reconstructions are significantly higher, owing
to a lack of information regarding source intensities. Thus the true quantitative values are all
multiplied by an unknown scaling factor. (a) Result with ( 10,10,15) interpolation level (578 explicitly
computed points). Error relative to (c) of 0.0857. (b) Result with ( 15,15,15) interpolation level
( 1098 computed points). Error relative to (c) of 0.0947. (c) Result with fully computed matrix
( 11760 computed points). Again, all three reconstructions are visually identical and exhibit similar
degrees of relative error. The change in absolute error is likely similar to that seen with data set 1.

some dimension, it is feasible that linear approximations of that kernel would result
in similarly small changes to the resulting solutions. When computation of individual
kernel values is prohibitively expensive, this could lead to significant reductions in
required computation. This interpolation could also be investigated to determine its
regularizing properties. While our results suggest empirically that any regularizing
effect is minimal, a study on the regularizing effects of interpolation-smoothed kernels
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may be of value.

Finally, further work could seek to extend this type of optimization to the case
of systems with structured inhomogeneities. Layered media offer a straightforward
extension of our method, while media with more complex structure would require
correspondingly more effort. Both would enable our method to be used in a wider
range of systems and configurations.
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