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Abstract—We propose a new shape-based inversion algorithm
to identify an anomaly embedded in an inhomogeneous lay-
ered geometry. More specifically, we apply our approach to
microwave breast imaging where the geometry consists of several
inhomogeneous layers and the potential tumor is embedded in
the innermost layer. In addition to the tumor identification, we
estimate the irregular transition layer between the breast inner
layers by a sharp boundary. We also perform the sensitivity
study by perturbation of the dielectric properties of the breast
layers from their mean values in the inverse problem. Our
inversion algorithm utilizes a low-dimensional parametric form
of the geometry, and a low-dimensional model for presenta-
tion of the dispersive dielectric properties. The algorithm uses
multiple-frequency multi-source data and the weak scattered
fields contribute to the estimation of the unknowns. Several
numerical examples are provided to evaluate the effectiveness
of our approach. The results prove the accuracy and robustness
of our approach despite the complex geometry and the simplified
inverse model.

Index Terms—microwave imaging, antenna arrays, parametric
modeling, dispersive media, inverse problems, nonlinear estima-
tion, spline functions

I. INTRODUCTION

Based on the latest American Cancer Society report [1],
breast cancer is the second most common cancer and the
second cause of cancer deaths in US women. Early detection
of breast tumors will critically reduce the mortality rate in
women. Currently, standard screen film mammography [2],
MRI [3], [4] and ultrasound [5] are the imaging modalities
used for early breast cancer detection. Microwave tomography
is a complementary imaging technique which uses the contrast
between the tissues. High contrast between normal breast
tissue and the malignant tissue, as well as its accessibility
and transparency to microwaves, makes this modality a good
option for breast cancer detection. Low power non-ionizing
radiation and suppression of breast compression are the other
advantages of this method [6]. A novel tomography modality
is current-injection electrical impedance tomography (EIT)
where the shape-based inversion solutions are utilized [7].

In microwave imaging, an array of antennas sequentially
illuminate the breast in a multistatic approach. The consequent
scattered fields are recorded by the receiving antennas and
used to identify the tumor by reconstructing its boundary or
creating the spatial profile of dielectric properties in the region
of interest containing the tumor.

There are two categories of imaging techniques in literature.
In the first category, called inverse scattering methods, a
complete or partial map of dielectric properties in the desired
region is reconstructed from the measured scattered fields by
fitting the data to the predicted scattered fields. A clinical

group in Dartmouth College [8]-[10] has been working on
this category of breast imaging algorithms. Their imaging
system consists of a tank filled with a coupling medium,
with the breast immersed in it through a hole. The circular
array of transmitter/receiver antennas surrounding the breast
illuminates it and collects the scattered fields to be utilized
in the reconstruction algorithm. Another research group in
University of Wisconsin is also performing comprehensive
research on 3-D microwave breast cancer detection [11]-[13].
A group in Duke University [14]-[16] and another one in
Carolinas Medical Center [17], [18], have also been working
on this category of imaging methods.

In the second category of imaging techniques known as
radar methods, the location of the strongly scattering anomaly
is estimated directly, rather than recovering a detailed map
of the pixels. The first system of this category for breast
cancer detection was developed by Hagness and colleagues
[19]-[21]. Radar-based approaches use ultra-wideband signals
with a bandwidth of several gigahertz. A number of locations
surrounding the breast are scanned by an antenna. The same
antenna collects the back-scattered waves and this process is
repeated. The reflections at different locations are then focused
by computing the travel time between the sensor and the focal
point and application of a time-shifting and summing method.
This method is based on the idea that reflections from the
tumor add coherently, but the reflection from clutters add
incoherently. This category of methods takes advantage of the
simpler imaging algorithms and is thus less computationally
complex.

Our iterative approach uses an inversion technique similar to
the first category of imaging methods where the optimization
is done in the frequency domain. However, since our primary
objective is describing the geometry of the tumor (should one
exist) and the intervening tissue layers, we focus on direct
estimation of the unknown boundaries, instead of complete
estimation of the dielectric profile. In this respect, our method
is similar to the second category of imaging methods in that
we localize the tumor and additionally characterize its spatial
structure. We estimate the boundary of the anomaly inserted
in a breast cross-section consisting of several inhomogeneous
layers as well as the smooth transition layer between the inner
layers. The entire geometry is surrounded by an array of
transmitting/receiving microwave antennas which operate in
multiple-frequency multi-source mode: Each antenna radiates
at any single frequency, while the other non-adjacent antennas
collect the electromagnetic field data. Our iterative inversion
algorithm optimizes the unknowns, parameterized in low-
dimensional form, by fitting the measured field data to the
ones predicted by a forward model at each step until the



convergence is met.

Our approach is particularly adapted to processing coronal
cross sections of the breast. A coronal slice of the breast
consists of multiple layers where the tumor is typically located
in the innermost layer. The breast with denser geometry is
more adapted to our approach as we can distinguish the
layers more accurately. The numerical results prove that our
approach performs very well in presence of all the inverse
model discrepancies with the actual geometry. These mis-
matches include the breast layered inhomogeneity estimated
by homogenous layers, transition layer between inner layers
estimated by a sharp boundary, the arbitrary irregular tumor
boundary estimated by a circle, and the possible perturbation
of mean dielectric properties from their actual values.

The paper is organized as follows. In Section II we describe
the problem and the physical solution in detail. In Section III,
we present the formulation to parameterize the boundaries in
low-dimensional form. In Section IV, we present the parame-
terization of the dielectric properties in a microwave range of
frequencies. Inversion algorithm is introduced and described in
Section V. Numerical examples are presented and the results
are discussed in Section VI. Concluding remarks are given in
Section VII.

II. PROBLEM STATEMENT

In this paper we study our inversion approach applied
to breast tumor detection problem where the geometry con-
sists of breast coronal slices. Each slice is composed of
several inhomogeneous layers including skin, adipose (fat),
and fibroglandular. The breast anatomy is characterized by a
smoothly varying transition between the inner layers (adipose
and fibroglandular). The tumor is assumed to have an arbitrary
irregular shape and to be located in the fibroglandular layer.
A simplified 3-D geometry of breast is illustrated in Figure
1. The Figure 2 displays a sample coronal slice. As shown in
Figure 2, the breast is taken to be submerged in a coupling lig-
uid. A circular array of transmitter/receiver antennas embraces
the breast. Each antenna operates in either transmit or receive
mode. At any moment, one antenna operates as transmitter
and the other non-adjacent ones acquire the field data.

Electromagnetic field components satisfy Maxwell’s equa-
tions and radiation condition in each breast layer which is
characterized by its inhomogeneous complex dielectric prop-
erties. With the antennas located in z direction, a TE wave is
propagated in the z — y plane and the Helmholtz equation in
source-free space is [22]

(V? + k*(z,9))Ex(z,y) =0 (1)
and
k(z,y) = wy /oo (sT(%y) + Zoi(}y)) ()

where V? is the 2-D Laplacian operator, k is the wave
number, F, is the electric field in z direction, w is the angular
frequency, ¢ is the free space permittivity, 1 is the free space
permeability, ¢, is the relative permittivity of medium, and o
is the medium conductivity. We make use of FDFD forward
model to discretize the Helmholtz equation and simulate the
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Fig. 1. Simplified 3D geometry: Breast layers with the tumor located in the
most inner layer. A circular array of uniformly distributed antennas encloses
the entire breast.
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Fig. 2. The geometry of a breast slice consists of skin layer, adipose layer,
and fibroglandular layer from the outer to the inner. The tumor is embedded in
the fibroglandular layer. The entire breast is immersed in the coupling liquid
and surrounded by antennas.

propagation of electromagnetic waves in breast layers [23].
In order to solve the open-region problem, we use an eight-
grid cell Perfect Matched Layer (PML) absorbing boundary
condition [24].

Our ultimate objective is to identify the tumor location
and its size in a breast slice from the observed field data
collected by the antenna array. The fields scattered by breast
are functions of the geometry and dispersive dielectric prop-
erties of the breast tissues. In our approach, we attempt to
find the unknown parameters by reducing the misfit between
the observed field data and the field data predicted by the
forward model in an iterative procedure. Specifically, our
inverse algorithm minimizes a cost function based on the least-
squares formulation as follows

1
c(u) = 5 [|f(uw) — foll3 3)
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where f(u) is the field vector calculated by forward solver at
the receivers for the predicted geometry characterized by the
unknown vector u, and fj is the noisy observed field vector.
Mathematically we seek a vector u to satisfy the following
equation

a = arg muin c(u) (@)

III. PARAMETERIZATION OF GEOMETRY

Many shape parameterization options are available in liter-
ature such as Fourier descriptors [25], Lagrange Interpolation
[26] and parametrically defined shapes [27], [28] based on
global representation of the geometry, as well as B-splines
[29]-[31] where the control points determine the properties
of the curve. We choose B-splines to model the irregular
transition layer between adipose and fibroglandular layers
where the control points determine the shape of boundary.
While we could model the tumor as well using a B-spline
approach, we have found that for small tumors, one cannot
stably recover fine scale geometric structures especially in
the face of uncertainty in the geometry and electromagnetic
contrasts of the adipose and fibroglandular layers. Hence in
this paper, we characterize the tumor as a circular object
and recover the two coordinates of the center as well as the
radius. The geometric parameters that we estimate are then
comprised of the interface control point coordinates, and the
three parameters describing the tumor.

B-splines are piecewise polynomial functions providing
local approximation to curves using a small number of pa-
rameters called control points. A curve is defined in B-
spline parametric form with basic functions associated with
m control points p; as [30]

P(t) = Z:il piNi,k(t) for t; <t< tm+1 (®)]

with the basis functions N; () defined by the recurrence
relations

- ].7 ift; <t <t¢+1
Nia () = { 0, otherwise (6a)

t—t; tivg —t
Nik () = ———Nig1(t) + ————Nip15-1 (1)
tivk—1—t tivk — tiv1 (6b)

where T = {t1,t2,...,tm4x} is called the knot vector with
t <ty < .. <trtk-

There is a linear relationship between the coordinates of
curve points and their associated control points. To change the
curve shape, the control point locations are adjusted while the
other parameters are fixed. The ends of a curve can be joined
to make a closed loop. In order to keep the C*~2 continuity
of the closed curve, the first £ —1 control points must repeat at
the end. Figure 3 shows the steps to create a closed boundary
by B-spline functions.

The interface between inner layers is modeled by
closed cubic B-Splines where the 2-D control points are
defined by pi = [pzipy.il’s i =1,2,...; Nyint +3 with
Pj = Pj+Ny, ini»J = 1,2,3 where N, ;¢ is the number of
interface boundary control points. For our approach the control
point positions are converted to polar coordinates where the
coordinates center is the determined by the average of control
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Fig. 3.  (Upper-left) basis functions (thin lines) and their summation (bold

line) vs. knots, (Upper-right) basis functions weighted by x component of
control points (thin lines) and x-variation of final curve vs. knots (bold line),
(Lower-left) basis functions weighted by y component of control points (thin
lines) and y-variation of final vs. knots (bold line), (Lower-right) final closed
curve. In all figures, knots are indicated by ‘o’ and control points by ’x’.

points coordinates. Control points are separated by equal an-
gles and are identified only by the radius R, I =1, ..., Ny in¢.
The interface is then parameterized by unknown sub-vector

)

The tumor is modeled by the unknown center coordinates
and its radius, parameterized by the unknown sub-vector

Utum = [C$7 Cy, Rtum}T (8)

Wiy = I:RlaRQa'“aRN ]T

w,int

The geometry unknown vector is then defined as
T
u= [utumTa uimT] (9)

In order to discretize the problem geometry for implemen-
tation of FDFD forward model in a manner which respects the
B-spline representation of the object boundaries, we make use
of a filling algorithm which searches in the pixels and marks
the ones inside the region enclosed by each boundary, includ-
ing the border itself, starting from the outermost boundary.
This approach is basically a staircase approximation to the B-
spline boundary. By using a very small grid-size, the desired
discretization accuracy is achieved.

IV. PARAMETERIZATION OF DIELECTRIC PROPERTIES

In microwave breast imaging, knowing the dielectric prop-
erties of breast tissues and malignant tumors over the desired
frequency range is necessary. A series of publications have
documented the dielectric properties of biological tissues,
including breast tissues, extracted from measurements over



various frequency ranges [32]- [42]. Most of the reported
studies suggest that there is a large contrast between the
normal and malignant breast tissues. Water content level plays
the major role in the value of dielectric properties of tissue.
Low water content tissues (such as fat) have lower conductivity
and permittivity values, while the ones with high water content
(such as skin and muscle) show higher dielectric properties.
A number of approaches have been proposed in the literature
to model the frequency-dependent dielectric properties of
dispersive media from the measured data, including recursive
convolution [43], auxiliary differential [44], and z-transform
[45]. These approaches are different in implementation, accu-
racy and the computational cost. Debye formulation of the first
or second order has been widely used to model the dispersive
media [44]. This model fits the equation coefficients to the
measured data and determines the relation between the electric
displacement and electric field. First-order Debye model is of
the form
o(w) — o . O

(w) = erlw) +i 4y
Ere(w) =er(w) +1 =€t T—F— +1
weQ 1 —wr weQ

(10)

where ¢,.. is the relative complex permittivity, w is the angular
frequency, ¢, is the relative permittivity, o is the conductivity,
€p is the free space permittivity, €, is the relative permittivity
at infinite frequency, ¢, is the static relative permittivity, 7 is
the relaxation time constant, and o is the static conductivity.

We use the first-order Debye model in our work as despite
its simplicity, it models the dielectric properties very well
in one frequency decade. Figures 4(a) and 4(b) illustrate the
typical values for dielectric properties of breast tissues versus
frequency in skin, adipose, fibroglandular and tumor using
first-order Debye model [39], [46].

V. INVERSION ALGORITHM

Our inverse problem is posed in a variational context
requiring the solution to a nonlinear least squares optimization
problem. A variety of methods are present in the literature
to solve such problems including descent type methods. In
this category of solutions, by knowing the object function in
analytical form, the solution is achieved iteratively using the
gradient information. Steepest decent, Gauss-Newton, conju-
gate gradient, and Levenberg-Marquardt methods are in this
category. Among all these methods, we choose Levenberg-
Marquardt [47], [48] which is basically a trade-off between
steepest descent approach which is slow to converge and
Gauss-Newton method which can be unstable if the Jacobian
matrix is poorly conditioned. The conditioning is dealt with
in an adaptive manner through the choice of a conditioning
parameter at each iteration. In many cases, this algorithm is
more efficient than some other numerical methods such as
steepest descent and conjugate gradient [49].

Our inversion method minimizes the cost function

o) = 51w = 3" (wr(w)
where r(u) = f(u) — fy is the residual vector, f(u) is the field
vector calculated by forward solver at the receiver locations
for the predicted geometry, u is the unknown vector, fj is the

(1)
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Fig. 4. Typical values for dielectric properties of breast tissues (skin, adipose,
fibroglandular) and tumor. (a) Relative permittivity. (b) Conductivity.

noisy observed field data vector and r! (u) is the transposed
complex conjugate vector of r(u).

Levenberg-Marquardt iterative algorithm uses the following
update formula to calculate the unknown vector in (n + 1)th
step, starting from an initial guess u(®) [50]

uth) =y _ g™ (12)

-1
d(”):(Vzc(u(”))Jr)\(”)INu) Ve(u™)  (13)

where Ve and V2c are gradient vector and Hessian matrix of
the cost function defined in Equation (11), respectively, IV, is
the number of unknowns, I, is the identity matrix of dimen-
sion N, and X is the Levenberg-Marquardt parameter being
updated in each iteration. Complex-valued matrix calculations
lead to

Ve(u™) = Re (JH(u(”))r(u(n))) (14)

V2e(u™) ~ Re (JH(u<">)J(u<“>)) (15)

or
d™ ~ (Re (JH(u("))J(u(“))) + )\(n)INu)il
Re (JH(u(”))r(u(“))) (16)

To solve the above equation, we need to calculate the Jacobian
matrix. In the Appendix, we summarize the procedure to
calculate the Jacobian matrix in a multiple-frequency multi-
source problem.

A block diagram of our inversion algorithm is illustrated
in Figure 5. The algorithm starts with an initial guess of
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Fig. 5. The inversion algorithm block diagram

unknown parameters vector u(®). The forward solver is run
with the initial parameters and computes the initial predicted
field vector f(u("=9). The initial cost function c(u("=2)) is
computed using the predicted field vector and the observed
data from the actual geometry fo using Equation (11). In
the next step (n = 1), the Jacobian matrix for the predicted
unknown parameters J(u("=1)) is calculated as explained
in the Appendix. The inversion algorithm is then run using
Equations (14)-(16) starting with a small initial A and updates
the unknown vector using Equation (12). We decrease A by
half and repeat the algorithm using the updated unknown
vector and updated A. If the cost function increases in the
next step, we increase A by a factor of ten, run the inverse
algorithm and find the updated unknown vector using this
larger parameter, and continue the algorithm. The algorithm
is terminated if the cost function becomes less than a pre-
defined threshold (Jerm) Or the maximum number of iterations
(nmax) 1s reached.
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Fig. 6.  Examplel: Breast coronal cross-section geometry includes the
tumor with average diameter of 1 cm, the interface between adipose and
fibroglandular layers and the skin layers. Tumor initial guess (inner dotted
line) and interface initial guess (outer dotted line) are also shown. In this
figure, one antenna is in transmitting mode (bold antenna) and the other non-
adjacent antennas in receiving mode (encircled antennas).

VI. NUMERICAL RESULTS

In this section, we present several numerical examples to
support the concept of our inversion algorithm. We study the
identification of tumors of different sizes, the behavior when
there is no tumor, reconstruction with low contrast between
tumor and fibroglandular layer, and sensitivity to perturbation
of dielectric properties from their mean values.

Breast coronal cross-section, consisting skin layer, adipose
layer, fibroglandular layer and the tumor, immersed in a
coupling liquid, was illustrated in Figure 2. Typical average
values for relative permittivity and conductivity of the breast
tissue versus frequency were also plotted in Figures 4(a) and
4(b), respectively. In all following examples, for the actual ge-
ometry, inhomogeneity in dielectric properties of the layers is
modeled by a standard normal distribution around the average
values in Figure 4. A standard deviation of 10% is applied to
the relative permittivity and conductivity of skin, adipose and
fibroglandular layers, and 5% is applied to the tumor. There is
a smooth transition layer between adipose and fibroglandular
layers which is modeled by a Gaussian blur filter. Matching
liquid is assumed to be a 60% glycerine solution with €, = 47
and ¢ = 1.36 S/m in all frequencies. The breast external
surface is assumed to be known and the skin layer width is
taken to be 2 mm. The unknown boundaries to reconstruct
are the transition layer between fibroglandular and adipose
layers estimates by a closed B-spline curve using a limited
number of control points, and tumor modeled by a circle with
an unknown center and radius. A circular array of 16 multiple-
frequency transmitter/receiver antennas illuminates the breast
by one antenna radiating at a single-frequency at a time while
the other 13 non-adjacent antennas collect the fields. In our
examples, we use only four transmitting antennas 90 degrees
apart. Noisy data are simulated by adding Gaussian noise to
the real and imaginary parts of the noise-free data generated
by the forward solver using a finer finite difference grid.
Simulations are performed in multiple-frequency mode at 600,
900, and 1200 MHz. Signal to noise ratio is assumed to be 40
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Fig. 7. Example 1: Spatial distribution of dielectric properties at 900 MHz.
(a) Relative permittivity distribution. (b) Conductivity distribution (S/m).

dB in all examples.

In Examples 1-3, the data are generated using the actual
geometry mentioned above. In our inverse problem, we use
the frequency-dependent average dielectric properties of the
tissues extracted from the typical values shown in Figures 4(a)
and 4(b). In these examples, 15 control points are used to
reconstruct the interface between adipose and fibroglandular
layers. With 3 tumor unknowns and 15 interface unknowns,
the total number of unknowns is 18. Also with 3 operating
frequencies and 4 different transmitting antennas, there are 12
sets of data.

In Example 1, the tumor with average diameter of 10 mm
is reconstructed along with the interface between adipose and
fibroglandular layers in just a few iterations. Figure 6 shows
the ground truth geometry. The spatial distributions of relative
permittivity and conductivity at 900 MHz are plotted in Figure
7 for the entire cross-section. Figure 8 displays the real and
imaginary parts of the electric fields at 900 MHz where one
antenna is radiating as shown in Figure 6. The magnitude
of the electric field is truncated in order to provide a better
illustration of the fields. The reconstructed geometry and the
cost function vs. the iterations are shown in Figure 9. The
results state that starting from a far initial guess for boundaries
(shown in Figure 6), the convergence to actual boundaries is
achieved only in 7 steps.

A smaller tumor is studied in Example 2 where the average
diameter is 5 mm. Figure 10(a) shows the ground truth
geometry and the initial guesses for both boundaries. The
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Fig. 8. Example 1: Electric field plot at 900 MHz. The magnitude is
truncated in order to provide a better illustration of the fields. (a) Real Part.
(b) Imaginary part.

reconstructed geometry is shown in Figure 10(b). As shown
in this figure, still we can estimate the interface boundary and
localize the tumor with proper accuracy.

We study the case with no tumor in Example 3. The inverse
problem is started from the initial boundaries shown in Figure
11(a). By performing our inversion algorithm, we observe
that the predicted tumor vanishes by converging into a point
while the other interface is still reconstructed well. Figure
11(a) shows the geometry including the initial guesses for both
boundaries. The reconstructed geometry is displayed in Figure
11(b).

In example 4, we study the capability of algorithm in
reconstruction of the geometry with low contrast between the
tumor and the fibroglandular layer. We use the same geometry
in Example 1, but reduce the frequency-dependent average
dielectric properties of the tumor very close to those of the
fibroglandular layer, as shown in Figures 12(a) and 12(b). The
reconstructed geometry is illustrated in Figure 13. As shown
in the figure, even with very low contrast, we can estimate
the interface boundary very well and localize the tumor with
a good accuracy.

In the remaining two examples we examine the sensitivity of
our approach to perturbation of the dielectric properties. The
observed field data are again simulated using the inhomoge-
neous geometry mentioned before. But the inverse algorithm
uses perturbed complex permittivity values by deviating the
typical average vales in Figures 4(a) and 4(b). We use a
very rough interface between the breast inner layers in these
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Fig. 9. Example 1: Inversion results. (a) Reconstructed boundaries for
tumor and the interface (solid lines) vs. true geometry starting from the initial
boundaries shown in Figure 6. (b) Cost function vs. iteration steps.

examples. By using a limited number of control points, we
still get a good estimate of the interface, and the tumor is
identified well. We make use of 20 control points to estimate
the interface between the breast inner layers. With 3 unknowns
for the tumor and 20 for the interface, the total number of
unknowns is 23. Also with 3 operating frequencies and 4
different transmitting antennas, there are 12 sets of data.

In Example 5, the typical complex permittivity average val-
ues of skin and tumor are perturbed by 15% increase for use in
the inversion algorithm. Adipose and fibroglandular layers are
also perturbed by 15% decrease in their complex permittivity
from the typical average values. The actual geometry and the
initial guesses for both boundaries are shown in Figure 14(a).
Reconstructed geometry is illustrated in Figure 14(b) where it
is observed that good convergence is achieved by our inversion
algorithm in 9 steps for both the interface between inner layers
and the tumor. The cost function versus the iteration steps is
also plotted in Figure 14(c).

In Example 6, the typical average values of dielectric
properties of the breast layers and the tumor are perturbed by
10% for use in the inversion algorithm where the perturbation
is positive for skin and tumor layers and negative for adipose
and fibroglandular layers. The geometry and initial guesses
for both boundaries are shown in Figure 15(a). Figure 15(b)
displays the good convergence achieved in 11 steps by our
inversion algorithm for both the tumor and the interface
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Fig. 10. Example 2: (a) Breast coronal cross-section geometry and the initial
guess, where the tumor has average diameter of 5 mm. (b) Reconstructed
boundaries for tumor and interface (solid lines) vs. true geometry starting
from the initial boundaries shown in Figure 10(a).

between the inner. The cost function versus the iteration steps
is also plotted in Figure 15(c).

VII. CONCLUSION

A new shape-based inversion algorithm was proposed for
detection of anomaly in a multi-layer sliced geometry and was
applied to the problem of breast cancer detection successfully.
In our approach, breast geometry and dielectric properties are
modeled in low-dimensional parametric form. We provided
examples to prove that despite the complex geometry and
imperfections in the inverse model, our algorithm is robust
and can identify the tumor and the unknown interface very
well. Geometry variations were studied including the tumors
of different sizes, the breast slice lacking the tumor, and
perturbation of dielectric properties in inversion algorithm
from their actual mean values.

The results suggest that the tumor is identified pretty well
in all studied examples. Our method is more adapted to
denser breasts as the inner layers can be distinguished more
accurately. The future work includes the extension to 3-D
reconstruction of anomaly, use of clinical data as the input
to our approach, fusion with MRI-extracted geometry, and
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Fig. 11. Example 3: (a) Breast coronal cross-section geometry in absence

of tumor. (b) Reconstructed boundaries for tumor and interface (solid lines)
vs. true geometry starting from the initial boundaries shown in Figure 11(a).

simultaneous estimation of the geometry and the dielectric
properties of the breast tissues.

Although the numerical results prove that the convergence
met in our problem provides accurate reconstruction, even with
far initial guesses inside the geometry, we may consider global
or hybrid optimization approaches in which a global method
is used to get a good initial guess for local method. This is
left as a future work.

APPENDIX
A. Derivation of Jacobian Matrix and Residue Vector

In a multi-frequency multi-source problem with Ny operat-
ing frequencies and V,... receiving antennas, the residue sub-
vector and the Jacobian sub-matrices at frequency f; and for
the radiating antenna a; are as follows

r(fi,ai,u) = £(fi, a5, u) — fo(fi, a;) (A-1)
dry  dry_dn
deg dcy AT tym
dro drg dro
or (f“ a;, u) dcg dey AT tum
Jtum(fiaahu) = T = . .
tum
drn, dry,. dryn,
dcg dcy drium
A-2)
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Fig. 12. Dielectric properties of breast tissues (skin, adipose, fibroglandular)

and tumor, with low contrast between tumor and the fibroglandular layer, used
in Example 4. (a) Relative permittivity. (b) Conductivity.
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Fig. 13. Example4: Reconstructed boundaries for tumor and interface (solid
lines) vs. true geometry starting from the initial boundaries in Figure 6.

d7‘1 dT1 . d’l‘]
dR dR: dRNw
dr21 dr22 . drlg
or (fi,a;,a) dR;  dRs dRnw
Jint(fiaai;u)ziz . . .
Ouiny : : :
d’r‘NT drn,. d""NT
dR1 dR2 dRNu
(A-3)

where u is the unknown vector, f is the predicted field vector,
fo is the observed field vector, and the partial derivatives are
obtained using finite differences by perturbing the predicted
unknown parameters and calculating the corresponding residue
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Fig. 14. Example 5: (a) Breast coronal cross-section geometry; the initial
guess for dielectric properties of all layers is perturbed by 10%. (b) Recon-
structed boundaries for tumor and interface (solid lines) vs. true geometry from
the initial boundaries shown in Figure 14(a). (c) Cost function vs. iteration
steps.

value. Hence

Jtum(u) — [Jtum(fla ai, U—)T7 ~-~7Jtum(fo7aN1»eC7 u)T]

(A-4)
Jint(u) - [Jint(fla ai, u)Ta ceey Jint(fo ) U/chv u)T]
(A-5)
The global Jacobian matrix is
J(u) - [Jtum(u)TyJint(u)T} (A'6)
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Fig. 15. Example 6: (a) Breast coronal cross-section geometry; the initial
guess for dielectric properties of all layers is perturbed by 10%. (b) Recon-
structed boundaries for tumor and interface (solid lines) vs. true geometry from
the initial boundaries shown in Figure 14(a). (c) Cost function vs. iteration
steps.

The global residue matrix is

I‘(ll) = [r(flv ai, u)T7 vy I‘(fo sy AN u)T]T (A'7)

Equations (A-6) and (A-7) are utilized in calculation of the
gradient vector (Equation (14)) and Hessian matrix (Equation
15).
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