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Abstract—Intracranial aneurysms are localized, abnormal ar-
terial dilatations with a variable risk of rupture, leading to
medical conditions associated with high morbidity and mortal-
ity. Predicting their risk of rupture, especially for incidental
asymptomatic aneurysms, is a challenging task. The size of the
aneurysm sac is traditionally used to assess the risk, but shape
analysis has emerged as a promising differentiator of rupture
likelihood. The centroid-radii model (CRM) is introduced here
to describe both the size and the shape of the aneurysms, and
determine rupture status. The entropy of CRM is proposed as an
aneurysm descriptor which is easy to compute, robust to noise
and segmentation, and accurate in rupture status discrimination.
Analysis is performed on 154 patient-derived saccular aneurysms.
The aneurysms are further classified as sidewall and bifurcation,
and the shape analysis is performed separately on the two
subtypes. Using the entropy of CRM resulted in 80.3% and
70.5% classification accuracy of status rupture in sidewall and
bifurcation aneurysms, respectively. When compared to the accu-
racy of some commonly used size and shape indexes, the entropy
of CRM proved to be a more accurate single index associated
with rupture in intracranial aneurysms, for both sidewall and
bifurcation subtypes.

Index Terms—Brain aneurysms, shape analysis, 3D geometry,
3D morphology, centroid-radii model, entropy.

I. INTRODUCTION

An intracranial cerebral aneurysm is a localized pathological
dilatation of a brain vessel. It is reported that up to 2% of
the general population harbors aneurysms [1], although some
autopsy and angiography studies indicate this number could
be as high as 6% [2]. The majority of cerebral aneurysms
are asymptomatic and remain undetected. However, recent
advances in imaging technologies and the increasing use of
computed tomography (CT) and magnetic resonance (MR)
imaging in outpatient settings, have led to an increased de-
tection of incidental, asymptomatic unruptured intracranial
aneurysms (UIA) [3]. While, with rare exceptions, the rec-
ommendation is for all unruptured symptomatic aneurysms to
be treated, the management of asymptomatic UIA remains
controversial [4], [5]. On one hand, should the aneurysm
rupture, the initial bleed carries high mortality and morbidity
rates and despite improvements in patient management, the
incidence of subarachnoid hemorrhage (SAH) has not declined
over time [2]. On the other hand, recent studies estimate
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the annual rupture rate of a prospectively monitored selected
patient population at only 0.1-0.2% [6], in contrast with earlier
data which reported an annual rupture rate of 1-2% [2].
Since preventive treatment carries risks of complications which
increase with age [6], the decision to intervene and treat UTA
needs to be balanced against the risk of rupture. To this end,
the International Study of Unruptured Intracranial Aneurysms
(ISUIA) released the conclusions of two studies in 1998 and
2003 with the goal of defining an optimal treatment strategy
of UIA [6], [7]. The size and location of the aneurysms were
concluded to play important roles in predicting rupture risk
and a threshold of 7 mm diameter was proposed. Under the
influence of ISUIA studies, predicting rupture in UIA has
focused mainly on the size of the aneurysm, and other size
related indexes such as aspect ratio (AR) and height-width
(H/W) ratio [8].

Cerebral aneurysms present in various shapes and three-
dimensional sizes and, like size, shape is likely to have an
impact on the rupture risk [8]-[10]. With advances in medical
imaging, modalities such as 3D rotational angiography (3D-
RA), computed tomography angiography (CTA) and magnetic
resonance angiography (MRA) can capture the complexity
of the volumetric shape and offer the possibility to analyze
aneurysms in a 3D environment. Still, the morphological
characterization of cerebral aneurysms remains an open re-
search area. Ma et al. [11] and Raghavan et al. [9] proposed
some of the first parameters to describe the 3D geometry of
cerebral aneurysms and introduced global descriptors such
as undulation, non-sphericity and ellipticity indexes. These
parameters were further discussed in [8], [10]. More complex
shape analysis was performed in [12] using Fourier analysis
and in [13] using geometric and Zernike moments.

The purpose of this current work is to further investigate
the potential of 3D shape characterization of intracranial
aneurysms in rupture status analysis. Because of the nature
of the application, the goal is to propose descriptors that
are not only robust and effective in differentiating rupture
status, but also intuitive to the medical community which
is the ultimate user of such a tool. To this end, this study
introduces an automated methodology to characterize the
3D shape of intracranial aneurysms based on the centroid-
radii model (CRM) [14], [15]. CRM provides a compact
representation of a shape and it is currently used in pattern
recognition and shape retrieval applications [16], [17]. Under
the model, distances between the centroid and the boundary
of the aneurysm are computed in all directions. The resulting
distribution of unnormalized distances describes both the size
and the shape of the aneurysms. CRM, as used here, is



translation and rotation invariant. When the distances are
normalized by division with the largest distance, CRM is
scale invariant and the resulting distribution describes only the
shape of the aneurysms. The entropy of both normalized and
unnormalized distance distributions are introduced as powerful
indexes to describe rupture status.

The morphological analysis was performed on a database
of 154 saccular aneurysms (73 ruptured) derived from 3D
rotational angiography imaging studies. Similar to recent mor-
phological studies [8], [9], [11]-[13] the rupture status classi-
fication is performed on a dataset of aneurysms which were
labeled as being ruptured or not at the time of detection by
the treating physicians. The rupture status classification results
using CRM entropy were compared with the performance
of six established 2D (size, AR, HW) and 3D (ellipticity,
undulation, non-sphericity) indexes.

The paper is structured as follows: details about some com-
monly used size and shape indexes, as well as the proposed
centroid-radii model are presented in Section II. Sections
IIT and IV describe our data and methodology. Results and
robustness analysis are detailed in Section V. Discussion,
conclusions and directions for future work are presented in
Section VL.

II. RELATED WORK
A. Established Size and Shape Indexes

The performance of the shape index proposed in this study
is compared against the performance of six existing size and
shape indexes which are described in this section.

1) Size Indexes: The largest diameter of the aneurysm
(Diaz) 1s the most commonly used index to clinically asses
rupture risk. Two other potentially useful indexes, especially
for small aneurysms which might be missed by the largest
diameter measure, are aspect ratio (AR) (aneurysm height/neck
width) [18] and height-width (H/W) (aneurysm height/largest
diameter) [11] (Fig. 1).

For this work the size indexes described above were mea-
sured manually in a blinded fashion by an experienced clinical
operator. Size measurements were validated by a second
clinical operator (interclass correlation coefficient 0.92). All
measurements were performed on the 3D model of each
aneurysm using Amira, a 3D visualization and modeling
system (Visage Imaging, San Diego CA).
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Fig. 1. Existing size indexes (a) Largest diameter size. (b) Aspect ratio is
defined as height H divided by neck diameter N (c) Height-width index is
defined as the height H divided by width W.

2) Shape Indexes: The non-sphericity index (NSI) [9] mea-
sures how closely the shape of the aneurysm resembles an

ellipsoid. The index is defined as NST=1— (187)5 % V3

where V' is the aneurysm volume and S is the aneurysm
surface. The NSI varies from 0 to 1, being O for a hemisphere
and increasing with deviation from a spherical shape due to
ellipticity or undulations in the surface. The ellipticity index
(EI) [9] measures how close the shape of the aneurysm is to

an ellipsoid. The index is defined as EI = 1 — (187)3 C"
where V,;, is the volume of the aneurysm convex hull and Sch
is the surface of the aneurysm convex hull. EI varies from 0
to 1, being O for a sphere and increasing with ellipticity. The
undulation index (UI) [9] describes irregularities on the surface
of the aneurysm. The index is defined as Ul = 1— %, where
Vep, is the volume of the aneurysm convex hull and V' is the
aneurysm volume. The UI varies from 0 to 1, being O for
convex aneurysm and increasing with the presence of surface
irregularities and lobulations. The EI, UI and NSI indexes are
some of the first 3D shape descriptors to be associated with
aneurysm rupture risk and to be included in relevant clinical
research studies [8]-[10].

For this work, the shape indexes described above were
computed automatically from the aneurysm models, using in-
house MATLAB (MathWorks, Natick MA) routines.

B. The Centroid-Radii Model

The centroid-radii model for shape representation was pro-
posed by [14] and refined by [15]. The centroid-radii model
represents an object by its star-shaped envelope with respect to
the centroid (Fig. 2). An object is said to be star-shaped if there
exists a point C interior to the shape, in this case the centroid,
such that for every point P on the surface of the object, the
line segment PC lies entirely within the object. In other words,
every point on the surface of the object is visible from point C.
The original work describes 2D shapes and the angle between
consecutive radii is fixed. For 3D objects, the model uses
distances from the centroid to the discretized surface of an
object (meshes, point clouds). Because the distances are com-
puted from the centroid, the model is translation invariant. The
model can be normalized and made scale invariant by dividing
all distances by the largest radius. When used to compare two
similar objects, the model captures the salient features of their
shapes, while discarding small shape variations. The centroid-
radii model provides a compact representation of a shape,
usually in a multidimensional format such as histograms and
distance arrays. The model is used in pattern recognition and
shape retrieval applications [16], [17].

CRM is similar to the spherical extent function, which is a
ray-based 3D descriptor used in database retrieval applications
[19], [20]. Similarly to CRM, the spherical extent function
captures the closest intersection points between rays emanating
from the center of mass and the surface of the object.

Figure 2 shows how the star-shaped envelope of a 3D shape
can differ from the original model. This is the only aneurysm
in the dataset which differs from its star-shape envelope with
more than 5% (92% overlap between original surface and
its envelope). In our experiments, 93% of the aneurysms are
star-shaped with respect to their centroids. For the remaining
7%, on average, the star-shaped envelope overlaps the actual



TABLE I
DETAILS ABOUT ANEURYSM DISTRIBUTION BASED ON LOCATION,
RELATION WITH THE PARENT VESSEL (BF vS. SW) AND RUPTURE STATUS
(RUPTURED (Y) VS. UNRUPTURED (N).

SW BF
Location N | n|y|n]|y
Anterior Communicating 41 7 | 34
Posterior Communicating 33 | 13 | 11 5 4
Middle Cerebral 25 23 | 2
Internal Carotid 18 | 14 | 4
Internal Carotid Artery Bifurcation | 10 9 1
Ophthalmic Artery 8 5 3
Basilar 8 2 6
Anterior Choroidal Artery 5 3
Vertebral 3 1 2
Posterior Inferior Cerebellar Artery | 2 2
Cuperior Cerebellar Artery 1 1

aneurysm on more than 98% of the surface. This indicates that
using CRM does not result in a loss of shape information.

Fig. 2. The star-shaped envelope (in red) can differ from the original model
(in gray). The shape represents a ruptured sidewall aneurysm. There is 92%
surface overlap between the original shape and its envelope.

III. CLINICAL DATA

The clinical database consists of 154 distinct cerebral
aneurysms from 137 consecutive patient-derived 3D rotational
angiography (3D-RA) imaging studies. Data (collected be-
tween 2001-2005) were acquired using a biplane flat-detector
digital subtraction angiography system. The size of each 3D-
RA volume is 128x128x128 voxels with 0.48 mm isotropic
spacing. Approval for the collection and review of data was
obtained from the Institutional Review Board.

Aneurysms were labeled as ruptured (73) and unruptured
(81) based on presentation at the time of the initial evaluation,
by the treating physicians (Table I). The aneurysms were
further classified as sidewall (SW) (dilation of the artery in
one direction perpendicular to the vessel axis - 58 aneurysms)
and bifurcation (BF) (dilation at the bifurcation of arteries
- 96 aneurysms). Fusiform aneurysms are not considered in
this study given how different their pathology and morphology
are from that of saccular aneurysms [21]. The average largest
diameter of the aneurysms in the database is 6.924+3.14 mm.

IV. METHOD

A. Method Overview

The following methodology is proposed to differentiate
aneurysm rupture status based on the centroid-radii model.

Using a 3D visualization and modeling system, the cerebral
vasculature is segmented from the 3D-RA volume and a 3D
model is created for each aneurysm by isolating the aneurysm
sac from its adjacent parent vessels. The model is represented
as a triangular mesh and saved in STL (stereolithography)
file format, which describe the surface geometry of a 3D
object as a collection of vertices and associated faces. The
resulting STL files represent the input to MATLAB routines,
which are used to apply the centroid-radii model, perform
histogram smoothing and compute histogram statistics. More
specifically, centroid-radii distances are computed along the
surface of the model. Normalized and unnormalized distances
are stored in two distance histograms. Histogram smoothing
is performed using kernel estimators. The entropy of each
distance distribution is used as a classification feature for
rupture status discrimination. Details are presented below.

B. Segmentation and Isolation of Aneurysms

Figure 3 shows the steps performed on the original 3D-
RA volume (Fig. 3(a)), in order to obtain the aneurysmal
sac isolated from the surrounding vessels (Fig. 3(f)). Image
processing operations, including segmentation, are performed
using Amira, a 3D visualization and modeling system (Visage
Imaging, San Diego CA). The original 3D-RA data did not
require any smoothing operations. Similar to Bescos et al.
[22], edge-detection was used to guide the segmentation, with
the difference that the Sobel filter was preferred to the Canny
edge-detection. Sobel edge detection was chosen because it is
fast and does not require any input parameters. First, the Sobel
edge detection filter is applied to the original volume (Fig.
3(b)). Second, an initial isosurface is automatically created
using a default threshold value. The isosurface is refined
by visual inspection such that the final surface sits within
the Sobel edges ((Fig. 3(c)). It has been found that, using
the Sobel filter in guiding the segmentation process, results
in a very narrow range of acceptable threshold values. The
segmented surface is automatically generated and represented
as a triangular mesh (Fig. 3(d)). A cutting plane, tangent to
the surface of the vessels (Fig. 3(e)), is identified visually
at the location where the aneurismal sac originates from the
parent vessels [10], by taking into account the local geometry
of the vasculature. The aneurysm model is represented as a
triangulated mesh and store in an STL file.

C. Centroid-Radii Distances Computation

Centroid-radii distance analysis is performed in MATLAB
on each 3D STL model. For each vertex in the mesh, a
ray originating from the centroid is shot in the direction of
that vertex. The first intersection of the ray with the surface
of the aneurysm is recorded. The number of ray-triangle
intersections is reduced by use of octree space partitioning
[23]. Each aneurysm is described by two sets of distances:
a set of unnormalized distances and a set of normalized
distances obtained by dividing each unnormalized distance by
the maximum unnormalized distance. The algorithm for CRM
distance computation is completely automated.
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Segmentation and isolation of aneurysms. (a) Original 3D-RA data (b) Sobel edge detection filter (c) Threshold value based on Sobel filter (d)

Surface is represented as a triangular mesh (e) Cutting plane is tangent to the aneurysm surface (f) The aneurysm sac is completely separated from vessels.

D. Histogram Statistics

Distance values along the surface of each aneurysm are
represented using a frequency histogram. The value of each
bin is divided by the total number of samples, and the area
under the counting bins adds to one. The histogram is a non-
smooth estimator of the underlying density function showing
discontinuities at its ends and at bins with zero value. To avoid
these shortcomings, histogram smoothing is performed using
Nadaraya-Watson estimator (Eq. 1) with Gaussian kernels [24]
whose bandwidth (Eq. 2) is selected using the method of
Bowman et al. [25]

n

~ Y;Kh(x_Xi)
= I 1
nin(x) ; ST K@ X)) (1)
_ i 1/5
h=(3-)"0 ©)

where K}, is the smoothing kernel with bandwidth h, X; are
distance samples with associated Y; frequencies. Bandwidth
h is computed as a function of the standard deviation of the
distribution ¢. The entropy is computed from the smoothed
histogram and, for a continuous random variable z, with
density p(x), is a measure of the uncertainty associated with
that variable. It is defined as
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The entropy does not depend on the values of z, but
only on the probabilities that x will occur [26]. Intuitively,

the entropy is a measure of how well organized the data i5
and how predictable is a random sample variable. Uniform
probability distributions, which show maximum uncertainty,
have maximum entropy.

E. Classification

The classification problem solved here involves two classes
(ruptured vs. unruptured) and 154 samples described each
by two features: the entropy of the unnormalized distance
distribution (C'Ry) and the entropy of the normalized distance
distribution (C Rpporm)- The method used is logistic regres-
sion with 10-fold cross-validation [27]. The classification is
repeated 10 times with 10 different random seeds. This results
in 100 different data splittings. The average performance is
reported.

V. RESULTS
A. Rupture Status Prediction

In this study, the performance of an index in rupture status
discrimination is quantified using two measures: the classifica-
tion accuracy (percentage of correctly labeled samples) and the
area under the receiver operating characteristic (ROC) curve.
The ROC curve is a graphical representation of the perfor-
mance of a binary classifier as its discrimination threshold is
varied. The sensitivity of the method (true positives rate) is
plotted vs. the specificity of the method (false positives rate).
The area under the ROC curve (AUC) represents the trade-
off between true positive and false positive and takes values
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between 0 and 1. A perfect classification method has 100%
sensitivity (all true positives are identified), 100% specificity
(no false positives) and an AUC of 1.

First, the classification is performed using each of the six
size and shape indexes presented in Section II-A. Table II
shows the rupture status classification performance for the
whole set of 154 aneurysms (SW+BF) and for subsets of
SW and BF aneurysms. All indexes perform better on SW
than on BF aneurysms. For SW aneurysms, NSI has the best
classification accuracy (77.1%), followed by D, ., the largest
diameter index (70.6%). For BF aneurysms, Ul has the best
classification accuracy (66.8%), followed by H/W (63.7%).

Second, classification is performed using the entropy of the
CRM model. Table III summarizes the main results of this
study. The two indexes evaluated are the entropy of the nor-
malized distance distribution (C Rp0rm) and the entropy of
the unnormalized distance distribution (C'R},). Classification
is performed on the three subsets: 154 SW+BF, 58 SW and
96 BF. For the SW aneurysms, C' R;, works best and results in
80.3% accuracy, with an AUC of 0.85. For the BF aneurysms,
C Rpnorm Works best and results in 70.5% accuracy, with an
AUC of 0.75. The result suggest that both shape and size are
relevant for rupture in SW aneurysms, whereas shape is more
relevant than size for rupture risk in BF aneurysms. For the
SW+BF group, C'R;, works best (67.2% accuracy), a result of
the SW vs. BF ratio in our dataset.

Figure 4 shows the ROC curves corresponding to the perfor-
mance of D4, NSI, CRy, and CRj,,0rm indexes, both for
the SW+BF group (Fig. 4(a)), and also within SW (Fig. 4(b))
and BF (Fig. 4(c)) subgroups. The graphics show that C' R, is
a good performer in the SW group, while C Rpyorm performs
best in the BF group. Given the difference in performance
between the SW and BF groups for all indexes studied here,
we also use ROC curves to show these differences for D, .
(Fig. 4(d)), C Ry, (Fig. 4(e)) and C' Rpporm (Fig. 4(f)) indexes.
Indeed, the graphics show that D,,,, has a poor performance
in the BF group compared to SW group. As expected, C' Ry,
performs best in the SW group. In contrast with all other
indexes studied, C' Rpnorm has a very balanced performance,
as its accuracy and AUC values are very similar for all three
aneurysm groups.

The means and standard deviations of the proposed entropy
indexes are calculated separately for the ruptured and unrup-
tured subsets. A two-tailed independent Student’s test was
performed to assess the statistical significance of the observed
differences between the means of ruptured and unruptured
aneurysms as indicated by the p-values (Table IV). A p-value
smaller than 0.05 is considered to be statistically significant.
The results indicate that statistics for both normalized and
unnormalized indexes perform well at distinguishing between
ruptured and unruptured subsets.

The differences between ruptured and unruptured aneurysms
as captured by the CRM are apparent in Fig. 5 and 6 which
show analysis results on SW and BF aneurysms respectively.
In the figures, centroid-radii distance values are shown along
the surface of ruptured and unruptured aneurysms, and the
corresponding histograms. SW aneurysms are represented in
Fig. 5 using unnormalized distances, whereas BF aneurysms

TABLE 11
PERFORMANCE OF RUPTURE PREDICTION FOR SIZE AND SHAPE INDEXES,
AS QUANTIFIED BY ACCURACY AND AUC VALUES.

[ Type [ Feature | Accuracy % | AUC |
SW+BF NSI 66.0 0.73
SW+BF Ul 63.6 0.70
SW+BF EI 62.2 0.67
SW+BF H/W 60.4 0.68
SW+BF AR 58.8 0.67
SW+BF | Dmax 57.5 0.59
SW NSI 77.1 0.77
SW Dmax 70.6 0.75
SW AR 69.2 0.72
SW Ul 68.6 0.74
SW H/W 67.2 0.76
SW EI 61.6 0.66
BF Ul 66.8 0.71
BF H/W 63.7 0.63
BF EI 61.8 0.68
BF AR 61.0 0.65
BF NSI 60.5 0.68
BF Dmax 48.7 0.43

TABLE III

PERFORMANCE OF RUPTURE PREDICTION FOR CRM ENTROPY, AS
QUANTIFIED BY ACCURACY AND AUC VALUES.

[ Type [ Feature [ Accuracy % [ AUC |
SW+BF CRy, 63.8 0.68
SW+BF | CRunorm 67.2 0.73
SW CRy, 80.3 0.85
SW CRhnorm 64.3 0.75
BF CRy 56.1 0.59
BF CRhnorm 70.5 0.75

are represented in Fig. 6 using normalized distances. The
approximating probability distribution of CRM is shown in
red. Unruptured aneurysms tend to be smaller and have a
more spherical shape [10], resulting here in sharp distance
distributions and low entropy. Ruptured aneurysms, which
tend to have more irregular, non-spherical shapes [10], have
here a more spread out distance distribution, associated with
higher entropy. As a consequence, ruptured aneurysms have
significantly higher entropy of the centroid-radii distance dis-
tribution, when compared to unruptured aneurysms (Table IV).

Note that, despite its irregular, non-convex shape, the rup-
tured BF aneurysm shown in Fig. 6(b) is completely star-
shaped with respect to its centroid. Its rupture status was
correctly classified by the method. At the same time, the
ruptured SW aneurysm shown in Fig. 2 was also correctly
classified by the method.

B. Sensitivity to Segmentation

To determine the sensitivity of the method to segmentation,
a second segmentation based on level sets [28] is employed
on the original 3D-RA dataset of 58 SW aneurysms, using
a different visualization system (ITK-SNAP31). The analysis
involves four classification cases: two in which the training
and the testing sets are segmented using the same method, and
two in which the training and the testing sets are segmented
using different methods (Table V). The entropy of the CRM
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groups. Comparison between SW+BF, SW and BF groups using the (d) Dmaz, (€) CRp and (f) CRpporm indexes.

POPULATION VARIATION (MEAN, STANDARD DEVIATION) WITHIN THE

TABLE IV

CRM INDEXES.

C. Sensitivity to Size and Shape

The sensitivity of the CRM model to size and shape

[ p-value VFu'iations was further analyzed on the SW and BF subsets.

1) Sidewall aneurysms: In this subgroup (58 aneurysms, 23
aptured), the performance of the unnormalized entropy C R,

< 0.0001was compared to the best size and shape performers from

ble II, namely D,,,,, and NSL

First, rupture prediction was applied to the aneurysms set us-

[ Type [ Feature | Unuptured |  Ruptured
SW+BF CRy 0.84 +0.28 1.02 4+ 0.30 0.0002
SW+BF | CRpnorm | 0.060+ 0.006 | 0.066 + 0.006 | < 0.0001r11
SW CRy 0.81 £ 0.26 1.16 £ 0.25
SW CRhnorm | 0.059 £ 0.007 | 0.065 4 0.008 0.0003 1
BF CRpn 0.87 +£0.29 0.97 £0.30 0.1280
BF CRhnorm | 0.061 £ 0.006 | 0.066 + 0.006 | < 0.0001,

TABLE V

SENSITIVITY OF THE CRM-BASED CLASSIFICATION TO SEGMENTATION.

[ Train set | Test set | Feature | Accuracy % [ AUC |
Threshold | Threshold CRy, 80.3 0.85
Threshold | Level Sets CRp, 79.7 0.81
Level Sets | Level Sets CRp, 81.7 0.86
Level Sets | Threshold CRp 80.7 0.83

distribution is very robust to segmentation and similar results
are obtained regardless of the segmentation method used on
training and testing data (=~ 80%). Distances from centroid to
the surface of the aneurysms are less sensitive to the small
variation between segmentation methods and are more robust
to different degrees of smoothness of the surface.

mg their D4, as the only classification feature. This analysis
labeled correctly 12 out of the 23 ruptured aneurysms (52%).
Mean D, 4, value of these 12 aneurysms was 9.47 4+0.68mm.
Second, rupture prediction was applied to the aneurysms
set using NSI as the only classification feature. This analysis
labeled correctly 13 out of the 23 ruptured aneurysms (56%).
Mean NSI value of these 13 aneurysms was 0.33 £ 0.009.
Third, rupture prediction was applied to the aneurysms set
using the unnormalized entropy C'Rj. This analysis labeled
correctly 17 out of the 23 ruptured aneurysms (73%). All
aneurysms correctly classified by either D,,,, or NSI, were
also correctly classified by C'Rj,. When looking at those
aneurysms that were correctly classified by the CRM analysis,
but mis-classified by the aD,,q,, our statistics show that
these are smaller aneurysms (mean value 6.53 + 1.35mm)
with large non-sphericity indexes (mean value 0.33 £+ 0.05).
Similarly, when looking at those aneurysms that were cor-
rectly classified by the CRM analysis, but mis-classified by
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Analysis results based on the unnormalized centroid-radii model on ruptured and unruptured SIDEWALL aneurysms. (a)Unruptured aneurysm. (b).

Ruptured aneurysm (c) Histogram of the unruptured aneurysm.(d) Histogram of the ruptured aneurysm.

the NSI, our statistics show that these are large aneurysms
(mean value 10.57 + 1.44mm) with smaller NSI values (mean
value 0.21 4 0.07). These results reinforce the idea that the
unnormalized entropy or CRM acts as an aggregate feature,
which captures characteristics of both size and shape.

Note that although D,,,,, and NSI have good overall accu-
racy in the SW group (Table II), their accuracy in recognizing
ruptured aneurysms is not impressive (= 50%), which suggests
good specificity, but poor sensitivity. In contrast, C'R;, shows
higher accuracy both in the SW group, but also within the
ruptured SW subset, suggesting high specificity and sensitivity.

2) Bifurcation aneurysms: In this subgroup (96 aneurysms,
50 ruptured), the performance of the normalized entropy of
CRM was compared to the best size and shape performers
from Table II, namely H/W and UL

First, rupture prediction was applied to the aneurysms set
using H/W as the only classification feature. This analysis
labeled correctly 35 out of the 50 ruptured aneurysms (70%).
Mean H/W of these 35 aneurysms was 1.64 4= 0.38mm.

Second, rupture prediction was applied to the aneurysms
set using Ul as the only classification feature. This analysis
labeled correctly 34 out of the 50 ruptured aneurysms (68%).
Mean UI value of these 34 aneurysms was 0.13 £ 0.09.

Third, rupture prediction was applied to the aneurysms
set using the normalized entropy CRpporm. This analysis
labeled correctly 39 out of the 50 ruptured aneurysms (78%).
All aneurysms correctly classified by Ul were also correctly
classified by C' Rpy0rm-. Two of the aneurysms correctly clas-

sified by H/'W were misclassified by C'Rpporm. These are
aneurysms with small neck and large height values, but with an
otherwise smooth, regular shape. C R}, ;0. correctly classified
as ruptured one additional aneurysm, which was misclassified
by both H/W and UI. The aneurysm UI value was very close,
but fell below the UI detection threshold.

Note that both H/W and UI have similar accuracy in the
BF group (Table II) and within the ruptured BF subset.
This suggests a good trade-off between their sensitivity and
specificity. In contrast, C' Rpy0rm shows good accuracy both
in the BF group (70%), with even higher accuracy within
the ruptured BF subset (78%), suggesting high specificity and
sensitivity.

VI. DISCUSSIONS

This study introduces the entropies of the normalized and
unnormalized centroid-radii model as novel 3D indexes, which
are shown to be powerful discriminators of rupture status in
intracranial aneurysms. The use of entropy allows for the
extraction of a single shape index from the CRM distance
distribution, a shape descriptor previously used exclusively
in multidimensional form (histogram, distance arrays). While
shape analysis is often based on scale invariance, it is demon-
strated in this work that some applications benefit greatly from
the use of both normalized and unnormalized versions of the
same index. To the best of our knowledge, this is the first study
using statistics derived from the CRM for medical imaging
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Fig. 6. Analysis results based on the normalized centroid-radii model on ruptured and unruptured BIFURCATION aneurysms. (a)Unruptured aneurysm. (b).
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applications. The centroid-radii model is intuitive, easy to use
and its computation is completely automated.

In this work, SW and BF aneurysms are studied both as
a compact group, but also as two separate subgroups. Recent
research [29] and observations in our lab suggest a morpholog-
ical split between the two subtypes, which is supported by the
results from Tables II and III. On our dataset, the entropy of the
CRM has a good performance for rupture status discrimination
in both subtypes, when compared to six commonly used size
and shape indexes. For SW aneurysms, using the entropy of
the unnormalized distances resulted in rupture status prediction
accuracy of 80.3% compared to 77.1% when using other
established indexes. For BF aneurysms, using the entropy of
the normalized distance distribution resulted in rupture status
prediction accuracy of 70.5% compared to 66.8% when using
other established size and shape indexes.

The use of normalized vs. unnormalized distances indicates
that both size and shape influence rupture status in SW
aneurysms, whereas mostly shape influences rupture status in
BF aneurysms. This result is also supported by the classifica-
tion analysis detailed in Table II. Indeed, our results indicate
that rupture status discrimination is more challenging on BF
aneurysms and all indexes presented here performed better on
SW compared to BF aneurysms. It is however encouraging
that the best performers in the BF group (C'Rpporm, H/W and
UI) tend to have good sensitivity (good rupture recognition)
compared to the best performers in the SW group (Sec.
V-C). More research is needed to further analyze the split

suggested here and to determine if indeed there are inherent
morphological and possible hemodynamic differences between
the two subtypes. Such an approach could lead to a better
understanding of BF aneurysms and to better indexes for
rupture status discrimination within this subgroup.

Our results show that misclassified BF aneurysms tend
to be small aneurysms with a smooth, more regular shape.
There is increasing evidence [13], [30], [31] that in addition
to aneurysm sac morphology, the relationship between the
aneurysm and its parent vessels is related to aneurysm rupture
status. This relationship (inflow angle, parent vessel size,
aneurysm inclination) may prove to be especially important
for BF aneurysms, and we plan to explore this possibility in
future work.

Robustness analysis shows the classification based on the
centroid-radii model is insensitive to the segmentation method.
This is an important and encouraging finding which suggests
that a general classification function could be defined and
potential users do not need to build their own training sets
in order to use the index for rupture status prediction.

The fact that aneurysms are mostly star-shaped with respect
to their centroids suggests that the centroid-radii computation
can be further simplified for this particular application and
the distances between the centroid and the aneurysm surface
can be considered directly without checking for surface inter-
sections. This would simplify the implementation and improve
computation times (currently 128 seconds on average per study
on an Intel dual-core T7600 (2.33GHz), 2GB RAM ). This



assumption will be further analyzed in future studies.

Similar to previous morphological research, the current
study premise is based on an yet unproven assumption that
aneurysms do not change shape and size upon rupture [9]-
[11], [13]. This is still a point of contention and there is
not enough information to decidedly settle the debate. Some
studies report no major change in size and shape after rupture
[18], [32], whereas the ISUIA study [6] contends that ruptured
aneurysms data should not be used to draw conclusions about
unruptured aneurysms evolution.

As in other retrospective studies [9]-[11], [13], the current
analysis is performed on a dataset of aneurysms which were
labeled as being ruptured or not at the time of detection. The
evolution of these aneurysms was not followed clinically over
time. As such we differentiate between predicting aneurysms
rupture status and predicting rupture likelihood. Prospective
studies, where in-vivo aneurysms are followed over long
periods of time until they rupture or not, would determine if the
usefulness of the centroid-radii model can be extended from
predicting rupture status to determining rupture likelihood.

While the analysis was performed on a relatively large
database and the results are encouraging, the eventual added
value of the method remains to be determined in the clinical
setting and, as mentioned above, would require validation in
prospective clinical trials.

ELECTRONIC MATERIAL: This paper has supplementary
downloadable material available at http://ieeexplore.ieee.org,
provided by the authors. This includes performance compar-
ison of four classifiers and additional illustrative results of
ruptured and unruptured aneurysms.
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