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a b s t r a c t

The detection of brain aneurysms plays a key role in reducing the incidence of intracranial subarachnoid
hemorrhage (SAH) which carries a high rate of morbidity and mortality. The majority of non-traumatic
SAH cases is caused by ruptured intracranial aneurysms and accurate detection can decrease a significant
proportion of misdiagnosed cases. A scheme for automated detection of intracranial aneurysms is pro-
posed in this study. Applied to the segmented cerebral vasculature, the method detects aneurysms as sus-
pect regions on the vascular tree, and is designed to assist diagnosticians with their interpretations and
thus reduce missed detections. In the current approach, the vessels are segmented and their medial axis
is computed. Small regions along the vessels are inspected and the writhe number is introduced as a new
surface descriptor to quantify how closely any given region approximates a tubular structure. Aneurysms
are detected as non-tubular regions of the vascular tree. The geometric assumptions underlying the
approach are investigated analytically and validated experimentally. The method is tested on 3D-rota-
tional angiography (3D-RA) and computed tomography angiography (CTA). In our experiments, 100%
sensitivity was achieved with average false positives rates of 0.66 per study on 3D-RA data and 5.36 false
positive rates per study on CTA data.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Subarachnoid hemorrhage (SAH) is a serious cause of stroke
which affects 30,000 patients in North America annually. SAH ac-
counts for a quarter of cerebrovascular deaths, with 80% of the
non-traumatic SAH cases being caused by a ruptured intracranial
aneurysm (Edlow et al., 2008; Wardlaw and White, 2000). An
intracranial aneurysm is a localized pathological dilatation of a
blood vessel. It is reported that up to 2% of the general population
harbors aneurysms (Rinkel et al., 1998; Juvela, 2004). Most of these
aneurysms are asymptomatic and remain undetected with only a
small proportion proceeding to rupture and consequent SAH, with
an annual incidence of approximately 1% (Wardlaw and White,
2000; Johnson et al., 2001). However, in the case of a ruptured
aneurysm, the initial bleed is fatal in 10–20% of instances and de-
spite improvements in patient management, the incidence of SAH
has not declined over time and the morbidity rate is still reported
between 25% and 50% in patients surviving aneurysm ruptures
(Wardlaw and White, 2000; Juvela, 2004; Suarez et al., 2006).
ll rights reserved.
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Detecting intracranial aneurysms from imaging scans is an
essential step in the prevention of aneurysmal SAH and its atten-
dant complications (Wardlaw and White, 2000), as treatment of
aneurysms using endovascular or surgical methods carries a lower
rate of complication when performed in unruptured versus rup-
tured aneurysms (Brisman et al., 2006). Although aneurysm detec-
tion is currently performed visually by experienced diagnosticians,
there is an increasing interest in computed-aided diagnostic (CAD)
systems to assist diagnosticians and possibly improve diagnostic
accuracy, while limiting missed detection.

The purpose of this work is the introduction and initial proof of
concept of a new 3D shape feature, namely the writhe number,
used for detecting aneurysms in high quality segmentation of vas-
culatures. As such our contribution is twofold. First, we concen-
trate on our theoretical contribution by introducing the writhe
number as a new 3D descriptor used to characterize surfaces.
Known in curve theory since its introduction by Fuller (1971),
the writhe number is used to describe the global geometry of a
closed space curve or knot (Agarwal et al., 2004; Berger and Prior,
2006). To the best of our knowledge, this paper represents the first
time the writhe number is extended to surfaces. Second, we devel-
op a writhe number-based scheme for the automatic detection of
aneurysms and demonstrate its utility via the analysis of both
3D-RA and CTA data.

http://dx.doi.org/10.1016/j.media.2009.10.005
mailto:alauri02@cs.tufts.edu
mailto:elmiller@ecs.tufts.edu
mailto:frisken@cs.tufts.edu
mailto:amalek@tuftsmedicalcenter.org
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


150 A. Lauric et al. / Medical Image Analysis 14 (2010) 149–159
Existing aneurysm detection methods focus on magnetic reso-
nance angiography (MRA) data and are usually two-step processes
(Arimura et al., 2004; Uchiyama et al., 2005; Kobashi et al., 2006).
First, potential regions of interest (potential aneurysms) are de-
tected by pre-processing the data using dot-enhancement filters
(Arimura et al., 2004) and/or by analyzing the geometry of the ves-
sels. Second, false positive reduction methods are applied on the
areas highlighted in the first step, where the reduction scheme de-
pends on the specificity of the detection method used in the first
step.

The detection method presented here is based on the 3D shape
analysis of the vessels and it is performed on the segmented vascu-
lature. We assume that a short segment of a normal vessel can be
locally modeled as a tube with a circular cross-section whose med-
ial axis is a line segment or a quadratic (i.e., parabolic) curve. This
assumption is validated experimentally on clinical data. Using the
writhe number our method identifies aneurysms as regions of the
vasculature which are not well modeled as a tube or an extruded
parabola. Specifically, regions along the vessels where the writhe
number is non-zero are reported as possible aneurysms. The meth-
od uses a false positive reduction scheme in which small regions
are eliminated from positive results.

In this study, the detection method is tested on 3D-RA and CTA
patient data. The work concentrates on the use of a high resolution
modality, in this case 3D-RA, to enable the evaluation of the algo-
rithm characteristics without being hampered with the inevitably
lower spatial resolution of most current MRA and CTA data. We
also consider the application of the algorithm to CTA data and dis-
cuss its performance and limitations on this more challenging
imaging modality.

Free-response operator characteristic (FROC) analysis is applied
to evaluate the performance of the proposed detection system.
FROC analysis shows how the sensitivity of the system changes
function of the threshold value used to eliminate small positive re-
sults. In our experiments, the sensitivity of the aneurysm detection
method was found to be 100% with 0.66 false positives per study
on ten distinct 3D-RA datasets and 5.36 false positives per study
on ten unrelated CTA datasets.

The eventual clinical goal of this research is to offer an added
safety net to the diagnostician and the patient, by making available
a concordance check protocol that would point the clinician to po-
tential areas of concern that may have been missed by the current
method of visual inspection. The added value of such a tool will
need to be evaluated by prospective clinical trials.

The paper is structured as follows: existing work in vessel seg-
mentation and aneurysm detection is presented in Section 2. In
Section 3 we introduce the writhe number followed by details
about the detection method in Section 4. Test data and pre-pro-
cessing procedures are presented in Section 5. Results are reported
in Section 6 and discussed in Section 7, together with directions for
future work. Proofs involving the writhe number are demonstrated
in Appendix A.
2. Related work

When interpreting scans and searching for aneurysms, it is
important for clinicians to have access to the underlying 3D struc-
tures from the 2D studies. Because 3D-RA, CTA and MRA data pro-
vide vessel and aneurysm positions in cross-sectional images only,
the extraction of 3D structures from 2D images is achieved through
segmentation. A great deal of research has been carried out in
developing algorithms for the segmentation of cerebral vascula-
ture, including aneurysms, from MRA and CTA studies (Fridman
et al., 2004; Hernandez and Frangi, 2007; Radaelli and Peiro,
2009). Vessels segmentation remains a challenging task and the re-
search in this field remains active. Refer to Luo and Zhong (2005)
for a survey of algorithms for vessel segmentation from MRA data
and Kirbas and Quek (2003) for a survey on vessel extraction tech-
niques and algorithms applied to MRA, CTA and 3D-RA datasets.

In order to visually isolate aneurysms from segmented volumes,
it is necessary to study the entire vasculature. Small aneurysms are
often visible only from specific viewing directions and may go
undetected, leading to misdiagnosis. In contrast, CAD-based aneu-
rysm detection methods highlight possible aneurysm areas and
may help improve diagnostic accuracy and ultimately, reduce diag-
nostic times.

Uchiyama et al. (2005) detect potential aneurysms by measur-
ing the degree of convergence of the gradient vectors at each point
in the segmented vessels. Analysis of the size, shape and image
intensity of each candidate region is performed to eliminate false
positive results. Kobashi et al. (2006) construct ‘‘normal vascula-
ture models” by dilating the vessels axis obtained from thinning
of the segmented vasculature, such that the resulting vasculature
model has circular cross-sections. Potential aneurysms are ob-
tained by subtracting the ‘‘normal vasculature model” from the
segmented arteries. False positive reduction is based on evaluating
nine feature values with respect to the shape and intensity of the
aneurysms candidates. In the method proposed by Arimura et al.
(2004), MRA images are pre-processed using a dot-enhancement
filter and potential aneurysms are detected by grey level thres-
holding of the enhanced images. False positive reduction is per-
formed based on size, local structure and image intensity
features. False positive rates are further reduced by finding short
branches in the medial axis of the vessels and using that as a high
likelihood of small aneurysms (Arimura et al., 2005). A shape-
based difference image technique is used to improve the detection
method by extracting additional features based on the local
changes in vessel thickness, where thin regions have a higher like-
lihood of being false positives (Arimura et al., 2006). Local changes
in vessel thickness are determined based on distance-transformed
and skeleton images.

Our work is similar to Kirbas and Quek (2003) in that we eval-
uate the intracranial vasculature as a whole and consider normal
vessels to be approximated by tubular structures. However, in-
stead of constructing a global vasculature model we focus on the
local 3D geometry of the input vessels. Consequently, we are intro-
ducing a new surface descriptor, called the writhe number, which
is used to study vessels locally and determine if regions along the
vasculature can be approximated by tubular structures. As used in
this work, the writhe number takes into account the 3D geometry
of both the parent vessels and the potential aneurysms and proved
to be very accurate in distinguishing between healthy vessels and
regions with potential aneurysms.
3. Writhe number

3.1. The writhe of surfaces

The writhe number was introduced by Fuller (1971) and it is
used in curve theory to measure how much a curve twists and
coils. When a second curve is placed nearly parallel to the first
one, the writhe number measures how much the second curve
twists about the first (Berger and Prior, 2006). In biomedical
engineering, the writhe number is used to study the shape and
topology of DNA (Klenin and Langowski, 2000; Rossetto and
Maggs, 2003) or to characterize the shape of curves on 3D sur-
faces, such as the curves of sulci and gyri on the cortical surface
(Hurdal et al., 2008). To the best of our knowledge, this paper
represents the first time the writhe number is used to character-
ize surfaces.



Fig. 1. (a) The writhe number of a cylinder is zero based on the symmetric nature of
a cylinder. (b) The writhe number of an extruded parabola is also zero.
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We are defining the writhe of surfaces similar to the writhe of
curves, except using surface normals rather than curve tangents.
Similar to curve theory, the writhe of surface points describe the
contribution of a point to the overall complexity of the surface.

Given two points p and p0 on a surface S, we define a relation-
ship w between them as

wðp;p0Þ ¼
n̂p;p0 � p; n̂0p
h i

kn̂pk � kp0 � pk � kn̂0pk
; ð1Þ

where n̂p is the surface normal at point p; k � pk is the norm of a vec-
tor and ½a;b; c� is the triple scalar product of vectors a;b and c. The
triple scalar product is defined as ½a;b; c� ¼ a � ðb� cÞ, where a � b
denotes a dot product and a� b denotes a cross-product. The fol-
lowing identities involving the triple scalar product are also true:
a � ðb� cÞ ¼ b � ðc� aÞ ¼ c � ða� bÞ.

Note that wðp;p0Þ ¼ wðp0;pÞ and wðp;p0Þ is a pseudoscalar,
meaning that it behaves like a scalar but changes sign under inver-
sion. It can be proven using linear algebra that a � ðb� cÞ ¼ �ð�aÞ�
ðð�bÞ � ð�cÞÞ.

For our processing, we require the notion of a local neighbor-
hood, NðpÞ, about a point p on the surface of a vessel. Formally, a
point p0 belongs to NðpÞ if and only if the following two conditions
are satisfied. First, the geodesic path from p to p0 belongs to NðpÞ.
This condition guarantees that NðpÞ is connected. Second,
kp0 � pk 6 d; d 2 Rþ. The Euclidean metric, k � k, determines the
size of the neighborhood. The writhe number of a point p, given
its local neighborhood NðpÞ is a surface integral defined as

Wðp;NðpÞÞ ¼
Z

p02NðpÞ
wðp;p0Þdp0: ð2Þ

In a discrete space Eq. 2 becomes

Wðp;NðpÞÞ ¼
X

p02NðpÞ
wðp;p0Þ: ð3Þ
3.2. Writhe number analysis

For this work, we assume healthy vessels can be modeled lo-
cally as cylinders or extruded parabolas. The assumption is vali-
dated experimentally in Section 5.3. The writhe number as
defined in Section 3.1 is used to detect perturbations from cylin-
ders and extruded parabolas along the vasculature. We claim that
if NðpÞ is a cylinder or an extruded surface along a parabola then
Wðp;NðpÞÞ ¼ 0, i.e. the writhe number is zero in regions of normal
vasculature. Consequently, regions with non-zero writhe numbers
are reported as possible aneurysms. The claim is discussed here
and proven in Appendix A, using the pseudoscalar quality of the
writhe number.

3.2.1. The writhe of a cylinder
If NðpÞ is a cylinder, we claim that for every point p1 2 NðpÞ

there exists a second point p2 2 NðpÞ, such that the Euclidean dis-
tance jp1 � pj ¼ jp2 � pj and the line segment p1p2 lie on the cylin-
der surface (Fig. 1a). The two conditions ensure that the pair
ðp1;p2Þ is unique. It can be proven that wðp;p1Þ ¼ �wðp;p2Þ
(Appendix A.1). Pairs of points ðp1;p2Þ cancel each others in the
writhe number summation and Wðp;NðpÞÞ ¼ 0.

3.2.2. The writhe of an extruded surface along a parabola
If NðpÞ is a non-self-intersecting extruded parabola, its medial

axis is a parabola. Let p correspond to the apex of the parabola.
For every point p1 2 NðpÞ there exists a second point p2 2 NðpÞ,
such that the Euclidean distance p1 � pj ¼ jp2 � pj and p1;p2 lie
on the extruded surface along a parabola parallel to the medial axis
(Fig. 1b). The two conditions ensure that the pair ðp1;p2Þ is unique.
It can be proven that wðp;p1Þ ¼ �wðp;p2Þ (Appendix A.2). Pairs of
points ðp1;p2Þ cancel each others in the writhe number summation
and Wðp;NðpÞÞ ¼ 0.

3.2.3. The writhe number more generally
Intuitively, given a surface N and a point p 2 N on the surface,

wðp;NÞ ¼ 0 if N displays mirror symmetry about a mirror plane
which passes through point p and contains the normal at p. Mirror
symmetry occurs when two halves of a whole are each other’s mir-
ror images (Hargittai and Hargittai, 1994). Mirror symmetry guar-
antees that for every point p1 2 N there exists a second point
p2 2 N, such that the Euclidean distance jp1 � pj ¼ jp2 � pj, with
p1 and p2 located on different sides of the mirror plane. A cylinder
has an infinity of mirror planes passing through its axis. An ex-
truded parabola has two mirror planes, one which contains the
medial axis and one perpendicular to the medial axis. While aneu-
rysmal regions may also show some symmetries, in practice most
of the points on the surface of aneurysms do not sit on mirror
planes and will have non-zero writhe numbers. Section 4.5 pro-
vides details on how local neighborhoods are constructed for sur-
face points on both normal vessels and aneurysmal areas. The
construction guarantees to take advantage of the differences be-
tween normal vessels and aneurysmal regions.

4. Method

4.1. Overview of the detection algorithm

The detection method takes as input a 3D volume in which the
cerebral vasculature has been segmented from the background.
The medial axis of the vessels is computed from the segmented
volume. Similar to Arimura et al. (2005), we consider that aneu-
rysms appear as short branches in the medial axis of the vascula-
ture. Local neighborhoods are determined for surface points
along short branches such that they satisfy the connectedness
and size conditions described in Section 3.1. The writhe numbers
are computed for each local neighborhood and regions with non-
zero writhe numbers are reported as possible aneurysms. The size
of each region is determined and small regions are eliminated from
results based on a thresholding criteria. Details about each of these
steps are presented below.

4.2. Segmentation

The detection method requires a segmented volume of the cere-
bral vasculature. The appropriate segmentation method depends
on the modality of the input data (CTA, MRA, 3D-RA). Practical de-
tails about the pre-processing and segmentation techniques used
on our particular input data are provided in Sections 5. From the
segmented volume, the surface of the vessels is described as the
set of voxels which have at least one adjacent background voxel.
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4.3. Medial axis detection

The medial axis of the vessels is computed applying the method
described by Bouix et al. (2005) and using a skeletonization algo-
rithm which exploits the distance field corresponding to the seg-
mented vessels.

4.4. Short branches selection

The aneurysm detection method takes advantage of the fact
that aneurysms appear as small branches along the medial axis
(Arimura et al., 2005). Once the medial axis is computed, each vox-
el on the medial axis is labeled as an end point (the voxel has one
adjacent neighbor), a connecting point (the voxel has two adjacent
neighbors) or a junction point (the voxel has three or more adja-
cent neighbors). Short branches are paths between end points
and junction points having the length smaller than a threshold va-
lue where the threshold is set using voxel dimensions to detect
aneurysms up to 50 mm long. In studies, 90% of the aneurysms
are smaller than 25 mm in diameter and only 10% are giant aneu-
rysms with sizes between 25–50 mm (Rooij and Sluzewski, 2006).
It should be noted that most of the short branches determined this
way are actually noise on the medial axis and are only few voxels
long. However, for our detection algorithm, the medial axis pro-
vides vital information about aneurysms locations and while
reducing the sensitivity of the medial axis algorithm or smoothing
the result might reduce the number of short branches, it could also
result in misdetection of small aneurysms.

4.5. Local neighborhood model

Local neighborhoods are determined for the collection of points
on the surface of short branches. Given a surface point, p, we want
to determine its local neighborhood NðpÞ. A second point, c, is
found such that c belongs to the medial axis, c is the closest point
to p and c was labeled as a short branch medial point in Section 4.4.
In most of the cases, p is a point on the surface of normal vessels
and c is a noise point on the medial axis sitting close to the true
medial axis of the region (Fig. 2a and b).

Let R be the Euclidean distance between points c and p. The lo-
cal neighborhood of point p is built around point c and is defined as
the connected set of points whose Euclidean distance is within
R
ffiffiffi
2
p

from c (Fig. 2). Using this method, the local neighborhood of
p is a small segment of the vasculature. In the case of a cylinder,
the R

ffiffiffi
2
p

threshold guarantees a one-to-one length-diameter aspect
ratio, which works well in practice. Depending on the local bending
of the vessels near p, the medial axis of NðpÞ can be approximated
by either a line segment and in this case c is the midpoint of the
segment, or by a parabola in which case c is the apex of the parab-
ola (this will be verified experimentally in Section 5.3). For healthy
Fig. 2. Local neighborhood of surface point p. c is the point on a short branch closest to p.
of the normal vessels. The local neighborhood of p is build around c and is defined as the c
a point on the surface of normal vessels and c is a noise point on the medial axis sitting cl
vessels. (c) p belongs to an aneurysm.
vessels, the construction guarantees that p sits on a mirror plane of
NðpÞ.

The local neighborhood of a surface point is determined as de-
scribed above independent of the location of the point on the vas-
culature. Fig. 2c shows the local neighborhood of a point on the
surface of an aneurysm. The neighborhood contains part of the
aneurysm as well as a portion of the parent vessel. Because the
points on the surface of an aneurysm concentrate around the same
medial axis points, they share the same local neighborhood. Even
in those cases where the aneurysm area might display some sym-
metries, most surface points will not sit on mirror planes and will
have non-zero writhe numbers. Exceptions might be fusiform
aneurysms which present as local dilatations of an artery, having
perfectly circular cross-sections and showing symmetries similar
to those of normal vessels. In practice, our method was able to de-
tect certain biological fusiform aneurysms because of their uneven
dilatations in multiple directions perpendicular to the vessel axis.

4.6. Writhe number computation

For each local neighborhood, the writhe numbers are computed
according to Eq. 3. To a very high degree of accuracy, the nominal
behavior of the vasculature results in the writhe number being
equal to zero for the neighborhoods along healthy vessels. This fol-
lows because locally normal vessels are shaped as cylinders or ex-
truded parabolas which in theory have a zero writhe number. The
local neighborhoods of points on the aneurysms do not display the
same symmetries as cylinders and extruded parabolas and as a re-
sult have non-zero writhe numbers.

4.7. False positive reduction

Adjacent voxels on the surface of the vessels having non-zero
writhe numbers are clustered in regions which are considered po-
sitive results and are highlighted as possible aneurysms. The detec-
tion method based on writhe numbers shows high specificity and
as a result we are able to threshold positive results using simple
features related to the size of the candidate regions. Specifically,
our source data originated from multiple modalities, collected with
different scanner models, and having different voxel sizes, there-
fore, the number of voxels within each positive region is a poor
indicator of the absolute physical size of the region. The size of a
voxel plays an important role in discriminating between true pos-
itives and false positive based on region size, since the same num-
ber of image voxels describe different physical sizes depending on
the resolution of the data. For instance, an image region of 100 vox-
els describe a larger physical region on a dataset with voxel size
0:5� 0:5� 1:00 mm3 than is does on a dataset with voxel size
0:5� 0:5� 0:5 mm3. In order to analyze positive regions in a
unique manner across modalities and scanners, we define a region
Most points c represent noise on the medial axis and sit close to the true medial axis
onnected set of surface points whose Euclidean distance is within R

ffiffiffi
2
p

from c (a) p is
ose to the true medial axis of the region. (b) Detail of local neighborhood on healthy
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index as the product between the size of the region in voxels and
the volume of the voxel. We effectively add the volume of all vox-
els on the surface of the positive region. We use the region index as
an alternative to the surface area of the positive regions in order to
avoid the triangulation of the surface. Under this definition, 100
voxels describe a region index of 25 on a dataset with voxel size
0:5� 0:5� 1:00 mm3. The same 100 voxels describe a region index
of 12.5 on a dataset with voxel size 0:5� 0:5� 0:5 mm3. The region
index gives an intuition of the physical size of a positive result
independent of the resolution of the input data. True positives tend
to have a larger region index than false positives and in this work
we threshold positive results based on their region index. In Sec-
tion 6, under Results, we show how detection and false positive
statistics change according to the threshold value of the region
index.
5. Clinical data

5.1. 3D-RA and CTA

The aneurysm detection method was tested on ten distinct 3D-
RA and ten unrelated CTA patient-derived datasets. The twenty
datasets contain twenty aneurysms, with one study showing no
aneurysms and one study having two aneurysms. The aneurysms
have diameters in the range 3.2–10.2 mm and lengths in the range
3.5–13 mm. Among the aneurysms, six are sidewall aneurysms
(dilation of the artery in one direction perpendicular to the vessel
axis), nine are bifurcation aneurysms (dilation at the bifurcation of
arteries) and five are fusiform aneurysms (dilation of the artery in
multiple directions more or less perpendicular to the vessel axis).
All aneurysms were identified a priori and classified by two inde-
pendent operators.

The 3D rotational angiography (3D-RA) data were acquired
using a biplane flat-detector digital subtraction angiography sys-
tem (Axiom Artis, Siemens Medical Solutions, Malvern, PA) at
Tufts Medical Center, Department of Neurosurgery (Boston, MA).
3D-RA is a technique employed to visualize blood vessels in a
bony or dense soft tissue environment. Contrast agent is injected
through a catheter which is navigated from a percutaneous fem-
oral arterial access into a carotid or vertebral artery (i.e. one of
the vessels leading to the brain vasculature). Images acquired
during the contrast agent are subtracted from images acquired
pre-contrast. In the case of intracranial scanning, 3D-RA produces
images with very high contrast between vasculature and the sur-
rounding environment (Fig. 3a). In the current study, the size of
each 3D-RA data volume is 256� 256� 229, with 0.48 mm iso-
tropic voxels.
Fig. 3. (a) 3D-RA axial image (window 1000, level 200) displays high contrast
between vasculature and surrounding tissue. (b) CTA axial image (window 700,
level 250). The contrast agent injected during CTA imaging increases the image
contrast between vessels and surrounding soft tissue, but lowers the contrast
between vessels and bone.
To visualize blood vessels, CTA relies on 2D X-ray images ac-
quired in the presence of an iodine-based contrast injected as an
intravenous solution (Fig. 3b). Two scanners were used for the
acquisition of the CTA datasets: definition (Siemens Medical Solu-
tions, Malvern PA; voxel size 0:35� 0:35� 1 mm) and LightSpeed
Plus (GE Medical Systems, Schenectady NY; voxel size
0:40� 0:40� 1:25 mm).

Although catheter-based 3D-RA imaging remains the gold stan-
dard in cerebral aneurysm imaging, CTA is a less-invasive modality
with increasingly improving sensitivity and specificity, which is
being more and more used for cerebrovascular imaging and aneu-
rysm detection (Edlow et al., 2008).
5.2. Pre-processing

Prior to segmenting the vasculature, CTA data volumes were
resampled to isotropic voxel size. Because of the high resolution
of the data and high contrast between vasculature and surrounding
tissue, vessel segmentation of 3D-RA data is a relatively simple
task (Fig. 3a). CTA images have lower spatial resolution compared
to 3D-RA and may show physical (partial volume, beam hardening)
and patient-related artifacts (metal, motion effects) (Gupta et al.,
2006). The contrast agent injected during CTA imaging increases
the image contrast between vessels and surrounding soft tissue,
but lowers the contrast between vessels and bone, making cerebral
vessel segmentation more challenging (Fig. 3b). Furthermore, CTA
data display venous contamination of the images (i.e. contrast
agent reaching the venous system and precluding adequate visual-
ization of arteries). In the case of CTA, the bone was removed from
the images using a commercial 3D visualization and modeling sys-
tem (Amira, Mercury Systems, Chelmsford, MA). Vessel segmenta-
tion was performed on all datasets using a combination of
thresholding and region-growing techniques (Pham et al., 2000).
The resulting segmented volumes were used as input to the aneu-
rysm detection method.
5.3. Experimental validation of local neighborhoods

The detection method relies on the assumption that if the local
neighborhood of a surface point on a normal vessel is determined
as described in Section 4.5, it can be approximated by either a cyl-
inder, in which case the medial axis is a line segment, or by an ex-
truded parabola, in which case the medial axis is a parabola. The
assumption was tested experimentally on the ten 3D-RA patient-
derived datasets. Regression analysis was applied to each local
neighborhood and points on the medial axis were fitted to both a
line and a parabola. The smallest fitting error between the two
determined if the local neighborhood was best approximated by
a cylinder or by an extruded surface along a parabola.

Orthogonal linear regression (Ahn, 2004) was applied to mini-
mize the perpendicular distances from the medial axis points to
the fitting 3D line. As described in Ahn (2004), we fit a set fXigm

i¼1

of m points on the medial axis to a line described in parametric
form by the equation X0 þ ur ¼ 0, where X0 is a point on the line
and the centroid of the medial axis points, r is a direction vector,
krk ¼ 1 and u 2 R. The orthogonal fitting is achieved by finding r
which minimizes the square sum of the orthogonal distances from
the points to the line

min
r

Xm

i¼1

kðXi � X0Þ � rk2
:

Fig. 4 shows the histogram of line fitting errors. The horizontal
axis represents corresponding root mean squared (RMS) errors de-

fined as RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
i¼1�2

q
, where �i is the Euclidean distance from



Fig. 4. Histogram of line fitting errors.
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medial axis point i to the fitting line. The vertical axis shows the
number of local neighborhoods which can be approximated by
cylinders.

In the case of parabola fitting, first orthogonal regression was
applied to fit the 3D medial axis points to an arbitrary plane de-
scribed by the equation ðX � X0ÞT � n ¼ 0, where X is an arbitrary
point on the plane, X0 is a point on the plane and the centroid of
the medial axis points, n is the normal to the plane and knk ¼ 1
(Ahn, 2004). The orthogonal fitting is achieved by finding n which
minimizes the square sum of the orthogonal distances from the
points to the plane

min
n

Xm

i¼1

kðXi � X0ÞT � nk2
:

Fig. 5 shows the histogram for plane fitting errors. It can be seen
that the medial axis points for each local neighborhood are very
close to being coplanar.

The 3D points were then projected onto the fitting plane and
represented as 2D points in a local coordinate system. The set of
2D points, fðx0i; y0iÞg

m
i¼1, were fitted to a 2D parabola described by

equation ðy� kÞ2 ¼ 4aðx� hÞ, where ðh; kÞ is the vertex of the
parabola and a 2 R; a – 0. In addition to minimizing the distances
from points to parabola, we constrained the system such that the
Fig. 5. Histogram of plane fitting errors.
apex of the parabola was fixed to the center of the medial axis
(point c from Fig. 2).

min
a

Xm

i¼1

kðyi � kÞ2 � 4aðxi � hÞk2
;

such that c ¼ ðh; kÞ:

The histogram for parabola fitting errors is shown in Fig. 6. On
the horizontal axis are the corresponding RMS errors from the
medial axis points to the fitting parabola. The vertical axis shows
the number of local neighborhoods which can be approximated
by extruded surfaces along a parabola.

Note that the maximum fitting errors in all three cases are
smaller than the voxel size, which is 0:48� 0:48� 0:48 mm3. The
local neighborhood analysis shows that it is reasonable to model
small regions along normal vessels as cylinders and extruded
parabolas. Deviations from such geometries are captured by the
writhe number computations and provide a useful tool for finding
aneurysms as abnormal vessel regions.

6. Results

All aneurysms were correctly identified by our detection meth-
od with 0.66 false positives per study on 3D-RA data and 5.36 false
positives per study on CTA-derived data. These results were ob-
tained as follows. As discussed in Section 4.7, we start by clustering
voxels whose writhe number is non-zero and then computing the
region index associated with each cluster. Suspect regions are ta-
ken as those whose region index exceeds a given threshold. The
performance analysis in this paper is evaluated by varying this
threshold and examining relevant statistics.

Specifically, for each threshold value, the following quantities
were computed: number of true positives (TP), number of false
positives (FP), number of false negatives (FN) and true positive
fraction (TPF). The true positive fraction is defined as

TPF ¼ TP
TPþ FN

:

The sensitivity of the method is measured in percentage and is
computed as TPF� 100.

Tables 1 and 2 show how detection statistics change function of
the region index threshold value applied on the detection results,
for 3D-RA and CTA, respectively. It is apparent from the two tables
that most false positive results have very small region indexes. The
purpose when applying the region index threshold is to reduce the
Fig. 6. Histogram of parabola fitting errors.



Table 1
Statistics for aneurysm detection on 3D-RA.

Threshold value
(region index)

TPF
(%/100)

FN
(avrg per study)

FP
(avrg per study)

0 1 0 3.66
5 1 0 1.33
7.5 1 0 1
10 1 0 0.66
12.5 0.87 0.11 0.44
15 0.50 0.33 0.22
17.5 0.35 0.33 0.22

Table 2
Statistics for aneurysm detection on CTA.

Threshold value
(region index)

TPF
(%/100)

FN
(avrg per study)

FP
(avrg per study)

0 1 0 28.80
5 1 0 5.36
7.5 0.90 0.10 3.27
10 0.81 0.18 2.27
12.5 0.81 0.18 1.54
15 0.81 0.18 1.36
17.5 0.63 0.36 1
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FP value, while maintaining a TPF value of 1. TPF equals 1 when all
aneurysms are detected.

The method detected all aneurysms and resulted in 3.66 false
positives for 3D-RA data (Table 1) and 28.80 for CTA data (Table
2). These are detection results before any false positive reduction,
which show that the detection specificity is much higher on 3D-
RA data than on CTA. The first level of thresholding (with a region
index of 5) reduces the CTA false positives from 28.80 to 5.36 and
the 3D-RA positive results from 3.66 to 1.33, showing that most
false positives are very small in size, especially for CTA data. The
3D-RA false positives can be further thresholding for a region index
up to 10 which corresponds to 0.66 false positives per study.

To evaluate the performance of the proposed detection method,
FROC analysis was applied as shown in Fig. 7. The horizontal axis
indicates the average number of false positives (FP) per study,
while the vertical axis indicates the true positive fraction (TPF),
which is related to the sensitivity of the detection. Specifically,
the FROC curves were determined by plotting TPF (second column
from Tables 1 and 2) as a function of FP (fourth column from Tables
Fig. 7. FROC analysis of the aneurysm detection algorithm on 3D-RA and CTA data.
The figure shows how many false positive results are observed on average before
one aneurysm is detected for 3D-RA and CTA.
1 and 2) for both 3D-RA and CTA data. Fig. 7 shows how many false
positive results are observed on average before one aneurysm is
detected for 3D-RA (0.66 false positives) and CTA (5.36 false posi-
tives). The results correspond to thresholding positive results with
a region index of 10 and 5 for 3D-RA and CTA, respectively.

The relationship between the writhe numbers and the size of
the suspected regions is shown in Fig. 8. The horizontal axis holds
the total writhe numbers for each positive result, computed as the
sum of writhe numbers of all surface points on that positive result.
On the vertical axis are the corresponding region indexes. True
positives are shown as red stars and false positives are shown as
blue stars. The analysis is done on the ten 3D-RA datasets. The fig-
ure shows that it is reasonable to use the size of the positive re-
gions as a threshold value. It also suggests that both the size of
the positive regions and the surface writhe number can be used
to classify true positives vs. false positives using linear discrimi-
nant analysis. This is an interesting point and we plan to act on
it in our future work which will incorporate classification on a lar-
ger one-modality database.

Figs. 9 and 10 show the visual results of the detection algorithm
after thresholding positive results with region index smaller than
10. Red areas show positive results, while true aneurysms are indi-
cated by a black arrow.
7. Discussions

The proposed aneurysm detection method was tested on
twenty datasets from two imaging modalities, acquired with three
different scanner models.

As shown by the FROC analysis, the detection algorithm per-
forms very well on 3D-RA data and results in few false positive re-
sults (0.66 per study). 3D-RA images have high resolution and
show high contrast between vasculature and surrounding tissue
and simple segmentation techniques result in accurate segmented
volumes. Segmentation is more challenging on CTA data which
have lower resolution, more artifacts and show venous
contamination.

There is a direct relationship between the quality of vessel seg-
mentation and the accuracy of the detection method. Because this
study focused on aneurysm detection, simple, readily available
segmentation methods were used to preprocess the image data.
However, particularly for CTA imaging, it is likely that better
segmentation techniques (Hernandez and Frangi, 2007; Radaelli
Fig. 8. Relationship between the writhe number and region index. The total writhe
number of a positive region is computed as the sum of writhe numbers of all
individual surface points. True positives are shown as red stars and false positives
are shown as blue stars. The analysis is done on the ten 3D-RA datasets.



Fig. 10. Aneurysm detection on six patient-derived datasets. Results shown after thresholding positive results with a region index of 5. Positive results are colored in red.
Black arrows point to true positives. Orientation is chosen for the best visualization of the aneurysms. (a–c) 3D-RA data. (d–f) CTA data.

Fig. 9. Aneurysm detection results on one patient study. (a) Original 3D-rotational angiography. (b) Corresponding medial axis of the 3D-RA dataset. (c) Detection results.
Positive results are colored in red. Black arrows point to true positives.
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and Peiro, 2009; Fridman et al., 2004) would improve the detection
accuracy.

The clinical value of the algorithm depends on its performance
on less-invasive CTA and MRA modalities. The current method is
intended to be eventually generalized to include non-invasive
cross-sectional imaging modalities and such studies will require
an in-depth analysis of the characteristics, shortcomings and
strengths of each imaging modality. The input modality will affect
the choice of optimal segmentation algorithms and the effect of the
segmentation performance on the detection results. While these
complex issues were avoided by our use of 3D-RA data in this ini-
tial report, they will be the basis of future studies.

The presence of noise in the medial axis calculation, especially
for narrow vessels (2–3 voxels in diameter) is the reason for a large
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portion of the false positive results. The medial axis of the vessels is
computed applying the method described by Bouix et al. (2005),
which in tests on synthetic data showed a high percentage of voxel
overlap between the computed medial axis and the ground truth
medial axis. In regions where the computed medial axis did not
overlap the ground truth medial axis, the average distance re-
ported was half a voxel, with a maximum of one or two voxels dis-
tance, especially at the end points (Bouix et al., 2005). As it is
expected the presence of noise influences the accuracy of the med-
ial axis (Bouix et al., 2005). Some of the false positive detection re-
sults are located on peripheral vessels (2–3 voxels in diameter).
While 3D-RA has excellent signal-to-noise ratio, the signal inten-
sity is weaker in regions with small vessels compared to regions
with main arteries and may influence the accuracy of the medial
axis computation. At the same time, a half voxel discrepancy in
medial axis computation has little impact when computing local
neighborhoods in regions with wider vessels, but can result in
incorrect local neighborhoods and false positive results in regions
with much narrow vessels. For large, irregular aneurysms, the
medial axis inside the aneurysm presents as a cluster of small
branches rather than one branch, thus resulting in patches of posi-
tive results on the surface of the aneurysm as shown in Fig. 10f. The
algorithm would benefit from an automated grouping of the posi-
tive results describing the same aneurysm. This would yield larger
region indexes for true positives and a more discriminant false po-
sitive reduction. For future work we plan to study how smoothing
of the medial axis affects false positive rates. There is a risk that
smoothing of the medial axis might decrease the method sensitiv-
ity by removing small branches describing true positives.

The detection method correctly identified the five fusiform
aneurysms from the test data. These are biological fusiform aneu-
rysms which present as uneven dilatations in multiple directions
perpendicular to the vessel axis. These aneurysms result in short
branches on the vasculature centerline. The method is unlikely to
detect true radially symmetric fusiform aneurysms defined as local
dilatations of an artery and having perfectly circular cross-sections.

For future work, on a larger single modality database, we intend
to improve false positive reduction using cross-validation for clas-
sification of the positive results taking into account features such
as region index, estimated diameter, location on the vasculature
and writhe number values.

Currently, the detection method requires an average of 2 min
for a 3D-RA dataset and 8 min for CTA data on a desktop machine
with Intel Duo Core@2.66GHz CPU and 2GB of RAM. This excludes
segmentation time since we assume a segmented volume is given
as input. On our particular data, we applied a combination of thres-
holding and region-growing segmentation techniques which take
less than 1 min on both 3D-RA and CTA data. At the moment the
code contains no optimization.

In terms of computational complexity, there is nothing inher-
ently prohibitive in the proposed analysis, as all steps composing
the detection method are computationally tractable. The local
analysis work is highly parallelizable, and as such, is well suited
to efficient implementation on advanced hardware such as multi-
core processors, FPGAs, ASICS, and GPUs. We are confident that
code optimization and parallel programming will greatly decrease
the required computation times and render the algorithm suitable
for on-line use in clinical applications.

To assess the performance and utility of the aneurysm detection
method in a clinical setting, we plan to perform a validation study,
with and without computed-aided diagnostic systems assistance,
to investigate the effect of our method on diagnostic accuracy.
The detection of intracranial aneurysms is fraught by multiple con-
founding factors including the quality and age of the equipment
available, the acquisition technique, patient cooperation, and clini-
cian’s expertise and state of alertness. Each of these factors is dif-
ficult to control or optimize on an ongoing basis. We believe an
additional computational tool that would point the interpreting
clinician to possible aneurysmal dilatations may be useful in
improving diagnostic accuracy and reducing interpretation times.
8. Conclusion

A new method is presented for automated detection of intracra-
nial aneurysms, which is based on the local 3D shape of the parent
vessels. The writhe number is introduced as a new surface descrip-
tor that can be used to distinguish between tubular and non-tubu-
lar regions along the vessels. The detection algorithm requires only
a segmented volume of cerebral vasculature and is otherwise inde-
pendent of the imaging modality. The method is tested on 3D-RA
and CTA patient data. The robustness of the method is investigated
analytically and validated experimentally. The method returns few
false positive results and does not involve a complex false positive
reduction scheme. In our experiments on patient-derived data, the
sensitivity of the detection method is close to 100%.
Appendix A. Writhe number analysis

A.1. Writhe number of a cylinder

If NðpÞ is a cylinder of radius R and length L and points c0 and c1

are the centers of the base and the top of the cylinder, respectively,
then the medial axis of NðpÞ is a line segment described by the
parametric equation mðtÞ ¼ c0ð1� tÞ þ c1t, where t 2 ½0;1�. With-
out loss of generality, we assume that c0 is the origin of the local
coordinate system, c1 lies on the x axis and the normal n̂p at point
p is parallel to the y axis (Fig. A.1). Points p1;p2 are chosen as dis-
cussed in Section 3.2.1.

Let ðpx;py;pzÞ be the Cartesian coordinates of point p. Point p1

sits on the circumference of a circle Cðp1Þ parallel to the base of
NðpÞ. Let b be the angle between y axis and the vector from the ori-
gin of Cðp1Þ to point p1 (Fig. A.1). The same holds for point p2. For
any pair of points ðp1;p2Þ the following are true:

ðpx;py;pzÞ ¼
L
2
;R; 0

� �
;

ðp1x;p1y;p1zÞ ¼ ðLt;R cos b;R sin bÞ; t 2 ½0;1�;
ðp2x;p2y;p2zÞ ¼ ðLð1� tÞ;R cos b;R sin bÞ; t 2 ½0;1�;

ðp1 � pÞ ¼ Lt � L
2
;Rðcos b� 1Þ;R sin b

� �
; t 2 ½0;1�;

ðp2 � pÞ ¼ �Lt þ L
2
;Rðcos b� 1Þ;R sin b

� �
; t 2 ½0;1�;

n̂p ¼ ð0;1;0Þ;
n̂p1 ¼ ð0; cos b; sin bÞ;
n̂p2 ¼ ð0; cos b; sin bÞ;
n̂p � n̂p1 ¼ ðsin b;0; 0Þ;
n̂p � n̂p2 ¼ ðsin b;0; 0Þ;

wðp;p1Þ ¼ ðp1 � pÞ � ðn̂p � n̂p1Þ ¼ Lt � L
2

� �
sin b;

wðp;p2Þ ¼ ðp2 � pÞ � ðn̂p � n̂p2Þ ¼ � Lt � L
2

� �
sin b;

wðp;p1Þ ¼ �wðp;p2Þ:
A.2. Writhe number of an extruded surface along a parabola

An arbitrary parabola H, with the apex in the origin of the coor-
dinate system, is defined by the parametric equations



Fig. A.2. Computing the writhe number of an extruded parabola.

Fig. A.1. Computing the writhe number of a cylinder.
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x ¼ at2; y ¼ 2at; t 2 R. A point h on H has coordinates ðat2;2atÞ and
the tangent to H at h is given by equation ty ¼ xþ at2.

Given a surface point p, let NðpÞ be an extruded surface along H,
having H as its medial axis. Point p lies on the circumference of a
circle CðpÞ, with center c and perpendicular to H. Note that all
the points on CðpÞ have the same local neighborhood as p and
implicitly the same writhe number. Without loss of generality,
we assume that H lies in the xy plane, c is the apex of H and p is
the apex of the largest parabola on the extruded surface, such that
the normal n̂p to the surface is parallel to the x axis (Fig. A.2).
Points p1;p2 are chosen as discussed in Section 3.2.2.

Let ðpx;py;pzÞ be the Cartesian coordinates of point p and tp be
the tangent to the surface at point p. Point p1 sits on the circumfer-
ence of a circle Cðp1Þ with center c1 and perpendicular to H. Cðp1Þ
intersects the largest parabola on the extruded surface in a point p0,
with normal n̂0p to the surface. Let b be the angle between n̂0p and
the vector from c1 to point p1 (Fig. A.1). The same holds for point
p2. For any pair of points ðp1;p2Þ the following are true:

ðcx; cy; czÞ ¼ ð0; 0;0Þ;
ðc1x; c1y; c1zÞ ¼ ðat2;2at; 0Þ; t 2 R;

ðc2x; c2y; c2zÞ ¼ ðat2;�2at;0Þ; t 2 R;

n̂c ¼ ð�1; 0;0Þ;

n̂c1 ¼ �
1
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;0

0
B@

1
CA; t 2 R;

n̂c2 ¼ �
1
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t2

q ;0

0
B@

1
CA; t 2 R;

t̂c1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;
1
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;0

0
B@

1
CA; t 2 R;

t̂c2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;�
1
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ; 0

0
B@

1
CA; t 2 R:
The tuple ðt̂c1; n̂c1; t̂c1 � n̂c1Þ is the basis of a 3D-RA orthogo-
nal coordinate system local to Cðp1Þ. Similarly, ðt̂c2; n̂c2; t̂c2�n̂c2Þ
is the basis of an orthogonal coordinate system local to Cðp2Þ.
We will express p1 and p2 locally in terms of the new bases.

ðpx;py;pzÞ ¼ ð�R; 0;0Þ;

p1x ¼ at2 �
R
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q cos b; t 2 R;

p1y ¼ 2at þ Rffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t2

q cos b; t 2 R;

p1z ¼ R sin b;

p2x ¼ at2 �
R
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q cos b; t 2 R;

p2y ¼ �2at þ Rffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t2

q cos b; t 2 R;

p2z ¼ R sin b;

ðp1 � pÞx ¼ at2 þ R 1�
R
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q cos b

0
B@

1
CA; t 2 R;

ðp1 � pÞy ¼ 2at � Rffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

t2

q cos b; t 2 R;

ðp1 � pÞz ¼ R sin b;

ðp2 � pÞx ¼ at2 þ R 1�
R
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q cos b

0
B@

1
CA; t 2 R;

ðp2 � pÞy ¼ �2at þ Rffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t2

q cos b; t 2 R;

ðp2 � pÞz ¼ R sin b;

n̂p ¼ ð�1;0; 0Þ;

n̂c1 ¼ �
1
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ; sin b

0
B@

1
CA; t 2 R;

n̂c2 ¼ �
1
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q ;� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t2

q ; sin b

0
B@

1
CA; t 2 R;

n̂p � n̂p1 ¼ 0;� sin b;� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t2

q
0
B@

1
CA; t 2 R;

n̂p � n̂p2 ¼ 0;� sin b;
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q
0
B@

1
CA; t 2 R;

wðp;p1Þ ¼ ðp1 � pÞ � ðn̂p � n̂p1Þ

¼ � 2at � R cos bffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

t2

q
0
B@

1
CA sin b� Rffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q sin b;

wðp;p2Þ ¼ ðp2 � pÞ � ðn̂p � n̂p2Þ

¼ � �2at þ R cos bffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

t2

q
0
B@

1
CA sin bþ Rffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
t2

q sin b;

wðp;p1Þ ¼ �wðp;p2Þ:
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