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Data Specific Spatially Varying Regularization for
Multimodal Fluorescence Molecular Tomography

Damon Hyde*, Eric L. Miller, Dana H. Brooks, and Vasilis Ntziachristos

Abstract—Fluorescence molecular tomography (FMT) allows
in vivo localization and quantification of fluorescence biodistribu-
tions in whole animals. The ill-posed nature of the tomographic
reconstruction problem, however, limits the attainable resolution.
Improvements in resolution and overall imaging performance can
be achieved by forming image priors from geometric information
obtained by a secondary anatomical or functional high-resolu-
tion imaging modality such as X-ray computed tomography or
magnetic resonance imaging. A particular challenge in using
image priors is to avoid the use of assumptions that may bias the
solution and reduced the accuracy of the inverse problem. This
is particularly relevant in FMT inversions where there is not an
evident link between secondary geometric information and the
underlying fluorescence biodistribution. We present here a new,
two step approach to incorporating structural priors into the FMT
inverse problem. By using the anatomic information to define a
low dimensional inverse problem, we obtain a solution which we
then use to determine the parameters defining a spatially varying
regularization matrix for the full resolution problem. The regu-
larization term is thus customized for each data set and is guided
by the data rather than depending only on user defined a priori
assumptions. Results are presented for both simulated and exper-
imental data sets, and show significant improvements in image
quality as compared to traditional regularization techniques.

Index Terms—Fluorescence, multimodality, tomography.

I. INTRODUCTION

I NTEREST in visualizing optical contrast in animals and hu-
mans, beyond the penetration limits of microscopy, has led

to the development of imaging techniques such as fluorescence
molecular tomography (FMT) [1]–[13]. Such methods can op-
erate in absorption and fluorescence modes, enabling detection
of biomarkers situated deep within target volumes [14]. While
2-D photographic imaging can be used for target detection, ac-
curate localization and quantification of fluorescence distribu-
tions requires the use of tomographic techniques.
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Modern tomographic systems operate in free-space geome-
tries and avoid the use of matching fluids or optical fibers. These
systems can additionally implement multi-angle projections and
high spatial sampling of optical signals [15]. The less restric-
tive geometries and optimized data collection arising from these
systems have yielded significant improvements in imaging ca-
pability as compared to older generation matching fluid-based
or fixed geometry systems [15].

Despite these advances, optical tomography based on diffuse
light offers an inherently low spatial resolution. Smoothness in
the imaging kernel results in poor conditioning of the forward
model, ultimately limiting resolution to approximately the mil-
limeter scale and larger [1]. It has previously been reported that
the use of structural information in the image formation process
could help to compensate for this shortcoming [16]–[20]. High-
resolution anatomical images, available from modalities such
as X-ray computed tomography (XCT) and magnetic resonance
imaging (MRI), can be segmented into structurally or function-
ally relevant regions. This information can then be used to im-
prove both the forward and inverse aspects of the tomography
problem. Techniques such as the finite element method (FEM)
allow for solution of the diffusion problem on complex inho-
mogeneous tissue geometries, thereby improving the accuracy
of the associated physical model. Additionally, the anatomical
structure can be used to construct a prior model of the fluores-
cence image to be reconstructed. When applied to the inverse
problem of recovering an image of the fluorescence distribu-
tion from a set of collected surface intensity measurements, this
prior information can guide the reconstruction process to yield
improved image accuracy.

In response, several methods currently have been proposed
for constructing such prior models [16]–[20]. Most methods
classify voxels in the high-resolution structural image according
to tissue type. Registration between the modalities then allows
the assignment of a tissue label to each voxel in the FMT re-
construction. This labeling divides the solution image into a
number of segments, each comprising a group of voxels with
a common tissue label. Regularization functionals are then es-
tablished on each segment, based on assumptions of optical or
functional characteristics for each tissue type. These functions
can be based on known optical properties for the different tissue
types, or can assume certain properties, such as smoothness of
the solution or deviation from a mean in some or all of the tissue
types [16], [17]. For example, employing a discretized Lapla-
cian or Helmholtz operator for each region is useful when the
image being reconstructed is expected to correlate highly with
the anatomy. Another approach uses the labeling to define a sep-
arate Gaussian image prior on each region, and constructs a hi-
erarchal Bayesian solution for imaging of endogeneous contrast
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by using a priori estimates of the mean intensities on each re-
gion [18], [19].

The accuracy by which prior information is known strongly
correlates with the performance of the hybrid method. When
considering fluorescence solutions where little knowledge
is generally known about the fluorescence biodistribution a
priori the application of priors becomes more challenging.
With the recent emergence of FMT-XCT [21] and FMT-MRI
[22] approaches it becomes particularly important to develop
methodologies that can benefit from the availability of high-res-
olution images without biasing the resulting solution. For this
reason, we explore two aspects of the multimodality problem
not directly considered in earlier reports. First, simply as a
result of the imaging physics, multimodal imaging approaches
generally use a high-resolution image to enhance a low-resolu-
tion image. In the case of FMT-XCT imaging, this means that
each voxel in the low-resolution FMT reconstruction will cover
several voxels in the high-resolution XCT image. While each
XCT voxel is assigned a single anatomic type during the initial
segmentation and tissue classification, FMT voxels near tissue
boundaries will potentially span two or more tissue types. By
associating each FMT voxel with only a single tissue type,
errors in tissue labeling will result. (We note here that we use
the term voxel to identify individual elements of the XCT or
FMT images, while “segment” refers to a group of voxels that
share a common tissue type labeling at either the XCT or FMT
image scales.)

Second, existing methods typically use a priori assumptions
which are applied in an identical manner to each data set.
Smoothness constraints are applied uniformly to all segments,
and prior estimates of signal intensity are likewise fixed for all
data sets. However, each segment of each experimental volume
may have unique intensity and smoothness levels, which should
be taken into account if they are to be constrained by the prior
model. Published hierarchal Bayesian approaches use fixed
prior distributions for the hyperparameters, which are generally
unavailable for fluorescence imaging. In both cases, these traits
can often be defined using a small number of parameters, which,
if estimated from the collected data, could provide customized
prior models offering improved reconstruction results.

This type of customized regularization is potentially of great
benefit for imaging fluorescent targets. While endogenous op-
tical contrast is often well correlated with physical structure,
the fluorescent probes imaged by FMT systems are specific to
molecular activity levels which do not necessarily correlate per-
fectly with anatomy, and whose intensity levels are generally
not known a priori. Accurate identification of active regions
and subsequent selection of appropriate regularization levels
would enable segments such as the background to be highly con-
strained, while permitting the remaining voxels in segments of
higher activity to best account for the collected data.

To address these aspects, we introduce here a new space
varying regularization technique for the incorporation of XCT
or other high-resolution geometrical information into the solu-
tion of inverse diffusion problems. Our method first addresses
the fundamental resolution differences by labeling each FMT
solution voxel as a linear mixture of the tissue types identified
in the high-resolution XCT image. At the interface between

physical regions, the resulting prior model is then able to
incorporate information from multiple regions, more accurately
representing the underlying anatomy.

The labeling of segments is then used to create a low dimen-
sional inverse problem that yields a single intensity value for
each anatomic segment. We use these solution values as param-
eters to define a spatially varying regularization term for the full
resolution FMT problem. The central idea of this paper is to use
information present in the data in order to replace user-defined
priors with data-driven priors. The underlying benefit is that the
reduced dimensionality problem is not as ill-posed as the com-
plete FMT inversion problem. It can thus yield more accurate
information about mean values of the fluorescence biodistribu-
tion within each segment.

To showcase the performance of the method we studied two
inversion implementations within the photon diffusion regime
assuming a mouse brain geometry. Results are shown from sim-
ulated data and from in vivo measurements obtained for a re-
cently reported experimental study [21]. We show that robust
inversion can be obtained from a variety of fluorescence dis-
tributions and that in all cases the proposed method performs
significantly better than standalone methods that do not utilize
prior information.

This paper is structured as follows: Section II presents the for-
ward and inverse models, as well as our method for the incor-
poration of a priori structural information. Section III contains
details of the methods and materials used in our validation ex-
periments. Results for both simulated and in vivo data sets are
presented in Section IV, while Section V presents discussion,
conclusions, and future work.

II. MODELING

For source-detector separations of more than a few millime-
ters, the propagation of light through tissue can be modeled by
the diffusion approximation [23]. Using a spatially localized im-
pulse function as the source term, Green’s function solutions
are computed either in analytical form for a number of specific
geometries, or in the general case using numerical techniques
such as the finite element method (FEM). The first order Born
approximation then states that given these Green’s functions, an
equation for the received fluorescence can be written as [24]

(1)

Thus, the fluorescence detected at a point as the result of a
point source at is modeled as the integral of diffused light
from all fluorescent sources within the volume, given ,
the spatial distribution of excitation light. Here, is
the Green’s function describing light propagation at the fluores-
cence wavelength. The parameters and are the source
and detector coupling coefficients, and are the speed of
light in tissue and the diffusion coefficent, is the quantum
efficiency of the camera at the fluorescence wavelength, and
is fluorescence filter attenuation. The unknown spatial distribu-
tion of fluorochrome is represented here by .
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Accurately determining the value of requires solution
of a second diffusion model, coupled to the first, describing
light propagation at the excitation wavelength. For the imaging
of fluorescent probes, the values obtained in this solution are
often of little interest, and thus computation of represents
an additional, undesirable computational burden. An alternative
approach, referred to as the normalized Born approximation,
or simply, the Born ratio, has previously been introduced as a
modeling method which bypasses the need to explicitly com-
pute [24]. By using corresponding measurements at the
excitation wavelength to normalize the collected fluorescence
measurements, the Born ratio has been shown to provide a sig-
nificant degree of invariance to inhomogeneities in the imaging
medium. Furthermore, it allows for the use of easily obtainable
Green’s functions in place of in (1), greatly simplifying the
image reconstruction formulation. Using a single Green’s func-
tion to express the excitation wavelength measurements as:

(2)

the Born ratio can then be written as

(3)

where the excitation wavelength Green’s function has
replaced in the equation for . Source and detector
coupling coefficients cancel out, leaving only fundamental
system properties as free parameters, the values of which can
be determined by calibration experiments.

To obtain a numerical inverse solution, the above integral
equation can be discretized using a piecewise constant voxel
basis. The resulting dependence of each measurement point
upon individual voxels in the imaged volume is thus

(4)

where is the volume of the voxel centered at . Ac-
counting for data from all source-detector pairs, the forward
model can be written as a linear system

(5)

The matrix , of size , is in general poorly
conditioned and not square, making direct inversion impossible.
Instead, an estimate of the fluorescence distribution giving
rise to the collected data is obtained using the least squares
formulation:

(6)

Fig. 1. Construction of partial volume labeling matrix. Here, voxel I lies 50%
within region 1 and 50% within region 2, while voxel II lies 25% within region
1, 25% within region 2, and 50% within region 3. This is reflected in the rows
of the matrix � , each of which is of unit one-norm.

where the regularization term has been included to help stabi-
lize the problem and the matrix represents the inverse square
root of the noise covariance, as previously established for the
Born ratio [25]. Additionally, this formulation implicitly as-
sumes a zero mean model for the image , an aspect we will
address in more detail later. The parameter is used to control
the degree of regularization, and its value is determined using
methods such as the L-curve [26].

III. STRUCTURAL PRIORS

Given a CT or other structural image properly registered to
the FMT coordinate system, individual voxels within the FMT
image can be labeled with one or more tissue types. The seg-
ments arising from this labeling allow construction of a low
dimensional problem that produces a single intensity value for
each physical segment. These values can then be used to con-
struct a dataset-adaptive spatially varying regularization term
for use in the full resolution FMT problem, as explained below.

A. Low-Dimensional Parameterized Inverse

In order to employ structural information in the inverse
problem, voxels in the FMT solution space must first be as-
sociated with the structural image. Modalities such as X-ray
CT, however, have significantly better physical resolutions
than FMT. Each FMT solution voxel will therefore occupy the
same space as several voxels in the structural image. In the
vicinity of tissue boundaries this difference in resolution means
that each FMT voxel will potentially include more than one
anatomic region. We propose to use a partial volume approach
that models each FMT voxel as a mixture of multiple segments.
This allows for the anatomical structure to be correctly related
to the inverse problem.

Implementation of this voxel multiple-labeling, illustrated
in Fig. 1, is done using a matrix, denoted as , of size

. Here, is the numbers of voxels
in the full resolution FMT problem, while is the
number of anatomic segments in the structural image. The in-
dividual elements are then defined as the fraction of voxel i
which lies within segment j. Using this matrix, a parameterized
version of the inverse problem in (6) can be written as

(7)
where , of size and is a vector
of length . This formulation is equivalent to obtaining
an inverse solution using a piecewise constant basis defined by
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the anatomical segmentation. Alternately, it can be seen as a
method for estimating a mean fluorescence intensity for each
tissue type or anatomical region. Conceptually, the idea is that
by solving a reduced dimensional problem using the structurally
defined basis, we can use the collected data to provide infor-
mation about the fluorescence content of each region. We will
then use this reconstruction to build a regularization matrix cus-
tomized to each specific multimodal data set.

Because negative fluorescence concentrations are nonphys-
ical, we must constrain the solution of (7) to be nonnegative.
The low dimensionality of the parameterized problem allows us
to use the modified residual norm steepest descent (MRNSD)
approach without significantly increasing total computation
time [27]. MRNSD requires a nonzero initialization, which
we achieve using a normalized projection of the data onto the
segments

(8)

with denoting the th column of the matrix . corre-
sponds to the value associated with the th region at iteration .

B. Regularization Construction

Solution of (7) then yields a single value for each anatomic
segment, which we will use in the construction of an appropriate
spatially varying regularization term. If, as suggested earlier,
these values are viewed as estimates of the mean for each seg-
ment, or alternately as an initial estimate of the image [28], then
(6) could be modified to take the form

(9)

which explicitly applies the values as spatially varying prior
or initial estimates of mean intensity over the segments. This
formulation also has a statistical interpretation as the maximum
a posteriori (MAP) estimator of , given the collected data ,
noise covariance , and the Gaussian image prior

, with representing the pseudoinverse.
Though optical contrast is often correlated with physical

structure, the fluorescent probes that serve as the contrast agents
for FMT imaging do not appear on a CT scan. Moreover, their
ability to traverse anatomical boundaries means it is possible
for probe to be located within only a small portion of a physical
segment, be present within more than one segment, or even be
contiguous across an anatomical border. Thus, the assumption
of a uniform mean across the entire segment may not strictly
hold for fluorescence imaging. As we will show in the results
section, improved reconstructions can be obtained even when
this assumption is not explicitly satisfied. However, owing to
these possibilities, we also consider the original minimization
equation

(10)

which does not explicitly impose mean values upon the solu-
tions in each region, and can be interpreted as a MAP solution
given the prior model .

In both cases, the matrix is constructed as a diagonal matrix,
with spatially varying diagonal elements derived from the low
dimensional solution:

(11)

We define for some function , with the same
matrix used in (7) to build the parameterized problem. Thus a
regularization level is defined for each anatomic segment. Indi-
vidualized regularization for each FMT voxel is then generated
as a mixture of those intensities using the matrix . The func-
tion can thus be seen in the statistical interpretation as
generating the inverse of the standard deviation for each indi-
vidual region. We assume that the intensity for each region ob-
tained with the parameterized solution is proportional to the in-
tensities present at the full voxelized resolution. Regions with
a low parameterized solution value should thus be treated as
background regions, and more heavily regularized, while high
parameterized solutions will lead to corresponding regions with
lower levels of regularization. To achieve this, we want to select
the function such that an increase in mean value corre-
sponds to a decrease in the corresponding regularization level.

A straightforward choice for which achieves this goal
corresponds to a model where the variance is proportional to the
mean, as in the Gaussian approximation to a Poisson process,
resulting in the relationship

(12)

This choice for is unstable for small values of , which are
expected to appear frequently as a result of the nonnegativity
constraint applied by the MRNSD algorithm. In place of the
above equation, we use the modified version

(13)

which constrains to be in the range . This
alteration prevents regions from being infinitely regularized as

goes to zero, which would be equivalent to applying a hard
prior and not reconstructing values within that region. Our ap-
proach avoids this and allows fluorescence intensities to be re-
constructed at any location within the volume, but more heavily
penalizes their appearance within background regions.

The choice of will have an impact on the resulting solution
by modifying the range of regularization parameters assigned
to individual regions. For example, as tends towards zero, the
range of regularization parameters widens, resulting in a rela-
tive increase in the regularization applied to all regions, except
the one with the greatest mean value. The lower the mean value
of a particular region, the greater the increase in regulariza-
tion. For regions with a mean value of zero, regularization will
become infinite as goes to zero, effectively removing those
voxels from the reconstruction. Alternately, as is increased,

becomes the dominant term in the denominator and
all regions will be regularized in an identical manner. For the
results presented below, the value was used for all
examples. This value was found through numerical experimen-
tation to offer sufficient range of regularization values such that
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imaging artifacts were suppressed without suppressing activity
in regions with low mean values.

C. Summary of Approach

Given an appropriately segmented anatomical image, coreg-
istered to the solution image, our approach can be summarized
as follows.

1) Use the segmentation to assign partial volume labels to
each of the solution voxels, and construct the matrix .

2) Solve (7) using MRNSD to obtain a single parameter value
for each region.

3) Use the solution to compute the values of the ’s using
(13).

4) Construct the regularization matrix using (11), and pro-
ceed to solve either (9) or (10).

IV. EXPERIMENTAL METHODS

To evaluate our spatially varying regularization technique,
we investigated a range of simulated and experimental data sets
imaging amyloid- plaques in the brains of transgenic mice
exhibiting the symptoms of Alzheimer’s disease. These plaques
exist only within the brain, and are known to preferentially
form within the cortical region. The experimental details and
presentation of the in vivo data have recently been reported
[21]. Here, we use this data to showcase the performance of
the two inversion approaches presented herein, and to compare
them to conventional inversions that do not utilize priors. We
additionally provide corresponding simulations that allow
further insight into the validity of the in vivo results. The data
from the Alzheimer’s model selected here yield a challenging
tomographic problem, because the fluorescent targets are dis-
tributed throughout the volume, and not contained to a single
small region.

A. In Vivo Imaging

In vivo experimental data was collected using a fluorescence
molecular tomography system based on the non-contact multi-
angle collection of data in a transmission geometry [15]. As
shown in Fig. 2(a), translation stages were used to appropri-
ately position the source laser, while a rotation stage provided
the ability to collected data from multiple projection angles.
Data collection was done using an electrically cooled charged
coupled device (CCD) camera (Roper Scientific, Trenton, NJ),
positioned in a transillumination configuration. To provide sur-
face localization information, silhouette images were collected
at 360 projection angles. These images were used in conjunc-
tion with a previously described volume carving algorithm to
localize the external surface of the animal [29].

The experimental group comprised APP23 transgenic mice
exhibiting amyloid- plaques characteristic of Alzheimer’s
disease, with C52Bl/6 mice providing controls. Two hours
prior to imaging, each animal was given 100 mg/k of AO1987,
an oxazine derivative probe which has previously been shown
to exhibit specific binding with amyloid- plaques [30]. Flu-
orochrome excitation was achieved using a 650 nm diode
laser (BWTek, Newark DE). A total of 17 evenly spaced data
collection angles were used, with an 0.6 cm 0.6 cm grid of

Fig. 2. (a) Noncontact FMT imaging system diagram. (b) Surface recon-
structed with FMT system (yellow) overlaid with brain (red) and cortical (blue)
segments obtained from CT structural image.

5 3 source locations used at each projection. For each angle,
an 0.6 cm line of 10 detector points was used for each source
location.

Excitation measurements were collected using a bandpass
filter (three cavity interference, 652 9.5 nm, Andover, Salem
MA), while fluorescence measurements were collected with a
combination of a bandpass filter (three-cavity interference 710

10 nm, Andover, Salem, MA) and a longpass filter (Cutoff
695 nm; Omega Optical, Brattleboro, VT). To prevent CCD sat-
uration, images at the excitation wavelength were collected with
a 1.5OD filter placed between the animal and laser fiber. Fluo-
rescence measurements were collected without this filter present
to maximize received signal.

All internal anatomic information was provided by a single
CT data set, collected from a C52bl/6 control mouse on an
X-SPECT small animal imaging system (Gamma Medica,
Northridge, CA). Given that the relative skull geometry is
highly similar between animals, an affine transform was used to
coregister the CT data set with the computed exterior surfaces
using the eyes, teeth and base of skull as fiducial markers.
Semi-automatic segmentation was achieved using the software
package AMIRA (Visage Imaging, Carlsbad, CA). Because of
the preferential formation of plaques in the cortex, the cortical
region and remaining brain tissue were assigned as separate
segments. This differentiation was used as prior knowledge in
the inverse problem, while the forward model treated the entire
brain as a single optically homogeneous region. Finite element
method (FEM) solutions to the diffusion approximation were
obtained using COMSOL (COMSOL, Inc, Burlington, MA) to
construct the linear model for simulated data generation and all
inversions.

B. Mouse Brain Simulation Studies

One in vivo imaging geometry, consisting of an eternal sur-
face and coregistered brain and cortical segmentations, was se-
lected for use in simulation studies. A series of imaging targets
were computed on this geometry to evaluate algorithmic perfor-
mance in a realistic structure. These targets were constructed to
emulate scenarios expected to be seen in vivo, as well as more
artificial targets to test algorithm performance. The first test case
is a simple arrangement, with each voxel more than 50% within
the cortex assigned an intensity as a sample of a single nonzero
mean Gaussian process.
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The second test case uses the same cortex voxels, but ap-
plies a spatially varying mean value to the Gaussian process.
The maximum is at the centerline of the head, and decreases
linearly as it moves away to the left and right. Test case three is
the same as test case two, with the addition of low level fluores-
cence within the remaining brain tissue. Test case number four
has two small fluorescing regions within the cortex, while cases
five and six have a spatially varying intensity within a portion of
the cortex that overlaps two subsegments (as described below),
without and with the addition of background fluorescence else-
where. Data for each case were generated using a linear normal-
ized Born model, with 10% shot noise added.

C. Anatomic Subsegmentation

In initial experiments, large changes in the parameterized
solution occurred with very small changes in the data or
initialization, indicating poor conditioning of the reduced
dimensional system. Further examination revealed that certain
anatomical configurations result in a high degree of linear
dependence among the columns of (the matrix in (7) of size

resulting from the aggregation of voxels
belonging to each segment). The columns of associated with
the cortical and remaining brain tissue segments were highly
correlated. This made it extremely difficult for the MRNSD
algorithm to discriminate between segments, leaving the recon-
structed parameters highly dependent upon initialization of the
algorithm.

To correct this problem, we investigated the effects of sub-
dividing the brain and cortex into smaller subsegments. For
the work presented here, this was done in a purely geometrical
manner, without taking the physical model or other attributes
into account. We considered subdivision of both the central
brain and cortical segments. The central brain was either left
as a single segment, or divided into left and right hemispheres.
To subdivide the cortex, the segment’s centroid was located,
and used as the reference point for dividing the cortex into

subsegments, using an equal central angle
subdivision scheme. This process is illustrated in Fig. 3.

For each configuration of subdivisions, the reduced dimen-
sional matrix was generated for analysis. To analyze the ma-
trix, the angle between each pair of columns was computed as
[31]

(14)

The average of these angles was taken across all pairs of
columns, to generate a single average measure of the linear
dependence present across columns of . As can be seen in
Fig. 3(b), this average angle rapidly increases with the number
of cortical segments until it levels off at approximately 63
when seven segments are used. This suggests that some level
of subdivision of the cortex should help stabilize the recon-
structions, but that there is a diminishing return from each
additional subsegment. Interestingly, introducing subdivision
of the central brain [indicated by the triangles in Fig. 3(b), (c)]
only reduces the average angle by approximately 4 degrees as
compared to leaving it in undivided.

Fig. 3. Anatomic segmentation and subsegmentation. (a) The original segmen-
tation separated the brain and brain cortex segments (red and blue segments,
respectively), from the remaining soft tissue. Subsegmentation of the cortex di-
vided it into three equal angle subsegments, as denoted by the white dashed
lines. (b) Plot of number of cortical subsegments against resulting average angle
between segments, with (triangle) and without (square) subdivision of the cen-
tral brain segment. (c) Average angle divided by total number of subsegements
plotted against number of cortical subsegments. Maximum is seen when cortex
is divided into three subsegments.

Fig. 4. Effects of partial volume labeling: (a) original image, (b) reconstruc-
tion without partial volume labeling, and (c) reconstruction employing partial
volume labeling.

Our goal is to minimize the number of additional subseg-
ments introduced, thus preserving as much of the initial seg-
mentation as practical. As a metric to measure the increased
complexity against the benefits of increased average angle, we
divided the average angle by the total number of subsegments
used. As shown in Fig. 3(c), this metric has a maximum when
the cortex is divided into three subsegments, and the remainder
of the brain remains whole. Thus, the subdivision scheme for all
reconstructions presented below used a total of five segments for
the low dimensional solution: three cortical subsegments, one
segment for the remainder of the brain, and one segment for the
background tissue.

V. RESULTS

A. Partial Volume Labeling Simulations

Fig. 4 shows results for a simulated data set with fluores-
cence present evenly throughout the cortical region. Fig. 4(b)
shows reconstructions where each FMT voxel was assigned a
single tissue type, while Fig. 4(c) is a reconstruction of the same
dataset using partial volume labeling. The original image used
to generate the data is shown in Fig. 4(a). Without the use of par-
tial labeling, the structure of the segmentation is clearly visible,
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Fig. 5. Reconstructions for five simulated imaging cases. Ground truth is shown in the first column, while results using Tikhonov regularization with the identity
matrix are in the second column. The simple a priori technique in the third column restricts the solution to either brain segment. The fourth and fifth columns show
reconstructions using the techniques developed in Section III, with and without explicitly imposing a mean value in the image prior model, respectively. Overlaid
numbers indicate relative 2-norm error with respect to ground truth.

with hard edges and right angle corners that are not present in the
original image. By incorporating partial volume labeling, how-
ever, these artifacts can largely be eliminated, yielding a recon-
struction with a much more natural appearance. Additionally,
as indicated by the overlaid numerical values, the use of partial
volume labeling reduces the relative 2-norm error present in the
solutions.

B. Spatially Varying Regularization Simulations

Fig. 5 shows inversion results for each of the simulated
datasets. The original images are seen in the first column,
while the second column shows reconstructions using standard
Tikhonov regularization with the identity matrix. In all cases,
these reconstructions fail to recover either the location or

intensity of the fluoresence activity. Instead, they are heavily
corrupted by surface artifacts, and the more deeply situated
fluorescence is blurred throughout the volume. Clearly, the
identity matrix is an inappropriate regularization choice for
imaging of the distributed phenomenon of interest.

The reconstructions in column 3 are obtained by applying a
simple a priori technique which regularizes voxels outside the
brain segments in the CT segmentation four times as heavily
as those within. This has the effect of largely constraining the
reconstruction to the brain segment by heavily penalizing solu-
tions with fluorescence within the surrounding soft tissue. There
are two primary reasons this approach was chosen over one
which simply restricts the solution to the brain region. First, for
the in vivo datasets, there may be some low level of fluorescence

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 01,2010 at 13:57:22 EST from IEEE Xplore.  Restrictions apply. 



372 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 2, FEBRUARY 2010

Fig. 6. Reconstructions for three in vivo mouse imaging studies. A control animal is shown in the first row, while APP23 transgenic animals exhibiting amyloid-�
plaques in the cortical segment (ages 26 and 28 months) are shown in the second and third rows. The first column shows reconstructions using Tikhonov regulariza-
tion with the identity matrix, while the second columns using a simple a priori technique which favors solutions in the brain region. The third and fourth columns
show reconstructions using the techniques developed in Section III, with and without explicitly imposing a mean value in the image prior model, respectively.

present within the background. Second, using this ratio of reg-
ularization parameters allows a more direct comparison against
the effects our proposed approach. Given our choice of ,
the maximum ratio of regularization parameters will be four to
one. These reconstructions show a marked improvement over
reconstructions using the identity matrix. The fluorescence is
now inside the brain, but the different segments within the brain
are not distinct, and the reconstructions still have a largely dif-
fuse nature. For example, in test cases 5 and 6, the entire brain
is resolved to have approximately the same fluorescence inten-
sity, although the original images have higher intensity in the
cortical segment.

Reconstructions using our method with both region depen-
dant means and variances are shown in the fourth column. Here
we see a much better differentiation of the cortical region, as
compared to the reconstructions where the images is simply
restricted to lying within the brain, and a closer resemblance
to the original images. Relative two-norm error with respect
to ground truth is also significantly reduced. However, these
reconstructions yield highly uniform values on each of the
regions, and fail to capture the shifting mean values seen in
cases 5 and 6. These uniform values reflect the estimates of the
mean value obtained in the first, low dimensional, inversion
step. For datasets one, two, and three, where the voxels in each
subsegment have similar intensities, the resulting reconstruc-
tions closely resemble ground truth. However, in test case six,
applying the mean value actually performs worse with regards
to 2-norm error than the simple a priori approach. Additionally,

the reconstructions clearly show artifacts from the segmenta-
tion and subsegmentation procedures, suggesting that a more
complex, data-driven subsegmentation procedure may be useful
for providing further improvements in the reconstructions.

Finally, the fifth column shows reconstruction results using
our region dependent variance model, without the explicit use of
mean values. As when we include explicit estimates of the mean
values, the reconstructions obtained are improvements over both
Tikhonov with the identity, and the simple a priori regulariza-
tion technique. In case #1, additional artifacts can be seen as
compared to the image in column 4, and this is reflected in a
higher two-norm error. Reconstructions for cases 2–5 appear
very similar to those obtained using the mean value, although
the two-norm error is higher. In test case six, however, the re-
construction without the use of a mean value yields both the
lowest two-norm error, as well as the greatest subjective simi-
larity to the original image.

C. In Vivo Experiments

In vivo inversion results for three mice are shown in Fig. 6.
The first row shows the results from a control animal, while
the second and third rows show transgenic APP23 animals ex-
hibiting the characteristics of Alzheimer’s disease. Based on ex
vivo examination, as reported in [21], we expect little fluores-
cence to be present within the control animal, and high concen-
trations of fluorescence throughout the cortical regions of the
two afflicted animals.
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As with the simulated results, reconstructions regularized
with the identity matrix (first column) are heavily corrupted
with surface artifacts and offer little in the way of subjective
or quantitative information. The simple a priori method again
yields image improvements. However undesirable features
similar to those seen in the simulated data sets are still seen.
The cortical fluorescence is again blurred into the central brain,
and thus the reconstructions are not correctly representing the
underlying fluorescence.

Using either of our approaches, with or without the use of
a mean value, to incorporate the structural information, yields
superior reconstructions suitable for further analysis. The con-
trol animal shows only very low fluorescence concentrations,
possibly the result of unbound probe still present within the an-
imal’s bloodstream and nervous tissue. As expected, the two
APP23 mice show high concentrations of fluorescence within
the cortical region. The reconstruction do, however, place most
of this reconstructed intensity within the dorsal subsegment of
the cortex, possibly as a result of this region being closest to the
surface, and thus having a higher sensitivity than more deeply
situated regions.

VI. DISCUSSION AND CONCLUSIONS

We have presented here two variations on a method for the in-
clusion of a priori structural information in the reconstruction
of images via data-informed multimodality space-varying reg-
ularization. This approach associates solution voxels with their
underlying tissues types, and then regularizes voxels based on
these associations rather than imposing a prior structure directly
on the solution. We achieve this by using a multiple label map to
define a low dimensional parameterized problem which yields
information about the relative importance of each region to the
overall reconstruction. These values are then used to construct
a space-varying regularization term based on the tissue labeling
of each voxel. Applied to simulated and in vivo localization of
amyloid- plaques in the brains of transgenic mice exhibiting
the traits of Alzheimer’s disease, our results indicate that both
variations are highly effective at improving localization of fluo-
rochrome distributions in vivo.

Simulation studies demonstrate that even with perfect model
information, accurate reconstruction of spatially distributed
fluorescent inclusions can be a difficult problem without prior
knowledge of the underlying anatomical structure. The smooth-
ness of the kernel and ill-posed nature of the problem bias it
towards smooth solutions which do not reflect the underlying
structure of the fluorescence distribution. Without the use of
structural priors to compensate for this bias, reconstruction
of distributed fluorescence becomes difficult, particularly for
the challenging inverse problem formed by the target selected
herein. By employing CT structural information in the recon-
struction process, we are able to recover spatial and quantitative
information with a much higher degree of accuracy than pre-
viously possible.

Our results also suggest that more investigation is necessary
to determine the appropriate method for imposing mean values
upon the solution. While explicitly applying a mean value pro-
vides improved two-norm performance in the majority of our
simulations, the reconstructions obtained from experimental

data appear overly constrained. We speculate that the relative
performance of the two variations depends the uniformity of
the fluorescence distribution within each region, as well as
the presence or absence of low level background fluorescence.
However, the exact nature of this performance and its relation-
ship to the underlying fluorescence is currently unclear, and is
a topic for future investigation.

One of the future efforts that will extend this work is the
development of hybrid FMT-XCT systems capable of col-
lecting all necessary data in parallel. The first major benefit
would be having CT data specific to the mouse being imaged.
While skulls can be matched to one another with reasonable
accuracy using an affine transform, the use of more complex
physical models would require the use of correspondingly
more accurate anatomical information. While a CT collected
in a separate system would suffice for imaging of the head, a
significant amount of deformation is possible with other areas
of the body. Thus the second benefit of a hybrid FMT-CT
system would be that both data sets would view the animal in
precisely the same orientation, and be accurately coregistered
to one another. Given these advances, an obvious extension
of this work would be its application to other imaging targets.
Various tumor models have previously been studied [2], [32],
and the addition of multimodal information would likely be of
benefit, especially in the case of tumors located deep within the
abdominal cavity.

Another potential avenue for future work would be the de-
velopment of a more general approach for subsegmenting the
original tissue labeling. In this paper, we used a geometric ap-
proach to subsegmentation that was specific to the geometry at
hand, and applied it to stabilize the solution of the low dimen-
sional problem. While some geometries may provide similar
geometric subdivision schemes, other cases may require a more
general approach. Such an approach could potentially involve
tessellations of the volume, constrained by the geometry of the
resulting subsegments. The results may also relate closely to
those for the generation of multiresolution meshes for finite ele-
ment modeling. Related to this would be a deeper analysis of the
effects of subsegmentation upon the resulting reconstructions.

Finally, such an automated subsegmentation approach could
be used to investigate the potential impact of using a larger
number of subsegments in the reduced dimensional problem.
Here, we simply sought to stabilize the reduced dimensional
problem, while minimally perturbing the original segmentation.
By subsegmenting into a larger number of regions, the mean
values may better correlate with the true underlying fluores-
cence distribution. This might allow each individual pixel to be
regularized in a more appropriate fashion, resulting in further
improvements to reconstruction quality.
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