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Performance dependence of hybrid x-ray
computed tomography/fluorescence molecular
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Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can im-
prove fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical in-
version problem. While the use of image priors has been investigated in the past, little is known about the
optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the
impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the
context of these hybrid imaging systems where significant structural information is known a priori. Our re-
sults demonstrate that the use of generically known parameters provides near optimal performance, even
when parameter mismatch remains. © 2009 Optical Society of America

OCIS codes: 110.0113, 110.1758.
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. INTRODUCTION
merging hybrid imaging systems such as x-ray com-
uted tomography fluorescence molecular tomography
XCT-FMT) offer high resolution anatomical information
n conjunction with in vivo quantification of cellular and
ubcellular tissue biomarkers [1–3]. Recent advances in
ata collection methodologies, modeling techniques, and
mage formation theory have led to small animal FMT
ystems that employ complete-angle 360°-projection col-
ection geometries, use CCD camera detectors for high
patial sampling of photon fields propagating through tis-
ue, and offer large field of view to obtain projections over
arge volumes.

The development of multimodal imaging methods such
s XCT-FMT has been motivated largely to address fun-
amental limitations associated with stand-alone fluores-
ence systems. Specifically, the ill-posed nature of the
MT image formation problem can be significantly offset
hrough the addition of high-resolution anatomic informa-
ion from modalities such as XCT and MRI [3–7]. Such
rior information can be used in both modeling and inver-
ion, and has been shown to significantly improve image
uality. Different inversion approaches have been sug-
ested for the implementation of inverse problems with
ethodologies that avoid the use of hard priors offering

romising characteristics in order to avoid image bias [8].
Here we investigate the forward modeling aspect of the

ybrid tomographic problem. Our imaging system em-
loys the normalized Born approximation, or Born ratio,
hich divides measurements at the fluorescence wave-
1084-7529/09/040919-5/$15.00 © 2
ength by corresponding measurements at the excitation
avelength [9]. This approach allows direct computation
f fluorescence parameters without the intermediate de-
ermination of tissue optical properties [10]. Additionally,
he Born ratio has been shown to grant a significant de-
ree of invariance to inhomogeneities in the background
ptical properties of the medium. That is, the Born ratio
orrects for differences between the modeled optical pa-
ameters and those present in vivo. Because of this cor-
ection, it is unclear whether the use of more elaborate
orward models is necessary, or if forward model simplifi-
ations will be sufficient to obtain near optimal results.

Additionally, the use of prior information in the inverse
roblem also yields significant performance improve-
ents in the resulting images. This raises questions re-

arding the interaction between structural prior knowl-
dge in the forward and inverse problems, and to what
egree inverse structural priors can compensate for sim-
lifications of the forward model. To this end, we investi-
ated inverse solutions both with and without structural
rior for each potential forward model and examined the
elative cost incurred by each subsequent model simplifi-
ation.

In stand-alone FMT, where only the air–tissue surface
ay be known using surface extraction techniques, an in-

ernally homogeneous medium can be assumed with each
ptical property constant throughout the volume, and
ata normalization can be employed to correct for the ef-
ects of tissue optical heterogeneity [11]. For imaging of
hole animals, the resulting parameter values are com-
009 Optical Society of America
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only set in the range of �a=0.3 cm−1 and �s�=10 cm−1 to
orrespond with the average values of bulk soft tissue. In
ontrast, the x-ray CT component of the hybrid approach
rovides knowledge of the internal geometry that can en-
ble the implementation of more elaborate photon propa-
ation models to account for the differences in absorption
nd scattering present within each organ or tissue. This
mproved modeling yields sensitivity functions that more
ccurately reflect the physical diffusion taking place
ithin the animal.
However, the introduction of additional optical param-

ters complicates the implementation of these models.
natomic images are frequently segmented into a number
f discrete regions corresponding to individual organs or
ptically similar tissue types, each of which must be as-
igned absorption and scattering values that accurately
eflect those present in vivo. One option for selecting
hese values is to explicitly calculate them through solu-
ion of the diffuse optical tomography (DOT) problem [12].
his approach is theoretically the most accurate but leads
o increased complexity and additional computation re-
uirements. Also important is that this calculation may
nclude and therefore propagate errors to the fluorescence
econstruction problem that can bias the final fluores-
ence image.

An alternate approach that can be employed when con-
tructing forward models for optical tomography is to em-
loy average parameter values from published or mea-
ured ranges for the different tissue types segmented on
he CT image. While perhaps not as accurate as explicit
arameter estimation on a per animal basis, this limita-
ion may be offset by the simplicity and lack of additional
omputation. What remains to be established is the trade-
ff in terms of reconstruction accuracy that results from
aving a mismatch in modeled issue optical parameters.

. METHODS
o examine the effects of parameter selection on the re-
ulting solutions, we assumed a three-dimensional geom-
try representative of the murine chest, as illustrated in
ig. 1(a). This geometry was based on an in vivo x-ray CT
f a nude mouse segmented to differentiate heart, lung,
iver, and bone from surrounding soft tissue. It is thus
oth physically realistic and representative of geometries
or in vivo multimodal imaging of the chest cavity, a re-
ion that presents a difficult fluorescence tomography
roblem because of the high degree of optical inhomoge-
eity. Two hexahedral finite element method (FEM)

ig. 1. (Color online) (a) Rendering of FEM geometry. (b) Ren-
ering showing exterior surface, lung surface, and location of all
our fluorescing inclusions used in combination to generate simu-
ated data measurements.
eshes were generated, one with approximately 64 000
odes used for data generation and a coarser 11 000 node
esh for data inversion.
Optical parameter ranges for each tissue were obtained

rom existing literature (Tables 1 and 2). From these
anges, values were selected to create four models of light
iffusion. We will refer to these models as the matched,
ismatched, midrange, and homogeneous models. The
atched model is so-called because the high-resolution
odel used for data generation for all cases employed the

ame set of tissue optical parameters. For each tissue
ype, the optical parameter value in the matched model
as selected to be at one extreme of the associated pub-

ished range. This allowed us to select optical parameters
or the mismatched model at the opposite ends of each
ange from those selected for the matched model. Given
he physically realistic ranges and the use of the matched
odel for data generation, this represents a worst case

cenario, as the mismatch in �a and �s� was maximized
ith respect to values used for data generation.
The midrange model used values at the center of their

orresponding ranges. Assuming that this represents the
verage absorption and scattering parameters for each
issue type, this choice will on average minimize the mis-
atch between the model and those parameters present

n vivo. Finally, the homogeneous model assumed that the
ptical parameters were uniform throughout the medium,
quivalent to assuming no prior knowledge about the ani-
al’s internal structure. These values are not shown in

he tables, and were set to �a=0.3 cm−1 and �s�=10 cm−1

or all tissues.
Each of these four sets of model parameters was used

o construct a diffusion problem on the anatomically de-
ned FEM mesh. Using the Deal.II FEM libraries [13,14],
olutions to the diffusion approximation were obtained for
oint sources at each of the source and detector locations.
hese solutions can be seen as Green’s functions associ-

Table 1. Modeled and Published Values for �a

Value
�cm−1�

Published
Range

Model

Matched Mismatched Midrange

Tissue 0.34 0.28 0.30
Bone 0.10 0.10 0.10
Lung 0.20–0.30 0.30 0.20 0.25
Heart 0.30–0.40 0.30 0.40 0.35
Liver 0.40–0.60 0.60 0.40 0.50

Table 2. Modeled and Published Values for �s�

Value
�cm−1�

Published
Range

Model

Matched Mismatched Midrange

Tissue 12 10 10
Bone 20 17 20
Lung 25–35 35 25 30
Heart 20–25 20 25 23
Liver 10–15 15 10 13
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ted with the diffusing system and can be used to con-
truct the appropriate normalized Born models using the
ormula [9]

w�rs,rd,r� =
G�rs,r�G�rd,r�

G�rs,rd�
, �1�

here w�rs ,rd ,r� denotes the sensitivity of a measure-
ent collected at point rd to fluorescence at a point r

iven a point source of appropriate wavelength at point rs.
he function G�r1 ,r2� denotes the solution to the diffusion
roblem at point r2 given a point source at r1.
Five fluorescing inclusions were constructed on this ge-

metry differing in location and physical dimensions. In
ach case, the boundaries of the inclusion were defined
nd interior voxels given Gaussian distributed fluores-
ence intensities. The first simulated a situation where
he fluorescent probe was spread throughout one entire
ung, such as might be found when imaging lung inflam-

ation. The remaining four targets were smaller, roughly
pherical inclusions, as illustrated in Fig. 1(b). Three of
hese were approximately 3 mm in diameter, while the
ourth had a diameter of 2 mm. Each was located at a dif-
erent nonoverlapping location within the lung to cover a
ange of possible interference from other organs.

These inclusions were used to construct a total of 16
maging scenarios. The first scenario consisted only of the
ull lung inclusion, while the remaining 15 data sets cor-
esponded to all possible combinations of 1–4 of the
maller inclusions. For each scenario, multi-angle collec-
ion of diffuse data in a transmission geometry was as-
umed. At each collection angle, a 3�10 grid of source lo-
ations was defined with overall dimensions 0.8 cm
1.8 cm. A corresponding set of detector locations was de-

ned using a 10�10 grid of size 1.6 cm�1.0 cm. Using 17
rojections spaced evenly every 20° these values resulted
n a total of 51 000 source–detector pairs. Simulated data
ith 10% added shot noise was generated using the fine-

esolution mesh for Green’s function computation and the
inear model presented above.

. RESULTS
econstructions for every data set–model combination
ere obtained by solving the Tikhonov regularized least-

quares problem
x̂ = arg min
x

�Wx − b�2
2 + �2�x�2

2. �2�

ere W is the linear system model constructed using Eq.
1) for each combination of source, detector, and voxel lo-
ation. The vector x contains the fluorescence concentra-
ions to be reconstructed, while b is the vector of collected
ata points. The regularization parameter � was selected
o minimize 2-norm error with the known true image.

Solution of the above minimization was implemented
sing 50 iterations of the LSQR algorithm [15]. Each data
et was reconstructed twice: once using the full weight
atrix and once using a structural prior model that con-

trained image values to lie solely within the lung region.
he prior model was implemented by eliminating the el-
ments of x and corresponding columns of A associated
ith voxels lying outside the lung region. For display pur-
oses, the values of these voxels were then set to zero.
For each solution, 2-norm error with respect to ground

ruth was computed as

ei =
�xi − xtrue�2

2

�xtrue�2
2 . �3�

hese errors are plotted for the the standard and a priori
nversion techniques in Figs. 2(a) and 2(b), respectively.
n both cases, the matched model consistently provides
he lowest reconstruction error with the midrange model
ielding the second lowest error. For the standard recon-
truction, the mismatched model also consistently outper-
orms the homogeneous model. When using the simple

priori approach, the errors obtained with each model
re significantly lower than those seen with the standard
olution method. However, unlike the standard approach,
here are several cases—when imaging three or four of
he small inclusions—where the homogeneous model
ields a lower 2-norm error than the mismatched model.
dditionally, the spread in errors between the different
odels has increased.
To give a better comparison of the relative performance

ain achieved by moving to a more complex model, we
lso computed the error relative to the error seen with the
atched forward model by
ig. 2. Absolute 2-norm error using (a) standard and (b) a priori inversion. Results show consistent improvement when using midrange
nd matched parameter models. Error levels for the full lung inclusion incorporating a priori structure in the inverse problem are not
hown to better display other results.
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ei,relative =
ei

ematched
. �4�

hese values are plotted in Figs. 3(a) and 3(b). As also
een in the absolute error plots, the homogeneous model
onsistently shows the largest errors when using the
tandard inversion approach. As more accurate model pa-
ameters are incorporated, solution error correspondingly
ecreases in all cases. The mismatched model offers some
mprovement over the homogeneous, while the midrange

odel consistently shows less than a 1% increase in error.
verage relative error increases of 0.74%, 2.5%, and 4.8%
re seen for the midrange, mismatched, and homogeneous
odels, respectively, as compared with the matched
odel.
The situation changes slightly when incorporating

tructural prior knowledge into the inversion process. The
ull fluorescing lung (Test Case #1 on the horizontal axis
f Fig. 3) is reconstructed with the lowest overall error
evels, as the structure of the image is provided by the
rior information. When reconstructing the smaller tar-
ets, the homogeneous model yields the highest error in
2 out of 16 trials, with the mismatched model yielding
he highest error for the remaining four cases. Of interest,
hile the use of prior information offered consistently

ig. 3. Relative 2-norm error using (a) standard and (b) a prior
ignificantly higher when using a priori inversion techniques.

ig. 4. (a) True full-lung image. Reconstructions of inclusion us-
ng (b) matched model, (c) mismatched model, (d) midrange

odel, (e) homogeneous model.
ower error levels, the relative penalty for using an incor-
ect model increased. The average relative increase in er-
or was 4.2% for the midrange, 8.9% for the mismatched,
nd 10.9% for the fully homogeneous model, significantly
igher than was seen without prior knowledge. These val-
es reflect an increase in both the absolute error resulting
rom improper model selection and the proportion of total
rror. This indicates that while structural a priori infor-
ation in the inverse problem alone can offer improved

erformance, the biggest gains are to be made by a com-
ination of prior knowledge and improved diffusion mod-
ling.

Sample reconstruction slices from the full lung target
sing a priori knowledge are shown in Fig. 4. While all
odels obtain the true structure of the lung, the matched

nd midrange models more accurately resolve the quanti-
ative values. When reconstructing smaller inclusions,
he more accurate models consistently offered improved
eparation of objects and lower 2-norm errors than the ho-
ogeneous and mismatched parameter models.

. CONCLUSIONS
ur results suggest that for imaging within the murine

hest, the use of established ranges for tissue optical pa-
ameters does not significantly degrade reconstruction
uality even when mismatch in values remains. Further-
ore, by using values from the center of the established

anges, results can be obtained that consistently offer less
han a 5% increase in error as compared with using per-
ectly matched parameters. In contrast, the use of homo-
eneous models results in significantly higher error levels
nd reduced image fidelity. These effects are compounded
hen using structural information as prior knowledge in

he inverse problem, which does not appear to compen-
ate for simplified diffusion modeling. In fact, the benefits
f improved diffusion modeling are greater when using in-
erse priors, suggesting that available structural infor-
ation should always be used in the construction of the

iffusion model. We conclude that the use of structural
T data in combination with published optical parameter
anges can provide improvements to diffusion modeling
or fluorescence molecular tomography without the addi-
ional experimental and computational complications of
xplicit parameter estimation.

sion. Note that relative penalty for using the incorrect model is
i inver
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