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Abstract—A fast method for computing the acoustic field of 
ultrasound transducers is presented with application to rectan-
gular elements that are cylindrically focused. No closed-form 
solutions exist for this case but several numerical techniques 
have been described in the ultrasound imaging literature. 
Our motivation is the rapid calculation of imaging kernels for 
physics-based diagnostic imaging for which current methods 
are too computationally intensive. Here, the surface integral 
defining the acoustic field from a baffled piston is converted 
to a 3-D spatial convolution of the element surface and the 
Green’s function. A 3-D version of the overlap-save method 
from digital signal processing is employed to obtain a fast com-
putational algorithm based on spatial Fourier transforms. Fur-
ther efficiency is gained by using a separable approximation 
to the Green’s function through singular value decomposition 
and increasing the effective sampling rate by polyphase filter-
ing. The tradeoff between accuracy and spatial sampling rate 
is explored to determine appropriate parameters for a specific 
transducer. Comparisons with standard tools such as Field II 
are presented, where nearly 2 orders of magnitude improve-
ment in computation speed is observed for similar accuracy.

I. Introduction

Traditional diagnostic ultrasound B-scan images are 
formed using delay-and-sum beamforming methods 

based on data collected from transducers comprised of 1-D 
arrays of transmitter-receiver elements [1]. Although high-
ly useful for a variety of tasks, these images are essentially 
qualitative in that they do not provide a quantitatively ac-
curate representation of the physical characteristics of the 
tissue such as sound speed, density, and attenuation [2]. 
The ability to recover quantitative properties is desirable 
in a range of application areas, which has motivated the 
development of ultrasound tomographic image formation 
systems and algorithms [3]–[9].

A key component of diffraction tomography is the ac-
curate computation of the acoustic field. This is certainly 
the case for inverse scattering-type methods based on the 
full Lippman-Schwinger integral equation [10] as well as 
linearized schemes using the Born or Rytov approxima-

tions [9]. For these methods, one requires the evaluation 
of the field over a large number of spatial locations, thus 
a key practical requirement for the implementation of dif-
fraction tomography is the efficient computation of the 
transducer field.

One approach to calculating the acoustic field is to de-
termine the spatial impulse response (SIR) which gives 
the spatial response to a delta function excitation of the 
transducer. The mathematical expression for the SIR can 
be stated simply in terms of the integral of the Green’s 
function over the element surface, and closed-form expres-
sions for the SIR exist for a limited class of transducers [1, 
Ch. 7], [11]–[13], (flat pistons, flat sectors, flat polygons, 
and spherically focused bowls or segments thereof). Un-
fortunately, no exact expression exists for the SIR of cy-
lindrical transducers of the type used in ultrasonic arrays, 
although approximate methods based on decomposing 
the element surface into thin strips have been developed 
[14] and employed in the widely used Field II program 
[15]. Additionally, exact expressions for the SIR are not 
available for lossy media and one either needs to employ 
alternative discretization approaches to incorporate loss 
directly [16] or approximate the effect of loss through a 
material transfer function [1, Sec. 4.2].

If the SIR is cast in the frequency domain then lossy, 
dispersive media can be accommodated through an ap-
propriate choice of the wavenumber. In this manuscript 
we refer to the frequency domain equivalent of the SIR as 
the spatial transfer function (STF). The angular spectrum 
technique [17, Sec. 3.10] is a method of computing the STF 
but it is computationally expensive and requires migrat-
ing the source condition to a plane for curved transduc-
ers [18]–[20]. The Fresnel approximation provides a very 
efficient means of computing of the STF. Traditionally, it 
can achieve accurate results only in regions close to focal 
axis [1, Sec. 6.2] however recently an alternative expansion 
has extended the region of validity [21]. A semi-analytic 
frequency domain approach considered in [18] yielded a 
numerical scheme that was highly accurate; however the 
computational time was still an issue. Moreover, the work 
in [18] was specifically tailored to a cylindrically concave 
transducer and not obviously extendable to general curved 
surfaces.

In the present paper, we describe a new approach to the 
calculation of the STF. In contrast to the largely analyti-
cal approach of [18], the current method is based on com-
putational techniques from the digital signal processing 
(DSP) community. Specifically, we take advantage of the 
fact that for the imaging problems and processing schemes 
of interest in this work the transducer fields are required 
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over a dense set of points located on a regular grid in the 
region of interest. As such, a highly efficient method based 
on the fast Fourier transform (FFT) is used to compute 
the STF in a frequency-dependent attenuating medium. 
Although the FFT has been employed for accelerating 
computations similarly in the context of k-space methods 
[22], in its present use, the overlap-save method from DSP 
[23], [24], the singular value decomposition (SVD) [25], 
[26], and polyphase filtering [27] further accelerate the re-
quired calculations.

In what follows, Section II provides the background 
of the physics-based imaging problem and the role of the 
STF. The proposed approach for computing the STF 
is presented in Section III, followed by comparisons to 
previous methods in literature (Section IV) through the 
example of cylindrically focused transducers. Section V 
concludes the paper.

II. Background

In this section, a brief review of the problem and the 
relevant mathematical tools is provided. The STF for the 
transducer mounted in a rigid baffle can be obtained from 
the Rayleigh integral (see, for example, [28, Eq. 5-2.6])
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where S represents the element surface, r = [xyz]T is the 
coordinate vector, and g(r − r′) is the Green’s function for 
a point source in a rigid baffle given by
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Here k =  ω/(cb(ω)) − jαb(ω) is the wavenumber, αb(ω) 
is the attenuation coefficient, and cb(ω) is the frequency-
dependent sound speed of the medium. Fig. 1 illustrates 
the variables in (1), where the region of interest consists 
of N discrete points in space.

A. Spatial Transfer Function as a Convolution

Alternatively, one can view (1) as a convolution of the 
element surface and the Green’s function. Starting with 

the definition of the indicator function w(r) of the element 
surface S

	 w S( ) =r r rd -( ) ,	 (3)

where S  is the spatial projection onto S such that 
r r- S = 0 only if r ∈ S, one can express (1) in 3-D space 
as

	 h w g d
V
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	 = ( )( )g w* r ,	 (5)

where * denotes a 3-D spatial convolution. At first glance, 
replacing a 2-D surface integral with a 3-D convolution 
would appear to result in higher computational cost, how-
ever it enables the use of Fourier transform methods for 
numerical calculation of the integral. Because spatial con-
volution is equivalent to multiplication in the spatial fre-
quency domain, the relation transforms to

	 h g w( ) = ( ) ( ) ( )1r r  - ×{ } ,	 (6)

where   and  -1 represent the forward and inverse Fou-
rier transform operations, such that
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where G g= ( ) . By employing the fast Fourier transform, 
it is therefore possible to perform the computation at a 
reduced complexity compared with direct calculation.

B. Practical Challenges

Whereas the use of fast Fourier method for efficient 
computation of convolution is commonplace [23], [24], 
[29], there are several issues associated with the specific 
nature of the current problem that must be overcome to 
realize the computational gains. Four such issues are ad-
dressed in this manuscript:

	 1. 	Technically, fast Fourier transform methods may 
only be used for the calculation of convolutions in-
volving finite length signals. Whereas w(r) does have 
such compact support, g(r) is infinite in extent both 
in space and spatial frequency. However, because h is 
of interest only over a finite support, it is possible to 
truncate g. In the case of 1-D signal processing there 
exist efficient block-processing methods for using the 
FFT to compute convolutions between signals of 
radically different lengths [30, Ch. 18]. These meth-
ods are adapted for the multidimensional problem of 
interest in this paper.

	 2. 	The support of the transducer, indicated by w(r), is 
not truly a 3-D function, but rather a 2-D surface 
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Fig. 1. Variables regarding the spatial transfer function. One could evalu-
ate (1) numerically; however, this approach is inefficient because it does 
not take into account the shift invariant structure of the kernel.
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embedded in 3-D. In essence, in the direction nor-
mal to the surface of the element, w(r) resembles 
a delta function, leading to a flat spectrum associ-
ated with the corresponding dimension. Even if the 
spatial Fourier transform of such singular functions 
can be found for some transducer surfaces such as 
planar rectangular or circular pistons, for more gen-
eral transducers such as the cylindrically concave el-
ements of specific interest to us, no such closed-form 
expressions exist. Thus, care must be taken in the 
development of a numerical method for computing 
the spatial Fourier transform of w(r).

	 3. 	The surfaces of many common transducers are at 
least partially separable functions of x, y and z. For 
example, referring to Fig. 1, the cylindrically con-
cave transducer takes the form w(x, y, z) = u(x, y)
v(z), where u(x, y) represents a circular arc, and v(z) 
is a rect function [29] associated with the width of 
the transducer. For convolution problems where 
both functions are separable, lower-dimensional Fou-
rier transforms may be applied in parallel with the 
individual results, then merged to form the full 3-D 
solution. Although g is not separable in general, we 
demonstrate here that an accurate decomposition in 
terms of few separable components can be obtained 
using the SVD, thereby yielding additional compu-
tational savings.

	 4. 	The accuracy of the method depends heavily on the 
spatial sampling rate because of the abrupt spatial 
characteristics of the transducer elements. Whereas 
one typically desires on the order of 10 samples of 
the STF per wavelength, we show that this spatial 
sampling rate is insufficient for adequately repre-
senting the surface of the transducer element. The 
convolution can be performed at an increased spatial 
sampling rate only to meet the sampling require-
ment, then the output can be downsampled; but this 
approach requires more memory and computation 
time than is really necessary. To avoid this added 
cost, we employ polyphase filtering [27] to achieve 
the same improved accuracy as using higher sam-
pling rate by using a bank of filters to characterize 
the surface of the element. This approach has the 
added benefit of offering a parallel implementation 
of the STF calculation.

III. Technique

In this section, the computational scheme is described 
in detail. The purpose is to find the 3-D convolution of 
g and w on a discrete grid. Discretization of the element 
surface w is subsequently treated in Section III-B. For 
now, assume that the 3-D convolution is expressed in a 
discrete setting as

	 h x y z w x x y y z z g x y z
x y z

( , , ) = ( , , ) ( , , )
, ,¢ ¢ ¢
å - ¢ - ¢ - ¢ .	 (9)

Because g is of infinite spatial support, and the support of 
w is significantly smaller than the region of interest in h; 
it is computationally efficient to divide g into blocks us-
ing the overlap-save method [24], [31]. Thus we focus on 
processing at the block level for the rest of the paper. For 
each block, the separability of the element surface is used 
to reduce the dimension of the convolution. The Green’s 
function g is separated over the same spatial block by 
means of the SVD. The finite convolutions resulting from 
each separable component can then be linearly combined. 
Next, a polyphase structure is used to represent the ele-
ment surface effectively at a higher sampling rate, while 
requiring shorter FFT lengths. Further details regarding 
each operation are provided below. In the examples to fol-
low, a 0.5 mm wide × 13 mm high cylindrical element with 
a focal distance of 70 mm is considered for the calculation 
of STF near the focal region, for a frequency of 3.5 MHz. 
This corresponds to the properties of a single element in a 
B-K 8665 (B-K Medical, Wilmington, MA) curvilinear ar-
ray. A sound speed of 1500 m/s and a frequency-dependent 
loss of 0.5 dB/(cm MHz), i.e., 1.75 dB/cm at 3.5 MHz, are 
assumed, which are representative of soft tissue.

A. Separable Decomposition

Multidimensional convolution can be implemented via 
lower-dimensional convolutions when corresponding sep-
arable components are available. Assuming w(x, y, z) = 
u(x, y) ∙ v(z) and g(x, y, z) = η(x, y) ∙ ξ(z), one can express 
the 3-D convolution of g and w as

	 ( )( , , ) = {( )( , )} {( )( )}w g x y z u x y v z* * × *h x .	 (10)

When g is expressed as, or closely approximated by, the 
sum of P separable components

	 g x y z x y z
p

P

p p p( , , ) = ( , ) ( )
=1
ås h x ,	 (11)

the identity in (10) can be used to express the convolution 
of g and w as

	 ( )( , , ) = {( )( , )}{( )( )}
=1

w g x y z u x y v z
p

P

p p p* * *ås h x ,	 (12)

which provides computational efficiency because this form 
requires fewer multiplications per output sample when P 
is relatively small. For example, for a region of interest of 
size N1 × N2 × N3 points, realization of the 3-D convolu-
tion would normally be ( )1 2 3 1 2 3N N N N N Nlog  without 
separability, whereas the above decomposition reduces 
this complexity to  P N N N N N N1 2 1 2 3 3( )log log ,+[ ]( )  
which is significantly less when P is much smaller than (N1 
N2) and N3. Nevertheless, it is worth noting that the ma-
jor reduction in computational complexity for the problem 
at hand will be due to the use of the FFT rather than the 
use of separability. In numerical terms, for the examples of 
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this paper, taking advantage of separability in addition to 
FFT contributed only between 1.2 and 4 times, with the 
greater contributions occurring for higher effective sam-
pling frequencies.

Although many transducers admit separable expres-
sions, such as the one of interest in this work, the Green’s 
function in 3-space is not exactly separable. Still, as dem-
onstrated below, for the size of the blocks used in the 
processing scheme (approximately 65 mm3 or 825 wave-
lengths cubed), the SVD of the discretized function pro-
vides a good approximation of the original function using 
no more than 2 separable components in each block.

For implementation purposes, a vectorization over (x, y) 
variables makes it possible to bring the 3-D function into 
a matrix format, thus allowing the use of matrix SVD. 
This can be visualized as stacking each 2-D vector corre-
sponding to different z = zi into a column vector for pro-
cessing. More explicitly, for each volumetric block, the ap-
proximation is given by the first few largest singular 
vectors p

P
p p px y z=1 ( , ) ( )å s h x , where σp is the pth largest 

singular value associated with vectors ηp(x, y) and ξp(z), 
where (x, y) and z denote the discretized support. Fig. 2 
shows the normalized approximation error with respect to 
the number of singular vectors used in the approximation, 
up to P = 4, for a 1000 mm3 (12 704 wavelength cubed) 
region starting at the focus at 7 cm axial distance from 
the transducer. The error is given by 
e i

P
i i

N
i= 1 =1

2
=1

2- ( ) ( )å ås s/ , where { } =1s i i
N  are the cor-

responding singular values. The figure illustrates the fast 
decay of the error with respect to the number of linear 
separable components, even though this volume (1000 
mm3) is much larger than the block volume (65 mm3) in 
the examples. In implementation, however, fixing the val-

ue of P for all blocks of the overlap-save method may 
cause varying error levels, so we specify an upper bound 
on the approximation error, instead. In the examples of 
Section IV, we specified this tolerance value as 10−6. To 
avoid excessive computation, we do not compute the full 
SVD of the matrices arising in our problem. Rather, itera-
tive methods (here, ARPACK as implemented in Matlab, 
the MathWorks, Natick, MA) are used to compute only a 
few singular values and vectors. In the examples of Section 
IV, the number of singular vectors turn out to be P = 1 
for block (i) that is close to the axis, and P = 2 for blocks 
(ii) and (iii) that are off-axis, respectively.

B. Characterization of the Transducer

The indicator function for an element is defined in (3). 
As noted earlier, in many cases the element is separable in 
at least one dimension, so the surface can be represented 
as  w(x, y, z) = u(x, y) ∙ v(z), where v(z) = rect(z/z0) for a 
cylindrically concave transducer with an element width of 
z0 along the z-axis.

Ideally u would also be separable but unfortunately, for 
the transducer elements of interest in this paper as seen in 
Fig. 3, and indeed for many transducers, u(x, y) is a curve 
in the (x, y) plane and analytical or numerical computa-
tion of its 2-D Fourier transform is a difficult task. The 
approach taken here is to approximate the infinitesimally 
thin curve as a finite width function whose transform can 
in fact be obtained accurately. As is apparent from the 
examples in the next section, without sacrificing accuracy, 
this approximation leads to substantial computational 
advantage in computing the STF relative to alternative 
methods. Here the function u(x, y) is smoothed using a 
triangle based linear interpolation of the circular arc onto 
a rectangular grid using Matlab’s griddata function. Fig. 
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Fig. 3. Top: cross section of element surface (solid) and grid points (∙). 
Bottom: corresponding smoothed function. Consequently, the indicator 
function for the element surface is available separably as w(x, y, z) = 
u(x, y)v(z).

Fig. 2. Error in the approximation of the Green’s function.
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3 shows the cross section of the element surface and the 
corresponding discrete smoothed function.

C. Polyphase Structure

To perform the convolution ( )( )g w* r  accurately in a 
discrete setting, the spatial sampling rate needs to be suf-
ficiently high to characterize g(r) and w(r) with minimal 
aliasing. As we show in the following section, the number 
of samples required to represent the integral in (4) is much 
larger than for the representation of the STF needed in 
practical application. In fact, it is possible to operate at a 
higher sampling rate initially and then downsample the 
output, but this method is inefficient because only a small 
fraction of the computed samples are actually necessary. 
Polyphase filtering provides a means of achieving the high-
rate characterization of the element through a bank of 
low-rate signals combined by addition. This way, it is pos-
sible to avoid the higher computational complexity intro-
duced by the higher sampling rate. Fig. 4 shows 2 equiva-
lent implementations of filtering and decimation. In order 
for the equivalence of 2 systems to hold, the necessary 
condition is that

	 w n w Mn m m Mm[ ] = [ ], = 0, 1.+ -, 	 (13)

The required number of multiplications for the former 
implementation is order  MNlog2(MN), whereas the latter 
one is MNlog2N, for the filter w[n] of length N. In addi-
tion, the memory requirements of using the lower order is 
M times less. For a detailed treatment of multirate filter 
theory the reader is referred to [27].

D. Specification of Parameters

In this section, the implementation of the method is 
described and the impact of the parameters pertaining to 
the spatial sampling frequency at the output, the poly-
phase factor for characterization of the element surface in 
space, tolerance to error introduced by using a separable 
approximation to Green’s function, and the block size for 
convolution are investigated.

1) Sampling Rate: To understand the sampling rate re-
quirements caused by Green’s function, a good indicator 
is its spatial Fourier transform, given in polar coordinates 
by [32]

	 G
k

( ) =
1 2

4
.

2 2 2
r

r
/

| |p -
	 (14)

Fig. 5 shows the magnitude of G(r) up to a spatial 
frequency of over 4 cycles per wavelength, where the wave-
number is taken to be 14 661 − j20.15 m−1 (corresponding 
to the properties of soft tissue at 3.5 MHz).

As far as arbitrarily shaped elements are concerned, 
the spatial sampling rate required to characterize the ele-
ment may differ from that of the Green’s function. This 
is the case for the cylindrically curved elements of inter-
est in this work. The spatial Fourier transform of the arc 
in Fig. 3 decays very slowly with respect to the Fourier 
coordinate ρ associated with x. This can be seen from 
the samples of 2-D Fourier transform magnitude in Fig. 
6 associated with the arc in Fig. 3. Because of the rela-
tively flat spectral characteristics of w with respect to g, a 
higher sampling rate is necessary to compute the convolu-
tion than g alone requires, to achieve similar accuracy. Al-
though an exact number depends on the discretization of 
w, for the linear interpolation scheme used in this paper, 
it proves sufficient to sample at about 6 times higher rate 
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Fig. 4. Equivalent filtering/decimating systems. Top: filtering first fol-
lowed by decimation. Bottom: signal is downsampled first and then 
passed through a bank of shorter filters.

Fig. 5. Magnitude plot of G(r).
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than sampling g, i.e., approximately 21 versus 4 samples 
per wavelength. On the other hand, in practical applica-
tions such as model-based imaging, the desired sampling 
rate for the STF is on the order of 8 to 10 samples per 
wavelength. Therefore, instead of decimating the output 
computed at the higher sampling rate, we use an alterna-
tive implementation given by the polyphase structure, as 
the latter is computationally more efficient. The choice of 
the polyphase factor, M in Fig. 4, which must be chosen so 
as to address the requirements, is discussed next.

2) Polyphase Factor: As explained previously, for the 
application of interest there is a discrepancy between de-
sired spatial sampling rate of the STF and that required 
by the spatial characteristics of the element or the Green’s 
function. The polyphase structure addresses this discrep-
ancy while remaining computationally efficient. The “ef-
fective” sampling rate, which determines the accuracy of 
the computation, is given by Fe = Fs ∙ M, where Fs is the 
desired sampling rate of the STF, and M is the polyphase 
factor, for each dimension. All the convolution operations 
are performed at the lower sampling rate Fs as in the 
bottom implementation of Fig. 4, whereas the achieved 
accuracy is the same as if operating at Fe as in the top 
implementation of Fig. 4.

In the multidimensional problem at hand, the number 
of polyphase components Mx, My, Mz need not be identi-
cal, so one need not have the same factor of increase in 
the computational burden for each dimension. The com-
putational complexity of the operation with respect to the 
polyphase factor is linear for each individual dimension.

3) Block Size: Because the physical problem requires 
multidimensional convolutions, a version of the overlap-
save method generalized to higher dimensions is employed 
[31]. Similar to the 1-D case, the computation of 3-D Fou-
rier transform requires O(NlogN) multiplications, where N 
is the total number of samples.

In 1-D filtering applications where the input sequence 
is much longer than the filter, it is computationally more 
advantageous to implement the convolution in smaller 
blocks. Moreover, an optimum value of the block size B 
can be found by minimization over the required number 
of multiplications, which is proportional to ⌈N/(B − L + 
1)⌉Blog2B, where L is the filter length, and N is the de-
sired number of output samples. For large N, the optimal 
block length Bo is usually in the range 4L ≤ Bo < 8L, and 
the computational gain is roughly L/log2B, growing with 
the filter length [30, Ch. 18]. Note that the optimal block 
size may vary for multidimensional problems [33], as a 
function of the transducer element and the sampling rate 
in this case. Nevertheless, we do not devote further space 
to analyze the effect of this optimal block size because 
we observed little relative improvement over selecting the 
power of 2 within [4L, 8L) as the block sizes for each di-
mension. Of further note, the extension of the overlap-save 
algorithm to multidimensional space can be visualized as 
overlapping rectangular prisms over the region of inter-
est.

In summary, the parameters considered in this section 
and how they are determined are as follows.

•	Sampling rate is effectively determined by the wave-
number.
•	SVD error tolerance determines the acceptable level of 
approximation error caused by truncation in the SVD, 
picked as one part in a million in our example.
•	Polyphase factor improves accuracy at the cost of 
computation. Several different factors are considered 
in the next section.
•	Block size is determined as a function of the size of 
the element and the sampling rate so as to yield a low 
computational cost.

IV. Comparison

We compare our results to previous methods for com-
puting the STF using a scheme similar to that in [18]. Fig. 
7 shows the configuration for the field calculation. The 
source is a 0.5 mm wide, 13 mm high element focused in 
the elevation plane at 70 mm. The block dimensions were 
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Fig. 6. Log10-magnitude samples of the 2-D spatial Fourier transform of 
the arc in Fig. 3. ρx and ρy are the spatial Fourier coordinates associated 
with x and y, respectively.

Fig. 7. Comparison setting for the numerical experiments.
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Bx = 32, By = 512, and Bz = 32 (at a rate of 20 samples/
mm in each direction). The proposed method is compared 
with the standard Fresnel approximation using plane wave 
expansion, a recently published Fresnel approximation [21] 
using the expression for a diffracted spherical wave, Field 
II [15], and the semi-analytic method (SAM) [18]. Fig. 7 
shows the 3 positions of the computed block, one originat-
ing from the focus, and the other 2 off-axis.

The implementation of both Fresnel approximations 
employed the analytical formulae provided in [21] using a 
Matlab implementation of the complex error function [34]. 
For Field II, the parameters of the subroutine xdc_fo-
cused_array were as follows: no_elements = 1, width = 5 
∙ 10−4, height = 1.3 ∙ 10−2, kerf = 1.6667 ∙ 10−4, Rfocus 
= 7 ∙ 10−2, no_sub_x = 1, no_sub_y = 200, and focus = 
[0, 0, 0.07]. In addition, the excitation signal was specified 
as v(t) = exp{−(t/T)4} ∙ sin(2πft) with T = 0.2 μs, f = 
3.5 MHz, and t ∈ [−0.6, 0.6] μs with a sampling interval 
of 0.002 μs.

The performance criteria for comparing the results hi of 
different methods follow those defined in [18], except that 
complex values of hi are compared here instead of their 
magnitudes. The reference solution, h0, was calculated by 
a direct numerical approach using Gauss-quadrature inte-
gration. A total of 1274 quadrature points (182 along the 
circular arc in (x, y)-dimensions, times, 7 along the strip in 
the z-dimension) was employed. The percentage error with 
respect to h0 is given by 100||hi − h0||2/||h0||2. The speed-
up factor is given by si = t0/ti where t0 is the time spent 
on Gauss-quadrature integration, and ti is time spent on 
the corresponding method, including all overhead calcula-
tions. Time was determined using the tic and toc func-
tions of Matlab.

Table I indicates the errors and computational speed-
up factors for the compared methods for 3 different blocks 
seen in Fig. 7. The block sizes used in comparison are the 
same as that used for the FFTs. Figs. 8, 9 and 10 show the 
real parts of the spatial transfer functions calculated on 
line segments from the 3 blocks, via the Gauss-quadrature, 
the proposed method with polyphase factor (3, 3, 2), and 
Fresnel approximation.

The proposed method provides more than an order of 
magnitude faster computation with respect to Field II [15] 
and SAM [18] while maintaining similar levels of error. 
The modified Fresnel approximation proposed by Mast 
[21] was comparable in speed and accuracy, although part 
of its speed may be attributed to the use of an analytical 
expression which may not exist for more complex geome-
tries. We note that Field II employs a compiled mex file to 
carry out the calculations, whereas all the other routines 
were written in native Matlab script. This likely gives Field 
II an apparent speed advantage which may not be realized 
if all algorithms were compiled. The 6 different rows for 
the proposed method in Table I correspond to different 
polyphase factors. Specifically, the vector (Mx, My, Mz) as-
sumes the corresponding values on the first column.

V. Discussion

In this paper, we presented a method for the com-
putation of the spatial transfer function for ultrasound 

1909güven et al.: fast computation of the acoustic field for ultrasound elements

TABLE I. Errors and Computation Times for Evaluating the Spatial Transfer Function. For the 
Proposed Method, the Numbers in the Left Column Give the Corresponding Polyphase Factors 

(Mx, My, Mz). 

Method

Block (i) Block (ii) Block (iii)

Error 
(%)

Speed-up 
factor

Error 
(%)

Speed-up 
factor

Error 
(%)

Speed-up 
factor

Fresnel 2.25 84.5 8.53 77.3 66.1 82.0
Mast 0.53 62.6 1.30 49.0 5.80 56.9
Field II 3.05 1.2 1.89 1.2 8.24 0.5
SAM 0.30 0.3 0.30 0.4 2.79 0.3
(1,1,1) 1.63 311.2 5.56 260.3 9.89 281.9
(1,2,1) 1.49 209.9 5.53 165.3 7.91 173.1
(2,2,1) 0.53 136.8 5.35 102.9 4.01 112.9
(2,2,2) 0.47 77.8 2.67 60.1 4.01 63.8
(2,3,2) 0.37 53.2 2.65 40.7 2.96 43.1
(3,3,2) 0.29 36.8 2.64 28.6 2.48 30.3

Fig. 8. Real part of the spatial transfer function for x = 0, z = 0 in block 
(i). The natural focus of the element is at y = 0.
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transducers, and demonstrated its application to curved 
rectangular transducers for which no analytic expression 
exists. Significant computational savings were obtained 
through the use of FFT to evaluate the spatial transfer 
function in the spatial frequency domain. Overlap-save, 
SVD, and polyphase filtering were used to get an accurate 
method at low computational cost. As a result, speed of 
computation was improved by more than an order of mag-
nitude relative to Field II and SAM for similar accuracy. 
Whereas the modified Fresnel approximation by Mast [21] 
has a closer performance in speed, the method proposed 
here is applicable even when no analytical solutions are 
known for the elements.

Using the proposed method, it is possible to reduce 
the error by increasing the effective spatial sampling 
frequency, gaining performance at the cost of increased 
computation time. In contrast to Field II [15] and the 
frequency-independent approach tailored for cylindrically 
concave transducer [18], both of which can provide the 
spatial transfer function at different acoustic frequen-
cies without additional computation time; the proposed 
method requires separate computation for each frequency 
of interest. Nevertheless, the reduction in computational 
complexity with respect to the number of points in space 
makes the method especially suitable for applications in-
volving many points of interest in space and relatively few 
frequencies. The parameters of the method are determined 
according to the wavenumber and desired accuracy. The 
method is applicable to other curved transducers through 
discrete characterization of their surfaces.

Appendix  
Block Convolution Using FFT

In this appendix, a brief review of the overlap-save 
method for finite impulse response filtering is presented, 
in which a relatively long signal is processed with a finite 

impulse response filter. In this case, the convolution boils 
down to a finite sum

	 h n w m g n m
m

M

[ ] = [ ] [ ]
=0

1-

å × - ,	 (15)

where w[m] is the finite length filter. Assuming h[n] is 
of interest for a finite region n ∈ [0, N − 1], a truncated 
signal gt[n] is defined to take the same values as g[n − M] 
for n ∈ [0, B − 1], where B = M + N, and identically zero 
elsewhere. Next, define the B-point discrete Fourier trans-
form Ht[l] such that

	 H l w m g n met
n

B

m

M
i B ln[ ] = [ ] [ ]

=0

1
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1
2
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(17)

	 = [ ] [ ]W l G lt× ,	 (18)

where we can recognize the last term as the discrete Fou-
rier transform (DFT) of the truncated signal gt[n]. It can 
be seen by inspection that { [ ]} =0

1h n n
N-  and { [ ]} =0

1h n Mt n
N+ -  

take exactly the same values, where ht[n] is the B-point 
inverse-DFT of Ht[n]. In this setting, one can therefore 
compute h[n] by using the B-point DFT, which can be 
computed efficiently when B is a power of 2. This way, the 
convolution of g[n] and the finite length signal w[n] can be 
computed by shifting the block at every step. This ap-
proach is called overlap-save method [24]. Fig. 11 illus-
trates this scheme.
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Fig. 9. Real part of the spatial transfer function for x = 0, z = 1 cm in 
block (ii).

Fig. 10. Real part of the spatial transfer function for x = 0, z = 0 in 
block (iii).
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Fig. 11. Illustration of the overlap-save scheme for block convolution us-
ing fast Fourier transform.
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