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Abstract—This paper proposes a new inverse method for
microwave-based subsurface sensing of lossy dielectric objects em-
bedded in a dispersive lossy ground with an unknown rough sur-
face. An iterative inversion algorithm is employed to reconstruct
the geometry and dielectric properties of the half-space ground as
well as that of the buried object. B-splines are used to model the
shape of the object as well as the height of the rough surface. In
both cases, the control points for the spline function represent the
unknowns to be recovered. A single-pole rational transfer func-
tion is used to capture the dispersive nature of the background.
Here, the coefficients in the numerator and denominator are the
unknowns. The approach presented in this paper is based on
the state-of-the-art semianalytic mode matching forward model,
which is a fast and efficient algorithm to determine the scattered
electromagnetic fields. Numerical experiments involving two-
dimensional geometries and TM incident plane waves demonstrate
the accuracy and reliability of this inverse method.

Index Terms—B-splines, dispersive media, ground-penetrating
radar (GPR), inversion methods, nonlinear optimization, rough
surface, subsurface sensing.

I. INTRODUCTION

E ADDRESS the problem of reconstructing the geom-

etry and complex permittivity of a lossy object buried
in a dispersive lossy half-space with an unknown rough surface
from a noisy collection of scattered electromagnetic field data.
Subsurface sensing has been an interesting research area of
late with a broad range of applications from environmental
monitoring [1]-[3] to nondestructive testing [4]-[6]. A variety
of methods have been provided in recent years to solve this
category of problems in the frequency or time domain [7]-[16].
Many of these approaches are fully statistical [17]-[19] and
are proper for the detection of objects but are not suitable for
localization and characterization of them.

When addressing this later problem, two classes of process-
ing techniques are usually considered. Pixel-based inverse
methods estimate the unknown physical properties of the
medium over a dense tessellation of the region of interest [8],
[9], [12]. Where the data are few compared to the number of
pixels, as is the case in the severely limited view problems
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considered here, such an approach requires the solution of
a large scale and ill-posed inverse problem with all of the
attendant issues associated with regularization, e.g., choice of
parameter [20]-[22].

Alternatively, when the fundamental problem of interest is
the identification of a target, there has been a significant work
over the past decade in the use of geometric inverse methods
[9], [14]-[16], [23], [24]. The idea here is to replace the large
number of pixels with a far smaller set of unknowns, capturing
what we really seek from the data: the location, size, shape,
orientation, and contrast of the object. The methods we discuss
in this paper fall into this class of imaging techniques. The
two primary contributions of this paper are: 1) the development
of a geometric approach based on a new forward model [25],
[26] of low computational complexity, which is particularly
well adapted to the problem of imaging in a half-space as well
as 2) the joint reconstruction of the geometry and dielectric
properties of both the target and the dispersive background.

Inverse methods typically rely on forward solvers based
on numerical or analytical models of the wavefield physics.
Numerical methods such as finite difference time-domain [27]
and the moment method [28], [29] tend to be slow and require
excessively large matrix storage, while analytic simulations can
often be difficult to implement for problems with more compli-
cated geometries. In this paper, we consider a hybrid model,
the semianalytic mode matching method (SAMM) [25], [26],
which combines the physical basis of analytic methods with the
flexibility and versatility of numerical methods. This model is
of low computational complexity compared to other approaches
and highly accurate in the region of interest. Moreover, its
analytical structure makes it quite well suited for use in an
inverse algorithm where sensitivity information (i.e., gradients
of the fields with respect to the unknown geometric and contrast
parameters) is required.

In our approach, dispersion is parameterized by a single-
pole conductivity model [30] valid in at least one decade
of frequency, giving us the ground parameters for the whole
frequency band we are dealing with, from the data available in
just a few frequencies.

These physical models for wave propagation and dispersion
are employed in the context of an inverse method for charac-
terizing both the geometry of the object as well as that of the
rough interface. When considering the question of shape para-
meterization, there are options such as Fourier descriptors [31],
Lagrange Interpolation [32], and parametrically defined shapes
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[33], [34] based on global representation of the geometry as
well as B-splines or snakes [35]-[37] where the unknowns
control basically local properties of the curve. In this paper, we
have chosen to employ B-splines both to represent the object
and the interface.

This choice is made primarily in acknowledgment of the na-
ture of the problem we address in which noisy data are collected
in a limited view geometry, and the embedding region is lossy.
As such, it is observed in literature that: 1) recovery of fine scale
“sharp features” such as corners of objects is for all practical
purposes impossible and 2) for all but the smallest objects,
the accuracy of the reconstruction is far from uniform in that
structure of the object closer to the interface (i.e., the top of
the target) is recovered more accurately than that further away
(i.e., the bottom) [38]-[40]. As such, the geometric parameteri-
zation we seek should be smooth and should provide local con-
trol over the shape. B-splines satisfy both of these criteria. We
note that the requirements for local control are not as pressing
in the case of the rough surface, which is illuminated uniformly
by the incident field. Hence, we could have considered other
parameterization such as Fourier or Lagrange; however, for ease
of implementation, we use B-splines here as well.

The combination of the physical models and geometric pa-
rameterizations is, we feel, a contribution to the field of sub-
surface sensing. More specifically, as shown in Section VI, an
extensive set of simulation studies is presented demonstrating
the robustness of this method for recovering size, shape, and
contrast of objects of varying sizes and geometric characteris-
tics located even under quite rough interfaces. In cases where
the object is smoother, the geometric reconstruction is basically
exact. For objects with sharp corners, the estimated shape,
although less accurate, still provides the basic information of
interest in problems such as these.

The remainder of this paper is organized as follows.
In Section II, the inverse problem and its formulation are
stated. Section III gives a short review of the forward model.
Section IV is devoted to parameterization of the boundaries and
dielectric properties of the media. Inversion algorithm is fully
described in Section V. Section VI details the results of the
numerical experiments to verify the computational capability
and the efficiency of our inverse method. Conclusions are
described in Section VII.

II. PROBLEM STATEMENT

The geometry of our problem is given in Fig. 1, demonstrat-
ing the lossy dielectric object buried under the rough interface
of the air and the lossy dielectric ground. The ground rough
surface is illuminated by a multifrequency uniform plane-wave
incident at different angles. For the TM case (H, = 0), the
incident uniform plane wave, which is to be expressed as a
superposition of cylindrical modes, is given by

Er(w,y) = Boe'Fet™tent) (1)

where Fj is the electric-field amplitude in the general coor-
dinate system with origin at the midpoint of the nominal flat
ground surface, and £, and k,, are the incident-wave-vector
components in the air [41]. For 2-D scattering, an incident TM
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Fig. 1. Problem geometry. Two-dimensional problem where a rough surface
separates the air and the ground with the object buried beneath the interface.
Receivers are located on a measurement level above the interface. A plane wave
is incident on the interface in different angles.

field will give rise only to TM scattering components even in
the presence of a rough surface and embedded object.

The electromagnetic field components satisfy the Maxwell
equations and radiation condition in the different media, each
of which is characterized by their possibly complex dielectric
constant ¢ and permeability p. The governing homogenous
wave equations in dielectric media without free sources are [41]

(V2 +EHE(z,y) =0
(V2 + EHH(z,y) =0

(2a)
(2b)

where V2 is the 2-D cylindrical Laplacian operator, and E and
H are electric and magnetic field vectors, respectively, with
time-harmonic dependence exp(—iwt) and angular frequency
w for which the dispersion relation k% = w2 e must be obeyed.

The fields scattered by the object and ground surface sat-
isfying (2a) and (2b), which are functions of the geometry
and media properties, are detected by the receivers located on
a measurement level above the air—ground interface. In our
inversion algorithm, we attempt to find the unknown parameters
by reducing the misfit between the observed data and data pre-
dicted by forward model. In other words, our iterative inverse
algorithm minimizes a cost function based on the least square
formulation as follows:

1r(u)Hr(u) 3)

ew) = 3 [[F(w) ~ o3 = 3

2
where r =f(u) —fy is the residual vector, f(u) is the
scattered-field vector calculated by forward solver at the re-
ceivers locations for the predicted geometry and contrast, u is
the unknown vector to be described in Section V, fj is the noisy
observed scattered-field data vector, and r! is the transposed
complex conjugated vector of r. Mathematically, we seek a 01
satisfying

U = argmine(u). 4)

In the following sections, after discussing the forward model
and parameterizing the problem, we develop an algorithm
to solve this optimization problem in order to optimize the
unknowns describing the boundaries and media dielectric
properties. For multifrequency and multiangle case, the
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forward problem is solved for all frequencies and incidence
angles in each step to obtain the total field vector

f(u) = [FD T FO T, Y ()T R
where N, is the total number of frequencies and incidence
angles.

Our subsurface-sensing inverse method uses the SAMM for-
ward model to relate the scattered fields to unknown structure
and media dielectric properties, which are parameterized in
compact form. Unknown parameters are optimized to fit the
calculated scattered fields to observed data.

III. FORWARD MODEL

In this section, we will provide sufficient details concerning
our forward model to understand how it can be used in the
associated inversion scheme. The full explanation of SAMM
can be found in [26].

Our forward model aims to solve the scattering problem in
the presence of the incident plane waves [42]. For a circular ob-
ject in infinite soil background, the scattered waves can be de-
scribed by conventional analytic Mie scattering formulas [43].
However, for noncircular buried objects under a rough ground
plane, there are additional non-Mie and rescattering modes
(r-modes) describing the deviation from the Mie solution. The
essence of the SAMM method is to use Green’s function-type
expansions of the non-Mie fields in each region (air, earth,
object) for a number of so-called coordinate scattering centers
(CSCs). As illustrated in Fig. 2, we employ two CSCs in our
problem: one located at the center of the object and the second
at its image point above the interface. As explained in [25],
associated with each CSC are three superpositions of modes
called mode families: one each for air, ground, and the buried
object. For our problem, the SAMM solver would employ six
mode expansions (three families for each of two CSCs). It turns
out, however, that the image CSC in our problem is only re-
quired to represent the reflection of rescattered modes from the
surface to the medium beneath so that no air modes are needed
[26]. Hence, for our problem, five mode families are employed.
The mode functions are built such that Maxwell equations are
satisfied within each medium. Due to the finite number of
modes in each family, the coefficients of the expansions are cho-
sen to satisfy the boundary conditions in a least square sense.

With judicious use of the Bessel and Hankel relations, we
can find the Cartesian field components, each of which must
satisfy the scalar wave equation for each CSC, such that for
TM modes [26]

Nt
Y (en1+cny1) I
Hy(a',yf) = Jim 37 T GaEy) 6w
n=—Nrp
N
H,(«',y) = lim i MGM%/ y')  (6b)
Y N0 2in ’
n=—Nr
Nt
E.(2,y)= lim cn G2, 6¢
(a',9/) NTWn:z_;vT (a',9/) (60)
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Fig. 2. Circular object under a random rough ground surface. C' and C’
represent CSCs of the object and its image about the nominal flat ground
surface. Incident, reflected, and transmitted plane waves are given by I, R, and
T, respectively. Mode families are ¢ and ¢’ including r-modes and Mie modes
within the object originating at the object center and its image, respectively, ¢
and ¢’ including r-modes and Mie modes within the ground originating at the
object center and its image, respectively, and 7 including r-modes originating
at the object center. Modes in the regions including their scattering centers are
defined by the Bessel functions of the first kind (J5, ); otherwise the Hankel
functions of the first kind (H,, ’) are used.

with ¢, as the cylindrical mode coefficient, 1 as the wave
impedance, and

G (2',y) = F,(kp)e™® (7

where 2/ and 3’ indicate the coordinates of the point with
' = pcos¢ and y' = psin ¢ in local coordinate system and
scattering center at object center or its image. F), (kp) is Bessel
or Hankel function of integer order n such that

Jn(kp),
gy (kp), CSC outside the region.

CSC inside the region

F(kp) = @®)

In the SAMM algorithm, we first find mode coefficients
satisfying the boundary conditions on the ground surface and
object boundary. These mode coefficients are then used to
obtain scattered fields at specified receiver points.

Superposing the modes arising from each CSC gives rise
to the scattered fields at any point of the space in our region
of interest. Applying the superposition of the modes (6a)—(6c)
above and below each point on a boundary (as indicated
by dots in Fig. 2) and enforcing boundary conditions on all
field components at those points lead to an overdetermined
matrix equation of the form Lc = b, where c¢ is the mode
coefficient vector, b = [bf, bd T is the field difference vector
on the boundaries caused by refraction of the incident plane
wave [26], and L is the matrix linking the unknown mode
coefficients and the scattered cylindrical modes. Since L is
nonsquare, matrix inversion is performed by singular value
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decomposition (SVD) minimizing ||b — Lc||3, which leads to
the result

c=L"b )

where L™ is the pseudoinverse of L.

The summations in (6a)—(6¢) are terminated at a finite value
resulting in a finite number of mode coefficients. In detail, the
vector ¢ = [¢!,c?,...,c?]T is the unknown coefficient vector
including all mode-family vectors

cf = I:CgNT,cIiNT+17"'7C]])\[T:| (10)
where p =1,...,5, and the truncated number of modes in
each mode family is 2Np + 1.

The matrix L is defined as the block matrix
(1) (1) (1)
= [Lé) X ) } (1
Ly” L L;

where superscripts (1) and (2) indicate the ground and object
boundaries, respectively.

The matrix Lg,? (¢=1,2 and m =1,2,...,5) is nonzero
for some mode families and is equal to

i T NT STt
Ly =L, LY. 1O, (12)

The matrices Lg(,f,)m, Lz(f)m, and Lgm are of dimension [V, é@ X
(2N7 + 1), where Nﬁl) is the number of points on :th surface,
and N is the truncated number of modes in each family.

The elements of these matrices at each point (z’,4’) on the
t1th surface for nth mode in the mth mode-family coordinate
system are given by

Ly(2',y) = (Guoa (2, y) + Gy (2,9) /27 (13a)
Ly(xla y/) = (anl(x,; y/) - Gn+l($/7 y/)) /2“7 (13b)
L.(z,y) =G,(2,y). (13c)

The scattered fields at the receivers above the air—ground
interface are also obtained using (6a)—(6c) as

f =Mc (14)
where the matrix M links the mode coefficient vector c to
the scattered-field vector f = [£7,f7 1" at the receiver
locations. In TM case, the elements of the vectors f;, f,,
and f, are the field component H,(z',y'), Hy,(«',y') and
E,(2,y), respectively, where (2, y') indicates the location of
the receivers in local coordinate system.

Combining (9) and (14), the scattered-field vector at the
receivers in general form is given by

f = ML"b. (15)

In our problem, we have only one nonzero family mode
at the receiver locations in the air, which is originating at the
object center. The matrix M is

M=[MI MI MT]". (16)
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The matrices M,, M,, and M, are of dimension N, X
(2N + 1), where N, is the number of receiver points. The
elements of these matrices are identical to (13a)-(13c) at each
receiver point (z’,y') in each mode-family coordinate system.

The significant point is that all right-hand-side variables of
(15) depend on the location of boundary points and, hence, on
the parameters defining the shape of the object and surface.
As we discuss next, our inverse method makes use of an
analytically tractable parameterization of geometry that can be
exploited in an inversion routine.

IV. PARAMETERIZATION OF THE PROBLEM
A. Geometry Parameterization

To define the surfaces in low-dimensional parametric form,
we model them by B-splines, which are piecewise polynomial
functions providing local approximation to curves using a small
finite number of parameters called control points. A curve
is defined in B-spline parametric form with basic functions
associated with IV,, control points p; as [36]

Ny
P(t) =Y piNip(t) for t,<t<ty, 1 (17
i=1

with the basis functions NV; ;(¢) defined by the recurrence
relations

B 1, ifti§t<ti+1
Nia(t) = {O, otherwise (182)
t—1; t; —t
Ni»k(t) = fNi,kfl(t) + #Nz#l,k—l(t)
tz+k:71 - tz terk — tl+1
(18b)

where T' = {t1,ta,...,tn, 1k} is called the knot vector with
t <tlo < <tN,+k-

Each N; i (t) is a polynomial of order k (degree k — 1),
which is k — 2 times differentiable and continuous (C*~2) on
each interval. The basis functions are entirely determined by
the relative distance between the knots, so their shapes are
unaffected by scaling or shifting them together. In the case with
uniform knot vector for which t;11 —¢; (i =1,2,...,N,) is
constant, all basis functions are just shifted copy of each other.
For simplicity, we define the uniform knot vector by T; = i.

The order k of the B-splines is the difference between the
number of knots and control points. Increasing the B-spline
order increases the smoothness of the curve. The B-spline curve
P(t) is defined to be valid only in the range of ¢ <t <
tn,+1, Where the basis functions provide the partition of unity
property: S~ N; ;.(t) = 1. The ends of a curve can be joined
to make a closed loop. In order to keep the C*~2 continuity of
the closed curve, the first £k — 1 control points must repeat at
the end [37].

The shape of a B-spline curve can be changed by modifying
a number of parameters such as the position, number, or mul-
tiplicity of the control points, the number, relative spacing, or
multiplicity of the knots, or the order of B-splines. In this paper,
we change the shape of the curves by adjusting their control-
point locations and keep the other parameters fixed.
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Fig. 3. Creating ground surface by a B-spline curve. (a) Basis functions (thin

lines) and their summation (bold line) versus x; knots are indicated by “o.
(b) Basis functions weighted by control points (thin lines) and final curve (bold
line) versus . Control points are indicated by “x.”

As an example, to construct a ground surface using cubic
B-spline formulation for the variable y (the height) at given x
positions with, e.g., 11 control points, we define p; = [py ],
t=1,2,...,11. For a cubic B-spline (k = 4), the knot vector
consists of 15 elements distributed uniformly along x axis.
Fig. 3(a) shows the basis functions and their summation versus
x with the region of validity of the curve. The final curve
is the superposition of the basis functions weighted by their
associated control points illustrated in Fig. 3(b).

The object is modeled by a closed cubic B-spline. To define a
closed cubic B-spline with say six control points, the first three
control points repeat at the end such that p; = [ps ;, pw}T, and
1=1,2,...,9, where p; = pj+6, j = 1,2, 3. The knot vector
consists of 13 elements distributed uniformly versus polar
angle. Fig. 4(a) shows the basis functions and their summation
with the region of validity of the curve. The basis functions
weighted by the x and y components of their associated con-
trol points and their superposition versus knots are shown in
Fig. 4(b) and (c), respectively. The final closed curve in z—y
plane is illustrated in Fig. 4(d).

B. Dielectric-Property Parameterization

The dispersive soil has frequency-dependent complex per-
mittivity, and we need a parametric model that models its
behavior within the desired frequency range. A model that
displays good agreement with the dispersive soil data over more
than a decade of frequency was developed in [30] and is referred
to as a single-pole conductivity model. We employ this model
in this paper. The single-pole conductivity model defines the
complex conductivity as

. bo —+ b1271 —+ sz’z

g 14+a1271 (19

where by, b1, be, and a; are the model parameters, and z =
e~ AT with the constant AT
The complex permittivity is then defined by

7 (b0+ b12’71+ bQZiQ)
w (1+ Cllzfl)

(20)

.Og

€g(W) = €qven+ i— = €qv€0+
w

where €., is a frequency-independent parameter.

V. INVERSION ALGORITHM

There are a variety of gradient descent methods to solve the
problems of the form of nonlinear least square minimization.
Among all these methods, we choose the Levenberg—Marquardt
algorithm [44], [45]. This method can be considered as a trust-
region modification of the Gauss—Newton algorithm. It uses a
search direction that is between the Gauss—Newton direction
and the steepest descent direction. In many cases, it is more
effective than some other numerical methods such as steepest
descent and conjugate gradients [46].

The unknown vector is

u=[uf,uf ul,uf]"

2D
where the subscripts 1, 2, g, and t refer to the unknowns
pertaining to the ground surface, object surface, ground com-
plex permittivity, and object complex permittivity, respectively.
Therefore

T
u; = {pélﬁ,p;];%’ s ap:(Ul’?Vul (223)
T
up = {p(ﬂpfé co ,pgvu?,pf&,pﬁ%, . ,pfﬁvw (22b)
ug = [6(11)7 b07 b17 b2) al]T (22C)
u; = [egr, Gti]T (22d)

The Levenberg—Marquardt algorithm uses the following up-
dating formula to find the updated unknown vector in nth step
starting from an initial guess u(®) [47]:

u™t) — (™ _ g (23)

-1
™ = (v% (u<“>) + )\(”)INJ Ve (u<”>) (24)
where Ve and V2e are gradient and Hessian of the cost func-

tion, respectively, the matrix Iy, is the identity matrix, IV, is
the number of unknowns, and X is the Levenberg—Marquardt
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Fig. 4. Creating object boundary by a closed B-spline curve. (a) Basis functions (thin lines) and their summation (bold line) versus knots. (b) Basis functions
weighted by « component of control points (thin lines) and x-variation of final curve versus knots (bold line). (c) Basis functions weighted by y component of

control points (thin lines) and y-variation of final versus knots (bold line). (d) Final closed curve. In all figures, the knots are indicated by “o

points by “x.”

parameter being updated in each iteration. Some complex-
valued matrix calculations lead to

Ve =Re(J'r) (25)
N,
VZe=Re [ JUT + > Vi, (26)
j=1
where
B Or(u) B Of(u)
ou ou @7

is the Jacobian matrix of the scattered-field vector. The second
term in (26) can be ignored if Ver or the residuals are small; in
this case, we can get the Hessian just by computing the Jacobian
matrix such that

VZe ~ Re(J1J). (28)

@ 2

and the control

From (14), the derivative of the scattered-field vector is found
using matrix differentiation properties as

of 0Mc) _ 0C OM
du  Ou 7M8u+8uc (29

where C = Iy, ® c, and ® is the Kronecker product operation.
On the other hand, from (9)

ob  OJ(Lc) OL Jc
- o 6—uC +La—u (30)
or
dc +(0b OL
a—u_L (E)u_@uc>' 31
The Jacobian matrix is then obtained as
ob  OL oM
_ + (¢b dL ov
J =ML <8u 8uC) + o C. (32)
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up :Initial guess of
unknown vector
i=0

v

Call forward solver
(2D SAMM) to
compute scattered
field vector: f(u;)

|

Compute cost function: e(u;)

A 4

Is i=0 or
6 (Ui1) < e (uy), (i20)

i=i+1

A=Al2

Ui = Ui
A=Ax10

A

Call inverse solver
to update the
unknown vector u;

Termination
criteria met
?

Iteration
terminated

Fig. 5. Inverse-method block diagram.

From this equation, we see that the Jacobian is entirely
determined by calculating the elements of the matrices O0b/0u,
OL/0u, and 9M /Ou, which is done in the Appendix.

In a problem with a total of N, different frequencies and
incidence angles, the total residue vector and Jacobian matrix
are defined as

T
r= [r(l)T, r(2)T, ceey I'(NC)T}

J— [J(1>T’J<2>T7 o ,J<NC>T}T

(33)

(34)

and are used to find the gradient and Hessian utilized in (25)
and (28).

A block diagram of the inverse method is demonstrated
in Fig. 5. An important issue in the algorithm is updating A
appropriately in each step. For small Levenberg—Marquardt
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Fig. 6. Problem configuration, initial guess, and reconstructed boundaries
with SNR = 30 dB.

parameter values, the scheme approximates the Gauss—Newton
method, which is fast but sometimes converges poorly. For large
values of A, the Levenberg—Marquardt technique resembles
steepest descent, which provides slow but certain convergence.
Hence, the idea for choosing A is to begin with a sufficiently
large value. In each iteration, if the cost function would be
increased as a result of an update, which uses the previous value
of ), the parameter is increased by a factor of ten, and a new
update is computed. Otherwise, if the error has decreased as a
result of the update, then A is decreased for the next iteration by
a factor of two.

VI. NUMERICAL RESULTS

In this section, we verify our inverse method by two nu-
merical examples. In the first example, the boundaries and
dielectric properties are reconstructed where the source is a
normal multifrequency incident plane-wave, and noisy data are
collected for a range of noise levels. In the second example, a
number of examples have been included, which better highlight
both the capabilities as well as the limitations of our method.

In both examples, the reference scattered-field data at the
receiver locations for each frequency are simulated via a
2-D finite-difference frequency-domain (FDFD) Matlab code,
which calculates the electric and magnetic fields on a dis-
cretized spatial grid including the location of the receivers [48].

A. Basic Example

The geometry of this example is depicted in Fig. 6. The
irregular almondlike object is buried shallowly in the ground
with burial depth of 10 cm from the nominal flat interface to
the center of the object. The dispersive lossy ground is Bosnian
soil with density of 1.26 g/cc and moisture of 25% where its
single-pole conductivity-model parameters are shown in Table I
[49]. The object is assumed to be lossy and nondispersive
with relative complex permittivity of ¢, = 2.9(1 + ¢0.001). The
rough surface is randomly generated by a Gaussian distribution
around the nominal interface. The incident wave is a normally
incident multifrequency uniform TM plane wave with zero
phase at the origin. The scattered-field data (H,, Hy, E) are
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TABLE 1
SINGLE-POLE CONDUCTIVITY-MODEL PARAMETER VALUES FOR
BOSNIAN SOIL (d = 1.26 g/cc, m = 25%) AND AT = 20 ps

parameter value
€qv 5.038
ai -0.925
bo 1.76106
b1 -3.32102
by 1.56193
| Ez,total |

f(MHz) 0 -02

f (MHz) 0

-0.2

0.2

0.1

10

0.2
5

f (MHz)

x 10°

Fig. 7. Magnitude of observed total, specular, and scattered electric fields
versus frequency at the receiver locations.

collected at 11 receivers located 5 cm above the nominal
interface and 4 cm apart from each other. Data available at
these points are corrupted with an additive complex Gaussian
white noise, which simulates the measurement errors and other
variations from actual problem parameters.

We use seven frequencies ranging from 300-900 MHz with
100-MHz frequency resolution. The magnitude of the observed
total, specular, and scattered electric fields is depicted in Fig. 7
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Fig. 8. Normalized cost function versus converging iteration steps for iterative

optimization with SNR = 30 dB.
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Fig. 9. True object, initial guess, and reconstructed object for three different
SNR ratios.

versus the frequency and location of the receivers. The real and
imaginary parts of the scattered fields at each frequency are
calculated by subtracting the relevant specular field parts from
relevant total field parts at receivers.

We make use of nine modes for each mode family in our
SAMM forward model. The object maximum dimension is
about 1/3 of the wavelength at the highest frequency. The
interface and object boundaries are discretized to 81 and
60 points defined by 11 and 4 control points, respectively, where
interface control points are one dimensional, and object control
points are 2-D. The object and ground complex permittivities
are defined by two and five parameters, respectively, according
to their parameterization in Section IV-B. Therefore, we have a
vector including 26 unknowns to be optimized simultaneously.

The initial guess for air—ground interface is simply a flat
surface while the object is initiated from a large closed curve
residing in the region of interest, as illustrated in Figs. 6
and 9. The permittivity initial guess resides within 20% of
the actual value for the object and 50% of the actual value
for the soil. The Levenberg—Marquardt algorithm converges in
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Fig. 10. True and reconstructed real and imaginary parts of the relative permittivity and real conductivity of the ground for three different SNR ratios versus

frequency.

12 iterations, which lasts 210 s on a 2.8-GHz Pentium IV
personal computer using Matlab.

The reconstructed boundaries for 30-dB signal-to-noise
ratio (SNR) excitation are also shown in Fig. 6 along with
the actual geometry. Increasing the noise level degrades the
object reconstruction slightly and has little effect on the air—
ground-interface recovery. Fig. 8 shows the cost-function re-
duction versus converging simulation steps in logarithmic scale.
Fig. 9 demonstrates object reconstruction for all three different
SNR ratios.

The estimated ground complex permittivity and real con-
ductivity compared to the true values are presented in Fig. 10
for three various SNR ratios over the frequency range of 300-
900 MHz. These results show that both real and imaginary parts
of permittivity as well as real conductivity are deviated from
their actual values as a result of the increase in the noise level.

Table II contains the reconstructed complex permittivity of
the object versus SNR ratio. The object complex permittivity is
well reconstructed in all three cases.

B. Simulation Study

We next study the accuracy of the method over a broader
range of geometric conditions. Our specific concern is the
ability of this approach to localize objects of different sizes

TABLE 1II
RECONSTRUCTED COMPLEX PERMITTIVITY OF THE OBJECT VERSUS SNR

SNR (dB) €
30 3.0586+:0.0029
20 3.0693+40.0031
10 3.0871+40.0035

and shapes buried under interfaces of varying roughness. As
our primary objective here is with the geometric accuracy of
the reconstruction, we assume that the dielectric properties
are known. For the background, we use Bosnian soil with a
density of 1.26 g/cc and moisture of 25% where the complex
permittivity of the object is ¢; = 2.9(1 4 70.001). The incident
field is a normal TM-plane wave with frequency in the range
of 300-900 MHz, separated 100 MHz from each other, and
30-dB SNR ratio. The initial guess for air—ground interface is
simply a flat surface, and the object is initiated from a large
closed curve residing in the region of interest (illustrated in all
example figures).

First, we consider an enlarged almondlike object of first
example and assume a rougher ground surface. The object’s
maximum dimension is about 2/3 of the wavelength at the
highest frequency. The geometry is shown in Fig. 11(a). We
make use of 21 control points to reconstruct the interface and
six control points to reconstruct the large object. Compared
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Simulation study examples. (a) Large almond-like object with rougher ground surface. (b) Large rectangular object with slightly rough ground surface.

(c) Large rectangular object with very rough ground surface. (d) Object with concave edge. In all figures, the true rough surface (solid line) is shown against the
estimated rough surface (dotted line) where the control points are represented by large dots. The true object (solid line) is also drawn against the estimated object
(dotted line) where the control points are represented by large dots. The larger dotted closed curve is the object initial guess, while the interface initial guess is a

straight line at the nominal flat ground surface.

to the results in the previous example, we observe that the
geometry of the larger object is recovered about as well. While
the reconstruction of the rougher surface does degrade, the loss
does not impede our ability to characterize the buried target,
which is, after all, the primary objective of the processing.

As a second example, we consider the problem of recon-
structing a rectangular box using our smooth splines under
surfaces of varying roughness shown in Fig. 11(b) and (c). The
object’s maximum dimension is about 3/4 of the wavelength at
the highest frequency. In both cases, we use normally incident
plane waves and six control points to define the object. For the
smoother case, we used 11 control points to model the interface
while 21 were employed for the rougher ground.

Examining the results in Fig. 11(b) and (c), we can see
that the basic size and shape are well captured by our method
for both states of surface roughness. As is common with the
limited view nature of the problem, the top of the object is
recovered more accurately than the bottom. Also, using the
fairly small number of control points for the object, we are not
able to recover the details of the corners of the box. Still, in
the results not shown in this paper, when the surface is smooth
and the noise is low, our experiments indicate that we can in

fact stably estimate a larger number of control points, and for
this box example, we can obtain an accurate representation of
the top two corners. Understanding in more detail when such
additional detail can be extracted from the data and adapting
the parameterization of the object accordingly are an issue we
reserve for future effort.

As a final example, in Fig. 11(d), we examine a problem
where the object exhibits a concavity. The object’s maximum
dimension is about half the wavelength at the highest frequency.
Using 11 control points for the ground and six for the object, we
see that the basic size and location as well as the detail of the
concavity are recovered well.

To summarize, in this section, we have examined the pro-
posed inversion method over a broad range of conditions:
slightly rough to very rough air—ground interfaces, small and
large objects, smooth and sharp object boundaries, and objects
with both convex and concave parts. In all cases, the objects
are well localized, and their size and shape are characterized
with accuracy sufficient for the types of applications where this
class of problems arises. Geometrically, the approach clearly
works best for objects that are in fact of smooth shape, such as
the almond in Figs. 7 and 11(a). For the objects with corners,
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we obtain a more accurate reconstruction of the top than the
bottom and can recover the corners with precision only when
the interface is flat, and the noise is quite low.

Although not perfect in all situations, we feel that the ex-
tensive set of examples presented here provides an honest and
thorough understanding of the technique we have developed
in this paper and points to a range of interesting issues for
future work including: 1) developing an adaptive approach to
determining the number of control points required for the object
and the interface and 2) improving the SAMM method to better
handle a wider range of objects.

VII. CONCLUSION

A nonlinear optimization method for subsurface sensing
of objects buried in the ground with random rough surface
was developed. This method reconstructs the boundaries and
estimates the dielectric properties of the media simultaneously
by comparing the modeled to the true scattered electromagnetic
field data. This approach is based on the minimization of
the cost function by our nonlinear iterative algorithm using
SAMM forward model to compute the scattered fields from the
multifrequency and/or multiangle incident plane wave.

In theory, the model-based approach we have pursued can be
used to process data arising from any sensor for which we pos-
sess a physical model including fly-by ISAR [50], [51], ground-
coupled GPR [52]-[54], SAR [55], [56], and medical imaging
[57], [58], e.g., 3-D breast-tumor-detection application, which
is currently under investigation. The ultimate performance of
the method clearly depends on the specifics of the sensor.
Optimizing sensor design to maximize the information content
in the data is an interesting project, which is beyond the scope
of the work in this paper.

In this paper, we used cubic splines to model and reconstruct
the boundaries. For future work, we think it would be interest-
ing to examine the use of alternate shape basis functions. Adapt-
ing the order of these functions or the number of control points
to the information content in the data as well as the frequency
of the probing radiation also represents a potentially useful
area of exploration. Finally, we note that a locally converging
decent-type method was employed in this paper. Although the
technique we used for initializing the routine worked well for
the applications considered here, we recognize that a last area
of future work is the development and validation of global type
parameter estimation methods (simulated annealing [59]-[61],
genetic methods [62]-[64], particle swarm optimization [65],
[66]) either to solve the whole inverse problem, or as a tool for
initializing the Levenberg—Marquardt approach.

APPENDIX
A. Calculating Derivatives of b

The field difference vector on the boundaries caused by re-
fraction of the incident plane wave is b = [b], b2 ]T, where the
field difference vector at the points on the interface boundary is
given by by =b; 1 +bgr 1 — br, and the transmitted plane-
wave vector on the object boundary in TM case is given by
by = br .

The derivative of the vector b with respect to the unknown
vector u can be written as

ob
ou

b b b ob A
Ouy’ Ouy’ Juy’ Juy

There is a linear relationship between the coordinates of the
points on the boundaries of the curves we are modeling and
their associated control points. According to (17), the derivative
of each coordinate component of the boundary points with
respect to its respective control-point component is equal to
its associated B-spline basis function at that point. For a 2-D
B-spline, we can write

ox
s i,k(oz) (A2a)
dy
=N A2
apyyi z,k(y) ( b)

wheret = 1,2,..., N,.

The vector b is a function of the boundary-point coordinates
in general coordinate system, so the derivatives of elements of
vector b with respect to the interface control-point coordinates
(z,y) for t =1,..., N, are found using chain rule (A2a)-
(A2b) and analytical differentiation with respect to the
boundary-point coordinates.

The derivatives of €, with respect to the single-pole model
parameters are

Oe
aei — ¢ (A3a)
Oeg 8eg 2 0€g i
= === A3b
8[)0 8[)1 Oby w(l —|—CL1Z_1) ( )
Ocg _ —iz (b + iz +bp2 ) (A3¢)
Odaq w(l4a;z71)2

The target we use in our experiments is lossy and roughly
nondispersive with constant loss tangent, so its frequency-
independent complex permittivity is defined by €; = €.¢g +
i€1;€9. The derivatives of e; with respect to its real and imag-
inary parts are

8€t - _86,5 -

= —1
Bq,« Ben—

€0- (A4)

The vector b is also a function of €/, but not a function
of €. So

Ob Ob 0b
Tllt |:8€t7 8em :| 0 (AS)
and
0b Ob [ Oeq
aug 869 (8ug ) (A6)

where Oe,/0uy is found from (A3a)—(A3c), and Ob/0¢, is
calculated as follows.
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The vector by is not a function of ground and object permit-
tivities, and the vectors br and by are just functions of ground
permittivity, so

by _ by _
aGQ_aEt o

obp by
Get B 86,5

=0. (A7)

The vectors br and by are functions of kg, which is a
function of €4, so

Obr  Obgr 0kgy —2kay Okgyy

— — b . A8
ey Oy Oy PE\RZ, 42, ) Be, (A8)
Obr  Obr 0kgy

= A
Oeqy Okgy Oegq (A9)
by 1 S T
—— = | ——(+1 4k, 0)EX, —2ZSEL_ SET
(’)k;gy |: MW( + gy ) Tz w Tz Tz

(A10)
where
1 .
ay 9y

The derivative 0k, /Oe, can be obtained analytically.

B. Calculating Derivatives of L

The derivative of matrix L with respect to the unknown
vector u can be written as

oL _ oL oL oL oL} (A12)
ou Ju;’ Ouy’ Ouy Ouy

The matrix L is a function of the coordinates of boundary
points in the scattering-center coordinate system: '’ = x — xg
and y' = y — yo, where o and g, indicate the object or image
scattering-center coordinates and are defined in average form as

1 Nuo 1 N2

(2) (2)
To=—-—) Pui 0="—) Dyi-
Nu2 ; o Y Nu2 ; yr

The derivatives of elements of L with respect to the control-
point components at the object-surface points are found using
chain rule (A2a), (A2b) and analytical differentiation with
respect to boundary-point coordinates using Bessel functions
recurring derivative relations

(A13)

/ !
W = (k cos ¢Gp_1(',y) — ZGn(m’,y')> e
(Al4a)
oG, /’ / ' . ;
({;;y) = (k sin oG, 1 (2, y)) + %Gn(x’, y’)) e
(A14b)
with p = /22 + /2, and ¢ = tan"1(y'/2").
The matrix L is a function of ¢, and ¢, such that
OL 0L [ ey \ "
o = e () (A1

where Je,/Ou is found from (A3a)-(A3c).
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To obtain the derivatives of L with respect to the complex
permittivity, we differentiate (13a)—(13c) and take advantage of
the following Bessel-function derivative

OG, (2, y)

D, (Al6)

. ! liﬂ ! oo/ E
- <pGn—1(I7y) k Gn(ac,y)> %

9 9

where kg = 27 f, /li€g.
Similar equations are satisfied for derivative with respect to
€, and we obtain

(A17)

oL _[oL oL
8ut n 86,57«7 8eti

[8L OL ]
€0

g, i—
8€t ’

6et

C. Calculating Derivatives of M

The matrix M is a function of the distance between re-
ceivers’ locations and object scattering center: =’ = x — xg
and y' =y — yo, where x and y represent receiver-location
components. Applying the chain rule, using (A2a), (A2b) and
taking derivatives of elements of M with respect to the control-
point components at the receivers, 9M /0u; and 0M /0uy are
obtained. The elements of matrices 9M /02’ and OM /9y’ are
similar to OL/0xz" and OL/dy', but here, 2’ and ¢’ indicate dis-
tance between the receivers and the object scattering center. The
derivatives M /0uy and OM/0u, satisfy equations similar to
(A15) and (A17) at the receivers.
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