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Abstract—We used kernel density estimation (KDE) methods to
build a priori probability density functions (pdfs) for the vector of
features that are used to classify unexploded ordnance items given
electromagnetic-induction sensor data. This a priori information
is then used to develop a new suite of estimation and classifica-
tion algorithms. As opposed to the commonly used maximum-
likelihood parameter estimation methods, here we employ a
maximum a posteriori (MAP) estimation algorithm that makes use
of KDE-generated pdfs. Similarly, we use KDE priors to develop
a suite of classification schemes operating in both “feature” space
as well as “signal/data” space. In terms of feature-based methods,
we construct a support vector machine classifier and its extension
to support M -ary classification. The KDE pdfs are also used to
synthesize a MAP feature-based classifier. To address the numer-
ical challenges associated with the optimal data-space Bayesian
classifier, we have used several approximation techniques, includ-
ing Laplacian approximation and generalized likelihood ratio tests
employing the priors. Using both simulations and real field data,
we observe a significant improvement in classification perfor-
mance due to the use of the KDE-based prior models.

Index Terms—Classification, density estimation, electromag-
netic induction (EMI), subsurface sensing, unexploded ordnance
(UXO).

I. INTRODUCTION

COSTLY, time-consuming, and sometimes perilous ex-
cavations associated with false classification of buried

unexploded ordnances (UXOs) demand robust and powerful
processing algorithms. To this end, in the past decade, UXO
detection and classification methods have evolved significantly,
both with the development of more sophisticated sensors as
well as more accurate physical models and signal processing
algorithms [1]–[12]. Indeed, current electromagnetic-induction
(EMI) sensors are capable of recording field response of targets
with high spatial and temporal resolution. Physical models of
the EMI sensors have been developed that enable us to model
buried objects in terms of features that are relevant to classifica-
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tion. From these data and models, two classes of problems are
typically considered. The detection of UXO can be considered
as a binary hypothesis problem where the object is present or
not and was considered extensively in, e.g., [13]–[15]. Our
focus here is on the related classification problem in which
we want to infer information about the type of UXO being
investigated.

Most model-based methods for the classification of buried
objects from the EMI sensor data are composed of two steps.
First, the data are used to estimate a set of parameters, some of
which are of direct use in classification, and some of which are
required to locate and orient the object relative to the sensor.
These estimated parameters are then input to a classifier to
determine the type of target under investigation. In many cases
[11], [16], underlying both of these processing steps is an
implicit assumption that the object-specific parameter values
are independent of the orientation and location of the target.
A broad array of modeling approaches is available that meets
these criteria, from exact numerical models based on finite
element and finite difference approaches to models that approx-
imate the buried object as a magnetic dipole. We have chosen
to implement the latter “dipole model,” which is a decision
motivated by the practical need for rapid data processing and by
the ubiquity of its use in the UXO detection and classification
literature [16]–[22]. We note that more accurate models of the
physics of UXO-like targets are available, and in some sense,
the dipole model could be considered the first-order application
of the techniques developed in this paper, which are extensible
to any parameterized model representing UXO.

Under the dipole model, the information concerning the
target class is encoded in the 3 × 3 magnetic polarizability
tensor (MPT) whose three time-dependent eigenvalues consist
of an infinite sum of decaying exponentials. The decay rates
are the features of use in target classification. In theory, the
veracity of this model requires illumination of an infinitesimally
small target by a uniform field, which is a condition that is
not generally met in practice. Moreover, given limited noisy
data, at most, a single term in each of the three sums can be
estimated reliably [21], leading some investigators to use forms
of the model employing only two exponentials [21], [23] on the
assumption that targets of interest are spheroidal and, therefore,
have two equal eigenvalues. These theoretical and practical
limitations of the dipole model impart a position and orientation
dependence on the object-specific parameter estimates required
for an accurate classification. Thus, the analysis of multiple
instances (i.e., positions, orientations, and target example) of
a target class results in not a single parameter value for each
object but rather a cloud of values in parameter space.
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Fig. 1. Pole library for a cylindrical steel object.

To capture the dependence of the features on the location and
orientation of the object, several methods have been proposed
in the past. For example, in [23], the authors used Laplace plane
poles located on the real s-axis for classification purposes.
To account for the fact that the poles differed according to
the orientation of the object in space, a single object was
regarded as three different targets, one for each of the three
orthogonal orientations of the true UXO. Identification for
arbitrary orientations and the issue of object localization were
not considered in [23]. In [10], instead of a sum of decaying
exponentials model, a frequency-domain processing approach
was considered. Here, the data at each frequency were used to
estimate all nine elements of the MPT. An eigenanalysis of the
estimated MPTs was used to determine a rotation matrix which
implicitly described the orientation of the object in space as
well as a collection of frequency-dependent features required
for classification.

In our previous work [24], [25], a processing algorithm was
developed based on the fusion of the dipole scattering model
and a parametric model for the eigenvalues of the MPT which
are referred to here as principle axis polarizability functions
(PAPFs). The model directly captures both the features for
classification and the parameters required to infer the location
and orientation of the buried object. The model uses a single-
pole per axis version of the PAPF expansion introduced in
[21] which results in a 3-D feature space with one-pole per
body axis. Because of this approximation, the features are no
longer independent of the object orientation and location. This
dependence is captured by building a library of poles for the
different orientations and locations. That is, each object in the
library was represented in terms of a “cloud” of pole values
as shown in Fig. 1 for a 3-in long by a 3-in diameter stainless
steel cylinder.

In terms of processing, a simple nonlinear least square
method was used in [24] and [25] to extract poles, location,
and orientation information from the data. Using the estimated
poles, classification was performed using Mahalanobis distance
metric. More specifically, for each object in the library, this
distance metric was constructed using the mean pole vector
and covariance matrix for the associated pole cloud. In essence
then, our work in [24] and [25] was predicated on the implicit

assumption that the pole cloud was Gaussian. As is evident
from Fig. 1 and, indeed, as we have found to be true in general,
such an assumption is not, in fact, warranted in practice [16].

Here, we consider new processing methods that account for
this variability in ways that improve both the accuracy of the
parameter estimates as well as the final classification. We inter-
pret these clouds as prior probability density functions (pdfs)
over the object-specific parameters and use kernel-density-
estimation (KDE) techniques to determine these pdfs. The
resulting prior models in parameter space are used to develop
a new collection of estimation and classification algorithms.
In fact, it should be noted that the variability in the estimated
poles is, in part, deterministic in origin. In the absence of
additive noise, variation in the estimated poles is due entirely to
model mismatch, i.e., the fact that the dipole model is only an
approximation to the true underlying physics. Conceivably, the
spread of the pole cloud could be minimized given a physical
model that more accurately represented the EMI system. Still,
in the absence of an exact model (which would be intractable
as a tool for processing), one would have some degree of
parameter spreading that is necessitating the use of the type
of method we explore here. Thus, we concern ourselves here
exclusively with the use of the dipole-type model. First, we feel
that this choice allows us to concentrate on the technical issues
at the heart of this paper, which are the processing methods.
Second, given the widespread use of the dipole model both
in the research community as well as in the fielded systems,
there is value in the development of processing methods that
extend the utility of this tool. Thus, we have chosen to treat
the diffuse nature of the pole cloud using the machinery of
probability theory due to the computational expense incurred
by a more accurate model, approaching an otherwise intractable
yet deterministic problem as a probabilistic one [26].

In terms of estimation, the priors that we build allow for
the use of maximum a posteriori (MAP) methods for feature
extraction rather than maximum-likelihood (ML) techniques.
For classification, we consider the schemes that function both in
feature space (i.e., exclusively using the estimated parameters
themselves) as well as data space (i.e., using these features
along with a sensor model to simulate data and compute
residuals). In the former case, we developed the feature-space
MAP classifiers built around our KDE pdfs and a more generic
support vector machine (SVM) classifier. For the data-space
classifiers, we have developed a pair of generalized likelihood
ratio-type tests as well as an approximation to the Bayesian op-
timal classifier that makes use of the Laplacian approximation
to the multidimensional integral encountered in this approach
to classification.

The performance of these methods is evaluated at different
signal-to-noise (SNR) ratios and compared in terms of com-
plexity and probability of error. Results using both simulations
and real field data indicate that the incorporation of these
prior pdfs into the classification processing can substantially
improve the accuracy relative to our previous mean-covariance
classifiers.

This paper is organized as follows. In Section II, the physical
model of the problem and basic signal processing are reviewed.
In Section III, the KDE and its applications to our work are
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examined. In Section IV, the proposed classification algorithms
are discussed. Section V compares and discusses the results.

II. PROCESSING MODEL AND PRIOR WORK

The processing model used here is based on [24], which is
a truncated version of the EMI physical model in [9] and [21].
Using this model, the scattered signal collected at M time gates
or frequencies (depending on the sensor) at each of L locations
in space can be written as

yl,m = HT
R,l(r0)R

T (α)Λm(p, c, δ)R(α)HX,l(r0) + nl,m,

l = 1, . . . , L, m = 1, . . . ,M (1)

where
yl,m received signal at location l and frequency

or time sample m;
HX,l and HR,l 3 × 1 vectors holding the x, y, and z

components of the transmitted fields and
the hypothetical field of the receiver [27];
both of these vectors are functions of the
3 × 1 vector r0 containing the x, y, and z
locations of the UXO item;

nl,m additive Gaussian noise at location l and
frequency/time m;

R(α) 3 × 3 rotation matrix orienting the object
in space and dependent on a 3 × 1 vector α
of Euler angles.

The matrix Λm(p, c, δ) is a 3 × 3 diagonal matrix taking
the form

Λm(p, c, δ) =


λm,1(p, c, δ) 0 0

0 λm,2(p, c, δ) 0
0 0 λm,3(p, c, δ)


 .
(2)

Each of the diagonal elements of Λm, λm,i(i=1,...,3), is a PAPF
which contains orientation-invariant spectral signatures and can
be written as infinite sum of one pole transfer functions in the
frequency domain or sum of exponentials in the time domain

λm,i(p, c, δ)=




di+
∞∑

l=0

ci,lfm

pi,l+fm
(Frequency)

diδ(tm)+
∞∑

l=0

−pi,lci,le
−pi,ltm (Time).

(3)

Going forward, we refer to the parameters pi in (3) as
“poles” in recognition to the fact that they are the roots of
the transfer functions in the frequency-domain form of the
λm,i. Combining the data from all spatial locations and time
or frequency samples gives the model

y(θ) = [ yT
1 (θ) yT

2 (θ) · · · yT
M (θ) ]T

yi(θ) =mi(θ) + ni (4)

where
θ = [pT , αT , rT

0 , c
T , δT ]T with, e.g., p the vector whose

ith element is pi from (3);
yi L× 1 received vector signal at frequency/time m;
mi L× 1 vector model in (1);
ni L× 1 vector of Gaussian noise which is taken to have

zero mean and covariance matrix C independent of i.
In our processing, the feature vector to be used for classi-

fication is composed of the three poles, with one for each of
the principal axes of the target. That is, only the l = 0 terms in
the summations of (3) are retained. It then proves convenient
for us to partition the parameter vector θ into features (i.e., the
poles) and nuisance parameters, where the former are relevant
to classification and the latter consist of location, orientation,
coefficient factors, and dc parameter which are used to infer
the geometry of the object rather than its type. The parameter
vector will be denoted as θ = [pT , νT ]T , where p is the 3 × 1
vector of poles, and ν is the vector of the nuisance parameters.

Here, the tacit assumption has been made that the data have
been preprocessed in order to remove the systematic noise
sources. For example, it is a standard practice to subtract the
response of the background in the absence of the target from
the data [14], [19]. Additional noise deriving, for example, from
sensor position uncertainty and mutual coupling in the presence
of other metallic targets must also be considered. However,
it may be assumed that the classification approach presented
in this paper is part of a larger data-processing strategy that
includes tactics for dealing with these circumstances.

As noted previously, the approximate nature of this model
will, in fact, impart a dependence of these parameters on the
location and orientation of the object relative to the sensor.
In order to account for the dependence of features on object
location and orientation in the processing, this paper makes use
of a “pole library” for each object. This library is composed of
the estimated values of the poles as a function of object position
and orientation. Given either measured or simulated data for an
object in one of the N possible positions/orientations, we build
samples from this library via an ML approach1

p̂ML,j = argmin
p,ν

∥∥∥C−1/2
(
y(αj , r0j

)−m(p, ν)
)∥∥∥2

2
(5)

for j = 1, 2, . . . , N . Fig. 1 shows an example of a library
(feature space) built for a steel cylindrical object corresponding
to five possible object depths, seven possible values for each
of the three Euler angles, and no horizontal variation of target.
Data were generated using a four-pole per axis dipole model in
which the sums in (3) are terminated after four terms [21], [24].

In our previous work [24], classification was done in fea-
ture space using a pole library in a fairly simplistic manner.
Assuming that we had a library of i = 1, 2, . . . , N objects, we
generated a pole cloud like the one in Fig. 1 for each target. For
each cloud, we computed the mean pole vector p̄i as well as the
associated covariance matrix Ci. Given a data set containing
an object to be classified, we first estimated the best fit model

1See Section IV-A for a discussion as to how the optimization problem is
solved.



ALIAMIRI et al.: STATISTICAL CLASSIFICATION OF BURIED UXO 2797

parameters using an ML scheme that is much like (5) with
y(αj , r0j

) replaced by data containing an object of unknown
structure. Classification was then done using a Mahalanobis
distance classifier based on the statistics of the different pole
clouds [28]

î = argmin
i

(p̂i − pi)
TC−1

i (p̂i − pi) (6)

where p̂i is the ML pole estimate.
Fig. 1 shows that the shape of pole cloud is far from an

ellipsoid, thereby invalidating the Gaussian assumption used
in [24]. This leads us to believe that a more accurate model
of this distribution could improve the overall performance of
the processing. Substantiation of this claim and exploitation of
the resulting structure to improve classification are the essen-
tial contributions of this paper. In the following sections, we
will apply nonparametric probability-distribution estimation to
build a more accurate representation of the pole distribution.
These nonparametric distributions, therefore, represent the en-
hanced prior models for the pole clouds associated with each
object. Using this prior information, the processing scheme
can be set into a Bayesian framework both for estimation and
classification. The results show significant improvement over
the simple Mahalanobis approach, particularly for Bayesian
classifiers at low SNR ratios, as will be explained more in
Section V.

III. PRIOR MODEL

The assumption of parametrically defined probability dis-
tributions for inference and hypothesis testing fails in many
practical engineering problems; therefore, the techniques which
make less rigid assumptions about the distribution of data are
required. Nonparametric estimation schemes have been consid-
ered for this purpose [29]–[31]. Given a set of N d-dimensional
data samples {xn, n = 1, . . . , N} of an unknown distribution,
the problem is to estimate the probability distribution in some
flexible manner. Kernel methods proceed by locating a function
φ with “width” parameter h at each observed datum to generate
the estimated density f̂(x) as [29]

f̂(x) =
1

Nhd

N∑
n=1

φ

(
1
h
(x− xn)

)
. (7)

The kernel function φ is chosen to satisfy

φ(x) ≥ 0 and
∫

Rd

φ(x)dx = 1. (8)

Here, we use Gaussian kernels which take the form

φ(x) = (2π)−
d
2 exp

(
−1

2
xTx

)
. (9)

In order to obtain a probability distribution over feature space,
the pole estimates comprising the cloud are considered as
samples of an unknown probability distribution function, and

KDE is used to estimate the corresponding pdf. As the poles are
not equally spread in all directions, the data are first whitened
by a linear transformation yielding data with zero mean and
unit covariance matrix. Then, density estimation is applied to
the transformed data. This method was proposed in [32], and
it helps provide a better approximation of optimal bandwidth.
Given an observed data x, the whitened data z is written as

z = S− 1
2 (x− E(x)) (10)

where E(x) is the sample mean, and S is sample covariance

S = E
[
(x− E(x)) (x− E(x))T

]
. (11)

The resulting KDE for the original data can be written as

f̂(x) =
det(S)−

1
2

Nhd

N∑
n=1

φ

(
1
h
S− 1

2 (x− xn)
)
. (12)

For our estimation, the Gaussian kernel with bandwidth

h = AN− 1
d+4 , where A =

[
4

2d+ 1

] 1
d+4

(13)

is used, which provides a good approximation for the whitened
data [30]. As an example, we applied KDE to the pole
cloud in Fig. 1. In order to visualize the density estimate,
slice cuts along the x-axis were made corresponding to px =
{3500, 3720, 3940, 4160, 4380, 4600} (Hertz). The contour
plots shown in Fig. 2 demonstrate the estimated pdf on each
slice. From this figure, it is obvious that kernel density methods
are, in fact, of use in capturing the markedly non-Gaussian
nature of these pole distributions.

IV. ENHANCED ESTIMATION AND CLASSIFICATION

In this paper, we make use of the nonparametrically con-
structed pdfs discussed in the previous section to develop new
parameter estimation algorithms as well as a collection of
classification schemes. While the details of all methods are
discussed at length in this section, the reader is referred to
Table I for a summary of the different techniques.

A. Estimation

For estimation, the ML estimation used in (5) is replaced by
the MAP estimation for features using our nonparametric priors

p̂i, ν̂i = argmax
p,ν

fi(y/p, ν)fi(p) (14)

where fi(p) is the pdf of poles corresponding to the ith object.
Given the assumption of Gaussian noise, (14) is equivalent to

p̂i, ν̂i = argmin
p,ν

∥∥∥C−1/2 (y −m(p, ν))
∥∥∥2

2
− ln fi(p). (15)
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Fig. 2. Contours corresponding to slice cuts across the x-axis poles for pole cloud in Fig. 1.

TABLE I
SUMMARY OF CLASSIFICATION AND ESTIMATION METHODS

Since − ln fi(p) ≥ 0, we can write (15) as

p̂i, ν̂i = argmin
p,ν

∥∥∥C−1/2 (y −m(p, ν))
∥∥∥2

2
+
(√

− ln fi(p)
)2

.

(16)

Thus, the optimization problem can be implemented using the
nonlinear least square estimation. In this paper, we have used
the Levenberg–Marquardt (LM) algorithm [33]. Gradients were
computed using a finite difference approximation, and a simple
1-D search was used to find the regularization parameter in
the LM method [33]. A coarse grid search in parameter space
was employed to find good initial values for the optimization
methods. Although more sophisticated initialization methods
and exact gradient calculations could be used (particularly, if
one were to transition these ideas into an operational system),
for purposes of demonstrating the effectiveness of the methods
that we propose in this paper, these simple methods prove to
be sufficient.

B. Optimal Classification

It is known that the classification rule which minimizes the
probability of error is the Bayes decision rule [28]

î = argmax
i

f(Hi/y) (17)

where f(Hi/y) is the posterior probability distribution of ith
hypothesis. Using the Bayes rule, (17) can be written as

î = argmax
i

f(y/Hi)f(Hi)
f(y)

(18)

where f(Hi) is the prior distribution of each hypothesis and
is assumed to be uniform in this paper. Expanding f(y/Hi)
in terms of priors using the Bayesian rule and ignoring the
constant denumerator, the optimal Bayes classifier can be
written as

î = argmax
i

∫
f(y/Hi, θ)fi(θ)dθ. (19)
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where fi(θ) = fi(p)f(ν) is the prior probability distribution of
parameters, assuming a uniform distribution for the nuisance
parameters. The vector θ = [pT , αT , rT , cT , δT ]T = [pT , νT ]T

has 13 parameters which makes the integration in (19) almost
impossible numerically. Although the Monte Carlo methods
can be used to evaluate (19), they are usually quite time con-
suming. Therefore, we investigate other solutions in this paper.

As shown in (19), the optimal classifier operates on the entire
signal y. It is known that if the model parameters (such as
poles in our case) are sufficient statistics [34], then the optimal
classification can be done in a lower dimensional feature space.
Unfortunately, for the UXO, problem poles are not sufficient
statistics [16] and, therefore, do not lead to optimal classifiers.
Despite this theoretical shortcoming, these parameters are still
widely used as the basis for solving the UXO classification
problem due to convenience and the success of such methods
in practice where other issues (such as the inaccuracies of the
underlying dipole model) become important.

Based on the aforementioned discussion, we see that clas-
sifiers are divided into two groups: signal-based or feature-
based, where the former employs the entire received signal
for classification and the latter only makes use of the feature
parameters. Both approaches will be considered in this section.

C. Signal-Space Classifiers

1) Generalized Likelihood Ratio Test (GLRT): The GLRT
classifier [35] approximates the optimal classifier in (19) using
the estimated values for the parameters. We have implemented
two forms of the GLRT. The first is based on an ML approach
both for the estimation of the parameters as well as the classi-
fication. We refer to this method as the ML-GLRT, and it takes
the form

î = argmax
i

f(y/Hi, θ̂) (20)

θ̂ = argmin
θ

∥∥∥C− 1
2 (y −m(θ))

∥∥∥2

2
. (21)

The second approach uses the prior models developed in
Section III both for purposes of estimation as well as classi-
fication. As such, it is a MAP technique and is referred to as the
MAP-GLRT

î = argmax
i

f(y/Hi, p̂i, ν̂i)fi(p̂i) (22)

where

p̂i, ν̂i = argmin
p,ν

∥∥∥C− 1
2 (y −m(p, ν))

∥∥∥2

2
− ln fi(p).

Taking the logarithm of (22) and assuming the noise is
Gaussian, we have

î = argmin
i

{∥∥∥C− 1
2 (y −m(p̂i, ν̂i))

∥∥∥2

2
− ln fi(p̂i)

}
. (23)

We note that the first term can be interpreted as the residual and
extends the feature-based kernel classifier (see Section IV-D1)
to a signal-space classifier.

2) Laplacian Approximated Classifier (LA-GLRT): The
Laplacian approximation [36] is used to approximate the poste-
rior distribution in (19). It is based on the asymptotic Gaussian
approximation of the likelihood in (19) and can be written as

f(Hi/y)∝
∫

f(y/Hi, θ)fi(θ)dθ≈
(2π)

q
2√

det(J)
fi(θ̂)f(y/θ̂,Hi)

(24)

where q is the number of parameters, θ̂ is the ML or MAP esti-
mation of parameter θ, and J is the observed Fisher information
matrix (OFIM) [37] defined as

Jij = − ∂2

∂θi∂θj
ln f(y/θ)|θ=θ̂. (25)

Taking the logarithm of (24), we will have a classifier based on
the Laplacian approximation which can be written as

î = argmax
i

{
−1

2
ln (det(J)) + ln fi(p̂) + ln f(y/θ̂,Hi)

}
.

(26)

This is the same as the MAP-GLRT classifier with the exception
of the first term on the right-hand side of (26), which is related
to the accuracy of the underlying parameter estimates. More
specifically, for the case where the noise is taken as additive
and Gaussian, the OFIM can be interpreted as an approximation
to the Hessian of the residual function ‖C−1/2(y −m(θ̂))‖2

2,
which is evaluated at the MAP estimate of the parameters.
Thus, for example, when the parameter estimates are quite
accurate, the Hessian would be “small” and the first term on
the right-hand side of (26) would be large, thereby adding to
the evidence that the corresponding hypothesis is correct.

D. Feature-Space Classifiers

1) Kernel Classifier (KDE): As an approximation of the
optimal feature-space classifier, the kernel classifier can be
written as

î = argmax
i

fi(p̂i) (27)

where fi is the pdf of the poles of the ith object, and p̂i is the
estimated vector of poles, assuming that the ith object is the true
object. In [24], a feature-space classifier, which was based on
the Gaussian assumption of pole distribution, was used where
the poles were estimated using the ML estimation. The method
reduces to the Mahalanobis classifier in (6). By using the kernel
density estimated prior (7), we can estimate the poles using the
MAP estimator and implement (27) directly

î = argmax
i

fi(p̂i) (28)

where

p̂i, ν̂i = argmin
p,ν

∥∥∥C− 1
2 (y −m(p, ν))

∥∥∥2

2
− ln fi(p).
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Compared to the GLRT data-space classifier, this classifier
can be considered the GLRT “approximation” to the optimal
feature-based classifier.

2) Support Vector Machine: SVM is based on structured
risk minimization, which was introduced in [38], and has been
extensively considered recently. It is a linear two category
classifier which maximizes the margin of a two hypothesis
space [39]. In [11], the authors used SVM for a UXO detection
problem which is a binary detection problem. Here, we have
applied SVM for multiclass UXO discrimination, employing
algorithms for the extension of SVM to multiclass case. Given
a set of data points which belong to either of the two classes,
SVM finds the optimal separating hyperplane that minimizes
the risk of misclassifying the training samples and unseen test
samples. Given a set of test points xi and corresponding target
class yi and assuming a linear classifier of the form x · w + b,
we will have

yi(xi · w + b)− 1 ≥ 0 ∀i (29)

where w is the norm of hyperplane that divides the hypothesis
space. To maximize the margin of classifier, we need to mini-
mize this norm, leading to the following problem

min ‖w‖2
2 subject to yi(xi · w + b)− 1 ≥ 0 ∀i. (30)

The equivalent quadratic programming problem is to determine
the minimum number of the Lagrangian function

Lp =
1
2
w · w −

N∑
i=1

αi (yi(w · xi + b)− 1) (31)

with Lp = L(w, b, α). The final classifier then can be explained
in terms of support vectors

f(x) = sgn

( ∑
si∈ support vectors

αiyisix+ b

)
. (32)

For nonseparable test data, the solution is a generalized optimal
separating hyperplane

min
1
2
w · w + x

N∑
i=1

ξi, i = 1, . . . , N, ξ ≥ 0. (33)

The data, which are not linearly separable, are mapped to a
higher dimensional space, and kernel functions are used to
lower the complexity of computation in this high-dimensional
space. Kernels operate on low-dimensional space and give the
same result for the inner product in high-dimensional space.
Thus, if the mapping is φ(x) for kernel k, we will have

k(xi, xj) = φ(xi)φ(xj). (34)

There are different kernels that can be used, and the most
common are the following:

1) simple dot product kernel

k(xi, xj) = φ(xi) · φ(xj) (35)

2) radial basis function

k(x, y) = exp
(
−‖x− y‖2/2σ2

)
(36)

3) two-layer neural network

k(x, y) = tanh(kx · y − δ). (37)

Although SVM is defined for two class case, it can be used
for multiclass case. Several methods were proposed in [40] and
[41]. The most commonly used methods are one-against-all and
one-against-one. In the former method, the ith class is trained
by labeling all the samples in the ith class as positive and the
rest as negative. For an N -class problem, we will have N clas-
sifiers. The one-against-one method constructs N(N − 1)/2
classifiers consisting of all pairwise combination of classes. To
combine the classifiers, different algorithms can be used; the
most common is the “max wins” algorithm, where the final
decided class is the one with maximum votes [40]. There is
another method proposed in [41], where graph theory is used
to combine the classifiers. We have used the one-against-one
algorithm, in which the poles were estimated using the ML
estimation and Gaussian kernels were used. We note that we
cannot use the MAP estimation for this case as we have to
have one pole estimate in each pairwise comparison. Table I
summarizes the classification methods and the corresponding
estimation algorithms.

V. CLASSIFICATION RESULTS

Classification performance was evaluated using the simu-
lated and real data. For simulation, the responses of the four
targets are simulated for a GEM3 sensor [42] that is sampled on
a 1-m2 area using an equally spaced 5 × 5 grid of measurement
points. The objects include the following: a 3-in long by 1-in
diameter stainless steel cylinder (S1), a 6-in long by 1-in diam-
eter stainless steel cylinder (S2), a 3-in long by 1-in diameter
aluminum cylinder (A1), and a 6-in long by 1-in diameter alu-
minum steel cylinder (A2). The target responses were generated
with a four-pole per axis dipole model in which the sums in (3)
are terminated after the four terms [21], [24]. The poles used for
this simulation were generated using the methods in [21]. The
objects were chosen such that the pole distribution covers most
of the feature space with similar features for the pair (S1, S2)
and (A1, A2) to make the classification more challenging. Fig. 3
shows the pole distributions for these objects. Classification
performance was evaluated at different SNR values using 100
runs of a Monte Carlo for each case. The SNR is computed as

SNR = 10 log10

(
‖y‖2

Nσ2

)
(38)

where y is the received signal, N is the length of y, and σ2 is
the noise variance. The probability of error is calculated using

pe =
1
4

4∑
i=1

P (error/Hi) (39)
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Fig. 3. Pole distributions for S1 (+), S2 (×), A1 (·), and A2 (∗) objects
(see text for a physical description of targets).

Fig. 4. Probability of error as a function of SNR for feature-based classifiers.

which corresponds to the average sum of the off-diagonal
elements of confusion matrix. Figs. 4 and 5 show the prob-
ability of error as a function of SNR for the feature and
signal classifiers, respectively. Comparing the plots, we see that
the signal classifiers (GLRT and Laplacian) have considerably
better performance compared to the feature-space classifiers
(Mahalanobis, kernel density classifier (KDE), and SVM). In
addition, the probability of error decreases rapidly as SNR in-
creases for the signal-space classifiers comparing to the feature-
space classifiers.

Table II shows the confusion matrices for the Mahalanobis,
KDE, SVM, MAP-GLRT, and LA-GLRT classifiers. It is shown
that only the Mahalanobis classifier confuses a steel target with
an aluminum target. The Laplacian approximated classifier has
the best performance and shows an 80% improvement over
simple mean covariance at classifier used in [24] at moderate
and high SNRs and about 40% improvement at low SNRs. As
we expected, the performance of Laplacian classifier gets better
as the SNR increases. This can be explained in a couple of ways.
Most directly, as the SNR decreases, the Gaussian approxima-
tion to the integrand of (24) becomes less valid. Alternatively,
as the SNR decreases, we are seeing a corresponding decrease
in accuracy in the estimation of the model parameters. Roughly

Fig. 5. Probability of error as a function of SNR for signal-based classifiers.

TABLE II
CONFUSION MATRICES FOR THE SIMULATED TARGETS AT SNR OF 30 dB

Fig. 6. Pole distributions for 155-mm (◦), 90-mm (+), BDU-26 (∗), and
BDU-28 (×) UXO items.

speaking, as the parameter estimates worsen, the OFIM gets
larger, indicating a worse fit of the model to the data, and
the − ln(det(J)) term in (26) becomes increasingly negative,
thereby making the corresponding hypothesis less likely.
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TABLE III
CONFUSION MATRICES SUMMARIZING THE CLASSIFICATION OF SEVERAL UXO TARGETS FROM THE ERDC

TEST STAND DATA SET. CLASSIFICATION WAS PERFORMED USING A LEAVE-ONE-OUT METHOD

Fig. 7. Pole library estimated from the data simulated with the standardized
excitation model. Targets in this library are modeled after the 155-mm (◦),
90-mm (+), BDU-26 (∗), and BDU-28 (×) UXO items.

Classification of the field data was undertaken with the EMI
data collected using an EM63 sensor over various UXOs and
metallic clutters surveyed at the U.S. Army Corps of Engi-
neers Engineer Research and Development Center (ERDC)
UXO/Countermine test stand. The test stand allows precise
positioning of the target and the sensor in terms of both rel-
ative location and orientation. The data were collected over
a variety of spatial grids, ranging in spacing from 5–20 cm.
Often, several spacings were present in a single grid, with
higher sampling density near the target where the gradient
of the target field was largest. A suite of 18 standard UXO
targets was examined, as well as several clutter items and
spheres of assorted compositions. In this paper, submunitions of
diameters 26 and 28 mm (BDU-26 and BDU-28, respectively)
are examined, as well as two mortar shells with diameters of
90 and 155 mm. These four targets were chosen because of the
relatively large number of separate data sets collected compared
to the other targets in the suite. The data sets differ from one
another in target pose, orientation, and target instance. The
accuracy and statistical significance of the KDE pdf increases

as the number of parameter estimates increases. It should be
noted, however, that even for these four targets, the number
of samples used to estimate the pdf was small. In order to
minimize the contribution of the background response to the
variability of the pole cloud, and therefore to the pdf estimation,
the background response was subtracted from the raw data set.
Subtraction was accomplished by assuming that the measured
data at a sufficient distance from the target were attributable
solely to the background. Random noise was suppressed us-
ing the eigenimage decomposition method described in [43],
wherein the uncorrelated noise is removed by reconstructing
the data from the left and right eigenvectors associated with the
largest singular values.

Fig. 6 shows the pole distribution of these objects. A leave-
one-out method was employed, in which all data sets, but one
for a particular target, are used to construct a target library,
along with the data from all other targets. Classification is then
attempted using the remaining data set. The noise covariance
matrix to be used in the classification algorithms was estimated
using the residual snapshots over spatial domain after estimat-
ing the parameters using the unit variance noise. The results
are summarized in Table III as confusion matrices for each
algorithm. Because of low training samples, the SVM classifier
did not work well for this case, demonstrating the superiority
of the KDE-based classifier when few training samples are
available.

Comparing Tables II and III, we note that the classifiers
considered in Table III, although not “optimal” under the
assumptions used to construct (1), are certainly more robust
in practice to these assumptions being violated. It is well-
known that the dipole model used to construct the simulated
data is at best an approximation. This is particularly true for
the larger targets which are not uniformly illuminated by the
source magnetic field and are furthermore best represented by a
large number of terms in the dipole principal axis polarizability
function. Thus, even when the model parameter estimates are
accurate, the difference between the y and m will not be un-
correlated Gaussian noise, and ‖C−1/2(y −m(p, ν̂))‖2

2 can be
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TABLE IV
CONFUSION MATRICES SUMMARIZING THE CLASSIFICATION OF FOUR UXO-LIKE TARGETS SIMULATED USING A STANDARDIZED

EXCITATION MODEL. CLASSIFICATION WAS PERFORMED USING A LEAVE-ONE-OUT METHOD

substantial. It is the presence of this non-Gaussian deterministic
“noise” (attributable to model mismatch) that also accounts for
the reduced performance of the signal-space classifiers in the
real data, particularly for the larger targets. The assumption that
the residual is Gaussian plays a key role in the GLRT classifiers.
When that assumption is not valid, the GLRT classifiers break
down. On the other hand, as the dipole model becomes less
applicable, the estimated poles form a more and more diffuse
cloud. If the clouds remain distinct and well-defined for each
target, the feature-space classifiers will continue to function
well. In the presence of an unmatched model (almost a certain
constraint if rapid processing is necessary), an optimality of
the classifier appears to be less important than robustness to
the underlying data generation mechanism. In contrast, when
model mismatch is less significant, as in the case of the data
simulated using a four-term per axis dipole model (Fig. 3),
higher classification performance is achieved using the data-
space classifiers.

Although the performance of our classification methods
when applied to real data deteriorates in comparison to our
simulation study, we should point out that the results obtained
here are as good as or better than most classification algo-
rithms in the community. The fact that our approach is to be
able to localize and classify the object at the same time adds
more to its value, while most classification approaches assume
that geometrical information of the object is available at the
classification stage: an assumption which is not valid for the
real field data scenarios. For example, in [16], a very simple
dipole model is used as the basis of processing. Classification
results using the simulations for simple targets for the case of
unknown coefficient factors at an SNR of about 40 dB shows
the probability of correct classification of about 50%. Results
using the real field data shows the probability of detection
of 50% at a false alarm of 20%. In addition, the geometry
of the target (location and orientation in space) is assumed
to be known. In [44], the effect of unknown geometry on
the classification is considered by performing classification in
separate scenarios with horizontal, vertical, or depth uncertainty

of the object. It is assumed that orientation is known. Noise
is assumed to be white Gaussian noise. Using the simulations
for optimal processing, the probability of correct classification
is 70%, and for the suboptimum classifier, this probability
is about 20%. Soil effect is proven to be negligible in the
processing. Again, for small sets of shallow land mine field
data, the classification performance for the optimum classifier,
which involves integrations over location, is about 70% with
known orientation. It should also be noted that the model used
is based on the method of moments which accurately models
the target, contrasted with our approximate dipole model. In
order to lend credence to the conclusions drawn previously,
a second simulated data set was generated. This data set was
computed from the standardized excitation approach (SEA) of
Schubitize et al. [4]. The SEA model computes the response
of an arbitrary target oriented at any arbitrary orientation and
positioned at any arbitrary location. Four targets were modeled
with physical and electromagnetic properties similar to the
aforementioned four UXO targets. A total of 217 data sets
were generated for each target, with the target oriented at every
22.5◦ in azimuth, and every 45◦ in dip for each of the three
burial depths typical of the target being modeled. The remaining
25 data sets were generated at a random orientation and burial
depth (within a target-specific range). Given a large enough
library, and thus a well-defined estimate of the target density
function, the effects of model mismatch on classification should
be clarified. The library poles are shown in Fig. 7. As expected,
the larger targets (similar to the 155- and 90-mm UXO items),
for which the dipole model is less valid, have more diffuse
library pole clouds, while the smaller targets (particularly, the
BDU-28-like target) have more compact distinct pole clouds. In
fact, the simulated library appears quite similar in morphology
to the actual UXO test stand data with the exception of the
BDU-26 target. Despite this discrepancy, the conclusions drawn
from the simulated data are applicable to the test stand data as
well. The 100 random data sets were then classified against this
library using the leave-one-out method described previously.
The results are summarized in Table IV. The conclusions drawn
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TABLE V
CONFUSION MATRICES SUMMARIZING THE CLASSIFICATION OF FOUR UXO-LIKE TARGETS SIMULATED USING A STANDARDIZED EXCITATION

MODEL AND A SPARSE LIBRARY. CLASSIFICATION WAS PERFORMED USING A LEAVE-ONE-OUT METHOD. ABSENT VALUES REPRESENT

A BREAKDOWN IN THE CLASSIFICATION ALGORITHM AND ARE INCLUDED IN THE CALCULATION OF PERCENT ERROR

from the test stand UXO data are borne out: The classification
performance for the signal-space classifiers is not as good as
the performance of the feature-space classification methods, in-
dicating that the feature-space classification methods are more
robust with respect to the model mismatch. Here, again, the
poor performance of the signal-space classifier is attributable
to the violation of the assumption that the residual is Gaussian.
It should be noted that the best feature-based classifier using the
dipole model achieves an error rate of about 10% on SEA data
which is a very strong result. If we accept that the full library
SEA results extrapolate to what we would see if the ERDC
data set had been complete, then certainly, this performance
indicates the very strong potential of the method for the field
data. Finally, it should be noted that because the failure of the
signal-space classifier is due to the poor representation of the
target by the dipole model, the signal-space classifier perfor-
mance may be improved simply by introducing a more accurate
model. However, the issue of model mismatch will remain so
long as the requirement for rapid data processing is imposed.
In order to test the conclusion that sparseness of the library
training samples will negatively impact the classification, the
simulated data library was randomly decreased to 15 samples.
Classification of the 100 randomly oriented and positioned data
sets was attempted using the decimated library. The results are
provided in Table V. Our conclusions are once again supported:
The performance of the classification algorithms is strongly
correlated with the training sample size. Because the pdfs
that describe the target-specific parameters are estimated from
the library, a smaller sample size results in a less accurate
pdf description and, thus, reduced classification performance.
The spread of the poles due to the model mismatch is not
well captured, leading to a degradation in performance of the
feature-space classifiers as well as the signal-space classifiers.
Not surprisingly, the SVM classifier, which relies upon the
completeness of the training data, shows a significant degra-
dation in performance as the library is made more sparse. The
library size is similar to the size of the test stand data library.

As expected, the percent error of classification is comparable to
the error incurred in the classification of the test stand data.

VI. CONCLUSION

To achieve robust methods for the classification of UXO,
a collection of classification methods based on the use of
nonparametric prior models for the target features was proposed
and compared in this paper. KDE methods formed the basis for
the construction of these prior models. These priors allowed
for the development of a collection of MAP-based estimation
and classification schemes. The GLRT-type methods, the ap-
proximation to the statistically optimal Bayes classifier for our
problem, and the SVM method were also considered.

It was shown that the incorporation of prior information
generally resulted in a significant performance improvement
that is relative to the previous proposed techniques for both
the simulated and field data. Interestingly, the classifiers which
demonstrated the strongest improvements differed depending
on whether the simulated or field data were being tested. In
the case of simulated data, the model underlying the processing
was quite similar to that used in the creation of the data. Hence,
the approximately optimal signal-space classifiers worked quite
well. For the field data, where the dipole model is far more of
an approximation to reality, the approximately optimal methods
failed to perform as well, while the techniques regarded as
suboptimal were far more robust to the mismatch in model.
This was particularly true for the larger targets, for which the
model mismatch was more of an issue. The optimal signal-
space classifiers rely on an underlying assumption that the
best fit residual is Gaussian in nature. In reality, the best fit
residual is not Gaussian and retains the mismatched portion
of the data in addition to any additive noise. The hypothesis
was successfully tested by simulating a large set of data for
several targets using a model which, although also approximate,
provided a greater degree of model mismatch. The decrease
in performance of the classification of field data versus the
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simulated data may also be attributed to the small size of the
set of prior pole estimates, leading to an inaccurate definition
of the prior pdf. This hypothesis was also verified using a set of
unmatched simulated data.

In conclusion, the feature-space classifiers are more robust to
model mismatch as mismatch manifests as additional spread in
the model parameter distribution and as a non-Gaussian contri-
bution to the best fit residual. However, if the target parameter
clouds remain distinct and well defined, as demonstrated with
the data simulated using the SEA model, the feature-space
classification will continue to work well. Classification may,
of course, be improved by the introduction of a more accurate
physical model than the dipole model, which is examined here
because of its simplicity and ubiquity. Alternatively, the true
physics of the target may be approximated by modeling the
target as a spheroid, using a high fidelity spheroidal model,
such as the mean field approach developed by Weichman and
Eugene [8]. The mean field technique is also advantageous
because the scattered field is related to more accessible physical
parameters such as axis length and conductivity rather than
bulk parameters like the poles examined in this paper. Ideally,
an arbitrary heterogenous UXO-like target may be modeled
by implementing an approach such as the SEA model [4]
developed by Shubitize et al. Unfortunately, the feasibility
of these approaches is limited by the required computation
expense. For example, roughly 1 h on a standard desktop PC is
required to compute the EM63 target response over a 3 m × 3 m
grid with a 10-cm spacing using the SEA approach. As greater
computational resources become available, these approaches
will become more accessible. However, parameter estimation
will remain a sensitive problem, and techniques, such as those
presented here, which accurately capture and utilize the variable
nature of model parameter estimates will be important.

It is important to understand the effect of model mismatch
because the constraints of the UXO problem dictate that the
model must necessarily be approximate in order to tractably
investigate the large areas contaminated by UXO. We have
shown that reasonable violations of the assumptions of an ap-
proximate model can be handled statistically, particularly when
the effect of those violations on the estimation of parameters is
well understood prior to classification. To put it in another way,
the difficult issue of model mismatch may be overcome, but
doing so requires a significant investment in developing a rich
library that describes the variation in identifying parameters
well and as completely as possible. In effect, the statistical
methods introduced here provide a means to extend the life of
the crude yet well-understood and widespread dipole model,
yielding good classification results.

In addition to the processing methods discussed here, pow-
erful performance analysis methods incorporating these prior
models can be used to bound the performance of both the
estimation as well as classification methods. More specifically,
Bayesian Cramer–Rao lower bounds can be developed which
gives the variance in our estimates of the target parameters
a lower bound. Similarly, the Chernoff bound can be formed
to provide an upper bound on the probability of error for the
Bayes-optimal feature-based as well as databased classifiers.
These analytical bounds also enable us to see the effect of

different system parameters such as sensor dimension, sam-
pling density, etc., on the system performance. Our future work
on this project will be directed to the analytical development
and use of these bounds in optimizing sensor design and
deployment.
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