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Subsurface Sensing Under Sensor
Positional Uncertainty
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Abstract—We consider the problem of classifying buried objects
using electromagnetic induction data collected in a setting where
there are errors in sensor positioning. Using a series of decay
constants (or equivalently, Laplace plane poles) as features for
classification, our algorithm seeks to estimate these poles and,
subsequently, to determine the type of object in the sensor field
of view. In many practical scenarios, a set of data is often accom-
panied by domain knowledge that the location of the transmitters
and/or receivers is only known to within some degree of accuracy
(e.g., 10 cm in the along-track direction and 5-cm cross-track).
Here, we develop an approach to the extraction of information
from such data sets in which the quantitative positional bound
information is used in the context of a min—-max optimization
strategy. Specifically, we look for the parameters of interest that
minimize the maximum data residual, where the maximum er-
ror is computed over ellipsoids or polyhedra of possible sensor
locations defined by the bound information. Our formulation
admits data collection with independent or dependent positional
uncertainty values at successive nominal collection locations. Our
algorithms for solving this optimization problem are validated
using simulated and measured data.

Index Terms—Bounded-data uncertainty, dynamic program-
ming, electromagnetic induction (EMI), min-max optimization,
object classification, parameter estimation, positional uncertainty,
subsurface sensing.

I. INTRODUCTION

N RECENT years, there has been significant effort to-

ward the development of physics-based signal and image-
processing methods for the solution of subsurface-sensing
problems given the data from one or more sensors that have
been scanned over a region of the Earth [1]-[16]. Broadly
speaking, such algorithms either develop a voxelated image of
the subsurface or directly extract characteristics (size, shape,
location, class, etc.) from the data of buried objects such as
unexploded ordnance, landmines, and utilities [17], [18]. In
either case, the parameters of interest are typically chosen using
an algorithm that minimizes some measure of the error be-
tween the observed data and the predictions of a computational
sensor model.
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A tacit assumption in almost all of these methods is that
the positions of the sensor are known precisely relative to
some fixed reference point, a condition that is often not met
in practice [14], [15], [19]. For handheld systems especially,
the sensor may not be equipped with global positioning system
(GPS), in which case some sort of dead reckoning may be
employed to get approximate locations [20]. In the case of
vehicular or cart-mounted sensors, even with GPS, the effects
of positional uncertainties have not been extensively studied
for problems requiring high-resolution localization of buried
objects. In [14], Tantum et al. propose several approaches to
mitigate sensor positional uncertainty including low-pass filter
and hidden Markov-model techniques to correct for positional
errors. In [13], signal-processing techniques for data obtained
from multi-axis sensors were proposed and studied using simu-
lated sensor-positional uncertainties. A report on a workshop
regarding unexploded-ordnance (UXO) detection methods is
presented in [19]. This workshop raised many questions regard-
ing state-of-the-art UXO detection methods, among which was
the issue of sensor positional uncertainty.

The goal of the work in this paper is the development and
analysis of a general-purpose approach to these inverse prob-
lems, which explicitly accounts for positional uncertainty. Our
model considers the classification problem, where the features
of interest are given by a set of decay constants (or equiva-
lently, Laplace plane poles). However, our technique applies
more generally and need not be restricted to this particular
classification problem. The method we propose is motivated by
the observation that real data sets for which positions of the
sensor are recorded are often accompanied by the caveat that
these locations are accurate only to within some tolerances in
the z, y, and z coordinates.

Parameter estimation in the presence of uncertainty has
historically been the subject of intensive study [21]-[32]. This
uncertainty can either be due to the presence of noise in the
data or due to the existence of uncertainty in the model [30].
In each case, we can handle the uncertainty either determin-
istically or stochastically. Least squares (LS) [29] and ridge
regression [24], [33], [34] are two well-known deterministic
models used in the literature for handling uncertainties caused
by the presence of noise in the data. The linear LS criterion was
developed by Gauss in the 1700s. This method is very attractive,
because it results in a closed-form solution that can be updated,
as more data become available.

When dealing with uncertainties in the model, deterministic
measures such as robust estimation and filtering techniques
(or H*) [22], [25], [26], [28], [31], [32] and total LS (TLS)
[23], [27] have been used. The H> method is essentially an
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optimization technique designed to minimize the worst case
estimation error [22], [26]. The TLS method is an alternative
method to LS for obtaining a solution to linear problems [23].
This method allows one to incorporate errors into the data
matrix when formulating the problem. However, in cases where
the effects of noise can be overemphasized, this method tends
to result in overconservative estimates [21]. The authors of
[21] propose an approach that avoids this overcompensation
by employing a method that is very similar to H*>°. However,
[21] uses a cost function that is more complex than H> and, in
contrast to robust estimation, imposes constraints on the error
values. A problem similar to that of TLS arises when using H*°
filtering. Since the design of such problems is such that they are
robust to uncertainties in the data, the solutions may again lead
to overcompensated results [21], [23].

Among stochastic methods designed to deal with the exis-
tence of uncertainties in the data, the predominant methods are
maximum a posteriori and maximum likelihood [35]. These
two methods often result in similar mathematical solutions with
varying interpretations for the components of the algorithm.
One stochastic approach proposed for dealing with uncertain-
ties in the model is by directly incorporating this information
into a processing scheme that is based on Bayesian statistics
[5], [36]-[38]. Specifically, the perturbations in the positions of
the sensor are modeled as random variables. Typically, these
random variables are taken to be independent and, in the ab-
sence of any other information, uniformly distributed between
bounds related to the tolerances inherent in the measurement
device. The resulting statistical estimation or decision problem
is then solved via Monte Carlo integration methods to “average
away” the effects of these unknowns [36].

Here, we explore an approach to dealing with uncertainty in
sensor location that does not require the explicit specification of
a probability density for these quantities but rather is motivated
by practical application, in which practitioners quantify the
accuracy of their sensor positioning through the use of bounds,
e.g., along-track positioning is accurate to within =5 cm. In
these circumstances, we think it is useful to exploit this bound
information in the parameter-estimation portion of the process-
ing using not a stochastic-processing approach but rather a
“min-max”’ formulation of the estimation problem. That is, we
look for those parameters (pole values, rotation angles, etc.)
which minimize the maximum of some cost function, where the
maximum has taken over all possible sensor locations, each of
which is restricted to lie within some bounded region of space,
where the size of the region is dictated by the accuracy bounds
discussed above. To the best of our knowledge, a min—max
formulation of the problem of uncertain sensor locations has not
been proposed or examined to date in the context of subsurface
sensing. Thus, our effort provides a new and potentially useful
way of approaching this issue. We feel, moreover, that is, in
a sense, a very natural way to deal with the bound informa-
tion often associated with sensor positioning for UXO-type
data sets.

Our approach is divided into two possible scenarios of in-
terest. First, we consider the case where the positional uncer-
tainties at successive data-collection locations are independent.
This models a situation where data-collection locations are

selected with reference to some absolute position. We analyze
polyhedral and ellipsoidally shaped uncertainty regions and
arrive at very tractable and potentially easily parallelized algo-
rithms for solving the resulting min—max optimization problem.
This model, however, does not admit dependent positional
uncertainties, which can occur as a result of an accumulation
of positional uncertainty as the sensor moves over the data-
collection locations.

Under dependent positional uncertainties, we detail a
dynamic-programming (DP) formulation as a means of search-
ing among the possible sequences of data-collection loca-
tions. This formulation also admits polyhedral and ellipsoidally
shaped uncertainty regions. Although it is more computation-
ally intensive than the case of independent errors, the results we
see from the simulation are promising and point to the utility
of further work involving much more tractable approximate
dynamic-programming approaches.

We report the results of numerical experiments involving
both simulated and field data and compare these results to those
of an existing technique that does not account for positional
uncertainty. In all cases, we observe significant classification-
performance improvements compared to cases where sensor-
positioning errors are not taken into account.

The remainder of this paper is organized as follows. In
Section II, we introduce the classification problem of in-
terest and develop the positional-uncertainty framework. We
consider the case of independent positional uncertainties in
Section III. For dependent positional uncertainties, a dynamic-
programming formulation is presented in Section II-D.
Section IV reports the results of our numerical studies for
UXO characterization using electromagnetic induction (EMI)
sensors. Finally, conclusions and future work are provided in
Section V.

II. GENERAL PROBLEM FORMULATION
A. Classification Based on Spatially Sampled EMI Data

We consider the problem of classifying objects based on spa-
tially sampled EMI data in the time or frequency domain. Data
are assumed to be collected from a single monostatic sensor, as
depicted in Fig. 1. The generalizations to multiple sets of data
from multistatic-sensing systems are conceptually straightfor-
ward but notationally burdensome. It is assumed that our sensor
stops to collect data at N distinct-transmitter/receiver-location
combinations. We associate with the ith data-collection location
the nominal coordinate r; = (x;,y;, 2;), for i = 1,..., N. At
each location, we assume that M time or frequency samples are
taken. Under this model, the kth data sample at the jth sensor
location is given by [17]

d; :g;-FRTAkaj +on;jg (1)

=Sjk + 0Nk @)

where g; is a3 x 1 vector holding the (z, y, and z) components
of the magnetic field induced at location ; by a current of
units flowing through the receive coil, and f; represents the

excitation-field vector evaluated at the dipole position. Func-
tional forms for f and g are provided in [39]. The noise variance
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Fig. 1. Monostatic sensor for data collection, consisting of two concentric
coils for transmitting and receiving electromagnetic energy. The sensor is
centered at nominal location 7.

is 0 and n; is a zero-mean unit-variance white Gaussian
random variable used to represent the measurement noise. The
3 X 3 matrix R is a 3-D rotation matrix used to transform
the global-coordinate frame of reference to the rotated local
frame of reference at the object. Algebraically, the matrix R
diagonalizes the complex-valued magnetic polarizability tensor
Ak. R is parameterized by three Euler angles 1)1, 12, and 13
and is modeled under the z-convention [40]. Thus, it is without
loss of generality that we assume Ay is a diagonal 3 x 3
complex-valued matrix. For the frequency-domain version of
the problem, Ay, has the form

)\1((4))
Aw) = Aa(w) : 3)

Az(w)

Replacing w by ¢ in (3) yields the time-domain form of Ay.
The quantities A1, Ao, and A3 are associated with one of each
of the principle axes of the object. In other words, the diagonal
elements of Ay hold the scattering characteristics of the object
along each of the three principle axes for the kth frequency
(time) sample. The model for these quantities is given as
follows [41]:

o0
N a; 1 Jw
Ai(w) =" P

=1

i=1,2,3 @)

oo
Xi(t) = = appige Pu(t),  i=1,2,3 (5
=1

where 7 = v/—1, a;, is the expansion coefficient for the Ith
term corresponding to the ith axis, p; ; is the {th pole for the 7th
axis, and u(t) is the unit-step function. Equations (4) and (5)
only hold for nonferrous objects. In the case of ferrous objects,
a dc offset must be added in the frequency-domain version of
the model. Correspondingly, a Dirac delta function must be
included in the time-domain version of the model.

To show the explicit dependence of our model on both the
object parameters and the positions of the sensors at each data-
collection location, we express, using (2), the model for the kth
data value collected at the jth location as

sk(0,7;) = g*(8,7,)RT(0)AL(O)RT(8)f(8,7;) (6)

where 0 is a 6-D vector that holds the coordinates of the object
(z,y,and z) as well as the Euler angles (1, 2, and t3).

The classification approach is started by constructing a
target-signature library, which will be used in the actual
processing. For each target of interest, this library will hold the
corresponding pole values [17]. Given the library, classification
is a two-step process. First, for each target in the library, the
datad;i,j=1,...,Nand k =1,..., M are used to estimate
the unknown parameters associated with that model: poles,
expansion coefficients, object location, and object orientation.
Second, using these estimates, we perform the classification.
The classifier used in this paper is based on the fit of the
kth model in the library to the available data. This involves
evaluating (6) at the estimated parameter values (poles, expan-
sion coefficients, object location, and object orientation) for the
object, obtained in the first step. As explained and demonstrated
more fully in [17], this approach is likely to be of use when the
signal-to-noise ratio (SNR) is relatively low. It is important to
note that we only study the databased-classification method as a
proof-of-concept. Other classification techniques, for example,
those explored in [17], can also be applied without requiring
any changes to our proposed methods. Additionally, it is often
of interest to incorporate clutter rejection into the classifier.
Such an extension can be easily incorporated into a classi-
fier by adopting a thresholding technique (see, for example,
[18] and references therein).

B. Including Positional Uncertainty in the Model

As we motivated in Section I, it is often the case that the
precise sensor position at each sensor location is not known.
To model this situation, the precise coordinates of the jth
location r; are taken to be the sum of two components, for
eachj=1,...,N

Tj =T, +0r; @)

where 7 _; is the nominal (equivalently expected or understood)
position for the jth sensor location and d; is the perturbation to
79,5 that yields the true sensor position at the jth data-collection
location. We denote the region of uncertainty within which the
true 4th sensor location is known to reside as S;. The set of
error tolerances to which the nominal-location information is
subjected is defined for the jth location by

Sj={or=r—ro;:reS;}. (8)
We assume that S; is a connected convex and bounded region

foreach j = 1,..., N, for example, a box or an ellipsoid. This
region could be a conservative estimate of the true set of error
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Fig.2. Data are collected at N locations over a field of interest. Location j has
associated with it a region of uncertainty S]’., shown here for every j as a box-

shaped region. The dashed line connecting data-collection locations indicates
the sequence in which data are collected over the field.

tolerances in measurement but reflects the best range that is
known. Fig. 2 depicts the sensor locations over which data are
collected. Note that the region of uncertainty is depicted at each
location as a box.

Fig. 2 depicts the successive sensor positions as being visited
sequentially. Sequential data collection is common; modeling
data collection that relies upon dead reckoning (for example,
a device employing an inertial measurement unit). In such
a scenario, it is the case that successive perturbation values
are dependent, since each successive location is determined
nominally from the last location, but there is some uncertainty
in the calculation of the new position. Given the manner in
which data are collected [20], it is reasonable to assume that
successive data-collection locations depend only the current
sensor positions and not on past sensor positions. In probability
terms, the set of sensor positions evolves in a Markovian
fashion [42]. Consequently, this scenario is effectively modeled
through a first-order autoregressive relationship with parameter
« as follows. Suppose that nominal locations 71, ...,7ry are
fixed values corresponding to the known but inexact sensor
locations. Then, the sets S, . .., Sy are related according to

Sj(0rj1) = {6r; = adr; 1 +0r:or € S}V (9)

for j = 2,..., N. We have explicitly shown the dependence of
the jth uncertainty region on the perturbation at the (j — 1)th
sensor location by defining S; as a set-valued function. In (9),
we refer to the set 7% as the set of innovations at the jth
location. This set reflects the new positional uncertainty in-
troduced by measurement at the jth location. In words, our
model for successive uncertainty regions begins with the first
uncertainty region S;. The next uncertainty region S, is de-
fined in terms of an element of S;. Hence, given that some
uncertainty 671 was realized in the region &7, the uncertainty
value at the second sensor location 7, must depend on 7.
The actual dependence is given by dro = adry + dr, where
or is the additional uncertainty (or innovation) that compounds
with the initial uncertainty. This new uncertainty is restricted
to the set S7°. The same relationship follows for subsequent
sensor locations.

The parameter o essentially captures the degree to which
the sensor positional uncertainty of the previous data-collection
location affects that of the subsequent data-collection location.

Note that when o = 0, this model specializes to the case where
each perturbation term is independent of the others, which is a
common scenario when a fixed reference (such as GPS) is used
for calculation of each sensor location [14]. A nonzero value of
« can arise under several circumstances, such as when no fixed
reference is available and, consequently, error is compounded
due to fluctuations or poor estimates of the velocity of the
sensor as it collects data at regularly spaced intervals of time
or due to miscalculations from equipment or human failure.
The value o =1 is particularly applicable to data-collection
scenarios where dead reckoning with no fixed reference is
available. In such a situation, the current sensor position is
treated as the current nominal data-collection location when
computing the subsequent data-collection location. The value
of a clearly depends on the data-collection mechanism and
must be modeled appropriately in order to reach the best
possible optimization goals.

We denote by R the set of admissible trajectories of per-
turbation values, (071, ...,d7ry) under the above model (9).
‘R may be expressed as

R ={(dry,...,0rNn):

6’)"1681,(5’)“j€8j(5’l"j,1) Vj:2,...,N}. (10)

The set of admissible true sensor locations is then given by

R,:{(T‘l,... Vj,(&’l"l,...,(STN)GR}.

(11)

TN) ITj=T0+0T;

III. MIN-MAX FORMULATION FOR UNKNOWN BUT
BOUNDED POSITIONAL UNCERTAINTY

In this section, we formulate a min—max optimization strat-
egy for our classification problem, which is subjected to sensor
positional uncertainty. Our mathematical formulation requires,
first, a cost function over which to optimize. As is typical
in many data inversion applications where measurement noise
is modeled using a white Gaussian noise process, here, we
employ a cost functional equal to the norm of the squared-error
difference between the data observed and the prediction of the
data provided by the model s over all 8

g

N
0, rn) = 30D dis — su(8,75)]%

j=1k=1

(12)

The problem now is how to specify the 7; in function s in
Ji. Typically, the 7; are set equal to their nominal values 7 _;,
and an LS estimate of € is found. Here, we seek to augment
the minimum error notion of optimality in a manner that easily
incorporates the additional knowledge we have concerning the
geometry of the S} for j = 1,..., N. Essentially, the problem
we have is to determine a set of primary parameters 6 in the
presence of a collection of “nuisance” parameters, the r;, which
are restricted to exist in known regions of space. This additional
knowledge concerning the positional uncertainties may be
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incorporated into our cost functional to yield the augmented
cost functional J,, given by!

V=YY

j=1k=1

j2(0arla' - T

N

X ik = sk, 7))+ > 1675 — adr; 4|*. (13)
j=2

The cost functional in (13) penalizes simultaneously the
fidelity of the data reconstruction implied by the parameter
vector 6 and the nearness of adjacent perturbation values,
related through the coefficient a.. This last term is motivated
by the recursively defined model we have hypothesized for the
sets S; which implies a degree of nearness for the positional
perturbations for successive data-acquisition locations.

The parameter « in (13) may be considered as a regulariza-
tion coefficient that establishes the level of tradeoff between the
two terms in (13). The choice of appropriate ~ is a well-studied
issue in the field of inverse problems. Common approaches
include the L-curve and generalized cross-validation methods
[43], [44]. In our case where, as we discuss below, (13) is used
in the context of a dynamic-programming algorithm, it is not at
all clear that such regularization-parameter-selection methods
would be applicable or appropriate. Developing such methods,
while very interesting, is well beyond the scope of the work in
this paper, where our primary concern is in demonstrating a new
approach to the larger problem of processing in the presence
of positional uncertainty. Hence, in the examples presented in
Section IV, we chose v through trial and error. In fact, the value
of v = 1 was used for all examples and provided a quite strong
performance.

We note that (13) takes the form of the log-likelihood cost
function that would result were we have to assume that the
position errors themselves followed a first-order Gauss—Markov
process with drift defined by « and driving noise variance
related . We choose here not to use (13) as the basis for an
extended-estimation problem where we jointly determine from
the data values for both 8 as well as all of the d7;. For the UXO
problem of interest here, @ contains 13 parameters while the
total number of positional parameters would be three times the
number of sensor locations. Given specifically the well-known
difficulties in estimating the decay rates for UXO objects [18],
[36], [45], [46], the addition of this large number of nuisance
parameters associated with the sensor locations would likely
degrade the accuracy of these estimates quite severely.

In the following sections, we detail an alternative approach
to processing, in which we explicitly make use of the bound
information used to construct the sets S;. Specifically, we
consider a “min—max” optimization problem based on (13), a
well-known approach to problems involving auxiliary parame-
ters whose values are not known exactly but are known to lie
within a bounded region of space. This approach to the problem

I'The functional Jo does not show an explicit dependence on the perturbation
values dr;, j = 1,..., N, since these are given through (7), using the known
nominal values g j and j = 1,..., N.

amounts to selecting that 8 that minimizes the worst error, as
measured by J2(0,71,...,7N) as (r1,...,TN) Tanges over

R’ for j =1,..., N.Formally, 6, our estimate of 0, is defined
through the min—max formulation as
é:argmin max jz(eml,...,rN). (14)
(r1,...,,N)ER’

From (6), it is clear that s, is nonlinear in the position values
r1,...,7nN. Since the fields for these sensors are very smooth
relative to the spatial scales of the perturbation to the position,
for sufficiently small values drq, ..., 07y, the following first-
order approximation is valid:

sk(0,71;) = s,(0,70,;) + Ar(0,70;)07r; +0(dr;)  (15)

where we have adopted the little-o notation to represent the
higher order terms in the expansion of s; (6, r;). Formally, if
the function h(r) = o(r) then (h(r)/r) — 0 as r — 0 [47].
The quantity A (6, 7o ;) isa 1l x 3 vector, whose components,
respectively, equal the partial derivative of s; with respect to
Z;,Y;,and z;, evaluated at the respective nominal coordinates
0,5, Yo,5,and 2o,

We may then apply (15) in (14) to yield a new min—max
formulation with a cost functional that is quadratic in the
unknown perturbations. Let

N M
J(0,6r1,....0rN) =Y > |ldjk — sk(0,70,5)
j=1k=1
— Ay (8,70,5)0r,]|*

N

+> l1or; — adr; 4 ||? (16)
j=2

= ||d - Asr|® (17)

where the simple expression in (17) follows easily from (16) by
appropriately defining vector d and matrix A. Furthermore, we
have represented dr = (071,...,d7ry). Then, our simplified
min-max formulation is given by

0 = arg min
0 (6r

max

J(0,6r1,...
.,0TN)ER

orn).  (18)

Our next result allows us to conclude that the optimal value
of the inner maximization in (18) is achieved on the boundary
of R.

Theorem 1: The vector (6r%,. ..,
mum value in

dr’;) achieving the maxi-

max

19
(671,...,67N)ER (19)

J(0,0r,...,0rN)

lies on the boundary of R.
Proof: See Appendix A. ]
Applying Theorem 1, we can conclude that the space of feasi-
ble vectors (671, . .., 0r N ), over which the inner maximization
in (18) must be taken, can be greatly reduced by searching
over only the boundary of R. We may not, however, conclude
that 97 lies on the boundary of §; for j = 1,..., N. We shall
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demonstrate (in Section III-A) that in the case of o = 0, this
property is indeed true and results in a great simplification of
the problem. For general oo > 0, we will employ a dynamic-
programming algorithm to obtain the optimal inner maximi-
zation. This general formulation appears in Section III-D.

A. Case of a = 0: Separable Optimization

When o = 0, there is no assumed or known relationship
between the adjacent perturbation values. Consequently, the
penalty incorporated in the cost functional J associated with
the relationship between adjacent perturbations is treated in this
section as being unnecessary. We ensure this is the case by
maintaining v = 0, whenever a = 0. Thus, for a = 0, we have
the following separation property:

N M
J(0,0r1,...,0rN) =YY lldjk — sk(0,70,5)
j=1k=1
— Ap(0,70,)0m;]1* (20)
N — —
= lld; — A;or;|? 21
j=1
N
=Y J;(0,6r;) (22)
j=1
where we define Jj=3M |ldjr — sk(0,70;) —
Aj(0,70;)0r;||?, for j=1,...,N. Under this separation,

our optimization (18) can be expressed as

'r'EJ

6 — arg mi IO, ..., 23
argmin - max (0,71 ry)  (23)
N
Z arg mln Jmax J;(0,0r;). (24)

Since S;(07;-1) has no dependence on d7;_; when o = 0, we
have that S;(6r;-1) = S}V for j = 2,..., N. To simplify the
notation, we have dropped the expression of S; as a function of
orj_iforj=2,...,Nin(24).

Theorem 2: For j =1,..., N, the point 07} achieves the
maximum value in

max J;(6,0r;)

o0r;€S;

(25)

lies on the boundary of S;.

Proof: Since J; is convex and quadratic in J7, the proof
for each j follows identically to the proof of Theorem 1. We
omit the details because of this redundancy. |

We now consider two special structures for the regions of
uncertainty: polyhedral and ellipsoidal regions. For simplicity
of exposition, we assume that each region of uncertainty is
identical over the possible sensor locations, S; = --- = Sy.
We denote the polyhedral-shaped uncertainty region P. For
the special case of a box-shaped region, we denote the region
le,ly.,lz- This region is parameterized by three values, I, [,

and [, which indicate the length, width, and height of the region

of uncertainty

By, 1,0, ={0r=(0z,0y,0z2):|0x| < Iy, [0y| < 1y, [02] < 1.} .
(26)

For the ellipsoidal region, denoted as Elbly,lz , we make use of
the same parameters I, [, and [, to indicate each of the three
axis lengths corresponding to a 3-D ellipsoid. We omit rotation
angles from the characterization of the ellipsoid, although, this
can be easily incorporated

52
Elpy 1. = {ér:(ém,éy,éz) %+5i+5 1}.

2 2
27)

z

B. Polyhedral Region of Uncertainty Under o = 0

Under a =0, for any region of uncertainty, Theorem 2
allows us to restrict our search in the inner maximization of
(24) to the boundary of the region. However, an even stronger
statement can be made for the case of polyhedral regions (which
include box-shaped regions), as follows.

Theorem 3: Let P be any polyhedral region of uncertainty.
The value 7 achieving the maximum value in

max J;(6,0r;)

or;€P

(28)

lies at one of the extreme points (a corner) of P.
Proof: See Appendix B. ]
As a result of Theorem 3, when o = 0, we need only test the
extreme points of the polyhedral region of uncertainty in order
to determine the overall cost-maximizing perturbation value
over the entire region. For the box-shaped region, this implies a
search over the eight corner points of the box.

C. Ellipsoidal-Shaped Region of Uncertainty Under o = 0

We now turn our attention to the case of an ellipsoidal region
of uncertainty. The inner maximization in (24) can be ex-
pressed as

max  J;(0,0r;) = max
0T €€, 1y 1, drTdiag({1/12,1/12,1/12})ér=1
x |ld; — Azor|* (29
where
/2 0 0
diag ({1/12,1/12,1/I2}) = | 0 1/2 0 (30)
0 0 1/2

We will approach this constrained optimization through the
Lagrange multiplier method. Using Lagrange multiplier A\, we
consider the unconstrained optimization

ng:%x(H(_ijAj5r||2+)\(§eriag({l/l 1/zy,1/zg})ar1)).
@D
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Through a simple matrix derivative, we obtain the optimality
condition

—2ATd 12 ()\ diag ({1/12,1/2,1/12}) + ATA) 5r =0
(32)
which implies the optimal value 07 satisfies

5r5 = (Mding ({1/2,1/2,1/2)) + A"4) " 4"d. (33)

In order to characterize the value of A such that
57';‘-T5r; = 1, simple algebraic manipulation yields the follow-
ing series of equations:

or3 M diag ({1/12,1/12,1/12}) or (34)
= ‘ diag ({1/1,,1/1,,1/1.})
N1 o ||?

X ()\diag ({1722, 1/22,1/12}) + ATA) A%d

(35)
2T ~ -1 2T _ 2
:H ()\I+A A) A (36)
= |[vor+£Ts) 24|’ (37)
—d"UTs (A +3"%) *x"Ud (38)
&2 22 32

_ 1 2 3 ) 39
01022 T rodE T rod)p (39)

We have defined A = Adiag({ls,1y,1.}). The singular value
decomposition of A is givenby A = UXV'T, where U and V
are orthogonal matrixes having orthonormal columns. We have
additionally defined the 3 x 1 vector d = XTUd. Since we re-
quire Jr;T diag({1/13,1/12,1/12})6rs = 1, (34)~(39) imply
that A\ must satisfy the sixth-order polynomial equation

d, (A 02 (A ro2) 24 dy(A+0?) (A to2) +dy (Ao?)?

x (A+02) = (A+02) (A +02)* (A +03)°.  (40)

Thus, we have reduced the problem in the case of ellipsoidal
regions of uncertainty to obtaining the roots of a sixth-order
polynomial and testing each of the implied boundary locations
for maximum cost in J;.

D. General Case of a > 0: Dynamic-Programming Approach

In this section, we treat the general problem for o > 0. A
simple dynamic-programming formulation is introduced for the
optimal solution to the inner maximization in (18). Whereas
the polyhedral and ellipsoidal uncertainty regions under o = 0
yield simple and tractable solution approaches to the inner
maximization in (18), the general formulation for v > 0 can
result in a trajectory of uncertainty values (d7q,...,d07rN),
where it is not necessarily true that Jr; lies on the boundary
of Sjforj=1,...,N.

The dynamic-programming algorithm for achieving maxi-
mum cost in the inner maximization of (18) is given by

V1 = max Z Hd1 k_Sk 0 ’!‘0 1) Ak(B,r071)6r1||2

OTreS
+ V2(5T1) (41)
Vi(érj1) = o e Z sk — s£(0,70,5)
—Aw(0,70,7)0r; |1+ 7l|or; — adr;_q|?
+V}'+1((5’I"j), j:27...7N (42)
Vi1 =0. (43)

Since the uncertainty regions are continuous, we must dis-
cretize the set R in order to execute the DP algorithm. Our ap-
proximation will lead to a finite number of possible trajectories.
We will demonstrate that our approximation is consistent, in the
sense that as our discretization becomes finer; we approach the
optimal maximum cost achieved in (41)—(43).

Let Z be the set of integers. Define the rational lattice L™ by

Lr={reR* :nr;€Z, fori=1,...

L3N} (44)

Then, we define the discretized space of uncertainty trajectories

"=L"NTR. (45)
This discretization induces regions S;-L for j =1,...,n, which
we define recursively as
St = {6r; e R*: (6ry,0r") e R"} (46)
S;-L((Srj,l) = {(57"]' S R3 : (57"/, 5’)"]‘,1, (57"]',(51””)
GR",(Sr’eRS(jQ)}, j=2,...,N.
(47
Our approximate DP algorithm, parameterized by the dis-
cretization index n, is then given forn = 1,2, ..., by
M
V" = max ld1 i — s(0,70,1) — Ak(0,70,1)
57‘1€S
k=1
x 07 |[* + V5" (9r1) (48)
M
Vi'(orj1) = max

57‘j€$}l (51’]'71) =1

x ||dj e — 51(6,70,5) — Ak(8,70,5)0r;]|*
+ 67 — adr; | + Vi (7)),
j=2... N (49)

Vit =0. (50)
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Theorem 4: The approximation (45) is consistent, in the
sense that V" — V; asn — oo.

Proof: Suppose the trajectory or = (6r1,...,0rN) € R

achieves the maximum cost in (41)—(43). Let ¢ > 0 and define

B. = {6r e R*N : ||or — 6v'||> < €} . 51
By the definition of R, the set 5. N R must be a convex set of
nonzero volume. This implies that there must exist a rational-
valued vector 47’ € B. N'R. Let the lowest common denomi-
nator of all the components of d7' be n. Then, clearly, ndr’ is
integer-valued. Thus, 7’ € R™. Expressing 6r™ = ér + Ar,
we obtain

17(8,07) = J(8,67")| = ||| d — Adr||* ~ ||d — Asr" |
(52)
—[[|aar|® - 2arT AT (@~ A7)

(53)
<ot||Ar|* + 20 [|Ar||||d — Adr||

(54)
<ote+201Ve ||d— Adr|| (55)

where oy is the maximum singular value of matrix A. Noting
that the quantity ||d — Adr|| is a constant, we have that the
approximation is consistent, as desired. |

IV. NUMERICAL STUDIES

In this section, we validate the analysis of our previous
sections through simulation studies. We consider both the cases
of independent and dependent sequences of data-collection
locations.

A. Independent Data-Collection Locations: Simulated Data

Our first numerical study makes use of simulated data to
test the classification algorithm when there is no knowledge of
dependence between adjacent data-collection locations. Thus,
the algorithm employs the value o = 0. In this scenario, our
sensing-system model is comprised of two square colocated
transmit and receive coils with dimensions 0.5 m on each side.
These coils sample a 1-m square area on an equally spaced
4 x 4 grid of measurement points. This models the scenario
where an object has already been detected and data collection
is being conducted in the vicinity of the object to assist in the
classification process. Our model assumes that the object to be
classified resides at a depth between 0.05 and 2.0 m below the
surface of the ground. The sensor is modeled as a frequency-
domain sensor, with complex data (in-phase and quadrature)
collected at 30 equally logarithmically spaced frequencies be-
tween 10 and 30 kHz.

Our simulated library of target objects consists of four
objects: a 3 in long x 1 in diameter stainless-steel cylinder
(S1), a 6 in long x 1 in diameter stainless-steel cylinder (S2),
a 3 in long x 1 in diameter aluminum cylinder (Al), and

a 6 in long x 1 in diameter aluminum cylinder (A2). The
“ground truth” model, for the scattering characteristics of these
targets, was obtained using the method of [36], where the dipole
model was taken to be exact. Four terms were kept in each \;
summations in (4), and all expansion coefficients were taken to
be one (see [36] for additional details).

Data collection is done with the SNR set at approximately
12 dB, with noise always assumed to be independent identically
normally distributed. The SNR for this and all other cases was
calculated as follows:

]I
O'2ld

where d denotes the signal vector, [y is its length, and o2
denotes the noise variance. Throughout this paper, we assume
that the noise is independent identically Gaussian distributed.
‘We make use of the “databased” classification method of [17],
which uses a classification statistic that essentially tests for a
best fit to the object library. The pole characteristics of our
simulated targets are the same as those in [17, Sec. IV]. As
noted in [17], the pole characteristics vary significantly as a
function of object material but much less so between objects
of the same material. Consequently, we anticipate significantly
better classification of object material than of precise object.

A Monte Carlo approach was used to analyze and compare
the performance of our algorithms for this library. Specifically,
100 separate runs were carried out for each object, where
we randomized uniformly over object type, object location,
orientation, and additive sensor noise (by selecting a new set of
parameters according to a uniform distribution at each Monte
Carlo run). The corresponding values of the Euler angles were
chosen randomly (with a uniform distribution) over their full
range of definition (either O to 27 or O to 7 depending on the
angle [40]).

Our Monte Carlo studies were used to test both the cases
of box-shaped and ellipsoidal-shaped uncertainty regions, mod-
eled in (26) and (27), respectively. In the case of box-shaped un-
certainty, each uncertainty region was assumed to be 10 cm on
each side, while for the ellipse-shaped uncertainty, we assumed
a spherical uncertainty region of 10-cm diameter. We compared
the classification results against the classification results of the
pole-based classification scheme in [17], where the algorithm is
agnostic with regard to sensor positional uncertainty.

The classification results for the box-shaped uncertainty re-
gions are summarized in the confusion matrixes of Tables I
and II, while those of the ellipsoidal-shaped uncertainty regions
are summarized in Tables III and IV. The element on the ith
row and jth column of each matrix displays the number of
times object ¢ was the true target, and object ;7 was selected
by the given processing scheme. Direct comparison between
Tables I and II for the box case, and of Tables III and IV for the
ellipsoidal case, show dramatic improvements both in correct
classification of type and material of the targets under study
when positional uncertainties are taken into consideration. For
the data generated under box-shaped positional uncertainty, the
correct-material-classification rate improves from 25%, 39%
(Aluminum targets), 63%, and 58% (Steel targets) to 95%,
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TABLE 1
CLASSIFICATION RESULTS FOR BOX-SHAPED POSITIONAL
UNCERTAINTY UNDER THE ALGORITHM
THAT IGNORES UNCERTAINTY

Al | A2 | SI | S2

Al | 15 9 35 | 41

A2 | 17 9 37 | 37

S1 14 14 | 47 | 25

S2 | 19 | 17 | 37 | 27

TABLE 1I
CLASSIFICATION RESULTS FOR BOX-SHAPED POSITIONAL
UNCERTAINTY UNDER THE MIN-MAX FORMULATION

Al | A2 | SI | S2

Al | 48 | 39 | 12 1

A2 | 36 | 53 | 11 0

S1 0 0 12 | 88

S2 0 0 18 | 82

TABLE III
CLASSIFICATION RESULTS FOR ELLIPSOIDAL-SHAPED
POSITIONAL UNCERTAINTY UNDER THE ALGORITHM
THAT IGNORES UNCERTAINTY

Al | A2 | SI | 82

Al | 12 13 | 34 | 41

A2 | 22 | 17 | 28 | 33

S1 18 19 | 31 | 32

S2 | 20 | 22 | 32| 25

TABLE 1V
CLASSIFICATION RESULTS FOR ELLIPSOIDAL-SHAPED POSITIONAL
UNCERTAINTY UNDER THE MIN-MAX FORMULATION

Al | A2 | S1 | S2

Al | 66 | 29 3 2

A2 | 69 | 26 3 2

S1 0 0 13 | 87

S2 0 0 13 | 87

95%, 100%, and 100%, respectively. Similarly, the correct-
material-classification rate in the case of data generated under
ellipsoidal-shaped positional uncertainty improves from 24%,
26% (Aluminum targets), 72%, and 64% (Steel targets) to 95%,
95%, 100%, and 100%, respectively.

B. Robustness of the Algorithm

We consider the possibility of having incorrect knowledge of
the bounding information for sensor positional uncertainty, in

100 T

90+ N | 1

Percentage of correct classification

101 —o— Target A1
—+— Target S2
O | | 1 L T
0 5 10 15 20 25 30
Length/Width of the box
Fig. 3. Plot of percentage of successful classification of object type for

varying bounding-box dimensions used within the optimization.

order to determine the robustness of our technique. While this
robustness study was only conducted for the case of a = 0, we
expect similar results under nonzero values of ov. We considered
objects Al and S2, detailed in Section I'V-A. For each target of
interest, we generated data sets in a similar fashion as described
in Section IV-A. In these studies, however, we assume that
the true error in sensor position is restricted in the z and y
directions by 25 cm and in the z direction by 10 cm.

Given each data set, we conducted optimizations assuming
a range of bounding boxes. First, we considered a region
equal to a point, meaning that we assume no knowledge of
any uncertainty in the sensor positions. This assumption is
similar to the algorithm presented in [17]. Subsequently, we
considered regions with nonzero volume, having z dimension
equal to 10 cm in each case, while the x and y dimensions were
simultaneously stepped from 5 to 30 cm in increments of 5 cm.

The results of this paper are presented in Fig. 3, where
each data point represents the percentage of successful target-
type classifications (on the vertical axis) corresponding to a
particular bounding-box dimension (on the horizontal axis).
Note that the value of 0 cm on the horizontal axis represents the
case where our optimization assumed the bounding region to be
equal to a point. Each data point is obtained by considering 100
independently generated data sets.

As is clear from Fig. 3, the classifier behaves well for
bounding boxes having dimensions in the vicinity of the true
bounding box (25 cm in both the = and y directions). We
thus conclude that our algorithm is robust to the presence of
incorrect bounding information.

C. Dependent Positional Uncertainty: Simulated Data

This simulation study concerns dependent positional uncer-
tainties, where a known or assumed value « # 0 ties each
successive positional uncertainty value to its predecessor. We
make use of simulated data. The sensing system and region of
interest containing the target to be classified are identical to
that in Section IV-A. Data are assumed to be collected over a
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TABLE V
CLASSIFICATION RESULTS FOR DEPENDENT POSITIONAL
UNCERTAINTIES FOR THE MIN-MAX FORMULATION
UNDER THE ASSUMPTION OF o = 0

Al | A2 | S1 | S2

Al 9 15 | 39 | 37

A2 | 13 15 | 39 | 33

S1 | 26 | 29 |20 | 25

S2 | 26 | 26 | 24 | 24

TABLE VI
CLASSIFICATION RESULTS FOR DEPENDENT POSITIONAL
UNCERTAINTIES FOR THE APPROXIMATE
DYNAMIC-PROGRAMMING FORMULATION

Al | A2 | SI | 82

Al [ 59 | 32 6 3

A2 | 26 | 61 8 5

S1 1 6 70 | 23

S2 0 8 27 | 65

square grid of 16 data-collection locations, with the sequence
of locations following the winding path depicted in Fig. 2.
As in Section IV-A, we assume that data are collected over
30 logarithmically spaced frequencies. We make use of the
correlation parameter o = 1 and assume that each innovation
region is a box-shaped region of uncertainty with each edge
having 10 cm in length. Recall that the innovation region
consists of the set of new positional uncertainty associated with
a data-collection location that compounds with the previous
location’s positional uncertainty.

The simulation results for this paper are provided in the
confusion matrixes of Tables V and VI: Table V contains the
classification results for the min—max algorithm that assumes
a = 0, which corresponds to the case of no knowledge of
any correlation between adjacent uncertainty values; Table VI
contains the classification results for the approximate dynamic
program outlined in (48)—(50), with a sampling of the space of
positional trajectories at intervals of 5 cm. Clearly, the dynamic-
programming approach provides significant performance im-
provements over the min—max algorithm that operates under
the assumption of o = 0. Here, the correct-type classification
was improved from 51%, 51%, 68%, and 69% for targets Al,
A2, S1, and S2, respectively, to 91%, 87%, 93%, and 92%,
respectively.

D. Field-Data Studies

Our second target library is comprised of nine target types
whose details are shown in Table VII, where we have separated
these targets into three sets, designated by letters L, M, and S.
The letter L corresponds to targets that are deeply buried at a
depth ranging from 90 to 110 cm. The letter M corresponds
to targets buried at a depth ranging from 50 to 80 cm. Finally,

TABLE VII
GEM-3 PIPE-DATA-POLE LIBRARY

Target ID Description

L1,L2 15.5cm x 50.8cm Steel Pipe
M1,M2,M5 7.90cm x 15.7cm Steel Pipe

M3 .M4,.M7 6.40cm X 30.5cm Steel Pipe
S1,S10 2.00cm x 10.2cm Steel Pipe
S3,85,56,S8 4.10cm x 15.2c¢m Steel Pipe
S4,57 4.10cm x 10.2cm Steel Pipe

M6 2.30cm x 30.5cm Aluminum Pipe
S2,S89 2.30cm X 15.2cm Aluminum Pipe
S11,S12 2.30cm X 15.2cm Copper Pipe

the letter S corresponds to shallowly buried targets at a depth
ranging from 10 to 30 cm. This labeling is consistent with the
notation of [17] and [20].

The ground truth and the measured data for this paper were
obtained by the authors of [20], where the authors measured
the data in a 10 x 10 m field that contained over 21 metallic
targets (listed in Table VII). This test site (detailed in [20]) is
located in Raleigh, NC, and was specially designed by Geophex
Inc. The data for this sensing system come from the GEM-3
sensor developed by Geophex. This sensor has been used
successfully in many environmental sites and can detect small
targets, such as UXO and landmines, providing high spatial res-
olution [20]. The data were obtained using the dead-reckoning
method at a line spacing of 25 cm and a height of about 20 cm
above the ground. The GEM-3 sensor collected complex-valued
frequency-domain data at five different frequencies, in a band-
width from 30 Hz to 24 kHz. The GEM-3, in this case, collected
about 8-10 data points per second, which resulted in a data
interval of about 15 cm [20]. According to [20], the positional
error for such data could be as large as 20 cm due to uneven
walking speed and incorrect walking path. The error associated
with sensor height can be up to 5 cm at some points [20]. These
values were applied as the respective length, width, and height
of the box-shaped positional uncertainty region. Since no notion
of the correlation of one uncertainty region to the next was
available with the data, we initially proceed with an assumption
of a =0.

Classification results for the algorithm presented in [17]
demonstrated reasonable performance with regard to this data,
even without considering positional uncertainties. However,
[17] required distinguishing between deeply and shallowly
buried objects and applying appropriate classifiers (respec-
tively, databased and pole-based classifiers). Here, we restrict
our min—max formulation to databased classification and com-
pare against the algorithm of [17], when exclusively databased
classification is employed.

The classification results for the field data are shown in
Table VIII. It is clear from the table that our min—-max formula-
tion is significantly better than the algorithm of [17] at correctly
classifying the target objects. Overall, we see 47.62% of all tar-
gets correctly classified under the algorithm of [17], while our
min—-max formulation achieves 71.43% correct classification.
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TABLE VIII
CLASSIFICATION RESULTS FOR GEM-3 DATA. HERE, “C” DENOTES
A CORRECTLY CLASSIFIED TARGET, WHILE “M” DENOTES
A MISCLASSIFIED TARGET

Algorithm 1: Algorithm 2:
Actual Target | Ignores uncertainty | Min-max Box formulation
Estimated | Result | Estimated Result
L1 LIL2 C LIL2 C
12 L1L2 C L1L2 C
Ml MIM2M5 C MIM2M5 C
M2 MIM2M5 C MIM2M5 C
M3 M3M4M7 C M3M4M7 C
M4 M3M4M7 C M3M4M7 C
M5 MIM2M5 C MIM2M5 C
M6 M6 C M6 C
M7 M6 M M3M4M7 C
S1 S3S5S56S8 M S487 M
S2 M3M4M7 M S1S10 M
S3 MIM2M5 M S3S5S6S8 C
S4 5487 C S487 C
S5 M3M4M7 M S3S5S86S8 C
S6 M6 M S11S12 M
S7 S487 C S4S7 C
S8 5487 M S3S5S86S8 C
S9 S487 M M6 M
S10 M6 M LIL2 M
S11 M6 M S11S12 C
S12 S1810 M S3S5S86S8 M

Since the field data collected in [20] were obtained using
the dead-reckoning approach, one would expect that the suc-
cessive sensor positions would incur accumulated positional
uncertainty. Consequently, a nonzero value of o« could be
used within a dynamic-programming optimization approach.
Unfortunately, the data collected in [20] only have a fixed box-
shaped uncertainty region associated with each data-collection
location, which fits well with having parameter ov = 0. The
limited information regarding the dependence of uncertainty
from one location to the next implies that we can, at best, guess
the structure of the successive innovation regions from one
sensor position to the next. Nevertheless, in order to provide an
additional test of our dynamic-programming approach, we have
tested several objects listed in Table VIII, assuming that the
sensor positional uncertainty from one location to the next can
be perturbed by no more than 5 cm. We considered objects L1,
M1, M6, S1, and S4 within this dynamic program framework
and obtained identical classification results to those of the box
algorithm (presented in Table VIII).

V. CONCLUSION

In this paper, we introduced a model-based algorithm that
explicitly accounts for the positional uncertainties involved

with data collection using EMI sensors. We utilized a forward
model for the EMI sensing system that relates a small set
of parameters to the observed data. Although we present this
paper in the context of classifying buried objects under the
assumption of EMI sensor positional uncertainty, our model
applies quite generally to other sensing modalities, as well as
to other inverse optimization goals.

Assuming that data are collected at locations having posi-
tional uncertainty, we approached the problem by looking for
model parameters that minimize the maximum mismatch to
the data. This maximum was taken over all possible sensor
locations, which we assumed to be bounded within some finite
region of the space. For the case of independent uncertainty
regions at successive data-collection locations, we analyzed
general polyhedral regions and ellipsoidal regions of uncer-
tainty and determined simple characterizations of the min—max
formulation over these regions. For the case of dependent
uncertainty regions, we introduced a dynamic-programming
formulation for determining the optimized min—-max classifier
output.

Our numerical studies based on simulated data point to
significant benefits in applying our min—max strategies. Clas-
sification of true field data also yielded improvements over
approaches that do not take positional uncertainty into account.
An important avenue for future research lies in addressing the
heavy computational burden of applying dynamic program-
ming for the case of dependent positional uncertainty. There
is a body of literature for approximate dynamic programming
that would be effective to this end (see [48] for an introduction
to approximate dynamic-programming techniques). We defer
discussion of such techniques from this paper as our contribu-
tion has been to introduce dynamic programming as a useful
tool for addressing the problem of positional uncertainty in our
classification problem. Additionally, an important avenue for
future work is in the application of our model for dependent
positional uncertainty to field data.

While this paper has focused on the issue of uncertain
sensor positions, other forms of uncertainty also arise in the
classification process. In particular, it is well understood in
the classification problem we have considered here that the
decay rates/resonances also exhibit uncertainties [45], [46].
This property is most relevant in the design of classifiers that
process poles after they have been estimated from the data and
can be helpful in designing classifiers that are more robust.
More recently, Miller et al. in [45] and [46] have explored
how the pole clouds can be used basically as regularizers in
the estimation process. Since we have focused in this paper
on developing mechanism for addressing the sensor-positional-
uncertainty problem in general classification settings, we have
left this particular application as an interesting area of future
research. Another avenue for future research includes the ex-
tension of the classifier algorithm such that it will be able to
identify clutter items as objects that are not in the library. This
step is important in real-world UXO and demining problems,
where there is a strong desire to correctly reject clutter items.
Finally, as discussed in Section III, the automatic determi-
nation of the parameter v remains as an avenue for future
research.
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APPENDIX A
PROOF OF THEOREM 1

Suppose that ér* = (d77,...,dr} ) is interior to R, which
implies that there exists € > 0 such that

N

{(57‘17...757'1\;) > Jor; — ory| < e} CR. (57

=1

We will demonstrate that there exists a point on the boundary
of R having cost greater or equal to that achieved at §r*.
Expanding (17), we have

J(0,6r1,...,0rN) = d'd—25r"A"d+srTA" Asr.

(58)
The derivative of J with respect to dr is then given by
dJ -T- - T~
L — 24%d+2A" Asr (59)
dor

which implies that the direction of the maximum cost improve-

ment at the point §7* is oriented toward vector
2T 2T % ¢

—2A d+2A Aoér. (60)

Since dr* is interior to R and because R is assumed to be

compact, there must exist a positive real number  such that
for any € € (0, k)

or* + G(AT;MT* - AT&) €ER (61)
and such that there exists € > 0 and such that for e € (0, €]
5 + (K +€) (ATAM* - AT&) ¢R.  (62)
We consider the boundary point of R, given by
o' =0r* + K (ATA(ST* - ATEl) ) (63)

The cost at dr’ satisfies the following series of relations:
oL = T\ 112
J(8,0r) = Hd — A (or" +rA"Asr — xA"d) H (64)

= ||(1++A4") (@ asr) (65)

’ 2

= (@-A0r)" (T+2rAA" + ?AATAAT)

x (d — Aér*) (66)
> (d— Adr*)T(d — Aor*) (67)
=J(0,r"). (68)

The inequality relation in (67) follows from (66), because
the matrixes kAA" and AA" AA" must each be positive
semidefinite. Thus, these matrixes can only contribute positive
cost to J(8, d7"). From (68), we have that the boundary point
dr' of R achieves greater or equal cost to the interior point 57*.

APPENDIX B
PROOF OF THEOREM 3

Using Theorem 2, we may, without loss of generality, assume
that 67 lies on the boundary of P. The proof proceeds in two
parts: First, we demonstrate that if 67‘} is interior to a face of
‘P, then there exists a point along one of the edges of the face at
which the cost is greater or equal to that at or. Subsequently,
we demonstrate that if § 7 lies on the edge of one of the faces of
P, then there exists an extreme point at which the cost is greater
or equal to that at o77.

Assume that 077 is interior to one of the faces of P. By the
structure of J; in (21), the direction of cost improvement at
location 5r§ is given [as in (60)] by

A Ajor — Ajd;. (69)
Let e; and ey be orthonormal vectors lying in the plane
containing the face of 7 on which 77 lies. The direction of cost
improvement along the plane spanned by e; and e; is obtained
through a simple projection and equals

dr=ef (4] Asbr;— AT dy)er e (4] Ayir — A]d)es
(70)

We must consider two cases. First, if 67 = 0, then let x > 0 be
the maximum real number such that §7* + ke; € P. Then

I

J; (6,67 + key) = ||d; — A;or||” — 2kel

J

2T5 2T o 4 T %
x(A7d;-A] Ajor") k2T AT Aje,

(71)
= Ha] — Ajérﬂ 2 + KQGTAJTAjel (72)
> ||d; — Ao || (73)
:Jj(0,5r*). (74)

Above, (72) follows since dr = 0, which implies ey is or-
thogonal to (A]T&j - A]’I‘Aj §r*). Thus, (74) implies that there
exists a point on the edge of the face achieving equal or better
cost than at §7*. For the second case, suppose that Ar # 0.
In this case, let x > 0 be the maximum real number such that
0r* 4+ kdér € P. Then

J;(0,6r" +Kor) = H (I+2HAj€1€?A}F+2[€Aj6262TAJT)

x (dj—Azors)||? (75)

= |T+Q) (d;—A;0r3) ||* (76)
= (d; — A;6r)" (I+2Q+QQ)

< (d,—A,075) @

> ||d;—A0r5 | (78)

= J;(8,57"). (79)
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Above, (76) introduces the symmetric positive semidefinite ma-
trix Q = 2k Aje;eT A; +2kA esel A; . Then, (76) follows
because @ and QQ are positive semidefinite. From (78), we
have that the cost at point d7* + xd7, which resides on the edge
of the face, equal or greater to that at jr*. Thus, we can now
conclude that there is always a point on the edge of the face
in which r* resides, at which the cost is equal or greater to
that at r*.

The second part of the proof deals with Jr* on an edge of
a face of P. In this case, we assume that vector eg is parallel
to the line spanning the edge. Proceeding in a manner similar
to the above analysis for a face, we can show that there is an
extreme point at which the cost is greater or equal to that at
or*. We omit the details of this part of the proof because of its
redundancy.
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