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Hyde, Damon (M.S.E.E.)

Improving Forward Matrix Generation and Utilization for Time Domain Diffuse Optical

Tomography

Thesis directed by Prof. Eric Miller

Methods of imaging of the body through the use of diffusive near-infrared light have

gained significant attention in recent years. Methods using both time and frequency do-

main data collection methods have been developed, and show significant clinical promise.

One issue that arises through the use of time-dependant intensity measurements

is the large number of data points utilized. The matrices associated with these large

numbers of data points are quite large, possibly requiring hundreds or even thousands of

megabytes of storage space. Explicitly calculating each value in these matrices requires

days of computing time on even well equipped machines.

There are two primary contributions of this thesis to the area of diffuse optical

tomography. The first details a method through which redundancies present in the

source-detector geometry can intelligently be exploited to eliminate excess computations

during the generation of the forward matrix. This minimizes both the time required to

compute the forward matrix, as well as the space required to store it. This result is

presented in a generalized fashion which applies to all source-detector configurations in

a slab geometry, with potential applications in other areas.

The second contribution of this work is the use of a linear interpolation method to

reduce both the initial forward matrix computation time, as well as the time required for

each matrix-vector multiplication involved in the solution.

Results are then presented for a variety of interpolation levels, with both matched

and mismatched simulated models. Comparisons are made with both the absolute truth

and the solutions derived from a fully computed matrix.
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Chapter 1

Introduction

One area of current research in the field of biomedical optics involves the use of

diffusive light for the noninvasive imaging of tissue optical properties. This method, often

referred to as Diffuse Optical Tomography (DOT), uses near-infrared light with wave-

lengths in the range of 700-1100nm to estimate the spatial distribution of absorption and

scattering parameters within the tissue [1]. These wavelengths are of particular interest

because of the chromophore whose absorption and scattering coefficients dominate in

most tissues of interest: hemoglobin. The primary oxygen carrier in blood, hemoglobin

has two forms: deoxyhemoglobin, and its oxygen-saturated counterpart: oxyhemoglobin.

These two variants have distinct oxygenation and wavelength dependent optical param-

eters [2] that, given measurements at two or more wavelengths, can provide an image of

the blood concentration and oxygenation levels within the tissue.

These physiological sources of absorption and scattering information are potentially

useful in several different clinical situations. Tumors tend to be highly vascularized,

leading to an increase in blood density [3]. Areas of the brain see perturbed levels

of blood oxygenation when active. Patients with aneurisms have bubbles in the walls

of blood vessels, leading to high concentrations of blood. These perturbations, caused

by multiple different physiological sources, can all potentially be imaged using a DOT

system.

Several methods of approaching the DOT problem have been proposed. Some

researchers use a continuous amplitude source approach, taking measurements at various

spatial locations on the surface [4]. Others use a modulated source and approach the

problem in the frequency domain [5][6][7]. Still others collect the time varying amplitude
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response to a pulsed laser [1].

For nearly all configurations, however, the DOT problem is an ill posed and diffi-

cult problem. For frequency domain techniques, the problem tends to be highly under-

determined due to restrictions on both source and sensor geometry. To noninvasively im-

age living tissue, sources and detectors can only be placed on accessible surfaces, thereby

restricting the number of usable locations. Despite being subject to these same restric-

tions, the time domain problem using a Born approximation is usually over-determined.

While the number of source-detector pairs may be comparable to a frequency domain

imager, the number of data samples collected (potentially thousands per source-detector

pair), make for an overall over-determined system. This creates problems of its own

however. Attempting to explicitly generate and manipulate the matrices necessary for

time domain imaging severely taxes even well equipped machines. As such, intelligent

methods of generating these matrices are necessary for efficient and timely use of these

time domain models.

This efficient generation, storage, and use of the forward matrices is the primary

goal of this thesis. This goal is achieved through two primary paths: exploitation of

underlying symmetries in the source-detector configuration, and interpolation. The pri-

mary contribution of this thesis is an algorithm associated with these two techniques

which can be applied to a wide variety of problems.

Based on an examination of the underlying symmetries present in many inverse

scattering problems, a comprehensive method of analyzing these problems is presented.

This method allows for the elimination of a large number of excess computations, resulting

in a much shorter amount of time being required for the computation and application

of the forward matrix. In the process of eliminating these excess computations, what

begins as a very large forward matrix is decomposed into a single compact matrix, and

a number of large, sparse, easily computed matrices. This allows for a large savings in

storage versus computing the entire matrix explicitly.

Once the computations being performed are trimmed to a minimal set, interpola-

tion is utilized to realize additional gains in both computational complexity and storage

size. By using a linear interpolation method which can easily be represented in ma-
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trix form, the compact matrix previously developed is further decomposed into an even

smaller compact matrix, and a single sparse one. By combining this new sparse ma-

trix with the previously developed sparse matrices, the speed with which matrix vector

products can be performed is increased. This increase is used to improve the speed with

which a solution can be obtained from an iterative inverse solution.

For solutions to the inverse problem, multiple established methods are utilized. A

traditional Tikhonov regularized least squares solution is used as the baseline solution.

Additional solutions are generated using the LSQR algorithm. This latter algorithm is

utilized due to its ability to exploit the sparse nature of the matrices involved.

1.1 Other Work

Important initial work in determining the time domain solutions to the diffusion

equation was done by Patterson and Chance [8]. They developed equations for the time

resolved transmittance of diffusive light through tissue. These equations form the basis

of the system which defines time domain DOT. Of specific importance to this thesis,

this article was utilized in the development of the time domain portion of the Photon

Migration Imaging (PMI) toolbox, which was utilized for matrix generation in this thesis.

A significant amount of work on inversion of time domain DOT has been done by

Simon Arridge and his group at University College in London. Working with a time

domain system for brain imaging, they have developed TOAST (Time Resolved Optical

Absorption and Scattering Tomography), a toolset designed for doing time domain DOT

work. They described the theoretical basis for perturbative approaches [2] in both the

time and frequency domains for a variety of different sensor geometries. Analytical

forms of the associated Jacobians were then developed [9] for some of these geometries.

These Jacobians are given in terms of the spatially varying absorption and scattering

parameters, with the intention of being used as the kernel of the inverse problem. Using

the methods outlined in their previous papers, the group developed their system for time

domain imaging
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1.2 Outline of Thesis

In this thesis, we concentrate on the problem of rapidly generating Born matrices

for a time domain DOT problem in a transmission geometry. Results using the rapidly

generated matrices are shown for several different cases and compared to results using

matrices generated in a conventional manner. Comparisons are based upon the accuracy

of the reconstruction, as well as the amount of computation required required to obtain

that reconstruction.

Chapter 2 discusses and develops the forward model used for this research, as well as

the inversion methods utilized. Chapter 3 covers the methods of rapid matrix generation

we have developed. Results for a variety of test scenarios are presented in Chapter 4.

These scenarios include simulated data using both matched and mismatched models, as

well as clinically collected data. Conclusions and suggestions for further research are

presented in Chapter 5.



Chapter 2

Linear DOT Models and Inversion

The goal of any inverse problem is, given a set of data, to determine the value of

some parameter or parameters of interest which had an effect upon that data. In a DOT

system, the data collected are some measurement of light transmitted through the tissue

being imaged. The parameters to be recovered are the spatially varying absorption

and scattering parameters. While the relationship between parameters and data can

be determined analytically in imaging modalities such as CAT or MRI systems, this

can not easily be done for DOT. Instead, some type of approximations or assumptions

are made about the parameters to be determined, and about the model by which these

parameters affect the data. These presumptions allow the problem to fit into a form which

is mathematically easier to evaluate. With this new, simpler model, various techniques

can then be applied to determine numerical solutions to the problem.

2.1 Forward Model

The basis of any inverse system is its forward model. This model needs to accurately

represent the way in which the desired parameters interact with the inputs to affect the

data collected at the detectors. This model also needs to be either analytically invertible,

or suitable for some type of numerical inversion.

For this work, we have chosen to use a linearized model based around the first order

Born approximation. In the following section, we start with the diffusion approximation.

From there, we build up a linearized forward model which can then be used with a variety

of numerical inversion techniques.
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2.1.1 Radiative Transport and the Diffusion Approximation

Due to the diffusive behavior of infrared radiation in tissue, deterministic modelling

methods based on Maxwell’s equations have such huge computational requirements as-

sociated with them that they are impractical for use. Because of this, methods based on

stochastic relations have been developed to deal with these types of problems. Rather

than treat each photon individually, they are viewed in more of a bulk fashion, given

that the number of photons involved in a data collection experiment will be large. This

resulting “radiance” or “photon density” can be thought of as being related to the num-

ber of photons in a given volume. The equation forming the basis of these methods is

the Radiative Transport Equation (RTE), originally developed by Chandrasekhar [10]:

1
v

∂L(r, Ω̂, t)
∂t

+∇ · L(r, Ω̂, t) + µtL(r, Ω̂, t) = µs

∫
L(r, Ω̂′, t)f(Ω̂, Ω̂′) dΩ̂′ + S(r, Ω̂, t) (2.1)

In (2.1), L(r, Ω, t) is the intensity of light at a position r, in a direction Ω, at time

t. The probability of a photon scattering from direction Ω̂ to direction Ω̂′ is given by

f(Ω̂, Ω̂′). The speed of light is c and the source is denoted as S(r, Ω̂, t). Additionally, µa

and µs are the spatially varying absorption and scattering parameters, respectively, with

µt equal to µs + µa. The terms on the left side represent radiance lost from a differential

volume in a differential solid angle, while the terms on the right represent the radiance

gained. Thus this equation is an expression of conservation of photons.

The RTE unfortunately also requires a great deal of computation to evaluate, and is

thus unsuitable for use in general inverse problems. By making several assumptions about

the structure of the source and the diffusive material, however, a further approximation

can be derived. The assumptions that f(Ω̂, Ω̂′) is dependent only on the angle between

the directions, and also that the source is isotropic, lead to the diffusion approximation

[5][2], which states that the photon density, Φ(r, t), satisfies the differential equation

(γ2∇2 − µa − 1

v

∂

∂t
)Φ(r, t) = −q(r, t) (2.2)

γ2 =
1

3[µa + (1− p)µs]

where v is the speed of light in the tissue, µa and µs are the absorption and scattering



7

coefficients, respectively, p is the mean cosine of the scattering angle, and q(r, t) is the

source term.

Because Φ(r, t) represents the density of photons at any one point in space, it is

not a directly measurable quantity. In order to transform the density into a measurable

variable it is necessary to take the gradient along the direction of a vector ν̂ which is

normal to the surface at the point where the data are being collected. This results in the

equation for the photon flux:

Γ(m, t) = −γ2ν̂ · ∇Φ(r, t) (2.3)

This flux is the quantity measured at each detector.

2.1.2 Green’s Functions

A closed form solution to (2.2) is not available in the general case. However,

for the case of a homogeneous medium (with respect to the absorption and scattering

parameters), a solution to the diffusion equation can be found in the form of a Green’s

function. In the time domain, the Green’s function is a solution to the diffusion equation

when the source function q(r, t) is an impulse at t = t′. The solution for any arbitrary

input waveform can then be evaluated by convolution with the Green’s function.

According to a proof provided by Arridge et al [2] the Green’s function solutions

to the diffusion equation are related to the Green’s function solutions to the lossless

heat conduction equation by a factor of e−µact. The Green’s function solutions for the

heat conduction equation for many geometries were solved for by Carslaw and Jaeger

[11]. These solutions were then used by Arridge as a basis from which to construct the

Green’s functions for the diffusion equation. The extensive results provided by Carslaw

and Jaeger could also potentially be used to solve for additional geometries, including

those not solved for by Arridge [2].

One important consideration when dealing with realistic geometries is the boundary

condition used in the solution. When (2.2) is solved for the case where the source is an
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impulse at t = t′, the resulting solution is:

φ(r, t) = v(4πγ2vt)−3/2 exp(− r2

4γ2vt
− µavt) (2.4)

γ2 =
1

3[µa + (1− g)µs]

where g is the mean cosine of the scattering angle, and r is a the location of any point

in space, presuming the source is located at the origin. This solution is only valid in an

infinite medium, or in one where the boundaries are far enough from both the source and

detector that the medium can be treated as infinite.

Given the restriction that sources and detectors must be noninvasive, and therefore

located on the surface of the medium, an infinite geometry is unrealizable in any practical

system. Because of this, solutions for other geometries must be obtained. In order to do

this, a model must be developed which describes the behavior of the diffusing light at

the boundary of the medium. This model must then be taken into account when solving

(2.2).

Over the years, several different solutions have been proposed [12]. These different

solutions vary in both their accuracy and their mathematical complexity. For this work,

a zero boundary condition was chosen. Using an infinite slab geometry, and presuming

that the slab spans the Z-axis from z = 0 to z = zd, this amounts to placing the condition:

φ(x, y, z, t) = 0 z = {0, zd} (2.5)

on (2.2). While this presumption violates the diffusion approximation and does not

accurately represent the physics, it is mathematically simple to implement. A more

accurate solution can be obtained through the use of an extrapolated boundary condition,

where φ(r, t) is set equal to zero at some point near the boundary. Observations have

been made that suggest that when the source-detector separation is large in comparison to

the extrapolation length, the additional complexity added by the extrapolated boundary

condition is unnecessary [8]. In such cases, it should suffice to stay with a simple zero

boundary condition and gain the benefit of mathematical simplicity.

The solution to (2.2) for an infinite slab geometry with a zero boundary condition

utilizes (2.4) and an infinite series of dipoles to satisfy the boundary condition. These
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dipoles are illustrated in Figure 2.1. By alternating positive and negative sources, and

spacing these sets of sources every 2zd along the Z-axis, the boundary condition is sat-

isfied. This results in the Green’s Function solution being in the form of an infinite

summation. Ultimately, after some rearranging, the Green’s function solution to (2.2)

for an infinite slab geometry is given by Arridge et al [2] to be:

gΦ
slab(r, r

′, t, t′) =
exp{−[µac(t− t′) + ξ2

4γ2(t−t′) ]}
[4πγ2(t− t′)]3/2

×
∞∑

n=−∞
[exp(−(z − 2zdn− z0)

2/4γ2(t− t′))

− exp(−(z − 2zdn + z0)
2/4γ2(t− t′))]

ξ =
√

x2 + y2

zo = [(1− ρ̄)µs]
−1]

(2.6)

Here, r’ and r are the source and detector locations, respectively. The variable

zo is the source depth, which is set inside the upper boundary of the slab by one mean

scattering length. This scattering length is the average distance a photon can be expected

to travel along a path before being scattered in another direction. It enters into the

solution because light from the source laser is presumed to travel, on average, this distance

into the tissue before a scattering event occurs. Finally, zd is the thickness of the slab

being evaluated. If the vector r − r′ is represented in Cartesian coordinates as (x, y, z)

then ξ =
√

x2 + y2, is the distance between source and detector in the X, Y plane, and

z is the depth at which the Green’s function is being evaluated.

Arridge then takes the gradient of (2.6) and evaluates it at z = zd to give the

Green’s function for the flux at a point r:

g
(Γ)
slab(ξ, z0, t, t

′) =
exp{−[µac(t− t′) + ξ2

4γ2(t−t′) ]}
(4πγ2)3/2(t− t′)5/2

∗
∞∑

n=0

[z+n exp(
−z2

+n

4γ2(t− t′)
)− z−n exp(

−z2
−n

4γ2(t− t′)
)]

z+n = (2n + 1)zd + z0

z−n = (2n + 1)zd − z0

(2.7)
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Figure 2.1: Illustration of positive and negative dipoles used to satisfy boundary condition
of φ(x, y, z, t) = 0 for z = {0, zd} to generate the Green’s Function for an infinite slab
geometry.
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Evaluating the function at z = zd is consistent with the presumption that the sources

are located on the top of the slab at z = 0, while the detectors are located at z = zd.

This represents a transmission configuration for the sources and detectors, which is the

system utilized for this work. These two Green’s functions, (2.6) and (2.7), enable us to

scatter light first from a source to a voxel within the volume, and then from that voxel

to the detector in question. This use of first order scattering, when summed across the

entire volume, yields the Born Approximation.

2.1.3 Born Approximation

Utilizing the two previously stated Green’s functions, a perturbation analysis of

the system can be performed. This type of analysis presumes that the total field at the

detector can be expressed as the sum of a background field and a series of perturbations.

Arridge [9] states that the change in the flux measurement Γ due to some perturbation

η(r′) of the absorption parameter µa at the location r, and some perturbation κ(r′) of

the parameter γ2 is approximately equal to:

4Γ(ξ, ζ, t) ≈−
∫

Ω

d3r′
∫ ∞

−∞
dt′[g(Γ)

slab(ξ, r
′, t′)η(r′)g(Φ)(r′, ζ, t− t′)−

κ(r′)∇r′g
(Γ)
slab(ξ, r

′, t′) · ∇r′g
(Φ)(r′, ζ, t− t′)]

(2.8)

where ζ and ξ are the source and detector locations, respectively.

This equation can be shown to be equal to the integral form of the perturbation

component of the first order Born approximation. The Born approximation presumes

that for a primarily homogeneous medium, the total flux at a detector is equal to the

flux at that detector that would be seen were the material homogeneous, plus the sum

of perturbations resulting from first order scattering for each of the perturbations.

The Jacobian is then taken to be the ratio of the change in measurement to the

change in optical parameter in the limit as the perturbation magnitude goes to zero.

J
(Γ)
p,slab = lim∆p→0

∆Γ

∆p
(2.9)

Here, the perturbation ∆p can be either the absorption perturbation η(r) or the scattering
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perturbation κ(r). The Jacobian needs to be computed separately for each of the two

coefficients.

If the space is then voxelized into Nxyz discrete voxels, the above Jacobian(s) can be

evaluated for each of the voxels individually, by presuming that the rest of the medium has

no perturbations. (This is consistent with the presumption that only first order scattering

contributes significantly to the overall measurement perturbation). If these Jacobians

are evaluated at each of the desired time sampling points, for each of the source-detector

pairs, what results is an (NS ∗ ND ∗ NT ) × Nxyz matrix where ζ = {ζ1, . . . , ζNS
} is

the set of all source locations, ξ = {ξ1, . . . , ξND
} is the set of all detector locations, and

t = {t1, . . . , tNT
} is the set of all sample timepoints, and Nxyz is the total number of

voxels in the medium.




J
(Γ)
p,slab(ξ1, ζ1, t1; r′1) . . . J

(Γ)
p,slab(ξ1, ζ1, t1; r′q) . . . J

(Γ)
p,slab(ξ1, ζ1, t1; r′NXY Z

)

J
(Γ)
p,slab(ξ1, ζ1, t2; r′1) . . . J

(Γ)
p,slab(ξ1, ζ1, t2; r′q) . . . J

(Γ)
p,slab(ξ1, ζ1, t2; r′NXY Z

)
... . . .

... . . .
...

J
(Γ)
p,slab(ξ1, ζ1, tNt ; r

′
1) . . . J

(Γ)
p,slab(ξ1, ζ1, tNt ; r

′
q) . . . J

(Γ)
p,slab(ξ1, ζ1, tNt ; r

′
NXY Z

)

J
(Γ)
p,slab(ξ2, ζ1, t1; r′1) . . . J

(Γ)
p,slab(ξ2, ζ1, t1; r′q) . . . J

(Γ)
p,slab(ξ2, ζ1, t1; r′NXY Z

)
... . . .

... . . .
...

J
(Γ)
p,slab(ξND

, ζ1, tNt ; r
′
1) . . . J

(Γ)
p,slab(ξND

, ζ1, tNt ; r
′
q) . . . J

(Γ)
p,slab(ξND

, ζ1, tNt ; r
′
NXY Z

)

J
(Γ)
p,slab(ξ1, ζ2, t1; r′1) . . . J

(Γ)
p,slab(ξ1, ζ2, t1; r′q) . . . J

(Γ)
p,slab(ξ1, ζ2, t1; r′NXY Z

)
... . . .

... . . .
...

J
(Γ)
p,slab(ξi, ζj , tk; r′1) . . . J

(Γ)
p,slab(ξi, ζj , tk; r′q) . . . J

(Γ)
p,slab(ξi, ζj , tk; r′NXY Z

)
... . . .

... . . .
...

J
(Γ)
p,slab(ξND , ζNS , tNT ; r′1) . . . J

(Γ)
p,slab(ξND , ζNS , tNT ; r′q) . . . J

(Γ)
p,slab(ξND , ζNS , tNT ; r′NXY Z

)




(2.10)

These matrices, obtained by evaluating (2.10) using the Jacobians for each of ab-

sorption and scattering parameters, are denoted Aη and Aκ respectively. Using the

Green’s function for photon flux ((2.7)) to determine the homogeneous response of the

system, and using A to model the perturbation component, gives a total system equation

of:

gtot = Aηfη︸︷︷︸
gη

+Aκfκ︸ ︷︷ ︸
gκ

+ghom (2.11)
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where gtot is a vector containing the total response for each timepoint at each source-

detector pair. The matrices Aη and Aκ are as previously stated, while fη and fκ are

vectors containing the perturbations to the background in the absorption and scattering

parameters at each voxel. The two vectors gη and gκ represent the appropriate matrix-

vector products, while ghom is a vector of the homogeneous responses, computed using

(2.7). In the course of this research, attention was paid exclusively to imaging of the

absorption parameter. To do this, γ2 was presumed to be perfectly homogeneous, making

fκ a vector of all zeros. The matrix Aκ then becomes irrelevant and is dropped from the

above equation, leaving only Aη. Because only one matrix and one perturbation vector

are used, when the symbols A and g are used further in this thesis, they will refer to Aη

and gη respectively unless otherwise noted.

2.2 Inversion Methods

With a forward model established, the next step is to determine what method to

use in solving the inverse problem. it. As we have constructed a linear forward model,

we are looking at methods by which to invert the system:

Af = g + n (2.12)

For some object f, some data g, noise n, and a forward matrix A which is overdetermined,

and very poorly conditioned.

We make use of two different algorithms to solve this system. The first is a classical

Tikhonov regularized least squares solution. While this method offers a solid solution,

its accuracy depends largely on the determination of the regularization parameter, and

its computational requirements can become quite large.

The second method employed is LSQR. This is a Krylov subspace based iterative

method which avoids one of the primary problems associated with least squares: the need

to compute ATA and solve the associated linear system. By interacting with A only

through matrix-vector products, LSQR is able to arrive at a solution much more rapidly

than the Tikhonov method. The primary difficulty with LSQR is finding an appropriate

stopping criterion. If an appropriate stopping criterion is not found, the solution can
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simply be examined after each iteration, adding additional iterations as necessary until

an appropriate solution is found.

2.2.1 Obtaining Perturbation Data

Because the Born Approximation is a perturbation method, we are only concerned

with that part of the total output due to the perturbations (i.e. - the Aηfη component of

Eq (2.11)). This quantity is not, however, directly measurable. Only the values contained

in gtot are measurable. Because fκ is zero, gκ is also zero and can be disregarded, leaving

only gη and ghom. Determining the needed quantity gη then becomes only an issue of

determining ghom and subtracting it from the total response.

If the exact background parameters are known, then computing ghom is a matter

of nothing more than evaluating (2.7) a number of times. When the exact background

parameters are not known, another method must be utilized. The first option is to exam-

ine the data and extrapolate the appropriate background parameters. These parameters,

combined with an appropriately estimated t0 (the time at which the impulse occurs)

and correct source and detector amplitudes, can then be used to generate the needed

homogeneous response. This method is in theory the most accurate method, as it is

customizable to the differences in amplitudes between sources and detectors, as well as

being based in the fundamental physics. Additionally, the background absorption and

scattering parameters need to be estimated in some manner before the sensitivity ma-

trices Aη and/or Aκ can be computed, and in the course of implementing this method,

those values are indeed estimated.

In practice, some additional knowledge is necessary to obtain this type of solution.

Source amplitudes and detector sensitivities can vary, leading to data sets with widely

varying amplitudes. This forces one to additionally solve for the amplitude of each of the

sources and detectors in order to obtain some level of normalization. To do this, one must

know exactly which sources and detectors are unique, and where each is being utilized.

In our case, however, these data were unavailable, and additionally, the simulated data

set was prenormalized. Because of this, the method of generating the background field

used here is significantly different. Due to a large number of repetitions in the source-
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detector geometry, the background fields would be identical for a large number of source-

detector pairs, given perfect homogeneity and normalization. This relation is exploited

by simply taking the mean response across all similar source-detector pairs, and using

that mean as the homogeneous response. This method is similar to methods previously

utilized successfully by others [13], and is significantly faster than attempting to match

on a parameter level. The background parameters used in the generation of A are then

estimated from this mean value.

2.2.2 Least Squares

In the previous section we obtained a discretized model for the perturbed system

characterized by the equation:

g = Af (2.13)

where f is a vector containing the values of the absorption perturbations at each voxel, and

g is a vector giving the perturbations in measurement values. Solving this system using

a least squares approach amounts to solving the following error minimization problem:

f̂ = arg min
f
‖g−Af‖2

2 (2.14)

This gives an overall solution of:

f̂ = (ATA)−1ATg (2.15)

The poor conditioning of ATA, however, necessitates the use of some type of regulariza-

tion to stabilize the result. To do this, we used Tikhonov regularization. The form of

this minimization problem is:

f̂ = arg min
f

[‖g−Af‖2
2 + λ‖Rf‖2

2] (2.16)

The addition of the second term in the minimization problem constrains the solution, de-

pending on how the regularization matrix R, and corresponding regularization parameter

λ, are chosen [14]. Common choices of R include the identity matrix, which constrains

the size of the result, and various types of derivative operators, all of which act to smooth
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the result in some manner. Solving the above equation using a method similar to the

previous minimization system gives a result of:

f̂ = (ATA + λ2RTR)−1ATg (2.17)

Here, initially, an identity matrix was used for R. In that case, the choice of λ is directly

related to the SVD of the forward matrix. It acts as a scaling coefficient, reducing the

relative contribution of those singular values less than λ, and increasing the relative

contribution of those greater than λ. The choice of λ also dictates the SNR that can

be tolerated by the system. For a full discussion of this topic, see [14]. For a smaller

A with a well defined split in singular values, doing a full singular value decomposition

and examining the singular values enables one to accurately determine the value of λ

necessary for a particular SNR. This is not possible in this case, however, due to the

size of the matrix A. As such, selection of the appropriate value of λ has been based

primarily on L-Curve type methods

Another regularization matrix we used was a three dimensional gradient. Three

separate gradient matrices were generated, one for each dimension. Each of these matrices

is a first-order gradient matrix, simply taking the gradient to be equal to the difference

between the value at a voxel and each of its neighbors in the corresponding directions.

This gives a solution of:

(ATA + λ2
xL

T
x Lx + λ2

yL
T
y Ly + λ2

zL
T
z Lz)f = ATg (2.18)

where Lx, Ly and Lz are the gradient matrices along the X, Y , and Z directions, re-

spectively. If we make all three regularization parameters identical, the equation reduces

to:

(ATA + λ2RTR)f = ATg (2.19)

where RTR is the sum of the inner products of the three individual gradient matrices.

It was found through experimentation on simulated data that this method, utilizing the

gradient matrix for regularization, gave superior results to the use of the identity. This

makes sense intuitively, because while the absolute value of the perturbation may not

necessarily be small, it is a reasonable assumption that the objects we are trying to image
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will have some level of smoothness. All of our simulated results utilize compact buried

objects, so the gradient matrix was used as the regularizer for all least squares inversions.

2.2.3 LSQR

A second inversion method utilized in this research was LSQR. LSQR is an algo-

rithm which solves the problem

f̂ = arg min
f
‖g−Af‖2

2 (2.20)

through a method similar to the conjugate gradient method [15]. An interesting feature

of this algorithm is that it interacts with the matrix A only through the matrix-vector

products Av and ATv, for various vectors v. Thus, when A has sparse structure, LSQR

becomes highly attractive for its computational efficiency when compared to a direct

solution of traditional least squares. This is due in part to the fact that computing ATA

can require large amounts of computational overhead. Also, the number of voxels in a

given solution becomes somewhat limited by the necessity of solving the system defined

by ATA or some regularized version thereof. As the number of voxels increases, the size

of ATA and the computation required for Gaussian elimination both increase much more

rapidly than with LSQR. The derivation of LSQR given here is similar to the original

derivation given by Page and Saunders [15].

Solving a regularized version of the above system is equivalent to a least squares

solution to the system: 


A

λR


 f =



g

0


 (2.21)

Using A to denote the augmented matrix on the left side of (2.21), we have the matrix

upon which LSQR operates.

The LSQR algorithm is based on two bidiagonalization procedures, one for generat-

ing a lower bidiagonal matrix, the other for generating an upper bidiagonal matrix. The

first of these starts by generating a series of vectors and corresponding scalar quantities
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such that:

β1u1 = g, α1v1 = ATu1

βi+1ui+1 = Avi − αiui (2.22)

αi+1vi+1 = ATui+1 − βi+1v1

In the above equations, αi and βi are chosen such that ‖ui‖ = ‖vi‖ = 1.

The second bidiagonalization is quite similar to the first. The major differences are

the exchange of AT and A, and the use of ATg instead of g as a starting vector. This

results in the iterative procedure:

θ1v1 = ATg, ρ1p1 = ATv1

θi+1vi+1 = ATpi − ρivi (2.23)

ρi+1pi+1 = Avi+1 − θi+1p1

with ρi and θi once again being chosen such that ‖pi‖ = ‖vi‖ = 1.

If the vector and scalar quantities generated by these two bidiagonalizations are

placed into matrices according to a particular order, the above iterative procedures can

be rewritten as a series of matrix equations. The definitions associated with the first

bidiagonalization (which reduces A to lower bidiagonal form), are:

Uk = [u1,u2, . . . ,uk]

Vk = [v1,v2, . . . ,vk]
Bk =




α1

β2 α2

β3
. . .

. . . αk

βk+1




(2.24)

while the matrix definitions for the second bidiagonalization (which results in an upper

bidiagonal matrix), are:
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Pk = [p1,p2, . . . ,pk]

Vk = [v1,v2, . . . ,vk]
Rk =




ρ1 θ2

ρ2 θ3

. . . . . .

ρk−1 θk

ρk




(2.25)

These two sets of definitions enable the two bidiagonalizations to be rewritten. This

results in the first bidiagonalization appearing as:

Uk+1(β1e1) = g (2.26)

AVk = Uk+1Bk (2.27)

ATUk+1 = V− kBT
k + αk+1vk+1e

T
k+1 (2.28)

Here, eN represents a vector of arbitrary length, consisting of all zeros, except in the N th

location, where there is a 1. Given infinite precision, the equivalencies UTU = VTV = I

would hold, but this orthogonality rapidly disappears in practice [15]. Applying the

definitions to the second bidiagonalization gives the following system of equations:

Vk+1(θ1e1) = ATg (2.29)

AVk = PkRk (2.30)

ATPk = VkR
T
k + θk+1vk+1e

T
k (2.31)

which, as with the first system, would yield PTP = VTV = I with infinite precision.

Furthermore, these two bidiagonalizations are interrelated. Given that the Vk

produced by each bidiagonalization will be identical, it can be shown that:

BT
k Bk = Rt

kRk (2.32)

and that an orthogonal transformation Qk exists such that:

QkBk =



Rk

p


 (2.33)

Using these two bidiagonalizations, it is possible to develop a method by which to

solve the original system of equations. Using the values generated by the first bidiago-
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nalization, we define a series of values in terms of a vector yk.

fk = Vkyk (2.34)

rk = g−Afk (2.35)

tk+1 = β1e1 −Bkyk (2.36)

It can then easily be shown that rk, the residual error vector given some potential solution

xk, satisfies the equation

rk = Uk+1tk+1. (2.37)

Looking back at (2.35), we can see that minimizing rk is equivalent to solving the original

error minimization problem. Because Uk is theoretically orthonormal and bounded, a

reasonable method of solution would be to minimize ‖tk+1‖. This yields the least squares

problem at the heart of LSQR:

ŷk = arg min
y
‖β1e1 −Bkyk‖2

2. (2.38)

This equation is best solved through the use of a QR factorization, such that:

Qk

[
Bk β1e1

]
=



Rk bk

0 φk+1


 =




ρ1 θ2 φ1

ρ2 θ3 φ2

. . . . . .
...

ρk−1 θk φk−1

ρk φk

φ̄k+1




(2.39)

Where Qk is a product of plane rotations which eliminate the subdiagonals of Bk. Noting

that [Rkfk] is nothing more than [Rk−1fk−1] with an added row and column, and using

Rkyk = fk, we get:

gk = VkR
−1
k fk = Dkbk, (2.40)

for which the columns of Dk can be found successively from RT
k DT

k = V T
k . Setting initial

values at D0 = x0 = 0 gives:

dk =
1

ρk

(vk − φkdk−1) (2.41)

fk = fk−1 + φkdk, (2.42)
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which gives us a method of iteratively updating an estimate of the object values f in

Af = g.

To summarize, the resulting iterative solution method is characterized by the fol-

lowing steps:

(1) Initialize β1u1 = g,

φ̄i = β1,

α1v1 = AT u1,

ρ̄1 = α1

w1 = v1

x0 = 0

(2) For i = 1, 2, 3, . . . do steps 3-6

(3) Bidiagonalization

βi+1ui+1 = Avi − αiui

αi+1vi+1 = AT uI+1 − βi+1vi

(4) Orthogonal Transformation

ρi = (ρ̄2
i + β2

i+1)
1/2

ci = ρ̄i/ρi

si = βi+1/ρi

θi+1 = siαi+1

ρ̄i+1 = −ciαi+1

φi = ciφ̄i

φ̄i+1 = siφ̄i

(5) Update

fi = fi−1 + (φi/ρi)wi

wi+1 = vi+1 − (θi+1/ρ1)wi

(6) Check For Convergence

The final point of interest involves step #6 in the preceding sequence. The question

of how to test for convergence is an important question when solving iterative systems.
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It is necessary to find a way through which it can be determined when a suitable solution

has been reached. With too few iterations, the solution will be a smoothed version of the

actual solution, somewhat similar to overregularizing with Tikhonov inversion. Likewise,

too many iterations will potentially result in a significant amount of error entering the

system, which will dominate the solution and render it useless.

The most straightforward method of checking for convergence is to simply monitor

the size of the residual error ‖g − Af‖. While this is theoretically the optimal way of

solving for a system in which the matrix is an accurate representation of the forward

model, it does not perform as well in cases where the matrix is overdetermined or simply

a non-ideal representation of the system. In these cases, the residual error may converge

to a number greater than zero. Unless this value to which it converges is known (which is

rather unlikely), it is difficult if not impossible to know when the solution has converged

sufficiently. In such cases, another method of determining convergence is to use ‖AT r‖2
2 <

ε [16] instead of the norm of the residual. In the course of this work, however, it was

found that neither criterion converged sufficiently well to serve as an indicator of a good

solution. Because of this, results with LSQR were simply computed for a large range of

iteration values (by simply saving the estimate at each step), and then observing and

selecting an appropriate result. This is a sufficient result for this work as we are interested

more in the comparison of our interpolated results against fully computed results than we

are in the absolute error involved. Were the methods outlined in this thesis to be used in

a clinical situation, an appropriate convergence parameter would need to be determined

to give a numerical method of selecting the optimal solution.



Chapter 3

Born Matrix Generation

3.1 System Description

The configuration under consideration in this project is a time-domain DOT sys-

tem in a transmission configuration. A grid of sources is located on the surface of the

tissue at z = 0. For each source, a series of detectors is located in the plane z = zd, ar-

ranged symmetrically around the source, with an additional detector located immediately

underneath the source location.

A near infrared laser is pulsed for a time period on the order of picoseconds for a

single source location at t = 0 and data are then collected for the associated detectors.

This process is then repeated for each of the source locations. This creates a system

where the source-detector geometry is unchanging from location to location, as both the

source and the associated detectors are raster scanned across the X-Y plane.

This work deals primarily with the inversion of the full first Born approximation

matrix. Other solutions have been suggested, such as a method based on the Mellin

transform (the nth time weighted integral) of the data [17]. These methods simplify the

computation by operating on some statistic of the information, rather than the informa-

tion itself. The work presented here instead attempts to use all available spatio-temporal

information, and optimizes the methods by which that information is processed. Future

work may incorporate the use of some type of statistical information to further increase

the speed of computation beyond what is gained through the methods presented here.
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3.2 Matrix Generation

Looking at (2.6), (2.7) and (2.8), it is clear that a significant amount of computation

is required to explicitly calculate every value in the matrix A. The primary goal of this

research was to determine a method by which A, or some reasonable approximation of

A, could be generated with significantly less computation. The two main methods by

which this was done were symmetry exploitation and interpolation.

Symmetry exploitation takes advantage of specific features of the system configu-

ration to minimize the number of times that the Green’s functions need to be explicitly

calculated. Based on a combination of sensor geometry and symmetries in the solution

to the diffusion equation, excess computations are eliminated. In their place, a series of

sparse, easily constructed matrices are developed which allow for the decomposition of A

into a series of multiplications utilizing these sparse matrices, along with a core matrix

of highly reduced size. This decomposition and reduction of computations allows for a

large decrease in the computational complexity associated with computing A, as well

as a marked reduction in the amount of memory required for both storage and matrix

utilization.

To further improve the speed of computation beyond what is possible with symme-

try exploitation, interpolation was used. Rather than compute all of the points dictated

by the symmetry exploitation, a small number of values are computed, appropriately

spread throughout the reduced-dimensional solution space. The continuity and smooth-

ness of the true values are then exploited to extrapolate the remaining values using a

linear interpolation method. The potential for use of other interpolation methods is also

discussed.

Some notation standards which are used throughout this work are presented in

Table 3.1. In most cases, these are also described in text prior to being used. Table 3.1

is intended primarily to be a reference source, and a single collection of all notation used.
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NX Number of Voxels along X-axis
NY Number of Voxels along Y-axis
NZ Number of Voxels along Z-axis

NXY Z Total number of voxels in medium
Equal to NX ∗NY ∗NZ

NS Number of Sources
ND Number of detectors per source location

Nmin Number of (D1, D2, Z) coordinates required to construct A
Npt Number of explicitly computed points
NT Number of timepoints per source-detector pair

(Xs, Ys, Zs) Cartesian Coordinates of Source
(Xd, Yd, Zd) Cartesian Coordinates of Detector
(Xv, Yv, Zv) Cartesian Coordinates of Voxel

Zd Thickness of Slab

Table 3.1: Notation Standards

3.2.1 Symmetry Exploitation

The first step that was taken to reduce the amount of time required for computation

of the forward matrix was to minimize the total number of computations being performed.

The specific structure present in the device configuration used for this work results in a

large number of repeated calculations in explicitly generating the forward Born matrix.

Instead of executing these calculations multiple times, what was done was to calculate

the values once, and reuse them whenever required.

When the volume over which (2.8) is integrated is discretized into uniform voxels,

the equation reduces to:

J
(Γ)
p,slab(ξ, ζ, t; r′) ≈− dV

∫ ∞

−∞
dt′[g(Φ)

slab(r
′, ζ, t− t′)η(r′)g(Γ)

slab(ξ, r
′, t′)−

κ(r′)∇r′g
(Γ)
slab(ξ, r

′, t′) · ∇r′g
(Φ)
slab(r

′, ζ, t− t′)]

(3.1)

In (3.2), r′ is the center of the voxel in question, while dV is the volume of the voxel. The

source location is indicated by ξ, and ζ is the detector location. It should also be noted

that this research was concerned only with perturbations in the absorption parameter.

Because of this, κ(r′) is presumed to be zero, and the second term inside the integral can

be dropped. The resulting equation,

J
(Γ)
p,slab(ξ, ζ, t; r′) ≈− dV

∫ ∞

−∞
dt′g(Φ)

slab(r
′, ζ, t− t′)η(r′)g(Γ)

slab(ξ, r
′, t′) (3.2)
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is used to compute each of the individual matrix values, and is a convolution of two

Green’s functions. The first Green’s function scatters the light from the source to the

voxel in question, while the second scatters the light from the voxel to the detector.

Looking at (2.6) and (2.7), it can be seen that the X-Y coordinates of the source,

detector, and voxels only enter into the equations as a radial distance
√

X2 + Y 2. Because

of this, the absolute X-Y locations involved become irrelevant, and it becomes possible

to change from Cartesian to a dual cylindrical coordinate system as illustrated in Fig 3.1.

However, because the Green’s functions are only dependent on the radial distances

involved, the kernel of the problem is invariant to the angles θ1 and θ2. Thus we can

disregard them and instead look at a different space defined by the following relations:

D1 = ((Xv −Xs)
2 + (Yv − Ys)

2)1/2

Z1 = Zv − Zs

D2 = ((Xv −Xd)
2 + (Yv − Yd)

2)1/2 (3.3)

Z2 = Zd − Zv

Here, (Xs, Ys, Zs), (Xd, Yd, Zd), (Xv, Yv, Zv) are the absolute Cartesian coordinate loca-

tions of the source, detector, and voxel in question, respectively. While there are four

variables listed above, Z2 and Z1 are dependent on one another, so only one value, Z = Z1,

is needed, which reduces the number of degrees of freedom from four to three. Addition-

ally, Zs is taken to be equal to zero, which amounts to presuming that the sources are

all placed on the same plane, which is then used as the origin of the coordinate system.

This gives us a three dimensional space over which the solution to (3.2) exists. These

equations define a mapping <9 → <3 that is onto. The fact that this mapping is not one

to one can be exploited to reduce the number of computations necessary to determine

the matrix A.

If all of the source-voxel-detector combinations required to construct A are con-

verted into (D1, D2, Z) notation, one can obtain a set of (NS ∗ND ∗Nx ∗Ny ∗Nz) ordered

triplets, which we define as Spts. However, there are a large number of repeated elements

in Spts. If a second set, Smin, is defined such that it contains all of the unique values

in Spts, then we can obtain a minimal set of points which includes all points required
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Figure 3.1: Dual Cylindrical Coordinate System
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to determine the forward matrix A. This set, by definition, contains exactly Nmin or-

dered triplets. By only computing the elements of A for each of the coordinates in this

minimal set once, we can eliminate a large number of excess computations that would

otherwise be executed were the system to be viewed in the original nine dimensional

solution space. Once this minimal set is computed, the results can be repeatedly used

to quickly build the forward matrix A. Instead of requiring additional computations for

each source-detector pair, a simple referencing scheme is all that is needed to access the

already computed values.

Using the above method of computation across the minimal set, a series of matrices

can be developed which express the full forward matrix A as a product of sparse matrices

and a matrix containing the minimal set of data. Starting with the equation

Af = g (3.4)

and working backwards, this series of matrices can be developed, leading to an overall

system for this method of data reuse.

We start by defining a matrix Asm, of size Nmin × NT . Here, the subscript Asm

indicates that this is the “small” version of the matrix A. All distinct values present in A

are present in Asm; they simply need to be properly selected/permuted to obtain A. Each

column of this matrix contains the values associated with a particular time for each of the

Nmin (D1, D2, Z) triplets in Smin. Looking across each row yields all of the time values

for a single (D1, D2, Z) triplet. Thus, for each source-detector combination involved in

the reconstruction, the forward matrix associated with that pair can be constructed by

rearranging a subset of the rows of Asm. This means that A can now be represented in

block form as:

AT = [S11Asm . . . S1DAsm S21Asm . . . SNDAsm] (3.5)

Each matrix Snd is of size (NX ∗NY ∗NZ)× (Nmin), and is the matrix responsible

for selecting the appropriate rows from Asm. Each of these selection matrices also has

a significant amount of structure. If we order the rows of Asm such that, as you step

from row to row, you step first across all values of D1 and D2, then to the next Z value,



29

the matrices Snd will all have a block diagonal structure. If Asm is thought of as having

block structure:

Asm =




Z1

Z2

...

ZNz




(3.6)

where Nz is the number of voxels along the Z-dimension, then each of the Zj blocks

corresponds to the pieces of Asm required to build the matrix for a single X-Y slice.

Because the values selected from each X-Y slice are going to be the same for a single

source-detector pair, the selection matrix will be identical as well. Thus,

SijAsm =




S̃ijZ1

S̃ijZ2

...

S̃ijZN




(3.7)

or, alternately:

Sij = INz ⊗ S̃ij (3.8)

Each of the S̃ij is a selection matrix; it consists entirely of ones and zeros, and each of

size (NX ∗ NY ) × (Nmin/NZ). Presuming that a slab geometry is used, Nmin/NZ will

always be an integer because Nmin will consist of Nz sets of points, each varying only in

their Z value. Each row consists of exactly one non-zero value, which is a one. Every

column has either all zeros or one nonzero value.

If one so desired, it would be possible to generate the entire forward matrix as a

series of sparse matrices and Kronecker products. Factoring out the Asm from (3.5) and

replacing it with a Kronecker product yields:

AT = [S11 . . . S1ND
S21 . . . SNSND

] ∗ [INS∗ND
⊗Asm] (3.9)

In practice, however, this computation is unnecessary. Due to the fact that the data

from each source-detector pair can be worked with separately, and in any desired order,

it is much more efficient to store Asm only once, and generate the selection matrices as

needed.
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3.2.2 Interpolation

The next step taken to improve the computation time was to look at how Asm

is computed. Explicitly computing every value in this matrix was still time consuming,

although significantly less so than computing all of the values in A. Our goal was to

interpolate the majority of the values in Asm from a small number of explicitly calculated

ones. Presuming that the method of interpolation chosen requires less computation than

calculating the values outright, this will result in a further increase in the speed with

which the forward matrix can be computed.

Looking at Asm as a matrix reveals that it too has a high degree of structure. Each

column of Asm consists of the forward matrix values for every possible relative voxel

location at one specific time. If these values could be obtained through interpolation

from a smaller number of points, and that interpolation operator represented as a matrix,

Asm could be reduced to a product of two matrices. The first would implement the

interpolation, while the second would contain the required input values. Hence, Asm

could be represented as:

Asm = QinterpVcomp (3.10)

where, Qinterp is the matrix responsible for the linear interpolation, while Vcomp are the

explicitly computed values. The sizes of these matrices are Nmin × Npt and Npt × NT

respectively, where Npt is the number of points explicitly computed.

For this work, a linear interpolation method was chosen to be implemented. This

choice was based on the fact that a linear interpolation method is easily implemented

as a matrix, and only requires that (3.2) be evaluated at a few sample points. An addi-

tional benefit of using a simple linear interpolation is the low computational complexity

associated with multiplying by such sparse matrices.

The method of linear interpolation used for this research was based around a De-

Launay tessellation of the 3-D space created by D1, D2 and Z, and utilizes two sets of

points. The first set is the set of sample points. The values at these points are explic-

itly computed and are the input values to the interpolation. The second set is a set of

interpolation points. These are the points whose values will be the output of the inter-
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polation. The DeLaunay tessellation uses the sample points as vertices to describe a set

of tetrahedrons. These tetrahedrons are defined in such a way that no sample point is

circumscribed by any tetrahedron; they exist only at the vertices. To determine the value

at each point in the set of interpolation points, one first determines inside which tetrahe-

dron the point lies. This tetrahedron will be defined by four sample points, each of which

contributes its value to the interpolation. To determine the weights associated with each

input value, barycentric coordinates are utilized. The three dimensional barycentric co-

ordinates of the point to be interpolated are computed with respect to the four sample

points which comprise the encircling tetrahedron. These weights are used directly as

the weights of the interpolation. Multiplying each of these weights by the value at the

associated sample point and summing the result yields the value at the point being in-

terpolated. This method of interpolation is the same as utilized in the Matlab griddata()

function. If precision is required beyond what is achievable with this method of linear

interpolation, another method of interpolation could easily be substituted in its place.

For interpolation methods which can be represented in sparse matrix format, the gains

seen in §(3.4.2) would still apply, although some reformulation of the exact gain value

would be needed. Methods which cannot be represented in matrix format are still viable

as methods of reducing the time required to compute Asm, but will not have the gains

involved in matrix-vector multiplications, detailed in §(3.4.2).

In looking to utilize a basic linear interpolation such as we have used, one aspect

of the function which needs to be examined is its smoothness. If the function does not

have at least some degree of smoothness, a linear interpolation method is likely to result

in a high degree of error in the output points. While this can potentially be countered by

higher sampling densities, an increased number of sample points can drastically decrease

the computational gains that are the purpose of utilizing the interpolation.

In this particular case, the critical question is whether the function is smooth across

the (D1, D2, Z) space. Looking at the triplets in Smin and taking all of those associated

with a single Z value, a slice in the D1-D2 plane can be studied. Plotting the values of

D1 along the X-axis, D2 along the Y-axis, and the associated values along the Z-axis,

a smooth surface is obtained. Plots of this surface are shown in Fig 3.2 and Fig 3.3.
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Looking at the first plot, it can easily be seen that (3.2) smoothly varies as D1 and D2

are changed. Equally evident, however, is the exponential relationship that the values

of both D1 and D2 have with the associated matrix value. This exponential relationship

requires some additional thought in order to accurately interpolate the values. It should

be noted that while values are only shown for a strip around the D1 = D2 line, they exist

for all D1-D2 combinations. The strip arises from the use of only those points associated

with a raster scanned source-detector combination. Because the detectors are always at

a fixed X-Y distance from the source, the value of |D1−D2| had a fixed maximum, which

leads to the use of only those values lying inside the strip.

The other question of smoothness which needs to be posed involves the values along

the Z dimension. Fixing the value of D1, and plotting the matrix values for all D2-Z

pairs, a plot can be generated to show the smoothness along these dimensions. Figures

3.4 and 3.5 show two different views of this surface. In Fig 3.4, the curve of values along

the Z-axis can clearly be seen. While the value is rapidly changing across the Z-axis,

the change is much more linear than along the D1 and D2 axes. Because of this, linear

sampling along the Z-axis is likely to be sufficient to obtain reasonable results. Fig 3.5

one again shows the exponential relationship between D2 and the resulting matrix value.

Having examined the plots along two slices of the (D1, D2, Z) space in which the

solution to (3.2) lies, it is clear that the solution is smooth along all three dimensions. In

examining these plots, however, an additional issue has arisen. Due to the exponential

relationship both D1 and D2 have with the associated matrix values, it is unlikely that

simply linearly sampling the space and then interpolating will yield sufficient results.

When several test results were done using straight linear sampling, this presumption

was proven correct. Error between the interpolated and fully computed matrices range

was far out of the range that would be considered acceptable. A different approach was

clearly necessary to be able to interpolate effectively.

Given that there is an exponential relationship between the two axes D1 and D2

and the output value of the function, it would seem that a reasonable method to improve

the solution would be through the use of a logarithm. By taking the natural logarithm

of each of the source data points, the dynamic range is compressed, and simultaneously
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Figure 3.2: View #1 of values for all D1-D2 pairs for a fixed Z value

This view gives a clear profile of the exponential drop in value that (3.2) undergoes as
D1 and D2 approach the origin.
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Figure 3.3: View #2 of values for all D1-D2 pairs for a fixed Z value

This view shows more direct downward view of the D1-D2 plane, showing the narrow
strip of the plane that is actually utilized, as well as more clearly showing the actual

D1-D2 values associated with the rapidly changing parts of the graph.
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Figure 3.4: View #1 of values for all D2-Z pairs for a fixed D1 value.

D2 values do not reach zero because the fixed value of D1 limits the range of values
which D2 can take on. This restriction is dependent upon the source-detector

configuration.
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Figure 3.5: View #2 of values for all D2-Z pairs for a fixed D1 value.

Here, the exponential relationship between D2 and matrix values in clearly evident.
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the relationship between the matrix value and the two axes values D1 and D2 can be

transformed into something more closely approximating a linear relationship. By ap-

plying the interpolation matrix to this transformed source data, and then taking the

inverse logarithm of the resulting output, much more accurate results could be obtained.

This method of logarithmically compressing the dynamic range will now be referred to

as LCDR. This is as opposed to the use of the full dynamic range, now referred to as

FDR.

Using the natural logarithm to compress the dynamic range yields an overall pro-

cedure for obtaining Asm of:

(1) Compute Vcomp

(2) Compute Qinterp

(3) Take ln() of each value in Vcomp

(4) Multiply resulting matrix by Qinterp

(5) Take exp() of product to obtain interpolated version of Asm

The primary issue with this method is that while it provides accurate results, it

provides absolutely no performance gain. Due to the need to evaluate so many logarithms

and exponentials, it is fastest to simply compute Asm (As QinterpVcomp) once and reuse it

for every source-detector pair. While this still provides an improvement over computing

the entire Asm, it does not provide a reduced computational complexity for matrix-

vector products involving A. Given that such an improvement was a goal of this work,

a method was sought which would eliminate the need to transform the data into a more

linear relationship.

If the full dynamic range (FDR) is instead used, a different procedure is necessary

to obtain Asm. It becomes only a matter of two steps, both of which were part of the

previous procedure:

(1) Compute Vcomp

(2) Compute Qinterp
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For each source-detector pair, the appropriate Sij is multiplied by Qinterp, yielding a very

large sparse matrix. Data is projected onto Vcomp, and the resulting vector is multiplied

by the SijVcomp product. This series of operations reduces the computational complexity

by a level proportional to the amount of interpolation being performed. These gains are

detailed in §(3.4.2).

The ability to represent the interpolation operation as a sparse matrix Qinterp is at

the core of the computational gains this method is intended to obtain. By multiplying

the sparse Qinterp by each of the Sij, which are also sparse, a significant amount of com-

putation can be saved. In order for this to be able to occur, no operations can be applied

between Sij and Qinterp. While step #5 in the previous method could be performed

after multiplication with Sij, the repeated evaluation of so many exponents would negate

any computational gains. Instead, in order to be able to exploit the sparse matrices for

computational gains, our options are limited to using the FDR with a properly selected

set of sample points.

In order for this interpolation to operate well, the (D1, D2, Z) solution space needed

to be efficiently sampled. Given that the data which have had their dynamic range

logarithmically compressed have an approximately linear relationship with the variables

D1 and D2, a linear sampling method was chosen using a dual grid pattern. This method

utilizes two grids: A and B. Grid A is simply a grid in the D1-D2 plane with linear spacing

along each axis. Grid B has the same spacing as Grid A, but is shifted by one half the

grid spacing along each axis, with the top row and rightmost column both eliminated.

These two grids are alternated for each Z value, which were linearly sampled from the

range of Z values, making sure that Grid A is used for both the top and bottom layers

of the slab. In the case of an even number of layers in the slab, this will result in Grid A

being used for two layers in a row. This condition is necessary in order to ensure that all

of the points to be interpolated fall within the volume defined by the source points. This

pattern is shown in Fig 3.6, and will be referred to as a linear sampling pattern. When

used with the FDR, however, this sampling method was found to give very poor results,

detailed in §(3.3.2). Using the LCDR, however, provided for a significant improvement

in the error levels. In order to be able to use the FDR, a different sampling method was
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Figure 3.6: Sampling technique used in conjunction with natural logarithm to transform
exponential relationship into a more linear one

Here, the points in the D1-D2 plane which would be evaluated as part of Grid A are
marked by blue squares. Points associated with Grid B are marked by red stars.
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Figure 3.7: Sampling technique used directly with source data to enable performance
gains through sparse matrix multiplication.

Again, the points in the D1-D2 plane which would be evaluated as part of Grid A are
marked by blue squares. Points associated with Grid B are marked by red stars.
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clearly required.

By sampling each of D1 and D2 linearly in log-space, it is possible to utilize the

FDR without an unacceptable increase in error. By sampling this way, and again using a

dual grid system, this time illustrated in Fig 3.7, the system is “linearized” in a different

manner. By selecting sample points in this manner, the function between each sample

point, while still behaving exponentially, will be more easily modelled by a linear rela-

tionship. This amounts to fitting the sample points to the data, rather than the data to

the sample points, as was previously done.

We are now presented with two choices of dynamic range, as well as two choices

of sampling method. This yields a total of four possible combinations. While the both

sampling patterns perform better with the LCDR than with the FDR, the error produced

using the FDR with the logarithmically spaced sample points is sufficiently small, and

computational gains can still be exploited. In many cases, the error produced through

the use of logarithmically spaced sample point with the FDR was actually less than that

resulting from the use of the LCDR and linearly sampled data points. Because of these

results, the details of which are in §(3.3.2), all solutions obtained for the results section

of this thesis were obtained using the FDR with a logarithmic sampling method.

3.2.3 A Specific Case

In the previous two sections we have developed a method by which the amount

of computation required to generate the first order Born matrix associated with a time

domain DOT system can be drastically reduced. This method makes use of underlying

symmetries which are present in both the source-detector geometry and the underlying

Green’s functions used to compute the matrix weights. While these redundancies are

readily evident from the equations, in the general case they are not so easy to recog-

nize directly from the source-detector configuration, and the voxelization of the space.

Being able to identify these redundancies from the system configuration, as well as the

equations, is useful in obtaining a more intuitive understanding of what is occurring.

As just stated, in a generalized source-detector configuration, it is difficult to visu-

alize exactly where all of these numerous redundancies are occurring. In the case where
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both sources and detectors are arranged on grids, with all of the detectors collecting

data from each source, the level of redundancy can be in the thousands. Attempting to

visualize this level of complexity is difficult at best. However, in the case of a system such

as that in use for this work, the situation is significantly different. For this geometry, the

redundancies can easily be found and visualized from the source-detector configuration

alone. This allows one to see exactly where the redundancies are occurring, and helps in

establishing ways in which the problem can be expanded to include either more data or

a smaller voxelization, with as minimal an increase in computation as possible.

Looking at the system configuration defined in §(3.1), it can be seen that the

detectors are always in the same location relative to the sources. Because of this, as

long as a voxel has the same location relative to the source and detector, it will have

the same values for (D1, D2, Z) associated with it, regardless of which source it is being

computed for. This means that the values can be explicitly calculated for a single source

and its detectors, for a volume which encompasses all possible relative voxel locations.

This amounts to computing the values associated with each triplet in the set Smin.

There are two conditions which are met by this system, and enable these symmetries

to be present:

(1) The detectors must always be in the same location with respect to the source.

(2) The sources must be placed on a grid where spacing is an integer multiple of

voxel size.

The first condition ensures that the structure we are looking for is present. If the

detectors are not in the same location with respect to the source, the values associated

with it in the forward matrix will differ and require separate computation.

The second condition is required to ensure that the values being used are actually

redundant. Imagine two spaces, one for the computed source-detector combination, and

one for the desired source-detector combination, both voxelized using the same size voxels.

In order for the values associated with each of these voxels to be equal, the two voxelized

spaces must line up appropriately. This will only occur, and still maintain relative voxel

locations, if the two sources are separated by an integer number of voxels in both the X
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and Y directions. This condition is easily satisfied through judicious choice of voxel size,

given that the sources are located on some type of uniform grid. This source-location

grid condition is not as easily assured as it is fixed by the physical experiment, thus we

assume that it is the case here.

This concept is best expressed graphically using a simplistic system to explain.

Figure 3.8a shows a view of a space voxelized into 4 × 4× 1 voxels. Sixteen sources are

used, located at the corners of each voxel, in the z=0 plane. For each of these sources,

there is a single detector located directly underneath the source. To explicitly generate

all required matrix values, 400 values would need to be computed (25 sources * 1 detector

per source * 16 voxel values per source/detector pair).

If instead, 64 values are computed, corresponding to an 8 × 8 × 1 system with

a single source located in the center, an alternate solution is obtainable. Instead of

explicitly computing the values for each source location, all that is required is to use the

values computed for 3.8b, and select and appropriate subset of them. For example, to

obtain the matrix associated with a source at (4,3), the voxels shaded in 3.8c are used,

which results in a system that appears like 3.8d. Likewise, 3.8e shows the voxels which

would be needed to obtain 3.8f.

Another point of note with this type of system in particular is that as long as the

detectors are symmetrically arranged around the source, there is additional redundancy

present when computing the 8× 8× 1 space (or similar space which is 4× the size of the

original). Because of the symmetry of the sources, only one quarter of the larger space

actually need be computed. This reduces the required level of computation to the same

as would have been required for a single source and its associated detectors with respect

to the original space. Thus, in such situations, it is possible to reduce the amount of

overhead computation required by a factor roughly equivalent to the number of sources.

3.3 Error Analysis of Rapidly Generated Matrices

An important question to be asked with regards to this use of symmetry and

interpolation is how closely the resulting matrices resemble their explicitly computed

counterparts.
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Figure 3.8: Utilizing a single overcomputed source to duplicate the source-detector ge-
ometry of an arbitrary source location.
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3.3.1 Symmetry Exploitation

In the case of symmetry exploitation, theory states that utilizing the method intro-

duces no error at all into the system. Due to the fact that (3.2) is explicitly calculated

for all unique points, the exact value for every point in the set Spts will be present in

Asm, and simply needs to be pulled out using the selection matrices. In practice, how-

ever, this will likely not be the case. These equations are being evaluated numerically

on computers with a finite level of precision, so differences in the final values obtained

will occur. These differences will only be on a level associated with machine precision,

however.

3.3.2 Interpolation

Unlike the symmetry exploitation, the use of interpolation in constructing the ma-

trix Asm can introduce a significant amount of error into the matrix. This level of error

can range from nearly zero to a significant percentage of the total value, depending on

how many points are computed.

To examine the effects of various interpolation levels upon Asm, the matrices Qinterp

and Vcomp were generated for a volume of 7cm × 7cm × 6cm. This volume was divided

into cubic voxels 0.5cm on a side, giving a total of 14 × 14 × 12 voxels, or 2342 total.

This volume was used with a variety of interpolation levels to generate Asm from Qinterp

and Vcomp. For comparison, this was done using all four combinations of dynamic range

and sampling method. This was done to give a full comparison of the effects each had

upon the interpolation. The interpolated versions of Asm were then compared with the

fully computed Asm. Comparison was made on the basis of three different norm errors:

Frobenius Norm, Infinity Norm, and One Norm. The results of this comparison are

summarized in Table 3.3.2. The errors are all represented in terms of a percentage of the

norm associated with the fully computed matrix.

Looking at Table 3.3.2, it can be seen that the best results are obtained through

the use of the LCDR with exponentially spaced sample points. The worst results are

obtained with linearly spaced points and the FDR. An interesting observation, however,



43

is that the FDR, used with exponentially spaced sample points, produces better results

in most cases than the LCDR with linearly spaced points. This suggest that the linear

sampling of data points is not an effective method of sampling this space, regardless of

whether or not the LCDR is utilized. Because of this, further comparison will only be

made between those methods utilizing exponentially spaced sample points.

In three out of every four cases, the LCDR method performs better than the FDR

method. Only when the number of samples along the Z-axis is decreased sufficiently does

the FDR method outperform the LCDR one. At such low sampling levels, however, the

error induced in Asm increases significantly

In the cases where the FDR method is outperformed, the difference in performance

varies widely. At the high and mid sampling levels ((20, 20, 20) and (15, 15, 15)), the

increase in Frobenius norm error is as much as 400%. Reducing the sampling level to

(10, 10, 15), however, actually decreases the difference in performance. At that sampling

level, there is only an increase of 50% in the Frobenius norm error as a result of using

the FDR.

An interesting point of note is that the performance of the FDR method with log-

sampled points seems to be tied more closely with the precise locations of the sample

points than the LCDR method. As the sampling density is decreased, the error induced

in Asm by the LCDR method increases as well, regardless of sampling method. This is

not the case with the FDR method. Instead, when the D1-D2 sampling level is reduced

from 15 samples to 10, the error induced in Asm decreases. This could possibly be a result

of the precise location of each of those samples. If the points to be interpolated happen

to fall closer on average to computed points, it is likely that the interpolation would

improve solely based upon that proximity, rather than the actual number of points being

computed. Because of this, one important extension to this work would determine an

optimal method of selecting sample points, such that these benefits could be maximally

exploited.

Looking at the matrices interpolated from the FDR data, it can be seen that the

1-norm and infinity norm errors seem to be most closely tied to the D1 and D2 sampling

levels. For many D1 − D2 sampling levels, these two error metrics stay the same, even
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when the Z-sampling level is decreased. While this assumption breaks down for the 1-

norm error when the Z-sampling level is decreased too far, it holds for the infinity norm.

Even decreasing the Z-sampling to its lowest level does not affect the infinity norm error.

Both of these observations pertain solely to the use of the FDR with exponentially

spaced sample points. When the LCDR method is used, all of the error values become

primarily functions of the number of points computed, rather than specific sampling

densities.

After examining the results of the various interpolation methods and levels upon

the error in Asm, it was decided that using the FDR method with exponentially spaced

points was the best method to be used for this work. While the error levels were not

as low as those obtained when using the LCDR, the advantage of being able to reduce

the computation time of matrix-vector multiplications is significant. Because of this, the

results presented for analysis in Chapter 4 use only the FDR method with exponentially

spaced samples. Of the sampling levels which were used for this comparison, two were

chosen to be used for the results in Chapter 4. The two levels chosen were (10,10,15) and

(15,15,15). The first level was chosen because it gives the best combination of low error

and small number of samples. When using the (10,10,15) sampling level, a Frobenius

norm error of only 6.02% is induced when computing only 4.92% of the total points. The

second level was chosen because it computes roughly twice as many points, and exhibits

roughly one and a half times the Frobenius norm error. This was done to see how much

affect the additional error would have upon the final solution. Full results are detailed

in Chapter 4.

3.4 Computational/Storage Gains

In practice, the goal is to reduce some combination of the amount of time required

to compute the forward matrix, the amount of space required to store that matrix, and

the amount of time required to use that matrix. The methods expressed above make

significant gains in the first two of those three areas, while additional gains in the third

in the case where the sample points are exponentially spaced to improve the interpolation.
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Table 3.2: Interpolation Error for a Variety of Interpolation Levels

Full Dynamic Range (FDR)
Log-Sampled Points Linear Sampled Points

Sampling Frobenius One Infinity Percent Frobenius One Infinity Percent
Level Norm Norm Norm Computed Norm Norm Norm Computed

(nd1 , nd2 , nz)
(20,20,20) 3.49% 1.82% 7.93% 18.02% 53.29% 13.40% 120.05% 18.26%
(20,20,15) 3.74% 2.03% 7.93% 14.12% 51.45% 13.15% 112.97% 13.89%
(20,20,10) 5.23% 2.96% 8.48% 10.02% 54.27% 15.88% 112.97% 10.40%
(20,20,5) 11.14% 7.87% 11.58% 5.28% 57.88% 20.68% 120.05% 5.29%
(15,15,20) 8.71% 3.42% 20.04% 11.73% 77.17% 21.39% 175.42% 11.48%
(15,15,15) 9.64% 4.03% 19.20% 9.23% 82.39% 22.59% 175.42% 8.78%
(15,15,10) 10.64% 4.89% 19.20% 6.53% 79.93% 26.14% 175.42% 6.42%
(15,15,5) 12.62% 8.24% 19.20% 3.50% 104.66% 40.68% 175.42% 3.39%
(10,10,20) 5.40% 4.43% 10.93% 6.42% 150.40% 56.44% 237.26% 5.88%
(10,10,15) 6.02% 4.84% 11.29% 4.92% 156.00% 60.19% 223.20% 4.53%
(10,10,10) 6.44% 5.92% 10.93% 3.38% 166.72% 70.70% 237.26% 3.10%
(10,10,5) 11.12% 9.79% 11.29% 1.88% 204.31% 107.44% 237.26% 1.80%
(5,5,20) 74.14% 33.64% 165.72% 2.19% 358.46% 269.07% 305.73% 2.04%
(5,5,15) 75.39% 34.62% 165.72% 1.65% 361.98% 264.92% 312.31% 1.53%
(5,5,10) 79.48% 38.12% 183.79% 1.14% 388.69% 316.81% 312.31% 1.06%
(5,5,5) 113.99% 56.50% 183.79% 0.62% 482.29% 508.41% 305.73% 0.55%

Logarithmically Compressed Dynamic Range (LCDR)
Log-Sampled Points Linear Sampled Points

Frobenius One Infinity Percent Frobenius One Infinity Percent
Norm Norm Norm Computed Norm Norm Norm Computed

(20,20,20) 1.29% 1.10% 1.82% 18.02% 3.81% 2.66% 7.12% 18.26%
(20,20,15) 1.43% 1.25% 1.47% 14.12% 3.02% 2.64% 2.85% 13.89%
(20,20,10) 4.21% 2.71% 9.24% 10.02% 6.85% 4.53% 19.83% 10.40%
(20,20,5) 11.59% 9.17% 11.93% 5.28% 13.10% 10.66% 15.86% 5.29%
(15,15,20) 1.77% 1.44% 2.42% 11.73% 5.93% 4.02% 11.34% 11.48%
(15,15,15) 1.86% 1.66% 2.41% 9.23% 6.27% 4.59% 7.34% 8.78%
(15,15,10) 5.03% 3.33% 8.02% 6.53% 11.23% 7.15% 24.76% 6.42%
(15,15,5) 12.54% 10.02% 13.20% 3.50% 14.57% 12.36% 14.81% 3.39%
(10,10,20) 2.67% 2.19% 5.50% 6.42% 13.92% 9.36% 20.97% 5.88%
(10,10,15) 3.81% 3.04% 5.26% 4.92% 12.39% 9.20% 16.50% 4.53%
(10,10,10) 5.24% 4.20% 10.96% 3.38% 16.62% 12.37% 24.34% 3.10%
(10,10,5) 11.66% 9.90% 11.56% 1.88% 28.05% 22.02% 38.38% 1.80%
(5,5,20) 7.39% 7.44% 12.37% 2.19% 33.52% 30.05% 38.24% 2.04%
(5,5,15) 7.55% 7.87% 9.19% 1.65% 31.51% 29.34% 28.28% 1.53%
(5,5,10) 11.14% 9.89% 29.04% 1.14% 27.63% 26.67% 25.03% 1.06%
(5,5,5) 17.35% 17.02% 16.28% 0.62% 38.50% 30.31% 74.43% 0.55%
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SD Configuration Computational/Storage Improvement

7x7 Raster Scanned 49×
5x5 Sources over
5x5 Detectors 690×

10x10x10 Voxels
10x10 Sources over
10x10 Detectors 3844×
10x10x10 Voxels

25 Random Sources over
25 Random Detectors 10×

10x10x10 Voxels

Table 3.3: Computational/Storage Improvements for a Variety of Source-Detector Con-
figurations

3.4.1 Symmetry Exploitation

For many common source-detector configurations, the level of redundancy elimi-

nated using symmetry exploitation can be quite large. For example, in a system such as

that under consideration in this research, where both the source and detectors are raster

scanned across the plane, the improvement is roughly equal to the number of source

locations that are utilized. For systems with a grid of fixed detectors, an array of source

locations, and data collected from every sensor for every source, the effects are even more

dramatic. While the redundancies involved are not readily apparent, improvements of

several hundred to several thousand times are possible. In the accompanying Table 3.3, a

set of 25 sources are spread evenly on a grid above a 10×10×10 voxel space, yielding an

improvement of 690×. When the density of the source and detector grids are doubled,

the improvement goes up by a factor of ∼ 5.5 to 3844×. Even when the source and

detector locations are scattered randomly across the top and bottom surfaces of the slab,

an improvement of 10× is still seen.

These results indicate that while this method is highly useful for the particular

configuration under examination in this thesis, it is not the configuration which would

see the most improvement through the use of this method. The additional redundancy

in the spatial relationships between grids of sources and detectors brings along with it a

much higher level of redundancy which makes it ideally suited to this technique.
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The gains quoted in Table 3.3 apply to both the amount of computation required

and the storage space needed. Because the symmetry exploitation only removes redun-

dant calculations, both type of improvement seen are directly proportional to the level

of redundancy. Evaluating the Green’s function half as frequently not only requires ap-

proximately half the time, depending on the exact method by which it is evaluated, but

requires exactly half the amount of storage space, because rather than being stored twice,

the numbers are only being stored once.

The next question to be answered is whether or not exploitation of symmetry

improves the amount of computation required to utilize the matrix A in matrix-vector

and matrix-matrix multiplication (primarily the ATA multiplication that is used in the

traditional least squares solution ((ATA)−1ATg).

For matrix-vector multiplications, the equation at each source-detector pair is ei-

ther:

SijAsmg (3.11)

or

AT
smST

ijg (3.12)

depending on whether the total problem is Ag or ATg, respectively.

Looking first at the case of Ag, one can see that Nmin ∗ NT multiplications are

required to do the first Asmg multiplication. The SijAsmg product is obtained without

any further multiplications, as Sij consists entirely of ones, and thus only selection is

occurring. When repeated across NS sources, with ND detectors for each source, this

gives a total number of multiplications Nmult of:

Nmult = NS ∗ND ∗Nmin ∗NT (3.13)

For the alternate ATg problem, the initial ST
ijgdata product is obtained through simple

selection, and a further Nmin ∗ NT multiplications are needed to get to AT
smST

ijgdata.

Multiplied by the number of source-detector pairs, this once again gives a total number

of multiplications of NS ∗ND ∗Nmin ∗NT .

These two values compare with the number of multiplications required by the full
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matrix-vector multiplication for either Ag or ATg:

Nmult = NS ∗ND ∗Nxyz ∗NT (3.14)

The computational savings that is possible by going from the total forward system to a

method utilizing symmetry exploitation is therefore dependant upon the ratio between

Nxyz and Nmin. For the system under consideration in this thesis, Nmin is roughly equal

to ND times Nxyz. This is due to a value being required at each voxel for each of the

ND detectors. This means that when looking solely at the computational performance of

the matrix-vector product, we pay a price when utilizing this method. This loss is offset,

however, by the large gains made in the matrix computation phase.

3.4.2 Interpolation

In examining the computational gains from utilizing interpolation in the generation

of Asm, two cases need to be taken into account. The first of these is the case in which the

LCDR is utilized. The second case is using the FDR. In both cases, it is presumed that

sample points are exponentially spaced, although this has no impact on the computational

complexity beyond changing the number of sample points. Looking at the two cases, the

first requires the use of a logarithm and then a subsequent exponential. Thus two methods

had drastically differing orders of magnitude of computational burden.

In the first case, with the LCDR, the computations required for each source-detector

pair are (using Matlab notation):

exp(SijQinterp ln(Vcomp))gij (3.15)

Because each of the Sij are simply selection matrices, and a large amount of computation

is required for the repeated exponentials, it is more efficient to move the exponential inside

the selection. By changing the equation to:

Sij exp(Qinterp ln(Vcomp))gij (3.16)

the exp(Qinterp ln(Vcomp)) can be done once, with the results used as Asm for each source-

detector pair. This reduces the equation down to:

SijAsmgij (3.17)
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which is identical to the situation without interpolation. What this shows is that for

the case when the LCDR is used, there is no computational gain involved aside from

what is obtained through the reduced number of matrix values which must be explicitly

computed.

In the case where the FDR is used, the situation improves significantly. Without

the previously required logarithm and exponential terms, the equation for each source

detector pair is:

SijQinterpVcompgij (3.18)

Both Sij and Qinterp are highly sparse matrices, and can be multiplied together to form a

single sparse matrix with only four nonzero values per row. By doing this multiplication

before multiplying by the data vector, the number of multiplications required is reduced.

Because Sij consists entirely of ones, the product of the two sparse matrices requires no

multiplications. Selection of the appropriate rows of Qinterp is the only operation that

needs to be performed. The resulting equation requires only that the data be projected

onto Vcomp, and that four multiplications be done for each row in the SijQinterp product.

Given this situation, (NptNT +4∗Nxyz) multiplications are now needed, where previously

NxyzNT multiplications were required per source-detector pair. The reduction in required

computation will then be one minus the ratio between these two values. Presuming that

the 4 ∗Nxyz term is small with respect to the total number of computations, the ratio is

approximately equal to Npt/Nxyz. Thus the improvement in number of multiplications

is directly proportional to the amount of interpolation done. If values are explicitly

computed for only 10$ of the voxel locations (Npt = 0.1 ∗ Nxyz), then the ratio will be

0.1/1 = 0.1, giving a 90% reduction in the number of computations required.



Chapter 4

Results

Over the course of this research, three different data sets were utilized in testing our

algorithm. The first two sets were simulated data sets generated using a matched model,

both with and without additive noise. A simulated phantom object, roughly ellipsoidal

in shape, was created. This object was then used with the first order Born model to

generate a set of perturbation data. This noise free data was the first set of data used.

Noise was then added to the first set in the form of additive Gaussian white noise to

generate the second data set.

The third data set that was used was another simulated data set. This data set was

provided to us by Advanced Research Technologies (ART). It consists of a homogeneous

background, with a single absorbing phantom of unknown size and location buried within.

The data set was generated using their proprietary forward and noise models.

All results were computed using code written in Matlab. This code was run on a

dual 1GHz Linux server with 1GB of RAM per processor. When time requirements are

explicitly stated, they are with regards to this machine. As a result of using Matlab to

execute this method, the code is neither as optimized nor as fast as custom-written code

would be. Computation times are given primarily as a method of comparing one method

to another. Each set of reconstruction results is presented as a set of Z-slices through

the solution volume. Starting with the slice closest to the source in the upper left, and

working left to right, top to bottom, each slice is progressively displayed.

The source-detector configuration for all of the data sets consists of a 7× 7 grid of

source locations, with a grid spacing of 0.5cm. For each source, five detectors were used.

One was placed directly beneath the source, and the others were arranged symmetrically
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a short distance away. For each source-detector pair, a series of 177 data points were

collected, each spaced 62.5ps apart, with the first collected at t = 0. This gave a total

data collection time of approximated 12ns. The 7× 7 grid of sources was centered over

a 7cm × 7cm × 6cm volume, which was then voxelized into 2352 voxels, each a cube

0.5cm on a side. This voxelization results in the solution spaced being divided into

14×14×12 voxels. The background parameters, estimated from the ART simulated set,

are µa = 0.0688 and µs = 9.05. These values are used for the generation of all matrices.

4.1 Matched Models

The first set of data that was used to test the data reuse and interpolation methods

was a set of data generated using the full Born forward model. A ellipsoidal phantom

was generated (Fig 4.1), and data were generated using the Born forward model for a

system with the previously stated background values. The absolute magnitude of the

perturbation used in this case does not matter, as it just acts as a global multiplier.

Thus for this case it was simply set equal to one.

4.1.1 Noise Free

Initially, the system was run with no noise added, so that a direct comparison of the

inversion results with and without interpolation could be made. The resulting data was

then inverted using both a Tikhonov regularized least squares with a first order gradient
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Figure 4.1: Phantom used with matched model for generation of data sets
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Figure 4.2: Matched Models, No Noise: Using Fully Computed Asm - Solution Utilizing
Tikhonov Inversion

A 70.17% 2-norm error is present between this and the actual solution.
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Figure 4.3: Matched Models, No Noise: Using Fully Computed Asm - Difference between
actual and computed solutions with Tikhonov Inversion
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regularizer, as well as the LSQR algorithm. Due to the idealities involved in such a system

(matched forward/inverse model, no noise), regularization is not theoretically needed in

order to obtain a stable solution. In any realistic system, however, the regularization

would be necessary. Because of this, regularization was used even in the no-noise case,

at a level identical to that required by the case where the SNR was set at 10dB. This

regularization level was determined through the use of an L-Curve analysis. For details

on this method of regularization parameter selection, see [14]. This method was used for

all Tikhonov inversion results.

The system was first run using the fully computed Asm. Inversion using Tikhonov

regularized least squares resulted in the solution shown in Figure 4.2. To obtain this

solution, approximately 80 minutes was required on the aforementioned system. Of this

80 minutes, 60 was spent on the explicit generation of Asm, while the other 20 minutes

was spent obtaining a solution. These time values are consistent between the noise

free matched, noised matched, and mismatched systems. This is due to the fact that

the number of source-detector locations are the same for each system, as well as the

voxelizations.

While the percentage 2-norm error in the solution is large, at 70.17%, the object

can easily be seen buried in the medium. Looking at the error in Figure 4.3, it can

be seen that the large 2-norm error is primarily the result of mismatches in the value

of the perturbation. The solution consistently underestimates the magnitude of the

perturbation, which leads to a large error in the solution. Even in this ideal situation,

the system is poorly conditioned, and as such it is difficult to obtain a highly accurate

solution.

The first interpolation level used in generating the matrix was (15,15,15). The first

two values correspond to the number of samples along the D1 and D2 axes, respectively,

while the last value is the number of samples along the Z axis. The D1 and D2 axes are

sampled using the method detailed in §(3.2.2), while the Z axis is sampled linearly. This

sampling method, combined with these sampling levels, resulted in 1086 points being

computed, rather than the 11760 that would be required if all were explicitly calculated.

This results in a 90.7% reduction in the amount of time required for initial computation.
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Rather than the hour previously required, in this case, only 320 seconds are required

to compute the necessary forward matrix values. The computation of a solution still

required approximately 20 minutes, resulting in a total computation time of 2̃5 minutes.

The failure of the interpolation to provide an increase in solution computation time is due

to the fact that A shows up in the solution as both ATA and ATg. The matrix-matrix

multiplication requires the majority of the computation, and cannot be accelerated due

to the fact that the sparse matrices flank the dense matrices on either side. Once again,

due to the shared geometry between this and the other data sets, the times obtained

with the other data sets are nearly identical.

The results of the inversion can be seen in Figure 4.4. This solution appears to be

very similar to that obtained with the fully computed matrix. In fact, it is difficult to

find any differences in the solutions from only a simple visual observation.

Looking at the results analytically reveals an interesting situation. Comparing the

results from the fully computed matrix with that of the interpolated matrix gives a 2-norm

error of 11.96%. Seemingly, the two solutions have a significant amount of differences. In

fact, this large error stems from a large number of small errors spread across the volume.

Looking at Figure 4.5, it seems that the interpolated solution tends to give a higher value

to the perturbation, while giving a lower value to the background than the fully computed

solution did. The error is clearly not random, and does possesses a significant amount

of spatial structure. Whether this structure is inherent in the interpolated matrix or a

result of the structure of the perturbation is unknown. If it is inherent to the matrix, the

difference between the fully computed and the interpolated solutions should always have

error with roughly the same structure. If it is a result of the structure in the perturbation,

then the error will likely be structured around the perturbations and background.

Comparing the interpolated solution with the actual perturbation used to generate

the data, the 2-norm error is 71.10%, only 0.93% more than the fully computed solution.

This result leads one to believe that the error between the fully computed and interpo-

lated solutions may not be the best tool for determining the accuracy of an interpolated

solution. Because of the significant amount of error already present in the fully computed

solution, it may not be the best reference point for comparison. It would be possible to



55

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

Figure 4.4: Matched Models, No Noise: (15,15,15) Sampling - Tikhonov Inversion

A 11.96% 2-norm error is present between this and the solution using the fully
computed Asm. However, error between this and the actual solution is 71.10%, a

difference of only 0.93%, making it a 1.3% increase in the error
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Figure 4.5: Matched Models, No Noise: (15,15,15) Sampling - Tikhonov Inversion Error
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find a solution which were significantly better in terms of actual accuracy, but which was

significantly different from the fully computed solution. Obtaining a better solution was

not a goal of this work, however. The primary objective with regards to absolute error

is to ensure that the error is not increasing drastically. This is the case in this situation,

with the absolute error increasing less than 1%, even though the error relative to the

fully computed solution is 10%.

The next interpolation level shown here is (10,10,15). This level of interpolation

resulted in 579 points being explicitly computed instead of 11760. This brought the

computation time required to generate Vcomp down to only 177 seconds, or about 3

minutes. This is a twenty-fold improvement over the originally required one hour. As

before, no improvement is seen when using Tikhonov inversion due to the demands of

computing ATA and inverting it.

This time, there is a 12.47% 2-norm error between the fully computed and inter-

polated results. However, the error between the interpolated results and absolute truth

is 70.35%, just 0.18% greater than the error in the fully computed solution. This result

is actually superior in absolute accuracy than the (15,15,15) solution which computed

nearly twice as many sample points. This result was somewhat expected, however, as

when Asm was generated using the (10,10,15) level, all of the error metrics were approxi-

mately equal to, or significantly less than, those when using the (15,15,15) sampling level.

The unexpected part of this result is that while the absolute error is less than with the

(15,15,15) sampling level, the difference between this solution and the fully computed one

is actually greater than before. One would expect that the difference between the two

would be less with this sampling level, for the same reasons that were stated as reasons

to expect a superior absolute error. This differentiation between the error in Asm, and

the error induced in the solution is an area of potential future work.

The noise free data were next inverted using LSQR. Initially, the system was run

using the fully computed Asm to give a baseline result for comparison. The results of

this inversion can be seen in Figure 4.8. Once the hour had been spent to obtain Asm,

1505 seconds were required to execute 100 iterations of the algorithm, giving an average

iteration time of 15 seconds. Because no suitable conversion criterion was found, the
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Figure 4.6: Matched Models, No Noise: (10,10,15) Sampling - Tikhonov Inversion

A 12.47% 2-norm error is present between this and the solution using the fully
computed Asm. However, error between this and the actual solution is 70.35%, a

difference of only 0.28%, making it a 0.4% increase in the error
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Figure 4.7: Matched Models, No Noise: (10,10,15) Sampling - Tikhonov Inversion Error
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number of iterations at which to truncate the solution was determined through compar-

ison with the fully computed solution. This error was minimized after 33 iterations had

been completed. At 10.2 seconds per iteration, this yields a total inversion time of 5.6

minutes. This compares favorably with the 20 minutes required to evaluate a Tikhonov

solution.

The results in Figure 4.8 are similar to those from Figure 4.2. The perturbation is

once again clearly visible. However, there is now additional noise present in the solution

that was not there before. The background is not as smooth as with the Tikhonov

solution, and that is reflected in the 2-norm error of 77.67% when compared to the

actual solution. This is more than 7.5% greater than was obtained with the Tikhonov

inversion. This error could be reduced through the use of additional iterations of the

algorithm, given that there is no noise present in this data, and the data is matched to

the model.

The error between this solution and the actual perturbation is shown in Figure

4.9. As with the other fully computed solution, the error present is primarily a result

of the algorithm poorly determining the value of the perturbation. While values are

underestimated at the actual location of the perturbation, voxels which are part of the

background rather than the perturbation are given nonzero values. The sum of these

numerous small errors results in a large overall 2-norm error.

Computing an LSQR solution using the (15,15,15) interpolation level provides sim-

ilar results. This time, 1072 seconds were required to evaluated 100 iterations of the

algorithm. This yields only 10.7 seconds per iteration, roughly a 30% decrease in com-

putation time. This is clearly not the optimal improvement, which should be nearly a

90% decrease. It is clear from this that the code is not fully optimized to make use of

these gains.

Comparing the (15,15,15) solution to the fully computed one, there is a 11.64%

difference in 2-norm. The absolute error present is 78.80%, an increase of 1.04% over the

fully computed solution.

Moving to a (10,10,15) sampling level reduces the time required to evaluate 100

iterations from 1069 second to 1018 seconds. This reduces the average iteration time to
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Figure 4.8: Matched Models, No Noise: Full Forward Matrix - LSQR Inversion

A 77.76% error is present between this solution and the actual perturbation.
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Figure 4.9: Matched Models, No Noise: Full Forward Matrix - LSQR Inversion



60

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

0  

0.2

0.4

0.6

Figure 4.10: Matched Models, No Noise: (15,15,15) Sampling - LSQR Inversion

A 78.80% error is present between this solution and the fully computed one.
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Figure 4.11: Matched Models, No Noise: (15,15,15) Sampling - LSQR Inversion Error
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10.2 seconds. Once again, the gain seen here is not as much as would be expected. A

gain of approximately 5% is made over the (15,15,15) sampling level, where theory would

expect a gain of nearly 100%. It may simply be that the cost of the overhead involved

in each iteration is taking up a large part of the computation on each iteration, and that

the gains involved in the actual matrix vector computation are becoming less relevant.

The solution obtained with the (10,10,15) sampling level is shown in Figure 4.12,

while the difference between it and the fully computed solution is shown in Figure 4.13.

The difference present between the fully computed solution and this solution is 14.29%,

while the error with regards to the actual perturbation is 78.05%. Once again, the

lower sampling level actually provides results which are superior to those obtained with

the higher sampling level. Additionally, this is despite having a larger difference when

compared to the fully computed solution. In both this case, and the case with a (15,15,15)

sampling level, the difference between these solutions and the fully computed one seems

to share similar structure with the error present in the Tikhonov solutions.

4.1.2 Additive Noise, SNR = 10dB

Once an ideal system had been run (matched model, no noise), additive white

Gaussian noise was added to bring the signal to noise ratio up to 10dB. This was done to

see what effect, if any, the noise would have on the accuracy of the interpolated solution.

Noise was added to the signal using the Matlab function awgn() to measure the signal

strength and add the appropriate amount of noise.

Results inverting the noisy data using the fully computed Asm and Tikhonov in-

version can be seen in Figure 4.14. Even with a reasonably significant amount of noise

present in the signal, Tikhonov inversion is able to easily localize the perturbation. The

perturbation is once again identified very well in the X and Y dimensions, with the object

appearing quite compact. However, resolution is again lost along the Z-axis, with the

object being spread heavily across six Z-slices, with a noticeable presence in an addi-

tional two. This contrasts with the four layers in which the perturbation actually exists.

Comparing this result to the actual answer, a 75.62% 2-norm error is present, compared

to the 70.17% error which was present in the noise free result.
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Figure 4.12: Matched Models, No Noise: (10,10,15) Sampling - LSQR Inversion

A 78.05% error is present between this solution and the fully computed one.
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Figure 4.13: Matched Models, No Noise: (10,10,15) Sampling - LSQR Inversion Error
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Figure 4.14: Matched Models, SNR 10dB: Using Fully Computed Asm - Tikhonov Inver-
sion

A 75.62% 2-norm error is present between this and the actual solution.
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Figure 4.15: Matched Models, SNR 10dB: Using Fully Computed Asm - Difference be-
tween computed solution and actual perturbation
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Looking at the results using the (15,15,15) interpolation level, a similar situation is

present as with the noise free data. While there is more noise in the result, this is expected

because the data is no longer ideal. Comparing the result with that obtained from the

fully computed Asm gives a 14.45% 2-norm error. This compares with a 81.62% 2-norm

error between the interpolated solution using noisy data and the actual perturbation

phantom. Once again, error between the fully computed and interpolated solutions does

not seem to be an indicator of comparatively large error between the interpolated solution

and the actual perturbation values. Also, it does not appear as though the error present

in the interpolated version of Asm is acting to amplify the noise present in the signal.

Examining the difference between the interpolated solution and the fully computed

solution, we again see error which is not completely random. In this case, the difference

seems to be concentrated in the areas where a perturbation was determined to lie. Outside

of these areas, there seems to be a rather consistent difference between the two solutions.

Again, however, the magnitude of these differences is quite small in comparison to the

total value of the solution. With the additional noise in the system, however, more noise

has begun to appear in the layers nearest the sources and detectors.

Solving the system using (10,10,15) interpolation provides results similar to those

previously obtained with error free data. This time, there is an 13.13% 2-norm error

between the interpolated solution and the reference solution using the fully computed

Asm. This contrasts with a 76.25% 2-norm error between the interpolated solution and

the actual answer. In this case, the results obtained from the (10,10,15) sampling level

are actually closer to the fully computed solution than those obtained with the (15,15,15)

sampling level. However, as before, the actual error is less when using the (10,10,15) level.

The noisy data was then inverted using LSQR as the inversion routine. The times

required to compute the solution were comparable with those required for the noise free

data. Results using the fully computed solution are shown in Figure 4.20, with the error

in the solution being shown in Figure 4.21. The absolute error present is 81.43%, which

is an increase of about 6% over the solution using Tikhonov inversion.

Using a (15,15,15) sampling level results in an absolute error of 81.62%, with a

difference of 14.45% between the interpolated and fully computed solutions. These results
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Figure 4.16: Matched Models, SNR 10dB: (15,15,15) Sampling - Tikhonov Inversion

A 13.32% 2-norm error is present between this and the solution using the fully
computed Asm. However, error between this and the actual solution is 76.57%, a

difference of 0.95%
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Figure 4.17: Matched Models, SNR 10dB: (15,15,15) Sampling - Tikhonov Inversion
Error
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Figure 4.18: Matched Models, SNR 10dB: (10,10,15) Sampling - Tikhonov Inversion

The solution here has a 13.13% 2-norm error when compared to the fully computed
solution. Comparing against the actual value results in only a 76.25% error, a 0.62%

increase over the fully computed solution.
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Figure 4.19: Matched Models, SNR 10dB: (10,10,15) Sampling - LS Inversion Error
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Figure 4.20: Matched Models Full Forward Matrix - LSQR Inversion

A 2-norm error of 81.43% is present in this solution.
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Figure 4.21: Matched Models Full Forward Matrix - LSQR Inversion Error
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can be see in Figures 4.22 and 4.23. Once again, the error has a similar structure as that

obtained with the fully computed Asm. However, there is an additional amount of noise

which enters into the slices closest the sources and detectors.

Using a (10,10,15) sampling level results in a similar solution, with the solution

shown in Fig 4.24 and the difference between this solution and the fully computed one

shown in Fig 4.25. This time, the absolute error is 81.65%, while the difference between

fully computed and interpolated solutions is 14.45%. The error had the same structure

which has been seen numerous times before, although the magnitude of the additional

noise here is significantly higher than has been seen before.

4.1.3 Mismatched Models

Further simulated results were obtained using a simulated data set generated using

a different (unknown) forward model, and an unknown noise model. The system setup

for this data set utilizes the same source-detector configuration as the other data sets.

Voxelization is also identical to that used for the matched data sets.

Figure 4.26 shows the results of applying Tikhonov regularized least squares to the

fully computed forward matrix. The solution shows a single absorbing object buried in

the medium. This object appears to be roughly spherical in shape. In addition to the

object, a large number of inhomogeneities are clustered near each boundary of the slab.

Anecdotal evidence indicates that this is a common occurrence with such systems, and

could possibly be the result of mismatched background parameters. Another possibility

that has been suggested is that setting the voxel size such that the sources are exactly

one voxel apart may lead to these errors.

The first of the two interpolation levels presented here for the mismatched model

is with a sampling rate of (15,15,15) as described earlier. The results of the Tikhonov

inversion can be seen in Figure 4.27. Visual analysis of the results seems to indicate that

the results are very close to those obtained utilizing the full matrix. When an analytical

approach is taken, the resulting errors are significantly higher than would be expected

from simple visual inspection. For this case, the 2-norm error between the interpolated

and fully computed results is 11.06%. While the absolute truth is not known in this
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Figure 4.22: Matched Models (15,15,15) Sampling - LSQR Inversion

An absolute 2-norm error of 81.62% is present in this solution. The difference between
this solution and the fully computed solution is 14.45%.
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Figure 4.23: Matched Models (15,15,15) Sampling - LSQR Inversion Error
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Figure 4.24: Matched Models (10,10,15) Sampling - LSQR Inversion

An absolute 2-norm error of 81.65% is present in this solution. The difference between
this solution and the fully computed solution is 19.55%.
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Figure 4.25: Matched Models (10,10,15) Sampling - LSQR Inversion Error
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Figure 4.26: Mismatched Models Fully Computed Asm- Tikhonov Inversion
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case, it was previous shown that the differences between solutions obtained with the

fully computed Asm and solutions from the interpolated version is not necessarily a good

indicator of absolute error in the interpolated version.

Looking at the difference between the two results (Fully computed and interpo-

lated), plotted in Figure 4.28, it can be seen that the error tends to fall in one of several

distinct areas. This time, the perturbation holds a negative error, while the area immedi-

ately surrounding it has a positive error. Continuing outwards, the error drops to nearly

zero. It should be noted that the scale on the plot of the error is different than that of

the solution to increase the contrast. If both were to be plotted on the same scale, the

error would appear solely as small perturbations to the background, without any readily

evident structure. Because the error is spread across the entire volume, a small error in

each voxel value becomes a significant total error when multiplied by the total number of

voxels. One possibility for this occurrence is that the interpolation has somehow stripped

a type of DC offset out of the solution, resulting in this widespread background error.

The second interpolation level presented here uses a sampling level of (10,10,15).

Inversion results for this interpolation level, utilizing Tikhonov inversion, can be seen in

Figure 4.29.

As with the matched model, the (10,10,15) interpolation level provides results which

are as good or better than those provided by the (15,15,15) level. Once again, there is a

significant amount of difference between this result and the one obtained using the fully

computed Asm. This time the 2-norm error is 14.86%, but as previous stated, this likely

has little relation to the actual error present in this solution.

Looking at the difference between the (10,10,15) solution and the fully computed

solution (Figure 4.30), we see a picture similar to those previously generated. While the

error has structure, is it not exclusively confined to a specific area. Instead it is spread

across the majority of the background, with different magnitudes depending on location.

This results in a large number of small errors. This again leads to the large 2-norm

difference between the interpolated and fully computed solutions.

Next, the data set was run using the fully computed Asm and LSQR as the in-

version routine. The goal here was again to improve upon the time required to obtain
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Figure 4.27: Mismatched Models (15,15,15) Sampling - Tikhonov Inversion
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Figure 4.28: Mismatched Models (15,15,15) Sampling - Tikhonov Inversion Error



74

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

−2

0 

2 

4 

Figure 4.29: Mismatched Models (10,10,15) Sampling - Tikhonov Inversion
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Figure 4.30: Mismatched Models (10,10,15) Sampling - Tikhonov Inversion Error
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a solution, without significantly sacrificing accuracy. Using the fully computed matrix,

and truncating the iteration at 28 steps resulted in the solution seen in Figure 4.31.

This number of iterations was chosen because it gave the closest match to the solution

using the fully computed Tikhonov method. This was determine through examination

of the error for a large number of iteration values, and choosing the one with the best

performance. As with the Tikhonov inverted results, a buried absorbing object, roughly

spherical in shape, can clearly be seen. Ideally, the solution would be almost identical to

the solution obtained with Tikhonov inversion, as both are ultimately solving the same

minimization problem, just through different methods. The primary difference between

the two methods is that while Tikhonov inversion required 20 minutes to compute ATA

and then do Gaussian elimination on it to invert, LSQR required only 420 seconds (15

seconds per iteration,

Using (15,15,15) interpolation and LSQR resulted in the image in Figure 4.32.

The result shown is after 28 iterations of the algorithm. An object is easily identified

from visual inspection of the solution, and a 2-norm difference between it and the fully

computed solution of 16.28% is present. This result is similar to the 11.06% error that

was present in the (15,15,15) solution using Tikhonov inversion.

Moving to a (10,10,15) inversion level results in the solution seen in Figure 4.34.

Here, a 2-norm error of 22.17% is present between the interpolated and fully computed

results. While this is a significant increase from the 14.86% which was seen in the

Tikhonov solution, the object is still clearly visible
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Figure 4.31: Mismatched Models Full Forward Matrix - LSQR Inversion
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Figure 4.32: Mismatched Models (15,15,15) Sampling - LSQR Inversion
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Figure 4.33: Mismatched Models (15,15,15) Sampling - LSQR Inversion Error



78

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

−2

0 

2 

Figure 4.34: Mismatched Models (10,10,15) Sampling - LSQR Inversion
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Chapter 5

Conclusions and Future Work

We have presented here a method by which first order Born matrices can be rapidly

generated for time domain diffuse optical tomography. Such problems take a large number

of time dependent amplitude measurements, and attempt to reconstruct the values of the

spatially varying absorption and scattering parameters. These parameters can be used

to measure underlying physiological parameters such as blood density and oxygenation.

In turn, these can be traced to clinically relevant phenomena such as tumors and brain

activity.

The first component of this method involves the elimination of repeated calculations

done during generation of the full forward matrix. This method was shown to reduce

both the time and storage requirements involved with such large matrices, and allows for

the use of such matrices in a much more practical manner. The methodology outlined

here could also potentially be extended to other problems beyond the scope of just time

domain DOT.

The use of interpolation to further reduce both the amount of computation required

both in generating and using the forward matrix was also discussed. Results were given

using a basic linear interpolation method which showed that the solution seems to be rea-

sonably tolerant of small levels of error in the forward matrix. Qualitatively the solutions

seem very much alike, both with and without the interpolation. Quantitatively, the error

is only increased by a few percent, in exchange for a large reduction in computational

complexity.

There are several areas in which future work could directly extend what has been

reported in this thesis. As was shown in the results section, the number of samples taken



80

is not directly related to the accuracy of the resulting interpolation. This may result

from sample points falling closer or farther away from those points which are ultimately

required. A further analysis of what is causing this phenomenon, and how to best exploit

it, would be highly useful. At this point, the choice of sampling densities and locations is

rather arbitrary, and based more on something that is aesthetically pleasing rather than

mathematically optimal. It would be useful to develop a method which could take as its

input either the desired number of points, or the desired computational reduction, and

return an optimally selected set of sample points.

Another area in which further research could be performed is an error analysis.

The use of interpolation introduces noise into the forward matrix, and through that,

introduces error into the solution. By studying and characterizing the noise that is

introduced, it may be possible to compensate for it in some other manner. Simple

examination of the error introduced to the solution shows that there is some structure

present in the noise. If this structure can be determined and exploited, it may be possible

to reduce or eliminate its effects.
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