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Abstract—We consider the estimation of a Gaussian random
vector ��� observed through a linear transformation ��� and cor-
rupted by additive Gaussian noise with a known covariance
matrix, where the covariance matrix of ��� is known to lie in a given
region of uncertainty that is described using bounds on the eigen-
values and on the elements of the covariance matrix. Recently, two
criteria for minimax estimation called difference regret (DR) and
ratio regret (RR) were proposed and their closed form solutions
were presented assuming that the eigenvalues of the covariance
matrix of ��� are known to lie in a given region of uncertainty,
and assuming that the matrices ����

���
��

��� ��� and ������ are jointly
diagonalizable, where ������ and ������ denote the covariance matrices
of the additive noise and of ��� respectively. In this work we present
a new criterion for the minimax estimation problem which we
call the generalized difference regret (GDR), and derive a new
minimax estimator which is based on the GDR criterion where the
region of uncertainty is defined not only using upper and lower
bounds on the eigenvalues of the parameter’s covariance matrix,
but also using upper and lower bounds on the individual elements
of the covariance matrix itself. Furthermore, the new estimator
does not require the assumption of joint diagonalizability and
it can be obtained efficiently using semidefinite programming.
We also show that when the joint diagonalizability assumption
holds and when there are only eigenvalue uncertainties, then the
new estimator is identical to the difference regret estimator. The
experimental results show that we can obtain improved mean
squared error (MSE) results compared to the MMSE, DR, and
RR estimators.

Index Terms—Covariance uncertainty, linear estimation, min-
imax estimators, minimum mean squared error (MMSE) estima-
tion, regret, robust estimation.

I. INTRODUCTION

T HE classic solution to estimating a Gaussian random
vector that is observed through a linear transformation

and corrupted by Gaussian noise is obtained using the min-
imum mean squared error (MMSE) estimator which assumes
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full knowledge of the covariance matrix of the random vector
and the covariance matrix of the observation noise. Specifically,
let

(1)

where is the observation, , and ,
are independent zero mean Gaussian random vectors

with covariance matrices and , respectively, then given an
observation vector the MMSE estimate of takes the form [1]

(2)

In many applications it is reasonable to expect that the estimate
of the covariance matrix of the observation noise is accurate.
However the estimate of the covariance matrix of may often
be highly inaccurate and lead to severe performance degrada-
tion when using the MMSE estimator. Therefore, in practice it
is necessary to require the estimator to be robust with respect to
such uncertainties. The common approach to achieve such ro-
bustness is through the use of a minimax estimator which min-
imizes the worst case performance over some criterion in the
region of uncertainty [3], [4].

One such performance measure is the mean squared error
(MSE), where the estimator is chosen such that the worst case
MSE in the region of uncertainty of the covariance matrix of
is minimized. However, as was noted in [1] this choice may be
too pessimistic and therefore the performance of an estimator
designed this way may be unsatisfactory. Instead it is proposed
in [1] to minimize the worst case difference regret (DR) which is
defined as the difference between the MSE when using a linear
estimator of the form and the MSE when using the
MMSE estimator matched to a covariance matrix , where
is a matrix with the appropriate dimensions. The motivation for
this choice is that the worst case DR criterion is less pessimistic
than the worst case MSE criterion. Similarly, the ratio regret
(RR) estimator proposed in [2], minimized the worst case RR
which is defined as the ratio between the MSE when using a
linear estimator of the form and the MSE when using
the MMSE estimator matched to a covariance matrix . The
motivation for the RR estimator is similar to the DR where the
MSE is measured in decibels. The DR and RR estimators pre-
sented in [1] and [2] assume that the eigenvector matrix of is
known and is identical to the eigenvector matrix of ,
which is also called the jointly diagonalizable matrices assump-
tion. Furthermore, the region of uncertainty is expressed using
upper and lower bounds on each of the eigenvalues of .
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In this paper, we develop a new criterion for the robust esti-
mation problem which we call the generalized difference regret
(GDR). Rather than subtracting the MSE when using the MMSE
estimator matched to a covariance matrix from the MSE
when using an estimator , for the GDR we subtract another
function of and . More specifically, we develop a col-
lection of qualifications that this function should satisfy, which
are aimed at guaranteeing the scale invariance of the obtained
estimator and ensuring that the GDR criterion is not more pes-
simistic than the MSE criterion. Functions satisfying these cri-
teria are termed admissible regret functions. While the choice of
an admissible regret function is far from unique, in this paper,
we make one suggestion which we call the linearized epigraph
(LE) admissible regret function, and use it as the basis for the
development of a new robust estimator.

The estimator we propose here generalizes the ideas in both
[1] and [2] in a number of ways and can, thus, be used to address
a far broader range of estimation problems. Most importantly,
our approach does not require the joint diagonalizability as-
sumption and allows for uncertainty in both the eigenvalues as
well as the individual elements of . Our LE-GDR scheme
can also be computed easily using semidefinite programming.
When considering only eigenvalue uncertainties and using the
jointly diagonalizable matrices assumption, we show that the
resulting estimator is identical to the DR estimator. This re-
sult gives insight into why the new criterion is an effective tool
for designing robust estimators, and helps to explain the exper-
imental results.

We test the LE-GDR estimator using two examples. First we
consider the same example used in [1] and [2], when the co-
variance matrix is obtained from a stationary process and where
the MSE is computed using the same samples that are used to
find the robust estimator, and also use it for cases in which the
jointly diagonalizable matrices assumption does not hold. Sub-
sequently, we consider using the LE-GDR estimator in an esti-
mation problem in a sensor network, where unlike the previous
example different samples are used to compute the MSE and to
find the estimator. A major concern in sensor networks applica-
tions is the power loss due to the communication of messages
between the sensor nodes rather than the energy lost during com-
putation [5], [6]. We show that the LE-GDR estimator can be
used to reduce the number of samples which have to be trans-
mitted to a centralized location in order to estimate a covariance
matrix which is required in order to use the MMSE estimator.
The experimental results of the new estimator show improved
MSE compared to presently available methods.

The remainder of this paper is organized as follows. In
Section II, we give the background on the DR and RR estima-
tors, on semidefinite programming, and on minimax theory. In
Section III, we present the GDR criterion for minimax estima-
tion and the LE admissible regret function which is then used
with the GDR criterion to derive the LE-GDR estimator with
joint eigenvalue and elementwise covariance matrix uncertain-
ties. Section IV presents an example of the LE-GDR estimator
using a stationary covariance matrix and different choices for
the matrix , and Section V presents the application of the
LE-GDR estimator to a robust estimation problem in a sensor
network. Section VI concludes this paper.

II. BACKGROUND

Throughout this paper we denote vectors in by boldface
lower-case letters, and matrices in by boldface upper-
case letters. The notation means that is a positive
semidefinite matrix, and means that is a positive
definite matrix. The notation means that for
all and , and denotes the identity
matrix with appropriate dimensions, and denotes the trans-
pose of a matrix. The pseudo inverse of a matrix is denoted by

, and denotes an estimator. The trace of the matrix is
denoted by , and denotes a diagonal matrix with
the diagonal elements of the vector . A multivariate Gaussian
distribution with mean and covariance matrix is denoted
by .

A. Minimax Regret Estimators

The aim of the minimax regret estimators is to achieve ro-
bustness to the uncertainty in the covariance matrix by finding
a linear estimator of the form that minimizes the worst
performance of the regret in the region of uncertainty of the co-
variance matrix . Specifically, let denote the re-
gret, and let , where denotes the set of positive
semidefinite matrices, denote the region of uncertainty of .
The minimax estimator is then obtained by solving

(3)

The DR and RR criteria are defined as the difference and the
ratio between the MSE when using an estimator of the form

and the MSE when using the MMSE estimator. The
MSE when estimating using a linear estimator of the form

is given by [1]

(4)

The MSE when using the MMSE estimator takes the form [1]

(5)

Both the difference and ratio estimators presented in [1] and
[2] assume that the region of uncertainty is expressed as un-
certainties in the eigenvalues of the covariance matrix as-
suming that the eigenvectors are known. Specifically, let de-
note the eigenvectors matrix of , and let and denote
upper and lower bounds on the eigenvalues ,
then .

1) Difference Regret Estimator: The DR is defined as the
difference between (4) and (5)

(6)
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Assuming that where is a diagonal
matrix with the diagonal elements , it is shown
in [1] that

(7)

where is an diagonal matrix with diagonal elements

(8)

and where and .
The DR estimator can also be interpreted as the MMSE esti-

mator (2) with an equivalent covariance matrix
where is a diagonal matrix with the diagonal elements

(9)

2) Ratio Regret Estimator: The RR is defined as the ratio
between (4) and (5). Assuming that where

is a diagonal matrix with the positive diagonal elements
, it is shown in [2] that the RR estimator also takes

the form in (7), where is an diagonal matrix with
diagonal elements that are given by

(10)

where

(11)

and where is chosen using a line search such that
, where is given in (12)

(12)

B. Semidefinite Programming

Convex optimization problems deal with minimization of a
convex objective function over a convex domain. Unlike gen-
eral nonlinear problems, convex optimization problems can be
solved efficiently using interior point methods in polynomial
complexity [7]. One subclass of the convex optimization prob-
lems that is used in this paper is semidefinite programming
which takes the form [8], [9]

(13)

(14)

where are symmetric matrices, de-
note the elements of , , and the generalized in-
equality is with respect to the positive semidefinite cone. The
standard form of a semidefinite program can easily be extended
to include linear equality constraints [8].

The following Lemma is often used in order to transform an
optimization problem into the semidefinite programming form.

Lemma 1: (Schur’s Complement [10]): Let

be a Hermitian matrix with (i.e., is a positive definite
matrix). Then if and only if .

C. Minimax Theory

Minimax theory deals with optimization problems of the form

(15)

where and denote two nonempty sets and
. The solution of such optimization problems is not

straightforward in the general case, however, if the objective
function satisfies certain conditions, then there exist minimax
theorems that can facilitate the solution. In particular, if the ob-
jective function has a saddle point then it must be a solution of
the minimax problem (although it may not be a unique solution).

Definition 1: [11] Let and denote two nonempty sets
and let , then a point
is called a saddle point of with respect to maximizing over
and minimizing over if

An important Lemma that states sufficient conditions for a
function to have a saddle point is given here.

Lemma 2: [11] Let and be two non-empty closed convex
sets in and , respectively, and let be a continuous fi-
nite concave-convex function on (i.e., ,
concave in C and convex in D). If either or is bounded, one
has

(16)

It can also be shown that if the conditions in Lemma 2 are
satisfied then the solution to (16) is a saddle point [11]. Most
importantly since the order of the maximization and minimiza-
tion can be interchanged, the solution of the minimax problem
can be simplified in many cases.

III. MINIMAX ESTIMATION WITH JOINT EIGENVALUE

AND ELEMENTWISE COVARIANCE UNCERTAINTIES

BASED ON THE GDR CRITERION

In this section, we propose a new criterion for the minimax
problem which we call the generalized difference regret (GDR)
criterion, and subsequently we use this criterion to develop a
new robust estimator which has two major differences compared
to the DR and RR estimators. It does not necessitate the jointly
diagonalizable matrices assumption, and the region of uncer-
tainty can be defined as the intersection of the eigenvalue and
elementwise uncertainty regions.

As was demonstrated in [1], the MSE is a very conserva-
tive criterion for the minimax estimation problem and performs
poorly, therefore the DR criterion was motivated as being less
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pessimistic than the MSE criterion. We define the GDR as the
difference between the MSE when using an estimator and a
function which is a function of and po-
tentially some other parameters

(17)

It can be seen that if we take equal to the MSE
when using the MMSE estimator matched to a covariance ma-
trix (5), then we obtain the DR as a special case of the GDR
criterion. More generally, we consider functions
that satisfy the qualifications given in the following.

Definition 2: A function is called an admis-
sible regret function if it satisfies the following:

1)
2) , .

The first qualification ensures that the GDR in (17) is not greater
than the MSE when using an estimator as in (4), and is there-
fore not more pessimistic than the MSE criterion. Using the
second qualification, we have that the GDR criterion satisfies

(18)

and, therefore, the second qualification ensures that the obtained
estimator is invariant to the scaling of and .

In order to derive an admissible regret function we also argue
that it is advisable to choose a convex function as it would lead to
a GDR criterion which is convex-concave and, therefore, using
the results of Lemma 2 the solution of the minimax problem be-
comes much simplified. In order to obtain our admissible regret
function, we make some modifications to (5) such that it is in
the form of a Schur’s complement and is linear in . First we
note that (5) can be rewritten as

(19)

where . Since a function is convex if
and only if its epigraph is a convex set, we
note that using Lemma 1 the epigraph of (5) takes the form

(20)

where is a diagonal matrix with the diagonal elements ,
. The set given in (20) is not convex because the

matrix inequality is not linear in . Our approach is to linearize
the matrix inequality as follows.

1) We replace each of the diagonal elements of with the
line that connects the points and .

2) We assume that which is a relaxed version of the
jointly diagonalizable matrices assumption since it always
holds if , however, it may also hold in other cases,
for example, if and .

The epigraph for the new function therefore takes the form

(21)

where is a diagonal matrix with the diagonal elements
, and where .

The function whose epigraph is (21) is shown in Lemma 3
to be an admissible regret function. We call this function the
linearized epigraph (LE) admissible regret function.

Lemma 3: Let where is a diagonal
matrix with the nonnegative elements and where is
a unitary matrix. Let

(22)
where is a diagonal matrix with the diagonal elements

, and where . We then have that
is an admissible regret function and convex in

.
Proof: The nonnegativity of follows

since is a positive semidef-
inite matrix. To prove the second qualification of Definition 2
we note that is invariant to the scaling
of and , and that the scaling of and is the same as that
of . Therefore, we have

(23)

(24)

where the is a diagonal matrix with the diagonal elements
. The convexity of

in follows since the epigraph is a convex
set.

Next, we derive in theorem 1 the new minimax estimator that
uses the GDR criterion with the LE admissible regret function.

Theorem 1: Let denote the unknown parameter vector in
the linear Gaussian model where
and where and are independent zero mean
Gaussian random vectors with covariance matrices and ,
respectively. Let and denote elementwise upper and lower
bounds on the elements of such that , and
let denote a unitary matrix such that where

is a diagonal matrix with the diagonal elements such that
, . Furthermore, let

where is a diagonal matrix with the diagonal elements
, and where is a unitary matrix. Then the

solution to the problem

(25)

where

(26)
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and where ,
takes the form

(27)

where the diagonal elements of can be obtained as fol-
lows:

1) can be obtained as the optimal solution for of the
semidefinite program

(28)

(29)

where is defined as in Lemma 3.
2) If , then can be obtained as the optimal solution

for of the semidefinite program

(30)

(31)

where .
Proof: In order to show that the estimator takes the form

in (27) we note that in (26) and the minimax problem
(25) satisfy all the conditions of Lemma 2 and therefore the
order of minimization and maximization can be interchanged.
Minimizing (26) with respect to leads to a solution in the
form of the MMSE estimator with a covariance matrix given by

, and specifically

(32)

Substituting (32) into (26) then leads to the objective for the
maximization, which is simply the difference between the MSE
when using the MMSE estimator (5) with and
the LE admissible regret function in (22),

(33)

Additionally, we have
and using the matrix inver-

sion Lemma [8] we have

(34)

We can now rewrite (33) as

(35)

(36)

and using Lemma 1 we obtain the semidefinite program in (28)
and (29), which proves 1.

In order to prove 2 we use in (33) which simplifies to

(37)

By adding the inequalities

and using Lemma 1, it follows that the ’s are obtained using
the semidefinite program given by (30) and (31).

The computational complexity of the semidefinite program in
for the general case is whereas the computational com-
plexity of the semidefinite program when the jointly diagonal-
izable matrices assumption holds is [9]. Therefore, if
joint diagonalizability holds it can be used to reduce the compu-
tational complexity. Furthermore, the semidefinite program can
be solved efficiently and accurately using standard toolboxes,
e.g., [12].

It is important to emphasize that since the solution of the
minimax problem is obtained without the joint diagonalizability
assumption, the LE-GDR estimator can be used generally also
when joint diagonalizability does not hold. This is also verified
by the experimental results that are given in the next Section.

A. Equivalence Between the LE-GDR Estimator With
Eigenvalue Alone Uncertainties and the Difference Regret
Estimator for the Jointly Diagonalizable Matrices Case

Although a closed form solution of the DR estimator as-
suming that and with eigenvalue alone
uncertainty region was presented in [1], it is interesting to
derive the closed form solution to the LE-GDR estimator under
the same assumptions since it reveals an interesting property
of the LE-GDR estimator. In order to derive the closed form
solution we maximize the objective in (37) with respect to

over the uncertainty set . If the
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maximum of the objective is obtained inside the uncertainty
interval, then it is also the solution to the constrained problem.
Solving for the maximum of the unconstrained problem, we
have that the solution must satisfy the quadratic equation

(38)

and its solution takes the form

(39)

It is straightforward to verify that (39) satisfies
and therefore it is also the solution to the constrained problem.
Furthermore, if we define and
then we obtain that

(40)

which is identical to the solution that is obtained for the DR
estimator (9).

This result indicates that if the elementwise bounds are very
loose (as may be the case in high SNR scenarios), and if the
jointly diagonalizable matrices assumption holds then the per-
formance is going to be identical to that of the DR estimator. It
also gives us insight into why the LE-GDR criterion performs
well experimentally, since it leads to the same solution as the
DR criterion under the same assumptions in this case.

IV. EXAMPLE OF THE LE-GDR ESTIMATOR

The example that we consider here is an estimation problem
with the model given in (1), where is a length segment
of a zero mean stationary first order autoregressive process with
parameter and where the covariance matrix of is
where is assumed to be known. The autocorrelation function
of therefore takes the form

(41)

The covariance matrix of , which is denoted by , is unknown
and is estimated from the available noisy measurements vector

using the estimator

(42)

where is obtained by replacing all the negative eigenvalues
of with zero. Specifically, let where is a di-
agonal matrix, then where is a diagonal
matrix with the elements . Let de-
note the sample vectors available to estimate the covariance

matrix, then the estimate of the covariance matrix of takes the
form [1]

(43)

Since the estimators considered in this paper assume that the
eigenvector matrix of the parameter’s covariance matrix is
known, we set it equal to the eigenvector matrix of (more on
the estimation of the eigenvectors of covariance matrices can be
found in [13]). Let denote the eigenvalues of then simi-
larly to [1], [2] we set the upper and lower bounds for the eigen-
values of the covariance matrix as , ,
where is proportional to the standard deviation of an estimate

of the variance .
If then we have

(44)

and the variance of takes the form

(45)

where . Since and are Gaussian and
independent we have

(46)

The expression given in (46) for the variance of the estimate is
slightly different from that given in [1] since we did not assume
that the covariance matrix is circular which leads to the simpli-
fied expression given in [1] as this is only true in the limit when

[14].
If then we have the following estimator for the vari-

ance of the signal

(47)

and the variance of the estimator is (see Appendix)

(48)

where and where is an matrix with
all zero entries but for the entry which is 1.
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In order to ensure the nonnegativity of the eigenvalues,
takes the form

(49)

where the estimate is used instead of in (46)
or (48) in order to compute the variance of , and where
is a proportionality constant chosen experimentally. The ele-
mentwise bounds are chosen to be proportional to , and in-
versely proportional to the standard deviation of . Choosing
the elements of the covariance matrix to be proportional to the
variance is very intuitive since if the variance is large then the
elements of the covariance matrix are expected to be larger in
their absolute value, and alternatively if the variance is small
then the elements of the covariance matrix are expected to be
smaller in their absolute value. The motivation for choosing the
elementwise uncertainty bounds to be inversely proportional to
the standard deviation of is less intuitive though. We argue
that if the standard deviation of is small then the estimate
of the covariance matrix that we have is expected to be fairly
good, and, therefore, we would like our estimator to be close to
the MMSE estimator which is optimal if the covariance matrix
is perfectly known. Therefore, we would like the elementwise
bounds to be very loose so that we only employ the eigenvalue
uncertainties which lead to an estimator that converges to the
MMSE estimator as the upper and lower bounds on the eigen-
values become closer (since the eigenvalue uncertainty region
was chosen to be proportional to the standard deviation of
this is indeed the case). On the other hand if the standard devia-
tion of is large then we cannot obtain a good estimate of the
covariance matrix of the random parameter and therefore the el-
ementwise bounds should be very small in their absolute value
such that the estimator is close to . We therefore set the
elementwise bounds to

(50)

where is a proportionality constant, and the estimate
is used in (46) or (48) instead of in order to compute
the variance of .

In all the experiments that we present in this section, we used
sample vectors in order to estimate the covariance matrix

using (43), and used only one of them in order to plot the MSE or
maximum squared error versus SNR figures. Since we assume
that is zero mean and the autocorrelation function is given in
(41) the SNR is computed using . Fig. 1 shows
the MSE versus SNR for , where the MSE is averaged
over all the components of the vector. This model satisfies the
constraint , which is required by the DR
and RR estimators, for any orthonormal matrix . Furthermore
we can use the more computationally efficient implementation
given in Theorem 1 for this case. The parameters that we used
were , , , , , and the MSE
was averaged over 2000 independent experiments for each SNR
value. It can be seen that the LE-GDR estimator can improve the

Fig. 1. MSE versus the SNR for the LE-GDR estimator, DR and RR estimators,
and the MMSE estimator matched to the estimated covariance, for��� � ��� .

Fig. 2. Maximum squared error versus SNR for the LE-GDR estimator, DR and
RR estimators, and the MMSE estimator matched to the estimated covariance,
for ��� � ��� .

MSE compared to all the other estimators. Since the jointly dig-
onalizable matrices assumption holds for this example it follows
from Section III-A that the results obtained using the LE-GDR
estimator with eigenvalue alone uncertainties are the same as
those obtained using the DR estimator. This explains the con-
vergence of the LE-GDR estimator with the joint elementwise
and eigenvalue uncertainties to the DR estimator in high SNRs,
since the elementwise uncertainty was chosen to be very large
for high SNRs. It can also be seen that the LE-GDR estimator
converges to the RR estimator in low SNRs, which can be ex-
plained as an effect of the elementwise bounds. Since the ele-
ments of the covariance matrix are bounded, then it can be seen
from (27) that as the variance of the noise increases the esti-
mator converges to .

Fig. 2 shows the maximum squared error versus the SNR for
the same parameters that were used for Fig. 1, where the max-
imum squared error was computed over all the elements of ,
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Fig. 3. MSE versus SNR for the LE-GDR estimator and for the MMSE esti-
mator matched to the estimated covariance, with��� in a Toeplitz form.

Fig. 4. MSE versus SNR for the LE-GDR estimator and for the MMSE esti-
mator matched to the estimated covariance, with��� in a diagonal form.

and over 40 000 repetitions of the estimation process. It can be
seen that the MMSE estimator that is matched to the estimated
covariance has the worse MSE performance among all the esti-
mators since it does not address the uncertainty in the estimated
covariance matrix. The MSE of the LE-GDR estimator is gen-
erally lower than all the other estimators which confirms the ro-
bustness of the new estimator with respect to uncertainties in the
covariance matrix.

Figs. 3 and 4 show the MSE versus SNR when is a Toeplitz
matrix and a diagonal matrix, respectively, such that the jointly
diagonalizable matrices assumption does not hold. Specifically
in Fig. 3, we use a Toeplitz matrix which implements a linear
time invariant filter with 4 taps given by , ,

, , and in Fig. 4 we use the diagonal ma-
trix where
the diagonal elements were chosen arbitrarily. In both figures,
we used the parameters , , , ,

Fig. 5. MSE versus SNR for the LE-GDR estimator with eigenvalue alone un-
certainties for different values of �, with��� in a Toeplitz form.

Fig. 6. MSE versus SNR for the LE-GDR estimator with joint elementwise
and eigenvalue uncertainties for � � � and different values for �, with��� in a
Toeplitz form.

, and the LE-GDR eigenvalue alone estimator was ob-
tained by removing the elementwise uncertainty constraint from
(29). It can be seen from both of the figures that the MSE can be
improved significantly when using the LE-GDR estimator com-
pared to using the MMSE estimator.

Finally, in Figs. 5 and 6 we study the effect that the parame-
ters and have on the performance of the LE-GDR estimator
when using the same experimental setting that was used for
Fig. 3. Fig. 5 shows the MSE versus SNR for the LE-GDR es-
timator with eigenvalue uncertainties alone for different values
of the parameter . It can be seen that the performance is not
too sensitive to the exact choice of this parameter. Fig. 6 shows
the MSE versus SNR for the LE-GDR estimator with joint ele-
mentwise and eigenvalue uncertainties when is fixed and the
parameter changes. It can be seen that there is greater sensi-
tivity to the exact choice of this parameter.
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V. ROBUST ESTIMATION IN A SENSOR NETWORK

A sensor network is comprised of many autonomous sensors
that are spread in an environment, collecting data and commu-
nicating with each other [15]. Each sensor node also has some
computational resources and can process the data that it acquires
and the transmission that it receives from other sensors indepen-
dently. Since the sensors are usually battery powered, a major
concern in such applications is reducing the energy consump-
tion, especially the energy spent on communication between
the sensors, which is significantly larger than any other cause
for energy consumption. The straightforward approach to esti-
mation in sensor networks is to transmit all the data collected
by the sensors to a centralized location and perform the esti-
mation there, however this approach is very inefficient energy
wise since an enormous amount of data has to be transmitted.
Instead the more energy efficient approach is to transmit mes-
sages between the sensor nodes and have the sensors perform
the estimation collectively. Such decentralized estimation can
be performed using the distributed algorithms presented in [16]
and [17]. Nevertheless these distributed estimation algorithms
depend on an estimate of the covariance or inverse covariance
matrix, and therefore in practice require an initial stage where
many samples are transmitted to a centralized location so that
the covariance matrix or inverse covariance matrix can be es-
timated. The results presented in this paper can be used to im-
prove the estimation performance for a given number of samples
that are transmitted to the centralized location and used in order
to obtain the estimator. Furthermore, since in the LE-GDR esti-
mator has the same form as the MMSE estimator then one can
use the same methods presented in [16], [17] to perform dis-
tributed estimation.

The estimation model for the sensor network case is

(51)

where we assume that each node’s signal is a scalar (extension
to the vector case is straightforward) and the Gaussian random
vector is composed of all the sensors’ signals. Similarly, the
vector is composed of all the sensors’ noisy observations. The
Gaussian random noise vector where the covariance matrix of

is . This model is identical to (1) with , and
therefore satisfies the constraint which
is required by the DR and RR estimators for any orthonormal
matrix . Unlike the previous examples, in this example we use
a different set of samples for finding the estimator and for testing
its performance and therefore the elementwise bounds used in
the previous example do not apply in this case. However, since
in a sensor network the variance at each sensor can be estimated
without transmitting any data (assuming that the observation
noise is i.i.d.), we can assume that it is known and use the bound
for the elements of the covariance matrix [18]

(52)

where denotes the true standard deviation of sensor , in
order to obtain the required elementwise bounds.

In order to simulate the sensors’ signals we assume that the
covariance matrix is obtained from a Gaussian process (GP)
[19], [20] as such modeling is common in sensor networks e.g.,

Fig. 7. MSE versus SNR for different estimators for the sensor network
example.

[21]. We use a zero mean GP with a neural network covariance
function [19] that takes the form

(53)

where , and we used . We
generate the positions of sensors
by sampling a uniform distribution over [ 2, 2] for both of the
axes. The covariance matrix of the signal vector is then ob-
tained by , and the measurement vectors

, available at the centralized location are gen-
erated using (51). The covariance matrix is then estimated from
the available samples using

(54)

where denotes the variance of the noise which is assumed
known, and is obtained by replacing the negative eigen-
values of with zero. Let denote the eigenvalues of
then we set the bounds on the eigenvalues to be , and

. The bounds on the elements of the covariance ma-
trix are set using (52) to and

, where denotes the true
variance of the signal at sensor node which as mentioned pre-
viously is assumed to be known.

In order to show the usefulness of the LE-GDR estimator
for the sensor network problem we assume that we have only

measurement vectors at the centralized location using
which we can obtain the robust estimator for . We averaged
the MSE shown in Fig. 7 over 2000 experiments, where in
each experiment we first generated measurements
from the linear Gaussian model which were used to obtain
the robust estimator, and subsequently we computed the MSE
using 2000 measurements which were different from those that
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were used to find the robust estimator. The SNR is computed
as . It can be seen that the
LE-GDR estimator either improves or performs equally as
well as the other estimators. Furthermore, since the jointly
diagonalizable matrices assumption holds for this example, for
high SNRs when the elementwise bounds are very loose we
have that the performance of the LE-GDR estimator with joint
elementwise and eigenvalue uncertainties converges to that of
the DR estimator, as is shown in Section III-A. Similarly to the
example in the previous section, it can be seen that the LE-GDR
estimator converges to the RR estimator for low SNRs, which is
the effect of the elementwise bounds on the covariance matrix.

VI. CONCLUSION

We presented a new minimax estimator that is robust to
an uncertainty region that is described using bounds on the
eigenvalues and bounds on the elements of the covariance
matrix. The estimator is based on a new criterion which is
called the linearized epigraph generalized difference regret
(LE-GDR) and can be obtained efficiently using semidefinite
programming. Furthermore, the LE-GDR estimator avoids the
jointly diagonalizable matrices assumption that is required
by both the DR and RR estimators and can therefore be used
in more general cases. We also showed that when the jointly
diagonalizable matrices assumption holds and when there are
only eigenvalue uncertainties, then the LE-GDR estimator is
identical to the DR estimator. This result gives motivation
into why the proposed criterion is successful, and explains the
convergence of the LE-GDR estimator with joint elementwise
and eigenvalue uncertainties to the DR estimator in high SNRs
when the jointly diagonalizable matrices assumption holds.
The experimental results show that the LE-GDR estimator can
improve the MSE over the MMSE estimator and the DR and
RR estimators. When considering model matrices that do not
satisfy the jointly diagonalizable matrices assumption we also
showed significant MSE improvement compared to the MMSE
estimator.

APPENDIX

THE VARIANCE OF THE ESTIMATOR FOR

Using (47) the variance of the estimator is

(55)

denoting we have

(56)

From [22], we have that if then

(57)

Since we can use in (57) ,
, and where is an

matrix with all zero entries but for the entry which is 1.
Therefore, we have

(58)

Summarizing (55), (56), and (58), we obtain (48).
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