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Abstract—Voxel-based reconstructions in diffuse optical tomog-
raphy (DOT) using a quadratic regularization functional tend to
produce very smooth images due to the attenuation of high spa-
tial frequencies. This then causes difficulty in estimating the spatial
extent and contrast of anomalous regions such as tumors. Given
an assumption that the target image is piecewise constant, we can
employ a parametric model to estimate the boundaries and con-
trast of an inhomogeneity directly. In this paper, we describe a
method to directly reconstruct such a shape boundary from dif-
fuse optical measurements. We parameterized the object boundary
using a spherical harmonic basis, and derived a method to com-
pute sensitivities of measurements with respect to shape param-
eters. We introduced a centroid constraint to ensure uniqueness
of the combined shape/center parameter estimate, and a projected
Newton method was utilized to optimize the object center position
and shape parameters simultaneously. Using the shape Jacobian,
we also computed the Cramér–Rao lower bound on the theoret-
ical estimator accuracy given a particular measurement configu-
ration, object shape, and level of measurement noise. Knowledge
of the shape sensitivity matrix and of the measurement noise vari-
ance allows us to visualize the shape uncertainty region in three
dimensions, giving a confidence region for our shape estimate. We
have implemented our shape reconstruction method, using a finite-
difference-based forward model to compute the forward and ad-
joint fields. Reconstruction results are shown for a number of simu-
lated target shapes, and we investigate the problem of model order
selection using realistic levels of measurement noise. Assuming a
signal-to-noise ratio in the amplitude measurements of 40 dB and a
standard deviation in the phase measurements of 0.1 , we are able
to estimate an object represented with an eighth-order spherical
harmonic model having an absorption contrast of 0.15 cm 1 and
a volume of 4.82 cm3 with errors of less than 10% in object volume
and absorption contrast. We also investigate the robustness of our
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shape-based reconstruction approach to a violation of the assump-
tion that the medium is purely piecewise constant.

Index Terms—optical tomography, image reconstruction, in-
verse problems, shape-based imaging.

I. INTRODUCTION

DIFFUSE optical tomography (DOT) is an emerging
imaging modality which is beginning to show great

promise, primarily due to its ability to monitor the body’s
hemodynamic properties in vivo using near-infrared light.
Among DOT’s advantages over conventional imaging modal-
ities in widespread use are its relatively low cost and the
employment of safe, nonionizing radiation. However, image re-
construction for DOT is difficult and relatively computationally
expensive, primarily due to the ill-posedness and nonlinearity
of the inverse problem. The ill-posedness is caused by the
multiple scattering that photons experience in their path from
source to detector, with the result that a typical measurement is
affected by the absorption and scattering over a large volume
of the imaging geometry. If it is assumed that the forward
problem can be linearized, it is possible to compute the analyt-
ical solution to the regularized inverse problem for a number
of specialized imaging geometries [1], but it is not currently
possibly to do so for more complex geometries such as the
breast. In the case of the fully nonlinear inverse problem, which
we address in this paper, analytical methods may be applicable
for the solution of the inverse problem [2], but again only for
specific imaging geometries, and they require the assumption
that the scattering series can be truncated to a particular order.
Thus, for realistic imaging geometries, nonlinear optimization
methods must be used. In this paper, we will focus on the appli-
cation of DOT for breast tumor detection and characterization.
Recent experimental work has imaged tumors with DOT and
has suggested that tumors may differ sharply from normal
tissue in their blood volume, oxygenation, and, perhaps in their
scattering properties [3]–[5].

The most common approach to the DOT inverse problem in
the literature is to estimate optical parameter distributions which
minimize a cost functional [6], [7]. This cost functional typically
includes a term which represents the mismatch between the ac-
tual measurements and the measurements which would have re-
sulted from the estimated absorption and scattering distribution,
generally computed by means of a forward solver. An additional
term is included for the purpose of regularization, penalizing
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some function of the estimates themselves, such as their norms,
or the norm of their gradients. The estimation problem, having
been reduced to a nonlinear regression problem, can be solved
by means of gradient [8] or Newton-based [7], [9] approaches,
among others. The functional gradient of the cost function with
respect to absorption perturbation can be computed efficiently
[10]. The resulting solution is highly dependent on the choice
of a regularization parameter, the selection of which has been
quite exhaustively discussed in the inverse problems literature
[11], [12].

However, using standard approaches, recovery of edges in the
DOT inverse problem is extremely difficult because the prop-
agation of diffuse light highly attenuates absorption distribu-
tions with high spatial frequency. Thus, inversion methods must
make use of regularization to prevent the resulting reconstruc-
tions from being overwhelmed by noise. As a result, the prepon-
derance of DOT image reconstructions reported have little dis-
cernible shape [3], [13]. One approach taken in the literature on
image reconstruction in order to deal with this problem is to in-
corporate total-variation minimization [14] or edge-preserving
regularization [15] into the image reconstruction. This approach
has also been useful in the related applications of image restora-
tion [16], [17] and image segmentation [18], [19].

In this paper, we will show that, given the assumption that the
medium is piecewise constant, we can reconstruct the shape,
optical absorption contrast, and location of an anomaly. We
recover boundary information by explicitly postulating the exis-
tence of a compactly supported absorbing anomaly, estimating
the shape of this inclusion using a nonlinear optimization
method. While it is not exactly true that the body, or the breast
in particular, is a piecewise-constant medium, it is likely to be
composed of distinct regions (i.e., adipose tissue, glandular
tissue, tumor tissue), with clear boundaries, and where the mean
of the optical properties within each region differs significantly
from that of the other regions [20]. In this paper, we consider
a simpler problem in which we are concerned only with the
estimation of a single inclusion embedded in an otherwise
homogeneous medium. We demonstrate the properties of this
approach on simulated data with varying levels of measurement
noise.

Recent shape-based work has made use of level-set functions
[21], active contours [22], and various boundary parametriza-
tions. In two dimensions, Fourier descriptors [23], [24] and
B-spline models [25] have been employed to parameterize the
boundary. For DOT, the first work in this area examined the
estimation of the location, contrast and orientation of ellipsoids
[26]. More recently, spherical harmonic shape parametrizations
have been used in conjunction with the boundary element
method (BEM) [27], [28]. In our work, we use spherical har-
monics to model fairly intricate 3-D polar shapes, as described
by Li [19] (a polar shape is one that can be modeled as a
single-valued function in spherical coordinates), with respect to
some center position. We show that we can efficiently solve the
inverse problem, using shape derivative theory and the adjoint
method to compute the derivatives of our measurements as
we vary our shape parameters. We also introduce a centroid
constraint to allow simultaneous estimation of object position
and shape.

An advantage of our approach is that the number of terms
used to represent an object in the inversion plays the role of a
regularization parameter. Given noisy measurements, it is not
possible to reconstruct the shape of an object exactly from ex-
ternal diffuse optical measurements of intensity and phase. A
parametric representation allows us to vary the complexity of
our model depending on the accuracy of our measurements. In
our simulation studies, we consider the model-order selection
problem is some detail. In addition, our shape reconstruction
approach extends to the case of multiple objects with different
contrasts relatively easily, although for such an approach one
must either know the number of objects a priori or embed in the
processing a method for determining this quantity.

We will make use of the domain, or Fréchet derivative of the
scattered field with respect to infinitesimal perturbations of the
object boundary, as described by Sokolowski and Zolesio [29].
The domain derivative approach was applied to the electromag-
netic inverse problem for the case of a perfectly conducting ob-
stacle by Kirsch [30]. Hettlich [31] extended Kirsch’s varia-
tional approach to compute the Fréchet derivative of the scat-
tered field with respect to boundary perturbations for a number
of object boundary conditions. The domain derivative can be
computed as the solution of a forward problem with particular
boundary conditions defined on the object boundary. Potthast
[32] gave an alternative derivation for the scattered field domain
derivative, assuming a continuously differentiable boundary.
Hohage and Schormann [33] extended this method to compute
the Fréchet derivative of the scattered field for perturbation of
the boundary of a penetrable obstacle.

In addition, knowledge of the shape and center Jacobian
matrices allows us to compute the constrained Cramér–Rao
lower bound on shape estimation accuracy and to visualize this
bound. This bound tells us the best reliability that is possible
in our shape reconstruction, given a particular measurement
geometry and measurement noise level. This knowledge, apart
from giving us a shape “confidence interval,” can help us in
our design of instruments and source/detector layouts, if we
have prior knowledge that a particular shape reconstruction
reliability is desired. In contrast to previous work on shape
estimation bounds in image reconstruction problems [23], [25],
[34], we derive and implement these bounds specifically for the
DOT inverse problem, and for the very challenging problem
of fully 3-D nonlinear shape estimation. We visualize these
bounds using a method introduced by Kirsch [30], extended to
the case of 3-D polar shapes. As we have introduced a centroid
constraint to ensure uniqueness of our object shape/center
parametric representation, we make use of the constrained
Cramér–Rao lower bound [35] to give us performance bounds
on simultaneous estimation of object shape and center.

In our experimental work, we show in simulations that fairly
complex objects can be estimated with a high degree of accuracy
using DOT data and a reasonable level of noise. We also show
shape reconstruction performance where there is a trade-off be-
tween model complexity and estimation accuracy, since overly
complex models cannot be accurately estimated using a limited
set of noisy measurements. In addition, we consider the case
where the medium is not purely piecewise-constant, using a sim-
ulation in which variation is introduced into the absorption in



754 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 6, JUNE 2008

both the object and in the background. We show that our al-
gorithm is robust to this form of model mismatch but that the
degree of error introduced is dependent on the variance of the
perturbations in the background. We examine the question of
model order selection, showing that a sufficient level of model
complexity is necessary in order to estimate an absorber’s size
and contrast accurately, but that the model complexity need not
be identical to the object’s true complexity in order to achieve
reasonably accurate estimates. Finally, we look to the ques-
tion of shape reconstruction lower bounds, visualizing the shape
bounds derived from the parametric Cramér–Rao bounds, using
both the unconstrained bound and the constrained bound, where
a centroid constraint has been introduced.

II. SHAPE PARAMETERIZATION

In order to reduce the complexity of the 3-D shape estimation
problem, we make the assumption that we are reconstructing
polar shapes, which can be expressed as single-valued functions
in spherical coordinates, with respect to some center location.
In this context, spherical harmonics are a very useful choice for
shape parametrization, as they define an orthonormal basis on
the unit sphere. Since spherical harmonics are complex func-
tions, we make use of their real and imaginary parts, the Tesseral
harmonics, in order to ensure that our shape estimate is strictly
real. The Tesseral harmonics of order 4 and below are shown in
Fig. 1.

The spherical harmonics are defined as follows [36]:

(1)

where and and is the associated
Legendre function of order where . Therefore, the
radius with respect to a given center position can be represented
as follows [19]:

(2)

where and . We also
note that and . The square-root is
employed to assure that the radius will be always nonnegative,
and a small constant is added to ensure the differentiability
of the radial function with respect to the shape parameters. It is
important to note that this shape representation is not unique,
since the same shape can be represented using a different center
position and appropriately modified shape parameters. In ma-
trix form, we have the following parametrization of the shape
boundary:

(3)

where is a matrix composed of our shape basis functions and
.

In the results which follow, it will be necessary to compute
the normal vector at each point of our parametrized shape’s sur-

Fig. 1. Spherical Harmonics of up to fourth order. (a) Real part. (b) Imaginary
part.

face. An analytical expression for this function can be derived
by transformation to rectangular coordinates

(4)

If we represent each point on the surface of the shape as
, then the normal vector, , can be computed as

(5)

where

(6)

(7)
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In order to compute , it is useful to utilize the
following identities:

(8)

A. Centroid Constraint

The shape parametrization described above is not unique, as a
given shape can be described with respect to an arbitrary center
point within its interior. To ensure uniqueness, we constrain our
shape representation such that the center with respect to which
it is defined is identical to the shape’s centroid, which is unique
and well-defined.

Thus, we impose the following constraints, which can be de-
rived by integrating the expressions for the , and coordi-
nates of the estimated shape’s centroid in spherical coordinates:

(9)

(10)

(11)

III. FORWARD MODELING AND SENSITIVITY CALCULATIONS

In a given DOT experiment, the medium is illuminated using
modulated light by a point source using amplitude-modulated
light and measurements are made at discrete detector positions,
with detectors approximated as delta functions at the detector
positions. The experiment is then repeated using a point source
located at a different position. In what follows, we assume that
all measurements are made in the frequency domain, using a
single modulation frequency. We assume that photon propaga-
tion is well approximated by the diffusion equation [37] and
make use of a zero partial-flux Robin-type boundary condition
[38]. We also assume that the medium is piecewise constant and
consists of two regions, and , where is simply con-
nected, separated by an internal boundary . We denote the
exterior boundary by . The photon intensity, due to a
source at can be modeled as the solution of the following
system of coupled partial differential equations:

(12)

with the following boundary conditions on

(13)

where and are the diffusion coefficients in and
respectively, are the absorption coefficients, the modulation
frequency is is the speed of light in tissue, and the unit
outward normal vector to a surface is . The coefficient is
dependent on the indices of refraction at the exterior boundary.
The quantities and are the limits of as we
approach from the interior of the absorbing object and from
its exterior, respectively.

We also consider the solution of the diffusion equation for a
homogeneous medium, with a Robin-type source at the detector
position

(14)

In the Appendix, it is shown that

(15)

where and .
In our work, we assume that our measurements are comprised

of delta functions at the detector locations. Thus, we define the
source-detector measurement as the mea-
surement due to source , measured by detector . If we write
(15) in polar coordinates, we obtain

(16)

where the origin is taken to be the center of . In order to clearly
illustrate the shape-based approach to image reconstruction, in
the remainder of this paper we will consider reconstruction of
objects which are absorbing only, for which .

We now consider the calculation of the sensitivity functions
required for both the optimization procedure discussed in Sec-
tion IV and for the computation of performance bounds in Sec-
tion VI. Derivatives of the observed data with respect to and

are obtained easily from (16) as

(17)
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(18)

We note that (17) is an integral over the surface of the object and
(18) is an integral over the volume of the absorbing object.

To compute the derivative of the data with respect to the
center position of the object, we make use shape derivative re-
sults in [29]. More specifically, if If is a differentiable
vector field defined in some neighborhood of , then we can
define the shape derivative of the field due to a particular point
source with respect to an infinitesimal perturbation of in di-
rection as follows:

(19)

Now note that for any function , if we define as
then the shape derivative of with respect to a

perturbation of by is [29]

(20)

Making use of this expression, we can compute the sensitivity
of the measurements to perturbations in the object’s center posi-
tion. Perturbing the coordinate of our object’s center is equiva-
lent to shape transformation by a vector field where
everywhere. Thus, the derivative of a measurement with respect
to a change in the component of the center position can be
computed as

(21)

The derivatives with respect to changes in the and compo-
nents of the object center position are found analogously. The
gradient with respect to the object center position, , is then

(22)

IV. COST FUNCTION AND OPTIMIZATION

In a typical DOT experiment, the medium is illuminated se-
quentially at each of source positions, with measurements
made at detector positions. If we arrange our measurements
as a vector, the goal of our inverse problem is to minimize the
following cost function, where we assume that all measurements
are made at a given discrete modulation frequency:

(23)

(24)

(25)

where and are the magnitude and phase, respec-
tively, of the measurement of the fluence due to source , mea-
sured at detector location . and are the corre-
sponding hypothesized measurements of magnitude and phase,

given a forward solver and an estimate of the object shape pa-
rameters, . The covariance matrix of the noise, assumed to be
Gaussian, is given by .

In this paper, has the following form:

(26)

where are the , and components of the object
center position, respectively, is the absorption contrast, and

is the shape parameter vector.
In the shape optimization, we make use of a projected Newton

method [39], which is the projection of the Levenberg–Mar-
quardt method onto the manifold defined by (9)–(11). Specif-
ically, we employ the following algorithm.

Algorithm 1:
1) Choose values for , the initial center position, , the

initial contrast, and , the initial shape parameter vector.
2) Compute the source and detector solutions for the current

shape estimate: .
3) Compute the cost function

4) Compute .
5) Update the estimate

(27)

where we choose and to minimize the cost function of
the new estimate. We choose by means of a backtracking
line search [40].

6) Return to step 2 until convergence.
In (27), is an orthonormal basis for the null space of the

gradient matrix of the constraint set defined by (9)–(11), and
is the length of the step taken in the search direction. The Jaco-
bian matrices, , and are obtained by computing
(22), (18), and (17), respectively, for all source-detector mea-
surement pairs. We note that we assume that and are com-
prised of measurements of amplitude and phase and we make
use of the chain rule in order to compute the Jacobian matrices
with respect to these measurement types. We approximate the
integral in (27) numerically. This optimization is an extension
of the standard Levenberg–Marquardt method, where the search
direction is projected onto a lower-dimensional manifold de-
fined by the constraint set.

For the purpose of comparison, we also make use of an al-
gorithm in which the object center position is known a priori.
In this case, we use an unconstrained Levenberg–Marquardt al-
gorithm and optimize only the shape parameters and the object
contrast.

Algorithm 2:
1) Choose values for , the initial contrast, and , the

initial shape parameter vector.
2) Compute the source and detector solutions for the current

shape estimate:
3) Compute the cost function:
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4) Compute
5) Update the estimate:

(28)

where we choose and to minimize the cost function of
the new estimate. We choose by means of a backtracking
line search.

6) Return to step 2 until convergence.

V. VOXEL-BASED NONLINEAR RECONSTRUCTION

We have also implemented a more standard image reconstruc-
tion algorithm in which we estimate the absorption at each point
in space by assuming that it can be decomposed as a linear com-
bination of piecewise-constant basis functions

(29)

where is the characteristic function of voxel .
Estimating the absorption at each point in space, given this

assumption, is then equivalent to estimating the vector
. It can be shown that the Fréchet derivative

of a measurement with respect to a small perturbation in
is [10]

(30)

We then make use of a nonlinear optimization algorithm to
estimate , with Tikhonov regularization applied to stabilize
the inversion. Our optimization algortithm, then, strives to min-
imize the following quadratic cost function:

(31)

where is the regularization parameter and is the finite-dif-
ference approximation of the Laplacian [9], used to introduce
smoothing of . We implement as a sparse matrix. Specif-
ically, we follow the unconstrained Gauss–Newton procedure
listed below.

Algorithm 3:
1) Choose a value for , the initial guess. As our initial guess,

we assume that , where is known a
priori.

2) Compute the source and detector solutions for the current
value of .

3) Compute the cost function

4) Compute the Jacobian matrix , using (30) and applying
the chain rule to compute the sensitivity with respect to
amplitude and phase measurements, for all source-detector
measurement pairs.

5) Update the estimate

(32)
where we choose to minimize the cost function of the
new estimate. We choose by means of a backtracking
line search.

6) Return to step 2 until convergence.

VI. CRAMÉR–RAO LOWER BOUND AND SHAPE BOUNDS

An advantage of being able to explicitly compute shape sen-
sitivities is that we can compute a lower bound on shape param-
eter estimation accuracy, in the case of an unbiased estimator,
which we will be assume to be the case for our estimation pro-
cedure. It is possible to extend the approach used in this section
to biased estimators [41] and to Bayesian estimation [42].

More specifically, we can compute a lower bound on the es-
timation covariance using the Fisher information matrix (FIM):

(33)

where the FIM is

(34)

and is the joint probability density of the observation
vector and the parameter vector where denotes the
expected value of our estimate.

In the case of measurements corrupted by Gaussian noise, we
have the following simplified form for the FIM for the estima-
tion of :

(35)

where is the Jacobian of our measurements with respect to
, each element of which can be computed using (17), (18), and

(22).
In our case, where there are additional constraints on , it is

necessary to use the constrained Cramér–Rao bound. If is a
set of differentiable constraints and is its gradient matrix,
then it can be shown that [35]

(36)

where the constrained Fisher information matrix is

(37)

and is a matrix whose columns form an orthonormal basis for
the null-space of .

Given a lower bound for the parameter covariance matrix,
we wish to determine bounds on the shape

itself. To accomplish this end, for each point on the boundary,
we compute the maximum deviation such that the parameter
vector is within a given confidence interval. Thus, we solve the
following constrained optimization problem for each point on
the boundary:

(38)
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Fig. 2. Randomly generated third-order shape and performance of a voxel-wise algorithm in reconstructing this shape. (a) True third-order absorbing object. (b)
Fifty percent absorption isosurface for the voxel-wise reconstruction. (c) Slices in z for voxel-wise reconstruction. (d) Convergence of the cost function for the
voxel-wise reconstruction.

where is our confidence interval. In this equation, the block,
with dimension 1 4 is used to select only those shape parame-
ters used to encode the object radius, ignoring those which relate
to object position and contrast. This expression can be used to
computed the maximal perturbation in the object radius, where

. The same procedure can be used to give us a confi-
dence interval on the object center position and on the contrast.

VII. RESULTS AND DISCUSSION

In order to evaluate the performance of our algorithms, we
tested them for randomly-generated objects with predefined
levels of complexity. These objects were assumed to be pa-
rameterized using (3), where was 2 cm and the remaining
coefficients of were drawn from a multivariate Gaussian prior
distribution with covariance where was 0.1. In all of
the simulations that follow, we assumed that the measurement
noise was Gaussian, with a diagonal covariance matrix. The
components of the noise covariance matrix for amplitude
measurements were proportional to the measured amplitudes
(with the constant of proportionality chosen to achieve a de-
sired signal to noise ratio) and the diagonal elements of the
covariance matrix corresponding to phase measurements all
had the same value.

In Fig. 2(a), we show a shape generated using spherical har-
monic coefficients of order 3 and below, for which we have sim-
ulated diffuse optical measurements. The object is embedded in
a cubical region filled with a diffusing medium 6 cm on a side,
and we make use of a transmission geometry, with 25 sources
and 25 detectors uniformly distributed on the cm and

cm planes, respectively. A background absorption of 0.05
cm was assumed, and we assumed an absorption contrast of
0.15 cm The true absorber was centered at (3, 3, 3) cm and
had a volume of 2.94 cm . We initialized our reconstructions
with a spherical object 1.6 cm in diameter centered at (4, 4, 4)
cm, with an absorption contrast of 0.07 cm .

We have empirically found that the following procedure is
quite effective in simultaneously estimating an object’s shape
and contrast. We first assume that the object is spherical (i.e.,
using a spherical harmonic representation of order 0). After
the zeroth-order estimate has converged, we initialize a higher-
order model with the position estimated using the simplified
spherical model. Skipping this initialization step tends to sig-
nificantly reduce the convergence rate of our algorithms or will
even cause them to converge to suboptimal local minima.

In all of the examples described in this paper, we make use of
a finite-difference-based forward model, discretized using a uni-
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Fig. 3. Evolution of third-order shape estimate and performance of shape-based reconstruction algorithm. (a) Iteration 1. (b) Iteration 3. (c) Iteration 5. (d) Con-
vergence of the cost function. (e) Convergence of the absorption contrast estimate.

form grid, with voxels 0.2 cm on a side. Partial-volume effects
are taken into account by computing the volume of the intersec-
tion of the object with each voxel, making use of integration in
spherical coordinates. To compute the forward solution, we dis-
cretize the partial differential equation (PDE) described by (12)
as a large, sparse matrix, and solve using the GMRES iterative
method [43]. A modulation frequency of 70 MHz was used for
all measurements.

For the purpose of comparison, we show in Fig. 2(b) and (c)
a voxel-based nonlinear reconstruction of the absorption,
computed using Algorithm 3, for data produced by the ab-
sorbing object shown in Fig. 2(a). For both the voxel-based and
shape-based reconstructions, amplitude-dependent Gaussian
noise was added such that the signal-to-noise ratio (SNR) of
the amplitude measurements was 80 dB, and Gaussian noise
with a standard deviation of 0.1 was added to the phase
measurements. For all three optimization algorithms, we chose
as a stopping criterion that the change in the residual between
two iterations of a given algorithm be less than 1%. The reg-
ularization parameter was estimated by means of the L-curve
method [44], [45] to have a value of 1.0. We note that the peak
absorption contrast is estimated to within 10% of its true value,
but, as is generally the case with DOT reconstructions, the
reconstructed absorber is quite smooth and is lacking distinct

edges. Thus, if the reconstructed image in Fig. 2(b) represented
a tumor, it would be very difficult to definitively estimate
the tumor’s volume, or for that matter, its actual absorption
contrast.

In Fig. 2(d), we show the convergence behavior of our voxel-
wise reconstruction procedure, as a function of iteration, noting
that the cost function which we will reference in the remainder
of this paper is the square-root of (23). Fig. 2(b) shows the 50%
isosurface of the reconstructed absorber. Reducing the regular-
ization parameter may help to reconstruct missing fine details,
but the level of image artifacts worsens.

In contrast, the results of the shape-based image reconstruc-
tion, using the same data as for the voxel-wise reconstruction,
are shown in Fig. 3, which illustrates the evolution of our shape
estimation in the first five iterations of the algorithm. We note
that, for this case, at least visually, the true shape, position, and
orientation of the absorber are reconstructed quite accurately
after five iterations of the algorithm. The initialization step of
the algorithm, using a zeroth-order model, converged from an
initial guess of (4, 4, 4) cm to a center position estimate of (3.18,
3.20, 3.28) cm in 15 iterations. After full optimization, in which
all parameters were allowed to vary, the final center position es-
timate was (3.09, 2.89, 3.03) cm . As illustrated in Fig. 3(d), the
cost function continued to decrease further until approximately
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Fig. 4. Background variation added to investigate the effect of heterogeneous absorption: z = 3:0 cm slice shown. (a) High variance background variation. (b)
Low variance background variation. (c) Reconstruction in case of high variance background variation. (d) Reconstruction in case of low variance background
variation. (e) Isosurface of voxel-based reconstruction given high variance background variation. (f) Isosurface of voxel-based reconstruction given high variance
background variation.

the twenty-fifth iteration. Fig. 3(e) shows that an absorption con-
trast of 0.14 cm is estimated after five iterations, but that the
convergence rate for the contrast drops at this point, requiring
approximately 20 more iterations for the contrast to converge to
its true value of 0.15 cm . This is typical in our simulations;
there seems to be a subtle interplay between accurate estimation
of shape and estimation of contrast.

Fig. 3(d) also compares the convergence of the algorithm in
the cases where the object center position is known a priori to
the case when it is not assumed to be known. In the former case,
Algorithm 2 is used, and, in the latter Algorithm 1 is employed.
In both cases, the algorithm converges to a cost considerably
lower than the minimum achieved by the voxel-based recon-
struction approach. In addition, as expected, the rate of con-
vergence is somewhat slower in the case where we have less a
priori information, but the minimum is still reached in approx-
imately 25 iterations. In the case where the center position was

known, our estimator was able to reach a value within one stan-
dard deviation of the expected Chi-squared error due to noise,
meaning that essentially all of the information was extracted
from the measurements. This minimum was not reached in the
case where the center was not assumed known, and the reason
for this is that our projected-Newton algorithm did not satisfy
the centroid constraint exactly, and thus the estimated center
tended to drift slightly from the true center position as the al-
gorithm progressed (with the shape parameters compensating
accordingly).

In terms of computation time, each iteration of algorithms
1, 2, and 3 requires approximately the same amount of time
to complete, as computation of the shape and voxel-based Ja-
cobian matrices is very nearly instantaneous compared to the
time required for solution of the forward problem. Algorithms
1 and 2, which required approximately 25 and 30 iterations to
converge, respectively, used approximately 24 h of computation
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Fig. 5. Shape reconstruction as a function of model order: (a) true eighth-order absorbing object; (b) order 0 estimate; (c) order 1; (d) order 2; (e) order 3; (f) order
4; (g) order 5; (h) order 6; (i) order 7; (j) Order 8.

time on an AMD Opteron workstation with 2 GB of memory.
Each forward/adjoint solve required approximately five minutes
of computation time and much of the computational cost of our
algorithms resulted from the use of a fairly precise line search
in the update step of the Newton method. In a limited set of
simulation studies, we have found that an equally accurate so-
lution can be found with a much less accurate, and, thus, much
less computationally expensive, line search. In contrast, algo-
rithm 3 converged to a less accurate solution in six iterations,
consuming approximately 6 h of computation time on a work-
station with the same characteristics.

An important question is whether shape-based image re-
construction methods are robust even in the very realistic
circumstance where the medium is not exactly piecewise
constant. To explore this question, we have conducted simu-
lations with variation in the medium’s background absorption
coefficient, where, again, the true absorbing object is shown
in Fig. 2(a). We generated Gaussian independent identically
distributed random noise fields with two different values chosen
for the noise variance. These random noise fields were added

to the absorption throughout the image, including within the
absorbing anomaly, with the resulting absorption images for
the cm slice of the medium shown in Fig. 4(a) and (b).
In Fig. 4(a) and (b), we have simulated random processes with
relatively high and low variance, with standard deviations of
0.03 cm and 0.005 cm , respectively, where the background
absorption was 0.05 cm . The results of shape-based recon-
structions, using Algorithm 1, for the levels of background
variation in Fig. 4(a) and (b) are shown in Fig. 4(c) and (d), re-
spectively. The volume of the actual object, shown in Fig. 2(a),
is cm . For the case of low-variance background vari-
ation, the estimated volume was 2.6 cm and the estimated
absorption contrast was 0.17 cm (the true contrast was 0.15
cm ), giving errors of % and 13.3% in volume and
contrast, respectively. In the case of high-variance background
absorption variation, the errors in estimated object volume and
contrast were % and 33.3%, respectively.

For the purpose of comparison, we have computed voxel-
based reconstructions of absorption, using Algorithm 3, for the
cases shown in Fig. 4(a) and (b). The isosurfaces representing a
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value of absorption 50% below the peak perturbation are shown
in Fig. 4(e) and (f), respectively. We note that the voxel-based re-
construction algorithm estimated approximately the correct lo-
cation, contrast (in both cases, a peak contrast of 0.15 cm was
estimated), and orientation for the absorbing object, but, again,
the reconstructions were excessively smooth and the true shape
of the boundary was not recovered.

Next we study model-order selection while reporting the per-
formance of Algorithm 1 for a more complex shape. We also in-
creased the amplitude and phase noise such that the amplitude
SNR was only 40 dB and the standard deviation of the phase
noise was 1.0 . Fig. 5(a) shows a randomly-generated shape,
using spherical harmonic coefficients of order 8 and below. This
example is intended to model the spiculated nature of tumors in
the breast. Fig. 5(b)–(j) shows the estimated shape as we vary the
order of the model used in the reconstruction. As in the previous
example, the absorption contrast was 0.15 cm . We note that
we are able to reconstruct the fine details of the absorber shape,
although it is not visually clear whether there is reconstruction
accuracy improvement for models of order 5 and higher.

In Fig. 6, we report a quantitative analysis of the results shown
in Fig. 5. In Fig. 6(a), we see that the cost function continues
to decrease as the model-order used in the reconstruction is in-
creased until order 6. For orders 6 and above, the cost is approx-
imately constant. Fig. 6(b) shows that the image reconstruction
error also decreases as the reconstruction model-order increases
until order 6, but that the error increases using models of orders
7 and 8. Thus, in higher noise situations, using an excessively
complex model can be counter-productive. Fig. 6(c) and (d)
shows the estimation of object volume and contrast as a func-
tion of model order, with the true volume and contrast, respec-
tively, depicted as dashed lines. By numerical integration, we
computed a true inhomogeneity volume of 4.82 cm and, using
a model of order 6, which minimized the reconstruction error,
the estimated volume was 4.43 cm , giving an error of %.
Likewise, for the order 6 model, the estimated contrast was
0.164 cm , an overestimation of the true contrast by 9.3%.
Even in the case of a relatively high level of measurement noise,
then, the volume and contrast of a high-contrast absorber with
a very complex shape can be estimated quite accurately, with
errors of less than 10% in object volume and absorption con-
trast. Fig. 6(e) shows the interesting result that, regardless of the
model complexity used in the reconstruction, the product of the
estimated contrast and the estimated object volume is approxi-
mately constant, as suggested by the analysis in [46].

Finally, we visualize Cramér–Rao-based shape recontruction
bounds for the object shown in Fig. 2. In Fig. 7, we visualize
the shape reconstruction uncertainty region assuming amplitude
SNR of 80 dB and phase noise having a standary deviation
of 1 . The bounds are computed using (38), with .
In Fig. 7(a), we show the reconstructed shape bounds where
the center position and object contrast are known a priori, cor-
responding to Algorithm 2. In Fig. 7(b), the same results are
shown where the center position and object contrast are not
known a priori, corresponding to Algorithm 1, and the centroid
constraints, (9)–(11) are imposed. In this case, the constrained
Cramér–Rao bound must be used. We observe that the unknown
center position and unknown contrast do increase the maximal

Fig. 6. Quantitative investigation of model order. (a) Residual at estimate to
which shape reconstruction converged, as a function of model order. (b) Re-
construction error as a function of model order. (c) Estimated shape volume as
a function of model order. (d) Estimated absorption contrast as a function of
model order. (e) Product of volume and absorption contrast for estimated shape
as a function of model order.
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Fig. 7. Visualization of the shape uncertainty region for a third-order shape,
with a phase noise variance of 1 . (a) Uncertainty in the case where the center
and absorption contrast are known a priori. (b) Uncertainty in the case where
the center and absorption contrast are not known a priori.

shape uncertainty, but to a relatively modest degree, less than
15%.

We note that the confidence regions shown in Fig. 7 may be
somewhat pessimistic, in that we are computing the maximum
perturbation at each point of the boundary given that the shape
parameters are within a 95% confidence interval. It may be that
a method, such as that described in [47] may give a somewhat
less conservative estimate of the shape confidence region.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have shown that highly accurate esti-
mation of object boundaries is possible in DOT, an imaging
modality with typically very low spatial resolution, even with
realistic levels of noise added to the measurements. We have
demonstrated a Newton-type image-reconstruction algorithm
for the nonlinear reconstruction of absorbing inhomogeneities
which are simply connected and polar in shape. With the shape
boundaries represented using the real and imaginary parts of the
spherical harmonic functions, our algorithm simulataneously
estimates object shape, center position, and contrast, making
use of constrained estimation with a centroid constraint to en-
sure the uniqueness of the shape/center representation. We are
able to compute the sensitivity of the cost function to perturba-
tions in object shape, center position, and contrast directly, by
making use of shape derivative theory, thus obviating the need

for computationally expensive finite-difference computations.
Given knowledge of these sensitivities, and making use of the
constrained and unconstrained Cramér–Rao lower bounds, we
are able to compute a lower bound on the uncertainty in our
estimates of shape parameters for a given absorbing object,
source-detector configuration, and level of measurement noise.
In addition to giving us a confidence region on the shape
estimates which we obtain, this information can help us to
design sensors and to determine the best-case performance of
an imaging system with known characteristics.

We hope that this work will be of use in improving the res-
olution of DOT and in making the results more quantitatively
useful, particularly in the estimation of the contrast and size of
tumors in the breast. Future work will extend the results in this
paper to the problem of simultaneously estimating an object’s
absorption and scattering contrast, as well as to the problem of
reconstructing objects using measurements at multiple wave-
lengths, incorporating spectroscopic constraints.

APPENDIX

DERIVATION OF (15)

In what follows, we make use of a similar procedure to that
used in [48]. Multiplying (12) by and integrating over

we find

(39)

Using the divergence theorem, this expression can be rewritten
as

(40)

Likewise, multiplying (12) by , integrating over , and
using the divergence theorem, we find

(41)

Summing (40) and (41) and applying the boundary condition
that on , we find
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(42)

where . Finally, from (12) we see that

on . Using this result in (42), we obtain

(43)

Applying the same procedure, we multiply (14) by and
integrate over

(44)

Using the divergence theorem, we find

(45)

Finally, we apply the boundary condition from (14) that
to (45)

(46)

Subtracting (46) from (43), we obtain

(47)

from which (15) follows.
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