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Abstract—We propose a new approach to approximating the
Chapman-Kolmogorov equation (CKE) for particle-based non-
linear filtering algorithms, using a new proposal distribution
and the improved fast Gauss transform (IFGT) with tighter
accuracy bounds. The new proposal distribution, used to obtain
a Monte Carlo (MC) approximation of the CKE, is based on the
proposal distribution found in the auxiliary marginal particle
filter (AMPF). By using MC integration to approximate the inte-
grals of the AMPF proposal distribution as well as the CKE, we
demonstrate significant improvement in terms of both error and
computation time. We consider the additive state noise case where
the evaluation of the CKE is equivalent to performing kernel den-
sity estimation (KDE), thus fast methods such as the IFGT can be
used. In practice, the IFGT demonstrates performance far better
than that which is predicted by current error analysis, therefore
the existing bounds are not useful for determining the IFGT
parameters which in practice have to be chosen experimentally
in order to obtain satisfactory compromise between accuracy and
speed of the filtering algorithm. We provide in this paper much
improved performance bounds for the IFGT, and which unlike the
previous bound, are consistent with the expectation that the error
decreases as the truncation order of the IFGT increases. The new
bounds lead to a new definition of the IFGT parameters and give
important insight into the effect that these parameters have on the
error, therefore facilitating the choice of parameters in practice.
The experimental results show that we can obtain similar error
to the sequential importance sampling (SIS) particle filter, while
using fewer particles. Furthermore the choice of the new IFGT
parameters remains roughly the same for all the examples that we
give.

Index Terms—Fast Gauss transform, improved fast Gauss trans-
form, kernel density estimation, nonlinear filtering, particle filters.
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I. INTRODUCTION

ONLINEAR filtering is concerned with dynamic systems
of the form

zp = f(Tr—1, wk) (H
2 = g(Tk, Vi) )

where x;, and z; denote the state and measurement vectors at
time k respectively, wy, and v denote two independent noise
sequences, and f(), g() can be any two functions of the state
vector. The aim of filtering is to find the posterior state distribu-
tion p(xr|21.x), where z1. e {z1,..., 21 }. The posterior state

distribution can be computed recursively using [11]

p(xk|21:6—1) = /p(xk|37k—1>p(37k—1|21:k—1)d37k—1 3)
1
p(zk|21:8) = ap(zkﬂk)p(l’”zl:kfl) “4)

o 2 /p(zk|$k)P($k|Z1:k—1)d$k- (5)

When the state and measurement equations are linear and
the noises are Gaussian, (3)—(5) can be evaluated analytically
using the Kalman filter [1]; otherwise, the recursive equations
can only be approximated. One common approach is the ex-
tended Kalman filter (EKF) [1] where the nonlinear functions
in (1) and (2) are replaced with a first-order Taylor series
approximation and used in the Kalman filter. Another common
approach is particle filtering or sequential Monte Carlo (SMC)
methods [8], [21]. Most particle filters approximate the joint
density p(z1.x|z1.1) although only the marginal p(x|z1.1) is
of interest, thereby necessitating the use of a resampling stage.
The other paradigm to particle filtering [2], [11] approximates
the marginal p(xy|z1.) directly and was termed the marginal
particle filter (MPF) in [2]. The MPF uses Monte Carlo (MC)
integration and importance sampling (IS) to approximate
the integrals in the Bayes recursion equations (3)—(5). When
using the MPF, there are two challenges that have to be ad-
dressed, choosing a proposal distribution and evaluating the
Chapman—-Kolmogorov equation (CKE) (3) in a computation-
ally efficient manner especially for high dimensional problems.

Using IS requires the definition of a proposal distribution
from which one draws the samples that are used to obtain the
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MC approximation of the integral. Although in theory any prob-
ability density function (PDF) with the same support as the pos-
terior can be used, in practice due to the limited computational
resources it is advisable that the proposal be as similar as pos-
sible to the posterior in order to obtain the best performance. In
this work we develop a new proposal distribution for MC inte-
gration using IS.

The computational complexity of evaluating (3) N times is
O(N?), where N is the number of samples used to represent
the PDF in each time step. Most previous work employing the
MPF [11] considered the one and two dimensional cases where
the number of particles is relatively small, thus (3) was evalu-
ated directly. In [2] the fast Gauss transform (FGT) [5], which is
an efficient kernel density estimation (KDE) method, was used
to speed up the computation when the state noise is assumed
Gaussian and additive. KDE methods have also been used in
other nonlinear filtering algorithms besides the MPF [19], [20];
however, whereas the later methods use the KDE as a part of the
resampling stage, in [2] the KDE was regarded as another inter-
pretation of the CKE. In this work we consider the use of the
improved fast Gauss transform (IFGT) [7] to reduce the com-
putational complexity of the CKE. Similarly to the FGT, the
IFGT can be used to perform fast KDE; however, its computa-
tional constant grows more moderately with the dimension com-
pared to the FGT for which the computational constant grows
exponentially with the dimension. In practice, the IFGT demon-
strates performance which is far better than the existing perfor-
mance bounds; thus, they are not useful to determining the trun-
cation order and the number of clusters that should be used to
clusters the source points. In this work, we develop new perfor-
mance bounds which are significantly tighter and which, unlike
the old bounds, agree with our expectation that the error de-
creases as the truncation order increases. The new bounds lead
to a new definition of the IFGT parameters and give new insight
into the effect that these parameters have on the error, thus fa-
cilitating the experimental choice of the IFGT parameters.

Our experimental results show that using the new framework
we can obtain similar error and timing results to the sequential
importance sampling (SIS) particle filter; however, the number
of particles can be reduced significantly. This may prove to be
significant in practical real time implementation as the storage
complexity is reduced significantly. Furthermore, when consid-
ering filtering in sensor networks, power conservation require-
ments necessitate using as few particles as possible [22] since
the particles need to be transmitted between the different nodes
in the network.

The remainder of this paper is organized as follows. In
Section II, we give the background on the FGT and the
IFGT and provide background on MC integration and IS. In
Section III, we describe the nonlinear filtering algorithm and
the new proposal distribution. In Section IV, we derive new
upper error bounds for the IFGT, and in Section V we analyze
the new bounds and explain how to choose the IFGT parameters
based on the new bounds. Section VI presents experimental
results for the nonlinear filtering algorithm. Finally, Section VII
concludes this paper.
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II. BACKGROUND

In this section, we provide the background on KDE and the
FGT and IFGT algorithms, as well as the background on Monte
Carlo integration and importance sampling which are used in
the nonlinear filtering algorithm.

A. KDE

KDE is most often used to determine a nonparametric PDF
from a set of samples {s; };\:1 [3]. The KDE evaluated at a target
point ¢ then takes the form

N
G(t) 2 3K (t _,LSJ) ©)
j=1

where K(-) is a kernel function with scale parameter A (the
“bandwidth”), s; € RP are referred to as source points, ¢; € R
are the source strengths, and D denotes the dimension. For the
purpose of obtaining a good nonparametric estimate of the PDF,
the optimal bandwidth h* has to be estimated [9]. Evaluating
G(-) in (6) at N different target points has quadratic computa-
tional complexity, therefore there have been several approaches
suggested in literature to reduce this computational complexity
while compromising on the accuracy.

The different methods to fast evaluation of KDE rely on the
divide and conquer approach where either the source space or
the joint source and target space are first partitioned into dif-
ferent regions. Beyond the initial partitioning the various al-
gorithms can be categorized into discrete approximation tech-
niques such as the dual tree algorithm (DTA) [4], [9] and contin-
uous approximation algorithms such as the FGT and IFGT. The
DTA uses tight upper error bounds to approximate large clus-
ters in the joint source target space using a centroid approxima-
tion. Furthermore, the DTA can be used under several choices of
kernel functions and its speed is independent of the dimension.
However, significant speed-ups are usually obtained only when
the bandwidth is smaller than the optimal bandwidth [9]. Since
for the nonlinear filtering case, the bandwidth is determined
by the state’s noise standard deviation, this may significantly
limit the applicability of the DTA for cases where the state’s
noise standard deviation is larger than the optimal bandwidth
for the particles. The FGT applies only in the case of a Gaussian
kernel where a Hermite polynomial expansion is used to ap-
proximate the Gaussian kernel function beyond the initial space
partitioning. The Hermite expansion enables (6) to be approxi-
mated to any degree of accuracy using an alternative expression
whose computational complexity is linear in the number of sam-
ples, however the computational constant grows exponentially
with the dimension. The IFGT solves this problem by using a
different form of expansion for the Gaussian kernel such that the
computational constant grows more moderately with the dimen-
sion. Both the FGT and IFGT can offer a significant speedup
when the bandwidth is larger than the optimal bandwidth.
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1) The FGT: The FGT considers the special case where the
kernel function in (6) is a Gaussian:

N
G(t) =+ Z qje—ll'f—sj'llz/%2 (7)
7=1

where o2 denotes the variance of the Gaussian kernel, and
k' = (2r0?)P/2. The basis for the FGT is the one dimen-
sional Hermite expansion of the Gaussian function around
point s* € R:

(e}

1 /s—s*\" t— s*
ZH(\/EU)}LTL( 20) ®)

n=1

ef(tfs)z/ZU2 —

where ¢,5 € R and where ho(t) 2 (=1)*d®/dt*e=*", and
satisfies the recursion: hy41(t) = 2tha(t) — 2aha—1(t).

The extension to the multidimensional case is then ob-
tained using the products of the one dimensional expan-
sions. We adopt the multi-index notation used in [5], where
a = (ay,...,ap) is a D dimensional tuple of nonnegative
integers. For any ¢t € RP we define t* = #{* .- a%”, and
ha(t)=ha,(t1) - hap(tp). The factorial of the multi-index
« is defined as a! = aq!---ap!, and the length is defined as
|| = a1 + -+ + ap. The multidimensional expansion of a
Gaussian around s* € RP therefore takes the form

ot s L (AR (L)
¢ ‘;)a!h”(ﬁc) (ﬁff) ©

where t,s € RP, At =t — s*, and As = s — s*.
Truncating (9) after the first p terms and substituting into (7)
yields

At
G(t) =k - ;Aaha (E) + Er (10)
1 N ASj @
P 169 “”

where As; = s; — s*, Er is the truncation error, and A, are
the FGT coefficients.

Let N sources with weights {qj};.\z’l lie in a D dimensional
box with center sp and side lengths 2ro, with » < 1. Then the
error Fr due to truncating the series (10) after pP terms satisfies
the bound [6]

|Er| < Qpey T (12)

where

o . D-1 /1 a D—d
T _ _ P\ o
g ‘(1—r>D,§<d>“ ) 0

a

and where Qp = Zj\T:Bl lg;]
The FGT partitions the source space into D dimensional
boxes of side 2ro with r < 1, which are parallel to the axes.
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Each source point s; is then assigned to the box in which it
lies, and the FGT coefficients (11) for each box are computed
using the sources assigned to it where the s* for each box is
the center of the box. The FGT evaluates each of the target
points at each of the (2n + 1)Pn € N nearest boxes, which
adds an error which is bounded by Qe‘2’“2"2 due to ignoring
all the source points in the other boxes. The truncation error
incurred by evaluating the target points at the (2n + 1) nearest
boxes using (10) is bounded by Qef ™, where Q = Zj\;1 lg;]-
Therefore, the FGT can approximate the KDE to any degree of
accuracy.

As can be seen from (10) and (11), the computational com-
plexity of the FGT is linear with the number of samples; how-
ever, since the number of FGT coefficients grows exponentially
with the dimension so does the computational constant. Since
(10) has to be evaluated at each cluster, the computational com-
plexity of the FGT also grows linearly with the number of clus-
ters. The FGT can also make use of translation operators which
can reduce the computational cost; however, the computational
constant still grows exponentially with the dimension.

2) IFGT: The IFGT [7] also deals with the Gaussian kernel
case, however it uses another form of expansion around a point
s* € RP instead of the Hermite expansion (9)

2 2 2 2 T 2
o llt=sl?/20% _ (~llAt?~ | As|? +2At7 As) /20
oo

NPT 2" (AtAs\"
=R T (S) 9

n=0

where t,s € RP, At =t — s*, As = s — s*, and where (14)
follows from expanding the exponent of the cross term using
a Taylor expansion. Truncating (14) after the first p terms and
substituting into (7), we have:

G(t) = e~ 18020 N~ 4, (g) +Ep  (15)
ag

|| <p
N a
~ 1 o AS]'
Aa==>"0 (T) (16)
=1
where ¢; = qje*”ASj”Q/z”Q. Since the summation in (15) is

over all the IFGT coefficients with multi-index « such that || <
p, then the computational constant grows more moderately with
the dimension compared to the computational constant of the
FGT that grows exponentially with the dimension.

Let r; and rs denote upper bounds on ||AtJ\L and || As|| respec-
tively, and let N g sources with weights {¢;};, lie inaball with
center sp and radius r. Then the error Er due to truncating
the series (15) after the pth order, when evaluating a target point

within distance r; from the ball’s center, satisfies the bound [7]

|Er| < Qpey &F (17)
where
EIFGT:Hz Te\P (Ts\P (18)
P p! \o o
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and where Qp = Z;V:”l lg;-

The IFGT clusters the source points into balls with radius r
and computes the IFGT coefficients fia for each ball using (16).
For each target point the IFGT finds the clusters whose cen-
ters lie within the range r, and evaluates the target point using
(15) at each of these clusters. The error due to ignoring all the
source points outside of range r; from the clusters’ centers is
bounded by Qe_(” —r:)?/20 [14]. The truncation error incurred
by evaluating the target point at each of the clusters is bounded
by QelFST, where Q = Zjvzl |¢;|- Therefore, for every choice
of rs r and p, we can bound the approximation error of the
KDE. However since the truncation error and the error due to
ignoring the source points outside of range r; are coupled, it
is unclear from this formulation how to choose r, and r; such
that the approximation is smaller than a specified value Qe. Fur-
thermore as was noted in [14], [17] the bound (17) is very pes-
simistic. An approach to determining the truncation order and
the parameters r, rs which is based on a bound which is tighter
than (17) was presented in [17]. First in order to decouple the
truncation error and the error due to ignoring source points out-
side of range 4, it is proposed to use r; of the form

m=7s+ R 19)
where R € R, in which case the error due to ignoring source
points outside of range 74 is Qe~F /27 and we can choose R
such that this error is smaller than Qe. Second, the source points
are clustered into K balls where K is chosen according to some
heuristic criteria which is related to the computational constant
of the IFGT rather than its accuracy. The parameter 7 for each
ball can then be obtained as the radius of the ball. The trun-
cation order p for each cluster is then determined such that
eFT (|Asjll /o) < eV =1,..., Np, where the truncation

’ ’

error for the Gaussian kernel is given by

2P Tl )2
& T (ro) = k73 (rollrlle) 0TI 20)
where
N2+ 2
I7|l+ = min (w_/ Q) ) Q1
2 o
The truncation error Fp in (15) is therefore bounded by
N
|Br] <Y lailey @™ ([Asi)1/o) (22)
j=1
< Qe. (23)

Since the number of clusters is chosen based on a heuristic
criteria rather than the bound and subsequently the truncation
order is chosen such that a specified upper bound is satisfied,
there is no guarantee that this choice is optimal under any cri-
teria. Furthermore, since in practice for the nonlinear filtering
case the IFGT parameters p, rs, r; are chosen experimentally,
the current bounds provide us with very little insight into how
they should be chosen. In Section IV, we present new bounds
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and show that they are significantly tighter than (20) and (22).
In Section V, we analyse the new bounds and demonstrate that
the new bounds also provide us with important insight into the
choice of the IFGT parameters. The new bounds also lead to
a new definition of the IFGT parameters using which we show
that one can easily approximate the KDE to any specified order
of accuracy. In Section VI, we demonstrate experimentally that
the new parameters remain roughly the same for different ex-
perimental settings.

B. MC Integration and IS

Consider the generic problem of evaluating integrals of the
form
1=Es[h(e)) = [ ho)f(a)da. (24)
and suppose that f () is a valid PDF. The MC framework approx-
imates (24) by drawing the samples (z1,...,zy) from f(z),
and approximating (24) using the empirical average

1 N
Iy =~ > hiw:) 25)
i=1

where Iy converges almost surely to I [10].

When it is difficult to sample from the distribution f(z), then
IS can be used to approximate the integral. Assume that we can
obtain samples from a proposal distribution () that satisfies
the condition support(7) 2 support( f), then by rewriting (24)

oo o] - fuo

we can use the MC integration framework to approximate (26).
By drawing the samples (21, ...,z y) from m(x) then the ap-
proximation takes the form

(z)dz  (26)

N
m=%;mmﬁ3 @7)
and since (27) is a Monte Carlo estimator it converges almost
surely to I. Although the IS framework applies to a broad range
of proposal distributions, the convergence rate depends on how
close the proposal distribution 7 () is to f(z). For poor choices
of (z) the convergence rate may be quite slow.

Another important factor influencing the quality of the MC
approximation is the quality of the samples obtained from the
proposal distribution. Using entirely random sampling does not
explore the sample space in the most uniform way, whereas
quasi-MC (QMC) methods [11] (also known as low discrep-
ancy point sets) which are deterministic in nature, lead to a
more uniform exploration of the sample space. QMC methods
have been shown empirically as well as theoretically to lead
to a faster convergence compared to entirely random sampling.
There have been several approaches presented in literature to
generating QMC points [12]. In this work we use the Halton se-
quence which pertains to the digital nets low discrepancy point
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sets family. The use of QMC methods in this work is limited to
sampling from a Gaussian mixture of the form

]\T
Zw,(j)p (:cﬂm%ll) (28)
i=1

where {w(®) } ._, are weights and p(z, |:1: 1) is a Gaussian with
mean u,g) and covariance matrix E( . The exact details re-
garding QMC sampling of this form are given in algorithm 1.
A comprehensive study on the use of QMC methods for non-

linear filtering was presented in [11].

Algorithm 1: QMC sampling from a Gaussian mixture

* Draw {j }évzl from the distribution {w,(jll
o fori =
— Find the set E; 2 {¢]5© = i}, and let | E;| denote the
number of elements in F;.
— Generate | E;| QMC points {u(f)}‘z 1' in [0,1)P.
— Transform {u“)}l llt {z (J)}uillEthl.

» perform Cholesky decomposition on X ki ,i.e.,

> = R"R
. transform {u(l)}lEl to {y(f)}‘inf, via ?/c(f) =
¢—1( ) ), d=1,...,D, where ¢(x) = (1/+/2m)

J7 exp(— 2/2)dw
o setg(Bl+0 = 1 4 Ry® g =1, |E|.
end for

III. NONLINEAR FILTERING

A. The Marginal Particle Filter

The nonlinear filtering approach that we use in this work fol-
lows that in [11] where IS and QMC methods are used to ap-
proximate the integrals in (3)—(5). Assuming we have a proposal
denisty 7(z ) from which we can sample easily, then using (27)
to approximate the integrals we can replace the recursion (3)—(5)
with

ﬁ(xklzlzk-l)zz_l wiyp (a2, ) 29)
otk ><<’>)
where ¢, = é” (2 ]2) W (31)
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and the state estimator can also be approximated using the IS
framework

~ A
T =

/ivk p(zi|zk)p(xk|21:0—1)dz) = Z$k wk
(32)

2]
?r-|’—‘

where ¢, = [ p(zk|zr)p(zk|21:6—1)dz), and the result is ob-
tained when using IS to approximate both the integrand and c.
The MPF filtering algorithm is summarized as follows.

Algorithm 2: The MPF

e Initialization: Sample N points {a:o' }N from the prior
distribution p(z), and set wi” = p(x (L)), i=1,...,N.
o fork=12,... N
— Sample N points {x,(:)}izl from the proposal
distribution 7 (zy). .
— Compute the predictive density ﬁ(x,(:) |21:6-1),
1 =1,..., N, using (29). .
— Compute the posterior weights w,gl), 1=1,...,N,
using (30) and (31).
— Compute the state estimator using (32).
end for

B. Proposal Distributions

The choice of the proposal distribution has a significant affect
on the performance of the filtering algorithm. Next we describe
several choices for proposal distributions that we consider in this
work.

1) SIS: The sequential IS (SIS) is the most computationally
beneficial choice for a proposal distribution. If we take

7T(£L’k) = (33)

p(xk|21:k71)

it simplifies (30)

w,(:) X p (zk :vkt ) (34)
thereby avoiding the computationally expensive stage of evalu-
ating the predictive density values (29). Sampling from (33) is
then performed using Algorithm 1. However this choice does
not take into consideration the information given by the latest
measurement 2y, and therefore may be inefficient and require
the number of particles N to be very large, especially in high
dimensions. Having a large number of particles N is inefficient
since it leads to a large memory complexity.

2) AMPF: The optimal choice of a proposal distribution is
the posterior distribution p(z|z1.x), however it is often hard
to obtain samples from the posterior. Using the AMPF [2] it
is possible to obtain samples from a proposal distribution that
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is close to the posterior distribution. The posterior distribution
can equivalently be written as

P(wrlz1:k) ocp(zrlor) Zwk P (xk ’wk 1)

=1

S 1 )
i (P|z1.6)p (xk ‘xk . zk) (35)
i=1

plilzi) ccwl) p (Zk 1&1)
:w,(fll /p(zk|xk)p (Jrk ‘x,(;ll) dxy,. (36)

Using (35) we can sample from the proposal distribution
p(zk|z1.) by first sampling ¢, which is known as the aux-
iliary variable from P(i|z1:), and then sampling z; from
(:L‘k|:cg’)l,7k) Since (36) cannot usually be evaluated an-

alytically, it was suggested in [2] to use the approx1mat10n
p(i|z1:k) x w,g)lp(zk|/L ) where /1,<) = Elzs |m 1]. Fur-

()

thermore, since sampling from p(zy|z,” |, z) is not always

(@

possible, we follow [2] and sample from p(zj|z;,” ;) instead,

where in all the cases which we consider p(zk|xk11) is a
Gaussian distribution from which samples are easily drawn.
Therefore, the AMPF proposal distribution is [2]

2

Z i|z1:1)p (fﬂk 5'71(9)1)

m(xk|21:1) 37)

and the sampling is performed using Algorithm 1.

3) AMPF-IS: We propose a new proposal distribution which
we call AMPF-IS, where (36) is approximated using. IS. For
each i we draw m samples {i,(cn)}nzl from p(xﬂx,@l) and
approximate (36) using

).

Blilz1) o< wi? ZP (Zk
n=1
Sampling from the proposal 7 (z|z1.x) proceeds similarly to
the AMPF case using (37), using the approximation in (38) and
using Algorithm 1.

(38)

C. Reducing the Computational Complexity of the AMPF
Using the IFGT

The AMPF and AMPF-IS improve on the SIS proposal distri-
bution since the information provided by the latest measurement
2z, is used to perform sampling in areas of high probability of the
posterior p(zy|z1.,), however there is an added computational
cost incurred by having to evaluate (29) and (37), both of which
have O(N?) computational complexity. Next we show that this
computational complexity can be reduced to O(N) using the
IFGT.

5751

In this work, we consider the case where the state noise in (1)
is a zero mean Gaussian with a covariance matrix .. Factorizing
Yinto ¥ = VTAV we can rewrite (29) as

P(Tr|21:6-1) = Kﬁ:w}gizle—||Vk-—sLi)l||2/2
=1

where v, = A2V xy, and sgf) = A1/2Vf(a:(fi)). Therefore,
(39) is equivalent to (7) where o = 1, ¢; = w,(cifl, and vy, and
sg) are the target and source points respectively. Thus, (39) can
be approximated using the IFGT. Similarly, we can approximate

(37) using the IFGT.

(39)

IV. NEW ERROR BOUNDS FOR THE IFGT

In this section, we derive new upper error bounds for the
IFGT. The first bound assumes that the source points and their
weights are given, whereas the second bound applies to the case
where only the radius of a ball containing the source points is
known.

Theorem 1: The error Ep due to truncating the series (15)
after pth order satisfies the bound

|Er| < KJHIIl”aX e Il* /20, (I=Ih (40)
where
N ) p—1
01 () = 3 lgsle 112+ 5™ g 177, qan)
J=1 n=0
Al 2
dn = —lajle™ 112" (42)
j=1""

and where {; = As;/o, T = At/o. Furthermore the global
maximum in (40) can be found by performing a line search on
|||, and the upper bound decreases as the truncation order p
increases.

Proof: The truncation error in (15) can be bounded by,

e N2 )2 i 1 n
o= lEi %72 =il /225(&'.7_)
n=p
2 N N |
S il DA (DY

Jj=1 n=p

N
—pe—lITI?/2 Z |qj|e—||£jl\2/2

j=1
p—1
e 1 n
. (e“fj““ -3 Ll ) m
n=0
<x max e~ I7I°/2@, (I (45)

lI=lI>0

where (43) follows from the Cauchy—Schwartz inequality, (44)
follows since the infinite sum in (43) is the tail of the Taylor
series expansion of the exponent function, and (45) is obtained
by maximizing over ||7]|.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on November 25, 2008 at 09:22 from IEEE Xplore. Restrictions apply.



5752

Let Ty (||7]]) = e 1717720, (||7]]). Since e=II"I"/2 is a de-
creasing function of |||, and ©1(||7]|) is an increasing func-
tion of ||7|| (this can be easily seen by the infinite sum form
(43)), then their product I';(]|7||) can either be a monotoni-
cally increasing function, or monotonically decreasing func-
tion, or have a single global maximum/minimum. We note that
I'1(0) = 0, and since

N
0 <y () < 3 Jgjle I /2elesli
j=1

N
= 3" |gsle I/l 1) —, 46)
j=1

as ||7]] — oo for any bounded {||£j||}j.V=1, we have I'y(00) =

0. Therefore, Ty (||7||) cannot be a monotonically increasing
or a monotonically decreasing function, and since it is a pos-
itive function it must have a single global maximum. Therefore,
(45) has a single global maximum which can be found by a
line search maximization algorithm. Additionally since the in-
finite sum in (43) decreases as p increases, so does O1(||7]|).
Therefore, the upper bound decreases as the truncation order
increases. O

In order to derive the second bound we first have to use two
propositions which are proven in the Appendix.

Proposition 1: Let

L2 (lI7ll, 7o) = e 171/20, (|i7]l, o) (47
where
p—1 1
0: (Il ro) = ¢75/2 (em'lf” =2 - ”T”)n> "
n=0
then for a given rg > 0 the solution to
a = arg max I's (||7|],70) (49)
lirl>0
satisfies a > 7.
Proof: See Appendix 1.
Proposition 2: If ||T|| > 79 > 0, it follows that
Vi O2 (|7, 70) > 0. (50)
Proof: See Appendix II.
Theorem 2: Let Np sources with weights {qj}j\ L liein a

ball with radius rgo, then the error Fr due to truncating the
series (15) after pth order satisfies the bound

|Er| < Qper ST (ro) (51)

where

6117FGT3(T0) — K max e—\|r||2/2®2 (17, 7o) -

(52)
lI=lI>0
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Furthermore the global maximum in (52) can be found by per-
forming a line search on ||7||, and the upper bound decreases as
the truncation order p increases.

Proof: Taking N = 1, ||&1]| = 7o in Theorem 1 it can
be seen that (51) is satisfied. All that is left to be shown is that
elFGTs (r4) in (52) is a monotonically increasing function of 7.
Let a be defined as in (49) then using proposition 1 we have
a > 1o > 0. Using proposition 2, and the definition of the
derivative we have

lim ! (©2(a,m0 + 6) = Oz(a,r)) > 0.

6—00 (53)
Multiplying both sides of (53) by e /2, we get
1
lim = (Fy(a, 9 + 6) — T'a(a,r9)) > 0. (54)

5§—0 O

By the definition of a and €572 (rg) in (49) and (52), respec-
tively, we have

GIIDFGTS (ro) = k2 (a, o) (55)
and
GLFGTB (ro + 6) > kla(a,ro + 6). (56)
Using (55) and (56) in (54), we obtain
lim (elFSTs (rg 4+ 6) — €793 (1)) > 0 (57)

5—0 0

which is equivalent to V, e ST#(rg) > 0. Therefore,
elFSTs (rg) is an increasing function of 7. d

V. ANALYSIS OF THE NEW ERROR BOUNDS AND CHOOSING
THE IFGT PARAMETERS USING THE NEW BOUNDS

In this section, we first analyse the new error bounds and
demonstrate that the new error bounds a) are significantly tighter
than the old bound and b) are consistent with our expectation
that the error decreases as the truncation order increases. Since
in practice the truncation order and the number of clusters that
are used to partition the source points have to be chosen exper-
imentally such that a compromise between the speed and ac-
curacy of the filtering algorithm is obtained, these new bounds
provide important insight into this choice. We then show how
the IFGT parameters 7, ¢, and p can be chosen using the new
bounds such that the KDE can be approximated to any order of
accuracy.

A. Analysis of the Error Bounds

1) Analysis of the Error Bound in Theorem 1: We evaluate
the new upper error bound in Theorem 1 and the old upper error
bound (22), assuming that the source points are drawn from
a multivariate Gaussian PDF, and the weights are obtained by
evaluating the multivariate Gaussian PDF at the source points.
This is an appropriate model for the filtering case where the
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Fig. 1. Empirical upper error bound and upper error bounds (40) and (22)
versus truncation order for source points generated from a zero mean Gaussian
with covariance matrix 0.4 I.

source points and weights represent a PDF that could be mod-
eled as a Gaussian mixture where each cluster of source points
originates from a different mixture. We compare the upper error
bounds to the maximum error obtained experimentally when
using the IFGT, where a single cluster is used for all the source
points. We generated 5000 source points from a 4-D multivariate
Gaussian with covariance matrix 0.4 I, and set the weights of
all the source points to the same value. For simplicity, we used
o = 1in (7), and we assume x = 1. We generated 5000 target
points from a uniform distribution over [—5,5]*. Fig. 1 com-
pares the upper error bounds (40) and (22), and the empirical
maximum error obtained for the generated data. It can be seen
that the new bound is significantly tighter compared to the old
bound. Since as discussed above the experimental scenario that
we used to evaluate the bound given in Theorem 1 is very sim-
ilar to what is expected in a nonlinear filtering problem, Fig. 1
gives strong evidence that using small truncation orders should
be sufficient to obtain satisfactory performance in nonlinear fil-
tering problems.

2) Analysis of the Error Bound in Theorem 2: Fig. 2 plots
ELFGTS (r9) in (52), and eiFGT? (r9) in (20) for 0 < r9 < 3,
and for truncation orders p = 5, 8. It can be seen that the new
bound elF“T (1) is significantly tighter than the existing bound
€17 T2 (rq). Furthermore it can be seen that the old bound is not
consistent with our expectation that the error decreases as the
truncation order increase. Theorem 2, on the other hand, stipu-
lates that the error decreases as the truncation order increases.
In the next subsection we describe our implementation of the
IFGT which clusters the source points into balls with radius o 7.
Therefore, based on Theorem 2 we can expect the error perfor-
mance of the filtering algorithm to improve as the truncation
order increases for any value of 7.

B. Choosing the IFGT Parameters Using the New Bounds

1) Choosing Parameters That Satisfy a Specified Error
Bound: Similarly to (19), we take ry = r5 + no, thus the error
due to ignoring all the other clusters is bounded by Qe " /2.
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100

- — —IFGT,p=8
_ 1 1 1 1 1 1
2000 0.5 1 1.5 2 2.5 3
To
Fig. 2. ¢, for the IFGT> and IFGT; versus rg, for & = 1, for truncation
orders 5, and 8.
Taking rs = 7o, the error due to truncating the expansion

after the pth order is bounded by Qe," ST (7). Therefore, by
fixing r( and p according to plots such as Fig. 2, we can bound
the maximum truncation error. Similarly we can choose n such
that Qe~""/2 is less than Qe T3 (rg). Therefore, we define
the new IFGT parameters to be 7, n, and p. The specific details
of the IFGT using this choice of parameters is summarized
in Algorithm 3. We may obtain an even tighter bound than
QeFST2(rg) for the truncation error by applying the bound
given in Theorem 1 for each cluster and summing the error
bounds over all the clusters.

2) Choosing the Parameters Experimentally: As is evident
from the previous discussion about choosing the parameters that
satisfy a specified error bound, the parameters that determine the
performance of the IFGT are n, r¢, and p. Since n is indepen-
dent of o and p it can be specified separately, whereas it can be
seen from Fig. 2 that rg and p are dependent. Furthermore the
larger p is, and the smaller 7 is the more accurate the IFGT be-
comes. The process of choosing o and p experimentally there-
fore requires incrementing p and decreasing 7 until a satisfac-
tory performance of the filtering algorithm is obtained. It should
be noted that as p increases and r( decreases the computational
constant of the IFGT also increases therefore the filtering algo-
rithm becomes slower.

Algorithm 3: IFGT

* Cluster all the source points into balls with radius ryo.

* Compute the IFGT coefficients for each cluster using (16).

» For each target point, sum over all evaluations of (15) at
all the clusters with the centers that lie within (n + 7¢)o
from the target point.

VI. EXPERIMENTAL RESULTS

In this section, we show experimental results for the new
framework to nonlinear filtering. We also compare our results
to using the SIS filter discussed previously.
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TABLE I
TIME [sec], AND RMSE WHEN USING THE AMPF AND AMPF-IS PROPOSAL DISTRIBUTIONS
WITH DIRECT EVALUATION AND IFGT, AND WHEN USING THE SIS PARTICLE FILTER

Algorithm Direct IFGT N m
RMSE | time (sec) RMSE | time (sec)

AMPF 6.3 46.2 6.4 3.7 1000 1
AMPF-IS 5.9 12.3 5.9 2 500 10
AMPF-IS 5.5 12.6 5.5 2.8 500 50
AMPF-IS 5.6 14.5 5.5 3.8 500 100
AMPF-IS 5.6 46.6 5.7 43 1000 10
AMPF-IS 5.2 49.2 5.3 6 1000 50
AMPF-IS 5.1 51.4 52 8.2 1000 | 100

SIS 6 1.9 5000

SIS 5.6 3.8 10000

SIS 5.5 5 15000

SIS 5.4 82 20000
TABLE II

TIME [sec], AND RMSE FOR DIFFERENT VALUES OF r; AND p WHEN
USING THE AMPF-IS PROPOSAL DISTRIBUTION WITH THE IFGT

To\P 1 3 5 7
RMSE | time (sec) | RMSE | time (sec) | RMSE | time (sec) | RMSE | time (sec)
1 5.5 4.8 5.4 5.7 53 9.4 53 19.2
2 5.6 45 5.4 5.2 5.4 8 53 15.5
3 5.6 3.9 5.5 44 5.4 6.4 54 11.8
4 5.8 34 5.6 39 5.5 5.5 5.5 9.2
5 5.9 32 5.7 33 5.7 43 5.6 6.4

A. Example 1

For our simulations we use the a four dimensional state space
model which is an extension of the one dimensional state space
model used in [8]

(@) (@)

(d) _

Ty = + 25 5
2 14 (xguz(d)))
+ 8cos(1.2t) + wgd) (58)
2
()
Tt
y" = ) + o (59)

20

where d = 1...4, uy = [2,4,1,3], up = [3,4,1,2], v ~
N(0,10), v\ ~ N(0,1), and 2 ~ N(0,5). Each exper-
iment had 200 time steps, and the results were averaged over
100 different experiments. We used n = 4, rg = 3, and p =
3 in the IFGT. In Table I, we compare the root mean square
error (RMSE) and timing results for the different algorithms
when using the IFGT and when using direct evaluation of (37),
(39). In the upper group of algorithms, we compare the results
when using the MPF with the AMPF proposal distribution and
with the AMPF-IS proposal distribution that we developed in
this work. In the bottom of the table, we show the results ob-
tained when using the SIS particle filter. It can be seen that the
new AMPF-IS proposal distribution significantly improves the
RMSE over the AMPF proposal distribution, and that increasing
the number of samples m used in the AMPF-IS proposal distri-
bution, decreases the RMSE. Furthermore the use of the IFGT

instead of the direct evaluation speeds up the execution time sig-
nificantly while increasing the error only slightly. The timing
and RMSE results using the AMPF-IS with the IFGT are com-
parable to the results obtained using the SIS particle filter, how-
ever the number of samples in the SIS particle filter is signifi-
cantly larger.

In Table II, we show the RMSE and timing results obtained
for different values of r¢ and truncation orders p for the same
nonlinear filtering example using n = 4, mg = 50 and N =
1000. Each experiment had 200 time steps, and the results were
averaged over 100 different experiments. It can be seen that the
results verify what is predicted by the new bounds: a) the error
increases as the value of 7 increases; b) the error decreases as
the value of p increases; and c) satisfactory RMSE performance
can be obtained for low truncation orders. Tables such as Table IT
can be used to find the optimal compromise between accuracy
and speed of the filtering algorithm.

B. Example 2

In this section, we apply the new nonlinear filtering frame-
work to the task of bearings only tracking of a single target in a
sensor network [11], [16]. The state vector €}, includes the po-
sition of the target and its velocity on the = — y plane, and takes

the form
Tpt1 = < )Zk + (

where At is the time difference between two consecutive mea-
surements, I denotes the 2 x 2 identity matrix, and wy, ~

(A;) Iy

At

I
0

Aty

I ) w (60)
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TABLE III
TIME [sec], AND RMSE WHEN USING THE AMPF AND AMPF-IS PROPOSAL DISTRIBUTIONS
WITH DIRECT EVALUATION AND IFGT, AND WHEN USING THE SIS PARTICLE FILTER

Algorithm Direct IFGT N m
RMSE time (sec) RMSE time (sec)
Tk Yk Tk Uk Tk Yk Tk Yk
AMPF | 1201 | 11.65 | 1.16 | 1.27 14.45 19.94 | 1236 | 1.28 | 1.32 2.91 600 | 1
AMPF-IS 3.09 3.37 0.93 1 14.68 2.73 33 0.88 | 0.98 3.63 600 20
AMPF-IS 2.27 292 0.88 | 0.97 15.23 2.67 3.38 0.89 | 0.99 4.43 600 50
AMPF 3.33 44 0.95 | 1.06 39.34 8.74 8.47 1.09 | 1.17 5.26 1000 1
AMPF-IS 2.25 2.84 0.88 | 0.96 39.95 2.08 2.83 0.86 | 0.95 6.73 1000 | 20
AMPF-IS 2.14 2.82 0.87 | 0.95 40.81 2.1 2.81 0.87 | 0.95 8.35 1000 | 50
SIS 11.21 | 1095 | 1.18 | 1.22 0.23 500
SIS 3.56 3.35 093 | 0.99 0.35 1000
SIS 2.15 2.78 0.86 | 0.96 0.55 2000
SIS 2.07 2.62 0.85 | 093 1.08 4000
N(0, 3). The measurement equation which we use follows the 800 J I J T g U g T
model used in [13 real track . 0o "
[13] Y400} S| IS estimated track o Tegd .. T
_ i +  sensor nodes ¥ h ’ -
2y ~WC (arctan <yk 1{) ,p) (61) 6001 ; §
T — X
500} ) i
where (Z,7) denotes the position of the sensor, and where 00 .
WC(pu, p), denotes the two parameter wrapped Cauchy distri-
bution [15], that takes the form 300t i
) 200f -
1 1—0p
Zk = — 62 L .
F(zxlw) 21 1+ p2 — 2pcos(zr, — ) 62) 198 .
0 L -
where 0 < p < 1, —7 < zg,pu < 7.
Each sensor has to choose the next leader sensor to perform  -100 . L . . L . L .
-100 O 100 200 300 400 500 600 700 800

the filtering once it has performed the measurement update. We
use the scheme that was used in [11] where the new leader £* is
chosen using the following decision rule:

¢ =arg min [(Z; — wp0)” + (T — yrep)’] (63)

i€Q(e)

where (¢) denotes the set of sensors that sensor 4 can com-
municate with, (Z;,%;) is the coordinate of sensor 4, and
(Tk41|ks Yr41/k) is the one step ahead prediction made by the
previous leader for the location of the target. Once the new
leader sensor is chosen, the previous leader sensor transmits
its state estimate p(Zg|z1.x) to the new leader sensor. For the
experiments presented here, we used At = 1 and ¥ = 0.515,
where the track with 200 time steps was generated once and
used for all the experiments. The measurements were generated
using p = 1 — o2, where we used 0 = 0.02 to generate the
measurements, and o = 0.1 to evaluate p(zg |a:,(:)) in (30) since
this was necessary in order to avoid divergence from the real
track for all the tested algorithms. The initial state estimate that
we used was distributed as N ([zo; y0]”, 10013). For approx-
imating the AMPF-IS integral using (38), we use 0 = 0.02.
We usedn = 4, rp = 3, and p = 5 in the [FGT. The timing
and RMSE results were averaged over 100 different runs. The
sensor network included 200 sensors. Fig. 3 shows the sensors,
the target’s track, and its estimate for a single experiment using
the AMPF-IS and the IFGT algorithm.

Fig. 3. Sensor network, the real and the estimated tracks.

TABLE IV
TIME [sec], AND RMSE WHEN USING THE AMPF-IS PROPOSAL DISTRIBUTION
AND IFGT FOR THE EXAMPLE IN SECTION VI-A FOR DIFFERENT
VALUES OF rg AND K

T0 RMSE | Time (sec) K | RMSE | Time (sec)
3 5.6 4.2 10 5.5 42
5.35 5 15 5.36 5
1 5.35 6 20 5.35 5.8

Table IIT shows the RMSE and timing results for the tracking
experiments. It can be seen that using the AMPF-IS and the
IFGT we can obtain similar RMSE results to the SIS particle
filter using fewer particles, however the SIS filter is faster. It
should be noted that since in such a sensor network application
the particles have to be transmitted between the different sen-
sors, energy conservation requirements mandate using as few
samples as possible. Thus, using fewer samples may be more
important than the computation time. It can also be seen that
the IFGT improves the computation time over the direct evalu-
ation, and the use of the AMPF-IS proposal distribution signif-
icantly improves the RMSE results over using the AMPF pro-
posal distribution.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on November 25, 2008 at 09:22 from IEEE Xplore. Restrictions apply.



5756

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 12, DECEMBER 2008

TABLE V
TIME [sec], AND RMSE WHEN USING THE AMPF-IS PROPOSAL DISTRIBUTION AND IFGT FOR THE
EXAMPLE IN SECTION VI-B FOR DIFFERENT VALUES OF 1y AND /X

70 RMSE Time (sec) K RMSE Time (sec)
Tk Yk Tp Uk 2k Yk Ty Uk
226 | 2.84 | 0.87 | 0.96 8.5 140 | 237 | 29 | 0.88 | 0.96 11.6
228 | 2.81 | 0.86 | 0.95 114 170 | 3.2 4.5 0.9 1 13.5
242 | 294 | 0.88 | 0.97 14.94 200 | 2.35 | 2.86 | 0.88 | 0.96 15.38

C. Choosing rg versus Choosing the Number of Clusters

As was discussed in Section V-B, the new bounds suggest
that one has to choose 7 such that the radius of the balls that
are used to cluster the data is rgo. This is as opposed to the
approach taken in [8] where as was discussed in Section II-A,
one had to specify the number of clusters instead. In order to
compare these two approaches for the nonlinear filtering case,
we show the results of the two nonlinear filtering examples in
Sections VI-A and VI-B for different choices of g, and K in
Tables IV and V, respectively. The minimal value for K was
chosen such that none of the experiments diverged.

It can be seen that similar results can be obtained when fixing
the right parameters for r¢ or K; however, the values for r( re-
main the same for the two filtering examples, whereas the values
for K change significantly between the two examples. This indi-
cates that the formulation that is proposed here may have a sig-
nificant advantage for the nonlinear filtering case as it requires
less effort when choosing the IFGT parameters.

VII. CONCLUSION

We considered the use of the IFGT to perform fast KDE for
evaluating the Chapman Kolmogorov equation in nonlinear fil-
tering. We presented new upper error bounds for the IFGT which
are significantly tighter than the existing bound. We related the
truncation error to the distance of a source point from the center
of the expansion and to the order of truncation for any target
point analytically, and we showed that this error increases as
the radius increases, and decreases as the truncation order in-
creases. Since in practice the IFGT parameters have to be fixed
experimentally, the new bounds facilitate the choice of param-
eters. We applied the IFGT to nonlinear filtering using the new
AMPF-IS proposal distribution that uses IS to approximate not
only the integrals in Bayes recursion equations, but also to ap-
proximate the integral in the AMPF. The experimental results
using the new framework verify its effectiveness and show that
it can be used to reduce the number of particles that have to
be used. We also examined the effect that the IFGT parameters
have on the nonlinear filtering performance, and confirmed the
predictions of the new bounds.

APPENDIX [
PROOF OF PROPOSITION 1

Taking the derivative of T's(||7]|, 79) with respect to ||7|| and
evaluating it at 7y we obtain

8 2])71
a”TH (r2(||7—||77"0)) = €

lImll=ro

(64)

for any 9 > 0. Therefore, all that there is left to show is
that T'o(||7||,70) has a single maximum solution, since then
(0/9|ITIN(T2(||7|l, 70)) = 0 only if ||7|| > r¢. Similarly to the
proof of Theorem 1, O3 (||7]|,70) is an increasing function of
||7|| since it is the tail of a the Taylor series expansion of the
exponent function, and e=I717/2 s a decreasing function of
||7]|. Since I'2(0,79) = 0,

0 <T ([I7]],70) < eIl /2groli~l
— e~ I7ldI7I/2=m0) __

(65)

as ||7]| — oo for any bounded rg, and since I's(||7||, 7o) is a
positive function it must have a single maximum.

APPENDIX II
PROOF OF PROPOSITION 2

Taking the derivative of ©2(||7||,79) with respect to ro we
obtain

Vo, (©2 ([l 70))

(=) 3 L rofiey I =rtre e
0 n:pn! 0 (p—1)!

which is strictly positive for every ||7|| > ro > 0.
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