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A Statistical Approach to Inverting the Born Ratio
Damon Hyde*, Eric Miller, Dana H. Brooks, and Vasilis Ntziachristos

Abstract—We examine the problem of fluorescence molecular
tomography using the normalized Born approximation, termed
herein the Born ratio, from a statistical perspective. Experimen-
tally verified noise models for received signals at the excitation and
emission wavelengths are combined to generate a stochastic model
for the Born ratio. This model is then utilized within a maximum
likelihood framework to obtain an inverse solution based on a
fixed point iteration. Results are presented for three experimental
scenarios: phantom data with a homogeneous background, phan-
toms implanted within a small animal, and in vivo data using an
exogenous probe.

Index Terms—Fluorescence, inverse problems, optical imaging.

I. INTRODUCTION

I N recent years there has been a growing interest in the use
of fluorescence in tomographic biological imaging [1]–[12].

While planar epi-illumination imaging has long been used in
combination with fluorescence, its utility, especially in imaging
of intact animals, is limited by the lack of three-dimensional
information in the resulting images; the planar images acquired
are projections of the 3-D fluorochrome distribution onto the
2-D imaging plane, blurred by the diffusive nature of tissue.
Moreover, differences in tissue optical properties result in a
modulation of signal intensity that further complicates quan-
tification. This results in an image with no depth resolution,
from which it is difficult to obtain quantitative information.
Fluorescence tomography, by contrast, combines measured
data with a model of the diffusion of light through tissue to
obtain a three-dimensional reconstruction of the fluorochrome
distribution through the solution of an inverse problem.

The near infrared range, between 650 and 900 nm, is com-
monly used for optical imaging of tissue due in part to a window
in the absorption spectrum of hemoglobin and water that allows
light to penetrate through depths of several centimeters in bio-
logical tissue. In fluorescence tomography, a laser with a wave-
length within this range is chosen such that it matches the ex-
citation wavelength of a known fluorescing agent present in the
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tissue. In vivo, this agent can be present either as a result of di-
rect introduction of an exogenous probe [13]–[15] or through
genetic manipulation, producing transgenic species with natu-
rally occurring levels of fluorescent proteins [16].

The targeting ability and specificity with which these fluores-
cence contrast agents can be designed gives fluorescence molec-
ular tomography a distinct advantage over traditional diffuse
optical tomography (DOT). The resulting contrast can be sig-
nificantly higher than that naturally present in the tissue due to
endogenous chromophores such as oxy- and deoxyhemoglobin,
fat, and water, or fluorescent metabolites and other structual el-
ements such as NADH or elastin and collagen. This higher con-
trast enables fluorescence tomography to more easily differen-
tiate between the desired target and surrounding tissue.

Conversion of the received data into a three-dimensional to-
mographic image is achieved through solution of an inverse
problem, which is nonlinear and ill-posed. In the case of flu-
orescence tomography, the system to be inverted is a set of two
coupled differential equations that describe the behavior of light
within tissue at both the fluorochrome’s excitation and emission
wavelengths. One method for obtaining a solution is to explic-
itly construct forward models for each wavelength and directly
solve the joint inverse problem [11], [17]. As an intermediary,
these methods often necessitate solving for the intrinsic optical
properties of the tissue being imaged—parameters that may not
be of interest.

To address problems in which one is only interested in the
distribution of fluorochrome, a data normalization scheme was
previously introduced, referred to as the normalized Born ap-
proximation, or, in short, the Born ratio [2], [18], [19]. By di-
viding measurements at the fluorescence wavelength by their
corresponding excitation wavelength measurements, an effec-
tive approximation to the joint problem can be obtained, which
at the same time grants a number of benefits [19]. In particular,
the Born ratio has been shown to achieve a considerable de-
gree of invariance to nonlinearities created by imaging through
an inhomogeneous medium. These factors include effects such
as the boundary conditioning of the diffusion approximation,
the knowledge of the exact background optical properties of
the region in question, and the variation in background optical
properties [19]. This invariance allows us to obtain accurate flu-
orescence images without directly solving the set of two cou-
pled differential equations, which is a considerably more com-
plicated computational problem. Additionally, the Born ratio is
independent of source intensities and detector coupling coef-
ficients, which otherwise must be explicitly solved for before
obtaining an image. While there exist methods to directly solve
for these parameters, they involve the inclusion of additional pa-
rameters in the inversion, which have the potential to make the
problem more ill posed and thus more difficult to solve [20].
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However, the Born ratio approach has its own drawbacks. In
particular, the information content, or signal-to-noise ratio, of
the resulting normalized measurements is difficult to quantify.
A large value of the ratio for a particular source–detector pair
can be the result of a large fluorescence signal, but as well can be
the result of a small excitation signal, while a small ratio value
can mean either weak fluorescence or strong excitation. Current
methods use empirical threshold levels to reject data pairs with
sufficiently low excitation and/or fluorescence signals. While
useful results can be obtained, these thresholds introduce user
variability into the reconstructions, and as such do not neces-
sarily make optimal use of the available data. The ability to au-
tomatically determine and retain only the significant Born ratio
values for subsequent inversion, based on an objective criterion,
would be of significant utility in order to optimize imaging per-
formance, and thus would offer an improvement over previously
applied empirical thresholds based on calibration studies.

In this paper, we introduce a statistical method that allows
us to determine an automatic data-weighting scheme based on
an approximate statistical model of the Born ratio data and of its
relationship to the unknown fluorescence distribution. As we re-
port below, experimental results in a variety of phantom and an-
imal preparations show that this approach provides consistent,
repeatable, and operator-independent reconstructions using the
Born ratio.

Our model begins with the use of the central limit theorem
to approximate the Poisson distribution of the received signals
using Gaussian random variables. However, the ratio of two
Gaussian random variables (RVs), which models the Born ratio,
does not lead to an easily tractable distribution. The most com-
monly known case is when both random variables are zero mean
with unit variance, which leads to a Cauchy density. The pres-
ence of nonzero means further complicates the distribution, al-
though results exist in the literature that give the density of such
a ratio as a function of the means. However, this density does
not lend itself to a simple relationship between the data and
the unknowns. Here, by using a combination of approximations,
point estimates and a fixed point iteration, we obtain an approxi-
mate maximum-likelihood (ML) estimate as the solution to a se-
quence of iteratively reweighted linear least squares problems,
each of which is solved using a standard conjugate gradient al-
gorithm. The weights in this formulation play a role equivalent
to the case-by-case thresholds used to date but are determined
automatically via the statistical model.

We describe in detail below our statistical model for the
measurements, based on experimentally measured noise char-
acteristics of a previously described fluorescence molecular
tomography system [2] and how it relates to the data and the
forward model employed. We then present inversion results
obtained from a variety of different data sets. These include
results for simple phantoms in a homogeneous background,
phantoms placed in a mouse body (and thus with an inhomo-
geneous background), and in vivo mouse experiments. Our
results indicate that the fixed point iteration converges quickly
and that the resulting reconstructions are comparable to the
best hand-tuned Born ratio reconstructions across a variety of
experimental scenarios, but without the need for empirically
set thresholds.

Section II gives an overview of the forward modeling asso-
ciated with this system, whose result is a linear, matrix-based
forward model. Section III discusses statistical models for each
of the individual received signals and then uses them to develop
a statistical model for the Born ratio itself. The resulting model
is used in Section IV to derive an inverse solution. Results for
the various data sets are presented in Section V. In Section VI,
we offer some conclusions as well as suggestions for continua-
tion of this research.

II. ANALYTIC MODELING

The propagation of light through a turbid medium such as
tissue can be reasonably approximated by a diffusion equation
for a source-detector separation of more than a few mean scat-
tering lengths [21]. Using Green’s function theory, the equation
for the observed fluorescence at a detector location

, given a source at location , can be modeled as [18]

(1)

This equation is the integral form of the Born approximation for
the received fluorescence signal, which assumes that the total
received signal is the sum of the first-order scattering responses
across the entire volume. Here, is the quantum efficiency
of the detector at the fluorescence wavelength, is the at-
tenuation of the fluorescence filter, , and are
the detector coupling and source intensity coefficients respec-
tively, while is the speed of light within the medium and
is the diffusion coefficient at the fluorescence wavelength. The
parameter represents the spatially varying fluorochrome
concentration that we want to recover. Finally, and

are the two point Green’s functions describing the
transport of light from source to voxel and voxel to detector at
the corresponding wavelengths. The exact values for these two
functions can be determined analytically either by assuming the
background can be treated as homogeneous or through various
nonlinear methods incorporating information about background
inhomogeneities [5]–[7]. In the work presented here, we employ
the homogeneous background assumption.

A. The Born Ratio

As described in Section I, to avoid the necessity of deter-
mining a number of parameters that are not of direct interest, we
employ the data normalization method known as the Born ratio
[2], [18], [19]. This method makes use of a second set of data,
collected at the excitation wavelength. By dividing the fluores-
cence wavelength measurement by the corresponding excitation
measurement, these variables can be eliminated. If we write the
equation for the excitation field as

(2)
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with quantum efficiency and excitation filter attenuation
, then the so-called Born ratio relationship can be written

as

(3)

with

(4)

The parameter relies only upon basic system characteristics
and can be easily determined experimentally from measure-
ments of a fluorochrome of known concentration [19]. Thus we
are left with an equation containing no excess free parameters.

B. Discretization

The forward model given by (3) is then discretized and put
into matrix form for inversion. The result is a forward model of
the form

(5)

where is the vector of measurement ratios predicted by the
Born ratio model, given a fluorescence distribution defined by

and a matrix operator , discretized
from (3), relating the two. The individual components of the
matrix are defined by

(6)

Here, is the volume of each individual voxel and results
from the discretization of the volume integral in (3). The index
i denotes the particular source–detector pair corresponding to
the ith element of and the index corresponds to a particular
voxel in the discretized geometry.

III. STATISTICAL MODELING

A. Signal Modeling

To begin our statistical analysis, we assume probability
models for each of the two received signals. Traditionally,
optical measurements are modeled using Poisson statistics. For
sufficiently high-rate photon counts, such as those typically
present in the systems of interest here, Poisson distributed
random variables can be approximated as Gaussian RVs with
variances equal to their means. In practice, the nature of the
experimental setup and the measurement system alters this rela-
tionship slightly, making the variance proportional to the mean
rather than equal to it. The proportionality constant is constant
across all data points and can be determined experimentally, as
we now describe.

We performed a simple experiment to determine the value of
this constant. A single source was used to illuminate a chamber

Fig. 1. Scatter plot of experimentally collected noise data, along with a regres-
sion line from the model in (7). The R value for this fit is 0.86. In order to
better display the results at all intensity levels, the plot shows standard devia-
tion plotted against the square root of the mean.

full of 1% intralipid solution and 50 ppm India ink, and 100
frames of data were taken with a charge-coupled device (CCD)
camera at each of four different laser intensities. Radial bins
were then defined as concentric rings centered on the location
of the source in the camera plane. Data from equivalent bins
were pooled across all 100 frames, and the resulting data were
used to compute experimental mean and variance values. Plot-
ting the mean and variance pairs against each other in a scatter
plot, a linear regression line was calculated, with the slope of
that line giving the value of the proportionality constant. Means
and signal levels here, and through the rest of this paper, are re-
ported in counts, representing the digital output of the CCD’s
16-bit analog-to-digital converter.

We note then an additional perturbation to the Gaussian ap-
proximation of the Poisson comes from the addition of nonneg-
ligible Gaussian readout noise from the CCD. As it turns out, we
can also estimate the variance of this noise (it is well approxi-
mated at zero mean) from the experiment just described, as the

-axis intercept of the regression line.
The data from this experiment are displayed in Fig. 1, and

the linear fit resulted in a proportionality con-
stant and read noise standard deviation .
It should be noted that while the proportionality factor is less
than one, this does not indicate a reduction in noise levels below
Poisson noise. It is a result of the fact that each increment of the
CCD output corresponds to more than a single received photon.
Examining the experimental values, at low signal intensities the
readout noise contributes enough power to the measurement
compared to the signal that we explicitly include it as an addi-
tive noise factor. Thus our model for the variance of the received
signal at either wavelength can be written as a function of the
mean

(7)
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Note that the variance at each spatial location depends on the
mean of the “signal” component.

In order to write an expression for the joint density of the
fluorescence and excitation measurements, so that we can then
derive an expression for the density of their ratio, we need to
model their covariance both across space at a fixed wavelength
and also across wavelengths. In the work described in this paper,
we make the simplifying assumption that the measurements are
uncorrelated both in space and across wavelengths. This results
in a joint density for the received signals of

(8)

While these independence assumptions are not physically ac-
curate, they greatly simplify the process of finding an inverse
solution. As we will see in our results section, in practice they
do not prevent us from obtaining useful solutions.

B. Ratio Distribution

Given a stochastic model for our received signals, we now
write the Born ratio as

(9)

where the densities for and are as previously defined.
The work in [22] describes an explicit derivation of the density
associated with the ratio of two arbitrary Gaussian random vari-
ables. The resulting model incorporates correlation between the
numerator and denominator in addition to arbitrary means and
variances. Since we assume independence, we can remove terms
involving the correlation coefficient and write that density as

(10)

where and are defined as

(11)

is the usual integral of the unit normal density

(12)

We next simplify the expression in (10). Our first step is to
eliminate the terms involving by making the approximation

(13)

We show in Appendix I that when either counts or
counts is satisfied,1 the value of is

sufficiently large to make the approximation valid with a proba-
bility of (1–2 10 ). Thus we simply remove from the recon-
struction all data pairs that do not satisfy at least one of these
two inequalities.2

In Appendix II, we show that by slightly expanding our pre-
vious minimum signal requirements to be counts and

counts, we can ensure that the second term in (10)
is several orders of magnitude smaller than the first. Thus we
also can drop the second term. This leaves

(14)

as our model for the statistical distribution of the normalized
Born ratio data.

C. Incorporating a Forward Model

We are now interested in relating the parameters of (14) to the
collected data and the spatial fluorescence distribution. Given
that the standard deviations of each density depend only upon
the mean, there are two parameters that must be solved for:

and .
Because is the mean of the excitation signal, it is inde-

pendent of the spatial distribution of fluorochrome. In order to
evaluate it explicitly, however, a separate forward model is re-
quired, as well as knowledge about the background optical inho-
mogeneities of the medium. The construction of such a model,
and determination of the associated parameters, is the problem
of traditional diffuse optical tomography. Due to the complexity
of such problems, and the fact that we are only interested in the
fluorescence distribution, we avoid the requirement for a sepa-
rate forward model by making the approximation

(15)

Thus, we assume that the mean of the excitation signal can be
approximated by the measured values. Next, we make the as-

1We note that full range is 2 = 65536 counts, so 18 counts is <0.3% of
the available dynamic range.

2Note that the introduction of this threshold does not contradict our desire
to eliminate existing threshold-based techniques because the threshold here is
fixed at an analytically determined level and is not operator dependant.
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sumption that our forward model (15) can be related to the sta-
tistics as

(16)

that is, we assume that the forward model generates the ratio of
the means of the collected data. Thus, we approximate as

(17)

Equations (15) and (17) now allow us to rewrite (14) in a form
conditioned upon the image

(18)

which allows us to proceed with a statistical inverse solution.

IV. STATISTICAL DERIVATION

We seek an inverse solution to the Born ratio using a ML
approach. The general form for an ML solution is

(19)

Using (18) as the density for each individual point, and given
our independence assumptions, the right-hand side of (19)
becomes

(20)

Taking the log of the right-hand side and dropping terms that do
not depend on leaves

(21)

To simplify notation, we define a function

(22)

and a vector with elements

(23)

and obtain

(24)

Rewriting the second term in (24) into matrix form, we get

(25)

where we have defined the matrix diag .
Now we want to take the gradient of (25) with respect to the

image and set it equal to zero. If we define the cost function
over which we are maximizing to be , we can use the results
of Appendices III-A and III-B to write the gradient of that cost
function as

(26)

where we have defined in Appendix III-A to be

(27)

Setting (26) to zero and rearranging, we obtain

(28)

Given the dependence on the solution of the terms on the right,
this result suggests a fixed point iteration, which, calling the
right-hand side , can be written as

(29)

Solutions for each iteration of (29) were obtained using a con-
jugate gradient (CG) solver, chosen because the matrix being in-
verted in (28) is symmetric positive definite. The CG algorithm
utilizes the forward matrix only in matrix vector multiplica-
tions of the form or , which allows for the matrix to
be utilized without ever being explicitly stored in memory.

To obtain a value for , an arbitrarily high threshold, based
solely on the excitation signal, was set such that 75% of the data
pairs were removed from the reconstruction, and a solution was
then obtained using a CG algorithm applied to the normal equa-
tions, without the use of any statistical models. This provided a
suitable initial estimate for the fixed point iteration.
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Fig. 2. Diagram of imaging system.

V. EXPERIMENTAL METHODS AND RESULTS

The experimental setup we utilized is based on a slab geom-
etry of 1.3 cm thickness. A diagram of the system is shown in
Fig. 2. The illumination consisted of a laser diode at 672 nm,
passed through an optical switch (DiCon Fiberoptics, Rich-
mond, CA) to select from an array of 46 source fibers arranged
on a 1.8 1.2 cm area. Output power at the imaging chamber
was approximately 10 mW. For detection, a CCD camera
(Roper Scientific, Trenton, NJ), electrically cooled to 35 C,
was used. Selection of excitation and emission wavelengths was
achieved by appropriate filters: bandpass (three-cavity interfer-
ence at 670 5 nm for excitation measurements and 710
10 nm for emission measurements (Andover, Salem, NH)
and long-pass (emission wavelength: cutoff 695 nm; Omega
Optical, Brattleboro, VT). A grid of 13 13 virtual detector
locations was defined, corresponding to uniform spacing over
a 2.2 2.2 cm region centered around the source array, on the
opposite side of the illuminated volume from the sources. Indi-
vidual detector values were obtained by integrating the values
of CCD pixels corresponding to 1-mm-diameter equivalent
circular detectors on the camera. The solution space, defined to
be the 2.4 2.4 1.3 cm region centered around the sources,
was discretized into volume elements
(voxels), each of dimension 0.12 0.12 0.0619 cm . On all
reconstruction images, this region is demarcated by a red box.

In all cases described below, the imaging chamber was filled
with a solution of 1% intralipid and 0.5% India ink, which has
optical properties cm and cm . These
values were chosen to correspond closely with the bulk back-
ground optical parameters of mice.

The first set of data employed came from phantom measure-
ments, providing a simple scenario to validate our method. The
phantom consisted of two 8 mm long and 2.5-mm-wide tubes,
each containing 400 nM Cy5.5, suspended in a tank of intralipid
solution as described. The two tubes were placed 5 mm apart
along the lateral axis, with one tube located against the detector
side of the volume and the other in its center, corresponding to
distances of 0.6 and 1.2 cm from the source plane. Fig. 3(a) and

Fig. 3. Dual tube phantom. (a) Reflectance fluorescence image. (b) Manual
threshold: coronal slice through tube at z = 0:42 cm. (c) Manual threshold:
coronal slice through tube at z = 1:25 cm. (d) Flat image. (e) Fixed point:
coronal slice through z = 0:42 cm. (f) Fixed point: coronal slice through z =
1:25 cm. In all images, z = 0 cm corresponds to the source side of the slab, with
a total slab thickness of 1.3 cm. The red box in the image denotes the boundary
of the solution space, and the orientation of the coordinate system specified in
(b) is shared by all images.

Fig. 4. Euthanized mouse. (a) Fluorescence reflectance. (b) Manual threshold:
coronal slice through esophageal tube. (c) Manual threshold: coronal slice
through subcutaneous tube. (d) Flat image. (e) Fixed point: coronal slice
through esophageal tube. (f) Fixed point: coronal slice through subcutaneous
tube. In all images, z = 0 cm corresponds to the source side of the slab, with a
total slab thickness of 1.3 cm. The red box denotes the boundary of the solution
space. (a) and (b) z = 0:59 cm, (c) z = 1:25 cm, (d) and (e) z = 0:59 cm,
(f) z = 1:25 cm.

(d) shows flat images at the fluorescence and excitation wave-
length, respectively. They were taken prior to the chamber’s
being filled with intralipid, and while the objects appear to be
at the same distance from the camera, they are in fact separated
by 0.4 cm along the source–camera axis.

The second set of data examined consisted of two plastic
catheter tubes with an inner diameter of 0.8 mm, containing
1 M Cy5.5, implanted in the body of an euthanized mouse.
As can be seen in the fluorescence reflectance and flat images
[Fig. 4(a) and (d) respectively], one tube was inserted down the
esophagus while the other was implanted subcutaneously on the
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anterior side of the torso. The goal of this experiment was to
provide an easily identifiable and quantifiable target (the tubes)
under conditions where the background optical parameters are
similar to those of an in vivo experiment.

The third study presented considered an in vivo experiment.
A Her2-neu transgenic mouse was selected, exhibiting a sponta-
neous breast tumor. The tumor was located in the left mammary
pad as indicated by an arrow on Fig. 5(a) and was approximately
5 6 mm in size, as measured externally with calipers. The an-
imal was injected with 2 nmol of the ProSense680 cathepsin-
sensitive activatable probe (VisEn Medical, Woburn, MA) 24 h
prior to imaging. Accompanying the reconstructions is a flat
image at the excitation wavelength in Fig. 5(a), on which the
tumor is visible as a dark region in the left mammary pad (right
side of image).

For each data set, we present and compare two methods. In
the first method we solved using the normalized Born ratio after
thresholding to reject all ratio data with an excitation wave-
length intensity less than a fixed value. The threshold values
used for each data set were determined by obtaining inverse
solutions for thresholds set between the zeroth and ninety-fifth
percentile of the excitation wavelength measurements, in 5%
increments. The “optimal” solution was then chosen from
among these 20 results, based on prior knowledge of the target
being imaged. The chosen thresholds varied from 15% to 35%
of the Born ratio values being retained for use in the inversion
algorithm.

The second method utilized the statistical methods derived
in Section IV. The previously established threshold requiring

counts or counts was applied to the data
prior to inversion, resulting in between 0.1% and 32% of the
data’s being removed. For both reconstruction methods, depth-
dependent regularization was achieved by making the stopping
point of the iterations increase exponentially as a function of
depth from either four or ten iterations, which optimally recon-
structed surface activity, to 25 for the middle reconstructed slice.
Further iterations resulted in only minor changes in the recon-
struction. We note that compared to utilizing a depth-indepen-
dent number of iterations, the depth-dependent regularization
employed does not alter the relative performance of the statis-
tical versus the automatic method but yields a more accurate
reconstruction of the physical dimensions of the fluorescence
activity, as was also noted in [23].

A. Comparison Metrics

In addition to subjective visual analysis of results, we also
used two metrics to compare our statistical method to existing
threshold based methods. These are used to quantify the location
and size of the objects.

In order to compute these two metrics, we first needed to
determine the extent of the reconstructed object. Given the dif-
ferences in intensity owing to the different depths at which fluo-
rescent objects are located, we started this process by manually
selecting, for each object, a slice that contained a clear cross-
section of that object. We then took the voxel in that slice with
the highest amplitude to be the initial location of the detected
object. Selecting a threshold of 50% of this initial value, we

allowed the object to grow by iteratively incorporating neigh-
boring voxels in three dimensions whose amplitude were above
the threshold. In this manner, we determined which voxels were
considered to lie within the resolved object.

The two metrics used to quantify the reconstructions were
the centroid of the reconstructed object and its average dimen-
sions. The centroid was computed as the mean of the objects
constituent voxel locations, weighted by the associated image
intensities. Average dimensions were determined by first com-
puting the average location of each side of the object, then taking
the distance between the two sides associated with each of the

, and axes.

B. Phantoms in Intralipid

In addition to the reconstructions, Fig. 3 displays two images
of the phantoms without intralipid present. Fig. 3(d), the flat
image, is a front illuminated image of the chamber, while
Fig. 3(a), the fluorescence reflectance, is an image captured
at the fluorescence wavelength while front illuminating the
chamber with light at the excitation wavelength. Note that the
reconstruction slices displayed in Fig. 3 are chosen at the depth
of maximum intensity in the statistical reconstruction and were
obtained using four iterations for the surface object and 25 for
the central one.

Using the manually optimized method, the threshold was set
to retain 15% of the data for use in the reconstruction. Fig. 3(b)
and (c) depicts two coronal slices of the reconstructed three-di-
mensional image. In each slice, the solution clearly shows a flu-
orescing object present at the location of the phantoms. The slice
located deeper within the volume, shown in Fig. 3(b), resolves
the object to be larger in size compared to the slice in (c), a re-
sult of decreasing resolution at greater depths.

The results with our statistical inversion are illustrated in
Fig. 3(e) and (f), where very similar reconstructions are seen.
The object in Fig. 3(e) is slightly larger than that in (b) but
remains consistent with the size of the phantoms seen in the flat
and fluorescence images. Fig. 3(f) shows an image very similar
to that in (c). These images were achieved with the use of 99.9%
of the collected data. Only about 100 of the 14 000 data points
collected did not satisfy the minimum signal requirements.

The sizes reconstructed with the two methods are reasonably
consistent with one another. Notably, in both cases, the resolu-
tion is poorest along the -axis between the source and detector
planes. Both methods overestimate the object size along this
dimension. Additionally, while the thickness ( -axis measure-
ment) of the central tube is overestimated, that of the detector
side tube is underestimated. This variation in reconstructed ob-
ject thickness is seen for both methods, with all data sets, and
is due to the restrictions on source and detector locations when
using a slab geometry.

C. Euthanized Mouse

As with the tubes in intralipid, flat and reflectance fluores-
cence images are displayed in Fig. 4(d) and (a), alongside recon-
structions corresponding to the slice at which the maximum in-
tensity was obtained with the statistical reconstruction method.
As with the tube phantom, these reconstructions use four itera-
tions for the subcutaneous tube and 25 for the esophageal one.
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TABLE I
TABLE OF ANALYTIC METRICS COMPUTED FOR EACH SOLUTION IMAGE. CENTROID AND MAXIMUM DIMENSION ARE GIVEN IN (X; Y; Z) COORDINATES

EXCEPT FOR THE SUBCUTANEOUS TUBE IN THE EUTHANIZED MOUSE, WHERE WIDTH, LENGTH, AND DEPTH OF THE TUBE ARE GIVEN,
AS IT IS NOT PARALLEL WITH ANY OF THE THREE PRIMARY AXES. MEASUREMENTS ON THE RECONSTRUCTIONS ARE

COMPUTED AS DESCRIBED IN THE TEXT. ALL SIZE MEASUREMENTS ARE GIVEN IN CENTIMETERS

The results using the threshold method are shown in Fig. 4(b)
and (c). These were obtained by retaining 35% of the data. As
with the phantom, two coronal slices are shown, one through
each of the implanted tubes. Fig. 4(c) shows a vaguely tube-like
object located just under the surface. Its location corresponds
well with the fluorescence image seen in Fig. 4(a) but is not
nearly as large as would be expected. The object in the center
of the volume can be seen in Fig. 4(b). However, rather than
appearing to be a uniform tube, the object appears to be more
centrally concentrated.

Fig. 4(b) and (c) contains the results for this data set using
our fixed point iteration. The subcutaneous tube is resolved in
a manner similar to that using the thresholding technique. It
is, however, slightly larger, more tube-like, and more consis-
tent with Fig. 4(a). Looking at the esophageal tube, it is re-
solved to be a much more uniform tube than it was in Fig. 4(b).
For this data set, the minimum signal requirements resulted in
32% of the data’s being left out of the reconstruction, as with
the threshold method a significantly higher number than for
the phantom experiment. This seems to be a result of a higher
level of absorption within the mouse body. While for the other
two data sets, fewer than 200 excitation measurements failed
the minimum criterion, for the euthanized mouse, nearly 3700
points failed the test. The additional absorption also seems to
have affected the resulting fluorescence levels, as a significantly
higher number of fluorescence measurements failed as well.

Observing the metrics in Table I, we see that the esophageal
tube, as with the central tube of the previous data set, is resolved
to have a much larger – cross-section than the subcutaneous
tube. However, the length ( -dimension) of the esophageal tube
is much more accurately resolved using the statistical recon-
struction. While the statistical method does result in average

and dimensions that are slightly larger than the threshold
method, the difference is small and comparable to the size of a
single voxel.

Looking at the subcutaneous tube, the location shift was less
than a fraction of a voxel, while the sizes along the three dimen-
sions are very similar between the two methods. In both cases,

Fig. 5. Results for in vivo experiment. (a) Flat image. (b) Manually selected
threshold. (c) Fixed point iteration. (a) and (b) z = 1:25 cm, (c) z = 1:25 cm.

while the width and depth are slightly overestimated, the length
is underestimated, and the reconstruction does not appear to ex-
tend the full length of the tube seen in Fig. 4(a).

D. In-Vivo Mouse

Fig. 5(a) shows a flat image of the mouse being imaged. In it,
the tumor is clearly visible as a dark spot in the left mammary
pad (right side of image). This is indicative of the increased
angiogenesis and blood concentration expected in the tumor.
This reconstruction used ten iterations to reconstruct the tumor.

For this data set, the manually selected threshold was set to
retain 25% of the data, based on results from previous studies
[2]. The resulting inversion is seen in Fig. 5(b). A fluorescing
mass is clearly present on the anterior surface of the mouse, just
to the right of center. Results with the fixed point iteration are
shown in Fig. 5(c). There, the tumor is resolved to be slightly
larger than with the threshold, and its spatial extent is more con-
sistent with the dark appearance of the tumor in the flat image.
As with the phantom experiment, less than 0.1% of the data was
dropped from the reconstruction.

Looking at the analytic metrics, we can see that the statistical
method resolves the tumor to be slightly larger in width and
depth than the threshold method. This is more consistent with
the approximate size of the tumor of 5 6 mm and represents
a more ellipsoidal and less flattened tumor than the threshold
method.
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VI. DISCUSSION

This paper has presented a new method by which fluores-
cence molecular tomography solutions can be obtained based
on the normalized Born approximation. This method incorpo-
rates statistical properties of the measurements at the excitation
and emission wavelengths in order to eliminate the use of oper-
ator defined thresholds. The method performed consistently and
automatically across a variety of experimental scenarios, some-
thing that was not possible with previous thresholding tech-
niques. Examining the results, we see that they compare favor-
ably with those obtained using empirically defined thresholds,
even when the thresholds were tuned using knowledge of the
correct result.

Possible future extensions to this work include the use of
fully nonlinear inversion methods, more complex regularization
methods, the inclusion of correlation between the various data
points, and spatially variant regularization to improve the de-
pendence of size estimates on depth.

One of the advantages of using repeated solution of linear
systems, such as we have done here, is that such systems are in
general efficient and easily implemented. If instead we were to
apply the conjugate gradient method directly to our nonlinear
cost function in (25), we could eliminate the need for the fixed
point iteration, at the cost of greater algorithmic and computa-
tional complexity.

Another possible extension of this work is the inclusion of
correlation into the equations. Two independence assumptions
were made to arrive at the weights detailed in this paper. The
first of these was that each fluorescence measurement was inde-
pendent of its associated excitation measurement. The second
was that each fluorescence measurement was independent of
every other fluorescence measurement, and likewise for the ex-
citation measurements. Neither of these conditions is truly ac-
curate. The intensity of excitation light reaching a detector is
highly predictive of the intensity of fluorescence that the de-
tector may see, although the exact value seen is still primarily
dependent upon the physical distribution of the fluorochrome.

Overall, the method presented offers an inversion scheme that
can enable more robust tomographic performance, by reducing
image accuracy dependencies on calibration studies and user de-
fined thresholds. Guided by a priori information based on the
statistical nature of the measurements, this approach potentially
offers a generalized and transferable inversion method across
different platforms appropriate for standardization of optical to-
mography techniques. Further studies will involve application
of the method to a larger number of in vivo data to confirm the
validity of application across a large number of different poten-
tial targets, organs, and tissue sizes.

APPENDIX I
APPROXIMATION OF TERMS INVOLVING

In Section IV, our first step in simplifying the statistical den-
sity for the data was to make the approximation

(30)

in order to eliminate the integrals from the density. We show
here the conditions under which this approximation is valid.
Clearly, as , (30) is valid, and equiva-
lently the integral

(31)

is equal to 0.5. Using the definition of

(32)

we can write the inequality

(33)

where we define as the tolerance allowed in the final ap-
proximation. From this we can obtain the values for the ratio

that satisfy the inequality. We rearrange the
inequality to obtain

(34)

where is set equal to the bound. Setting in
(33) yields as the required condition for (30) to be
an appropriate approximation. Even increasing the precision to

only requires .
However, and are compound quantities that de-

pend on the physical quantities and in a complicated
fashion [see (11)]. Thus, we want to know equivalent bounds on
the values of and , given a specified value for . We
start with

(35)

By placing this into the equation , squaring
both sides, and rearranging, we can obtain

(36)

When both and are
greater than , the inequality is satisfied because the left-hand
side will be positive while the right-hand side will be negative
(given that and are all positive quantities). For

, this occurs when both and are greater
than 18 counts. In general, however, we want to be able to use
as much of our data as possible, so we consider the case where
one of the two values is less than . This will result in one of the
two left-hand terms being negative rather than positive. Using
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the approximation , we can rewrite the
inequality as

(37)

Given that the means and variances are all positive quantities, it
is easily seen that the values of the quantities inside the paren-
theses must be greater than . If, as assumed, only one of the
two quantities is greater than zero (i.e., the associated signal is
higher than 18), then it can quickly be proven that the inequality
must be satisfied. Because of this, we now choose to utilize all
data points where at least one of the two signals is greater than
18.

APPENDIX II
ELIMINATION OF LOW MAGNITUDE TERM

Equation (10) in Section III gives the density of the data as the
sum of two terms. However, it turns out that the second term is
significantly smaller than the first, given reasonable conditions,
thereby greatly simplifying the log-likelihood function. These
conditions turn out to be achievable by minor additional require-
ments on the values of and compared to those ob-
tained in Appendix I.

In the course of these derivations, we will make two primary
assumptions.

1) : The lower end of this bound is a result
of both received signals inherently being positive quanti-
ties, while the upper bound arises from analysis of many
data sets. In all data sets examined, the inequality

is satisfied by all data points. Thus, when taking
the Born ratio, , the inequality

will be satisfied.
2) : The equality portion of

this statement is the same assumption that was made in
relating our statistical model to our forward model. We
simply restate it here and further assume that the value of
that corresponds to the actual distribution of fluorochrome
will result in a value of that closely matches the re-
ceived data .

What we explicitly need to show is that the term

(38)

is small enough to be dropped from the density. We assume
that it can be removed when it is several orders of magnitude
smaller than the other term in the density. We take the ratio of
the two terms and study the conditions under which it will be
much larger than one

(39)

We specify the explicit bound at which (39) is satisfied to be ,
take the log of both sides, and rearrange to get

(40)

with

(41)

Now, given that

(42)

(43)

we can now move the first term of 2 to the right-hand side and
combine the second term with in order to obtain

(44)

(45)

Rearranging things a bit yields

(46)

Looking at the terms on the right-hand side, we want to find an
upper bound for and a lower bound for in order to
maximize the overall value of the right hand side. Looking at

, we have

(47)

(48)

where we have used the lower bound on to establish the in-
equality.

For the term , we want to determine an upper bound. We
use our assumed upper bound on to obtain the inequality

(49)
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Fig. 6. Plot of the right-hand side of (50). Those points with magnitude less
than one have been set equal to �1 to give a better idea of the shape of the
region in question.

By substituting these bounds in place of and
in (46) and rearranging, we get

(50)

This puts the left-hand side in terms of the mismatch be-
tween the estimate and the collected data and makes the right-
hand side independent of . Now, we use our assumption that

in order to assume that the left-hand
side of the inequality is less than or equal to one. This allows
for a significant mismatch between the received data and our
model and provides a convenient threshold for determining a
bound on which data pairs are usable. We establish this bound
in a graphical fashion by simply computing the right-hand side
for a range of and values and plotting to determine
where the value is greater than one. The resulting surface plot
is shown in Fig. 6. From this plot, we established that all points
with or will satisfy the criterion. Com-
bining this requirement with the previously established require-
ment that one of the two signals be greater than 18 counts, we
determine that all data point pairs with either or

will be retained for use in the reconstruction.

APPENDIX III
DERIVING THE GRADIENT OF THE COST FUNCTION

A. Primary Derivations

In the course of obtaining a ML solution in Section IV, we
derived the cost function

(51)

which we want to maximize in order to obtain our solution. In
order to simplify the notation involved in finding the gradient of
(51), we write

(52)

We then write an equation for the gradient as

(53)

Given the complexity of the terms, we derive the gra-
dient of those components separately in Appendix III-B and
make use of those results at the end of this section. Turning our
attention to the second term of the gradient, we can write that
gradient as

(54)

The first term of the sum can then be computed as

(55)

To compute the second term, we use the fact that
in order to rewrite as

(56)

This rearrangement allows us to write the gradient as

(57)

For notational simplicity, we now define

(58)

and rewrite the gradient as

(59)

Now we derive the value of . Given that

(60)

we can write the derivative as

(61)
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(67)

This gives us a vector, representing the gradient of a particular
with respect to . Obtaining one for each , we can

then arrange all of these vectors into a matrix as

(62)

This, combined with the gradient of derived in
Appendix III-B, allows us to write the full gradient of the
cost function as

(63)

which we use to derive our fixed point iteration in the text.

B. Derivation of One of the Gradient Components

In this section, we explicitly determine the gradient of the
terms. We repeat (22) to begin

(64)

We explicitly write the gradient of this equation

(65)

This leaves us with a gradient that is the sum of three terms,
each of which consists of the gradient and the reciprocals of
known functions. We treat each term separately. First, we write
the gradient of with respect to as

(66)

Combining this with (11) yields (67) as shown at the top of the
page. Next, given the definition for in (7), we can write
the second term in the gradient of as

(68)

Finally, we look at the third term, which depends on
and contains the gradient

(69)

Thus, again using (11), we get

(70)

The values of (67), (70), and (68) allow us to write the full gra-
dient of . With that in hand, we are able to explicitly
evaluate the full gradient of our cost function.
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