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ABSTRACT 
 

Background: Recent research has shown that there is a strong correlation between the functional 

properties of a neuron and its morphologic properties. Current morphologic analyses typically involve a 

significant component of computer-assisted manual labor, which is very time-consuming and is susceptible 

to operator bias. The existing semi-automatic approaches largely reduce user efforts. However, some 

manual interventions, such as setting a global threshold for segmentation, are still needed during image 

processing.  

 

Methods: We present an automated approach, which can greatly help neurobiologists obtain quantitative 

morphological information about a neuron and its spines. The automation includes an adaptive 

thresholding method, which can yield better segment results than the prevalent global thresholding 

method. It also introduces an efficient backbone extraction method, a SNR-based, detached spine 

component detection method, and an attached spine component detection method based on the 

estimation of local dendrite morphology. 

 

Results: The morphology information obtained both manually and automatically are compared in detail. 

The probabilities of the dendrite length distributions being the same from the Kolmogorov-Smirnov (KS) 

test of the automatic and manual results are 99.13%.  The spine detection results are also compared with 

other existing semi-automatic approaches. The comparison results show that our approach has 33% fewer 

false positives and 77% fewer false negatives on average. 

  

Conclusions: Because the proposed detection algorithm requires less user input and performs better than 

existing algorithms, our approach can quickly and accurately process neuron images without user 

intervention.  

 

Key terms: Automatic dendritic spine detection, Adaptive thresholding, SNR 

 

1. Introduction 
 Neuron morphology is illustrative of neuronal function and can be instructive in the dysfunction seen 

in neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease [1, 2]. Recently, 

researchers have shown great interest in studying dendritic spine morphology and density quantitatively, 

both statistically and dynamically[14]-[15][41]-[44].  

 Modern fluorescence microscopy methods, such as confocal laser scanning microscopy (CLSM) and 

two-photon laser scanning microscopy (2PLSM), provide powerful tools to study dendritic spine structures.  

However, the analysis of neuron images generated by either modality has remained largely manual. Even 

with computer assistance, such analysis is still extremely time-consuming, and subject to user bias, i.e., 
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results cannot be easily confirmed by other investigators [14]-[16]. Thus, automation is in great need for 

dendritic spine analysis. 

 Recently, several semi-automatic dendritic spines analysis approaches have been proposed 

[3][12]-[13]. Although these methods can greatly help neurobiologists with their work, shortcomings still 

exist. Some manually-determined globally-applied thresholds are used during segmentation. In general, 

the proper determination of this threshold is largely dependent in the experience of human operator. More 

importantly, the final results in terms of dendritic morphology are quite sensitive to the thresholds, thereby 

making the reliable extraction of information difficult. Also, unbiased and rapid analysis of a large set of 

images by other detection methods is not feasible because of the amount of user input required. To solve 

above problems, many locally adaptive thresholding methods have been proposed in the literature. Some 

are based on the local variance. The threshold for each pixel is calculated according to the local mean and 

variance in a window with certain size [25]-[27]. The formulation is simple and straight forward. However, 

they can easily be trapped in the local maximal intensities. Others use surface-fitting methods [28]-[30]. As 

gradient based methods, they are sensitive to background noise. Kriging is also widely used in the 

literature [12][31]. It is basically a two-pass algorithm using two global thresholds. All the pixels whose gray 

values are smaller than the lower threshold are segmented as the background. Those with gray values 

greater than the higher threshold are segmented as the objects. The remaining undetermined pixels are 

left to the second pass, at which point these pixels are segmented by using the local covariance of the 

class indicators and the constrained linear regression technique called kriging. In this paper, we propose a 

local contrast based segmentation algorithm. It is easy to be implemented for the automatic and consistent 

analysis of neuron morphology.  

 In addition to segmentation, others problems for spine detection also exist for above mentioned 

dendritic spines analysis algorithms. Koh et al. propose a morphology based algorithm for automatically 

detecting and quantifying the structure of dendritic spines [3]. However, this is only a simple 

distance-based algorithm for detached spine head detection. Also, this geometric approach is sensitive to 

noise and cannot detect spines of all morphologies. To separate spines from the shafts of dendrites, Xu et 

al. propose a new attached spine component detection algorithm by using two grassfire propagations [13]. 

Although their method is more robust to the noise and the irregular, rough surface of dendrites, it still has a 

problem similar to Koh’s approach: the shape of the detected spine is not accurately described, i.e., the 

base of the spine protrudes into the dendrite, instead of stopping parallel to the surface of dendrite. Based 

on Koh’s approach, Weaver et al. describe a package which is capable of morphometry of an entire 

neuron, by combining the spine detection algorithms with dendritic tracing algorithms [12]. Their algorithm, 

however, does not accurately represent the attached spine component either. In this paper we propose a 

SNR-based detached spine component detection algorithm, which can considerably reduce the poor 

detection of spine components with low intensity values. Our attached spine components detection 

algorithm, which is based on the morphology analysis of the local dendrite, is also presented. The method 



 4

we describe is more robust to noise and rough dendrite boundaries, while also representing the shape of 

spines more accurately than previously existing detection methods. 

  

2. Image Acquisition 
 Neuronal morphology located within brain slices of intact animals can be determined at high 

resolution using 2-photon laser scanning microscopy (2PLSM) of cells expressing green fluorescent 

protein [9].  The analyzed dataset included a variety of genotypes to ascertain how well our algorithm 

detected spines with a wide distribution of morphologies. In brief, 3D image stacks of neurons were 

collected using a custom-built two-photon laser scanning microscope [23] with an excitation wavelength of 

910 nm. The objective that we use is Olympus LUMPlanFI/RI 60x / 0.90 NA, Water immersion. Images of 

apical and basal dendrites of CA1 hippocampal pyramidal neurons were acquired at 0.8x zoom (image 

field, 300 x 270 μm), whereas the spiny regions of basal and apical dendrites were imaged at 5x 

magnification (image field, 42 x 42 μm). Optical sections were taken at 1.0 μm spacing. The manual 

analysis of spine density, length, and width, as well as soma size, were measured using custom software 

[24] by observers who were blind to the genotype. Spine lengths were measured from the junction with the 

dendritic shaft to the tip. To determine head width and primary dendrite thickness, the fluorescence was 

measured in a line across each structure and the width of the distribution where fluorescent intensity fell to 

30% of maximum was calculated. Measurements performed on 100 nm diameter yellow-green fluorescent 

microspheres (FluorSpheres, Molecular Probes) indicated that the point-spread function placed a lower 

limit on measurable widths of 550 nm. The apparent width is the convolution of the true fluorescence 

distribution and the point-spread function of the microscope and has a lower limit of about 550 nm. The 3D 

image stacks obtained are 16-bit grey-scale images.  

 

3. An Automatic Approach for Dendrite Spine Detection  
 In this section, we discuss the algorithms used in the proposed neuroinformatics system called 

neuron image quantitator (NeuronIQ), an integrated data processing pipeline for automatic dendrite spine 

detection, quantification, and analysis. In section 3.2, we introduce an automatic adaptive segmentation 

algorithm. In section 3.3, the backbone extraction algorithm is presented.  With all the information 

obtained above, the detached and attached spine components are detected separately by using different 

approaches. The detached spine components are found by local SNR analysis, and the attached spine 

components are detected with using geometric properties of dendrites. The spine detection algorithms are 

discussed in section 3.4. Lastly, certain post-processing algorithms, such as combination of broken spine 

components and measurement of spine density, are described in section 3.5.  

 

3.1. Preprocessing 

There are two primary phenomena which cause the degradation of images obtained by optical 

microscopy. One is the shot noise introduced by the imaging mechanism of the photomultiplier tubes 
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(PMT), which can generally be removed by median filtering without a loss in information concerning the 

neuronal spines and dendrites. The other mechanism for image degradation is the diffraction of light. The 

value of any voxel in the image actually is the convolution of intensities from its neighborhood. Numerous 

methods have been proposed to solve this problem with or without knowing the PSF (Point Spread 

Function)[45]. Based on our experience, debluring algorithms can greatly enhance the contrast of the 

image, which makes it easier to detect weak spines.  Nevertheless, since such processing can also 

amplify the noise, deconvolution sometimes actually would degrade the segmentation results; this makes it 

difficult for later spine detection. Since our adaptive thresholding method can effectively segment the weak 

spines, we do not apply any deblurring algorithms during image preprocessing. As a result, the falsely 

detected spines are largely reduced, while the number of missed spines does not increase.  

 

3.2. Adaptive Threshold 

    The next step after denoising is to distinguish the spine or dendrite pixels from the background. The 

threshold of segmentation can be set manually or automatically. Since there are no clear criteria which can 

guide people to select the threshold manually, it is biased to human experience. Furthermore, usually the 

manually set threshold is a global threshold, which causes problem in term of finding spine components 

with low intensities. To address these issues, an automatic local contrast based segmentation method, 

which is suitable for high-content bioimage analysis, is presented in this paper.  

In adaptive threshold methods, a threshold is set for each pixel. This threshold is then used to test 

against the pixel intensity value to produce binary image. The basic formulation of adaptive threshold for 

pixel p  is given by: 

( ))(),( pIphTTp =
                                                  (1) 

where )( pI  is the gray level of point ),( yxp  in the original image, and )( ph  is a certain local 

property of this point p . For local contrast based algorithms, usually the average or median value of 

intensity is used to calculate the local threshold. White and Rohrer [32] compare the gray value of the pixel 

with the average of the gray values of neighboring pixels. The pixel will be recognized as the foreground 

pixel if its intensity is greater than the average intensity of all the pixels around. In the method proposed by 

Bernsen [33], the median value is selected as the threshold. Both methods work well at their cases. The 

width of the averaging window is set according to the quality of images and the general size of foreground 

objects. Basically, a larger window size would help suppress the noise in the image. However, it might also 

cause the loss of weak signals that are close to other strong signals. Based on equation (1), the adaptive 

thresholding algorithm is expressed as following: 

 

⎩
⎨
⎧ Ω∈′′′′>

=
                                                     otherwise    ,0
)},(),(|),({),( if    ,1

),(
yxyxyxIavgyxI

yxs                     (2) 
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Here, ‘1’ represents the foreground pixels, which are potentially spine or dendrite pixels and will be 

processed for later detection and analysis, ‘0’ represents the background pixels, and I is the intensity 

value. The local region around a pixel ),( yx , i.e., ),( yxΩ  is defined as 

}2/)1(||  ,2/)1(|| ),{(),( −≤−−≤−=Ω dyndxmnmyx . d is the width of the window which 

decides the size of local region. The value of d is selected by considering the width of most spines. 

Normally, d can be set about 1~2 times of the spine width value. For our images, optimal results can be 

obtained for any number between 15 and 20 according to the tests. Generally, the segmentation results of 

spines are not sensitive to the window’s size, as long as enough foreground and background pixels are 

included in the windows. However, problems may occur for those small weak spines which are very close 

to the dendrites (whose intensities are obviously higher than those of nearby spines). We will propose an 

efficient solution to this problem in the later part of this section. 

    Another potential problem for the above adaptive threshold algorithm is that some background pixels 

with relatively high intensity are prone to be segmented as foreground pixels. More information should be 

applied in order to distinguish this kind of local maximums from the real spine pixels. Besides the intensity 

difference, the exact value of each pixel’s intensity should also be considered. Only those pixels whose 

intensities satisfy the minimal value requirement can be segmented as foreground pixels. For example, a 

pixel with intensity values as 1 should not be segmented as a foreground pixel, even if all its neighboring 

pixels’ intensity is 0. This idea is similar to the lower threshold introduced by the Kriging method [12][31] 

The minimal value T  is selected as follows: 

α+= lowTT                                                            (3) 

Here, lowT is the global lowest intensity value; α is a control parameter. When α is zero, the segmentation 

results are totally decided by the local contrast. With a bigger α, local maximal intensity pixels are less 

likely to be segmented as foreground pixels. Generally, even a very small α can obviously improve the 

segmentation results. This is because the high intensity noise, which is the shot noise, has already been 

removed by the median filter in the preprocessing stage. Based on the range of intensity of spine pixels in 

2PLSM images, the value of the control parameter α is suggested as ]20,5[∈α . The validation and 

comparison results in section 4 are obtained with setting α =15 for all images.   

    Besides the intensity, local region information should also be considered to improve the segment 

results. For example, a pixel has a higher probability to be a foreground pixel if most of its neighboring 

pixels are foreground pixels. This is based on the assumption that spines are blob-like objects. A simple 

approach for this idea is to only select those pixels whose most neighbors are segmented as foreground 

pixels. This can be easily realized by implementing a median filter to the originally segmented image

),( yxs .  
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For neuron images, a common problem for local thresholding is that the weak signal might be 

suppressed by the nearby strong signals. For example for weak spines, low intensity pixels such as the 

pixels at the spine neck are prone to be segmented as background pixels. This is because those pixels 

have lower intensity values compared with their neighboring average, which is caused by nearby dendrite 

pixels with very high intensity. To solve this problem, the high intensity values of nearby dendrite pixels 

should be adjusted, i.e., substitute the dendrite pixels with low intensity values. This is realized by two-step 

segmentation: dendrites are found after the first adaptive thresholding. The dendrites are defined as those 

blobs whose areas are larger than the largest possible size of a spine; then all pixels in the dendrites are 

replaced with lower intensity values in the original image; the adaptive thresholding is performed the 

second time after the intensity substitution. Compared with single adaptive thresholding, the two-step 

adaptive thresholding method can better detect the low intensity pixels at spine neck. Thus, the shape of 

spines is better represented. However, the revised intensity of dendrite tissues cannot be set arbitrarily 

low, otherwise some background pixels with relatively high intensity values will be wrongly segmented as 

foreground pixels. Therefore, the intensity adjustment should be carefully chosen with low bound being 

set.  

The intensity adjustment can be linear or nonlinear. In our cases, we apply a simply linear 

transformation, i.e. ),( yxI d′ = ),( yxI d⋅ε . Here ),( yxI d is the original intensity of the pixel in dendrite, 

),( yxI d′ is the intensity value after adjustment, ε is the parameter which decides the suppression 

intensity. The upper bound forε  is 1, which means no suppression is performed. The lower bound forε  

is calculated as following: 

d

s

I
I

=boundlower ε
                                                      (4) 

Here sI is the average intensity of all pixels in spines, and dI is the average intensity of all pixels in 

dendrites.  

 After segmentation, morphological filtering is performed to remove the noise, fill the holes, and 

smooth the boundaries. Some morphological processing, such as filling holes, can distort dendrite 

structures. To prevent these from happening, local intensity information is considered during the 

processing. Figure 2 shows the comparison of segment results between global thresholding and adaptive 

thresholding. The latter one is obviously better, with fewer missed spine components and better 

segmented dendrite structure.  

 

3.3 Backbone Extraction 

    Dendrite structure is one of the most important geometric features in spine detection. Most existing 

spine detection algorithms are based on the successful extraction of backbones. There are two steps for 

backbone extraction: determining the medial axis by thinning algorithms and extracting the backbone from 
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the medial axis by trimming branches. There are many thinning algorithms in the literature [17][34]-[38] to 

get medial axis in 3D. Basically a set of deleting templates are designed, which preserve the topology and 

geometry of the object. The object voxel under consideration is checked against the templates and is 

removed if its spatial arrangement is compliant to one of them. The medial axis or skeleton obtained by 

such thinning algorithms is sensitive to noise. As we can observe from Figure 3, there are many spurs 

caused by noise (rough boundary). These spurs, in addition to the spurs caused by spines, should be 

removed to obtain a neat description of dendrite structures (backbones). The backbone is obtained by the 

trimming algorithms. In this section, we only discuss our trimming algorithm. 

 For some ideal situations, trimming can be very easy. All we need to do is to set a threshold for the 

physical length of the spines, and remove all spines whose length does not satisfy the requirement. Or we 

can just pick up the longest pieces. This is the basic idea behind many of the skeleton pruning algorithms. 

An example of this kind of algorithm is proposed by Zikuan Chen et. al. [39]. They first try to find the 

starting point of the skeleton, by finding the line-end point with the maximal intensity value (or maximum 

diameter). From the starting pointing, the longest path ijP is found. ijP is then removed from the original 

skeleton image and another starting pointing is found. The procedures are repeated until the top N
longest paths are found, which are assumed to be the dendrite backbone pieces. There are two potential 

problems for above mentioned method. One is how to select the starting point. Of cause we can set all 

line-end points as starting points. However, this will greatly increase the computation time. The other one 

is how to ‘automatically’ set the value of N . Furthermore, as we can see from Figure 3, the medial axis of 

a dendrite image can be very complex. This is caused by the complex structures in the big spines, or 

caused by the rough dendrite surface. If the spine density is high, the longest path based trimming 

algorithm can be very time consuming. In this paper, we introduce a recursive trimming algorithm, which 

can deal with the above problems without knowing the starting point and number of dendrite pieces. The 

algorithm is summarized as following: 

 The detailed steps are listed in Table 1. The basic idea is to keep removing end pieces (curves with 

end points) whose length is less than m . The value of m  is iteratively changed in step (4). The process 

keeps repeated until the threshold m  reaches the upper bound M , which is usually the longest possible 

length of a spine. Notice this algorithm is not simply removing all end pieces whose length is smaller than 

the threshold M . By doing this, it will not only remove the medial axis of spines, but also will remove the 

end pieces of dendrites. This can be a serious problem when the threshold M is big. In our approach, the 

dendrite pieces are restored at step (3). There are two situations in which the removed pieces cannot be 

restored, i.e., mli ≠ . 1) The length of the end piece is less than the temporary threshold m . In this case 

the short branches (medial axis of spines) are removed. 2) The length of the end piece is greater than the 

temporary threshold m . This happens when more than one connected branches are removed together. 

This is also the reason why the algorithm is implemented in an iterative way: if Mm = at the very 

beginning, the end pieces of dendrites won’t be restored, because there might be some spines attached to 
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the end pieces of dendrites and are removed together. In such situation, mli >  and the end pieces of 

dendrites cannot be restored. The trimming result is shown in Figure 3. 

 After trimming, some correction to the backbone is performed. As we can see in Figure 3 (b), there 

are many small bumps along the backbone. These bumps are caused by the thinning algorithm during the 

process of obtaining the medial axis. The bumps may introduce the error for dendrite length estimation. 

They also cause trouble for spine length estimation and make length based attached spine detection 

algorithm more difficult. Usually, the bumps locate at the place where there is a protrusion at the dendrite 

surface. For each protrusion, there is a piece of small branch in the medial axis. Based on above facts, 

here we propose a bump-removing algorithm as follows: (1) for each piece of branch along the backbone, 

find the branch point; (2) find local backbone pieces near the branch points, where are the possible 

locations of bumps; and (3) remove the bumps by connecting the two end points of above local backbone 

pieces. 

 

3.4. Spine Detection 

From Figure 2 we can find that there are some blobs which are not in a reasonable distance to the 

dendrites, i.e., the distance is larger than the longest possible length of a spine. This kind of blobs should 

be removed as non-spine blobs. The regions around the backbone should be defined before the detection, 

which will help reduce both the processing time and false positives. A local-region-cutting algorithm is 

designed for above purpose. Only blobs locate in the local regions are considered as potential spine 

components. Those who are not in the local regions are removed before spine detection. Although the 

maximal distance idea of the off-cutting algorithm is identical to Koh’s method [3], it is implemented in a 

more computation efficient way. Instead of calculating the distance from every detached blobs to the 

nearby dendrite backbone point, we define a local region around the backbone, which is simply obtained 

by dilating the backbone. The advantage becomes obvious if the spine density is high. 

There are two different approaches for the detection of attached spine components and detached spine 

components. The two detection algorithms are discussed in the following sections. 

 

a) Detection of detached spines 

The detached spine component detection algorithm is based on the local SNR (Signal to Noise Ratio) 

analysis. The local region of each potential spine should be found before estimating the local SNR. Since 

the size of different spines may vary a lot, it is not feasible to choose a window with fixed size for local SNR 

analysis. The size of the window should be adjusted according to the size of each blob. Suppose the 

( )w p is the rectangle with the smallest area which can fully contain blob p , then the local region is 

defined as following: 

} ]y ,-y[y  ], x,-x[ x | y) (x,{ 1010 λλλλ +∈+∈=pR
                           (5) 
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Here 0x , 1x , 0y , and 1y  are the least and largest values in x- and y- direction respectively for all pixels 

in the blob; λ is the window’s size, which is introduced to include enough background pixels in the local 

region. Suppose the area of the blobs can be estimated with a rectangle ba × , the area of local region is 

ban ⋅⋅ , then the value of λ  can be obtained by: 

nabba =++ )2)(2( λλ                                                          (6) 

4
)()1(4)( 2 banabba +−−++

=λ                                              (7) 

For the purpose of implement, λ  can be rounded to the nearest integer. 

 

Once the local region for a spot is determined, we can then define the local SNR. In image processing, 

the local SNR for spot P  is usually estimated as [40]: 

bpbpspp IISNR σ/)( −=
                                                      (8) 

Here, spI
is the average intensity of the detected signals, bpI

is the average intensity of the background 

pixels, bpσ
 is the standard deviation of the background intensity of the local region. The local SNR 

analysis is applied to all detached blobs in the maximal intensity projection (MIP) image of a neuron image 

for spine detection. If the SNR is higher than a threshold, which is obtained by clustering, the certain blob 

is recognized as a detached spine.  

 

 In many cases, this SNR based algorithm can detect detached spines well. However, there are some 

small non-spine blobs, which is caused by dying or imaging problems, cannot be removed by simply 

increasing the SNR threshold.  Nevertheless, the performance of SNR based detection algorithm will be 

improved if intensity distribution information among neighboring slices can be used. For 3D neuron 

images, the resolution in z-direction is much lower compared with x- and y-direction. Most spines will only 

appear in 2 or 3 slices. Thus, the section area of a spine changes obviously in the neighboring slices. In 

addition, the intensity for spine voxels in neighboring slices changes more obviously compared with the 

voxels in non-spine blobs. This is can be explained by the intensity difference among surface voxels and 

central voxels in a spine. Based on above observations, a new SNR which considers the 3D intensity 

properties of a spine is proposed:  

ε

σ
)1(1

local

FG

bp

bpsp
normalp A

NII
fSNRSNR +

−
=•=                                    (9) 
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Here, localA  is the area of the blobs in the MIP (maximal intensity projection) image; FGN  is the number 

of foreground voxels: }  slicesadjacent in  differenceintensity   whosevoxels|{ 0nPPforeground ≥∈ ; 0n is 

a threshold for intensity difference. If 0n = 1, then all voxels with different intensity values among 

neighboring slices are considered as foreground voxels. For each blob, three slices (central slice and two 

neighboring slices) are considered. The central slice of a blob is defined as the one with the highest 

average intensity. According to our tests, the intensities of voxels in the small non-spine blobs have few 

changes compared with those spine voxels. The SNR based detection algorithm works well even with a 

very small 0n . In our validation, 0n is set as 1; ε is the weight parameter with positive value. With a higher

ε , we emphasize more on the change of intensity distributions among neighboring slices. In our cases, ε
is set to 2.  The number of the foreground pixels is normalized by the area of local regions. 

 

 The comparison of detection results based on normal SNR and revised SNR is shown in Figure 4.  

As we can observe from the SNR distribution maps, there is no threshold which can totally separate the 

spine components and the non-spine blobs by using normal SNR. However, these two different classes 

are well separated if described by revised SNR. Nearly all non-spine blobs have obviously lower values 

compared with the spine components, e.g., the values are lower than the half of the value of the spine with 

the lowest revised SNR. We also notice that there are some non-spine blobs introduced by a crossing 

axon at the middle bottom of the image. This kind of non-spine blobs can also be recognized and 

discarded by using revised SNR.  

 

 Besides removing the false positives (non-spine blobs), our SNR analysis and adaptive thresholding 

based algorithm can also detect weak detached spine components, which are possibly missed by global 

thresholding. From Figure 5 we can see that four spines are missed because of low intensity values by 

using global thresholding. For these spine components detected by both approaches, the shape of spine 

components are much better represented by using our method, e.g., the volume of spine won’t apparently 

shrink because of a relatively high global threshold, which may be introduced to suppress strong noise. 

The quantitative comparison of spine detection results between our method and Koh’s method [3] are 

presented in the next section. 

 

b) Detection of attached spines 

The approach to detecting attached spine components along the dendrite is quite different from 

detached spine components detection. Unlike the local contrast and SNR-based approach, it is mainly 

based on the local morphological analysis.  

In the segmented image, there are some protrusions along the dendrite structures, which are potentially 

attached spine components. To find those spine components, one common approach is to find the tips for 
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each protrusion, then locate each spine by local shape analysis [3]. The tips are the pixels along the 

boundary, which have local maximal distance to the backbone pixels.  

There are several problems for this kind of detection method. The location of tips is noise sensitive: with 

rough boundary of the dendrite, there will be too many local maximal distance pixels exist and it is hard to 

find the ‘ideal’ tip (the maximal distance pixel on the top of a protrusion). This problem can be partially 

solved by smoothing the dendrite with low-pass filters.  

Another problem is that the shape of the spines is not well represented: the base of the spines is 

described as a piece of curve, instead of a straight line parallel to the nearby dendrite boundary. This is 

because the spine pixels are defined as the pixels those are within a certain range to the tip point of the 

protrusion. The local maximal distance based algorithms also have difficulties to detect some very small 

spines or spines with irregular shapes. 

Here we propose a medial axis based attached spine detection algorithm, which can solve the above 

problems. In the medial axis image, there is a branch (small piece of line) at the place of each spine.  

Thus, the attached spine component can be located by referring the position of the branches. However, 

there also are many branches appear at the place where no spine presents. Some criteria are needed to 

locate the real spines. The algorithm is described as following: 

 

(1) find all small branches according to the medial axis and backbone image − the small branches are 

found by removing backbone from the medial axis; 

(2) estimate the local thickness of the dendrite in a neighboring region around each small branch; 

(3) mark spine candidates based on the estimation of the local thickness and the distance map to 

backbone − all pixels in the local region that have a distance larger than the local thickness are 

marked as spine pixels; and 

(4) remove false spines based on the area and edge criterions. 

 

The local thickness of the dendrite is estimated by calculating some local edge pixels’ distance to 

backbone. Suppose ip is the boundary pixel along the local region, and id is the distance to the nearest 

backbone pixel.  The local thickness of the dendrite is estimated by: 

 

})),,,min(|({ 21 β+≤= kii dddddmedianTh L                                (10) 

Here, ),,,min( 21 kddd L  means the minimal distance among all k boundary pixels; β  is a threshold 

which decides the range of distance to be considered. To be more robust, the local thickness is not set 

equal to the local minimal distance. Instead, a set of local distance values are considered and the median 

value is picked as the estimation of local dendrite thickness. So β  should be greater than zero. 

Compared with the dendrite boundary pixels, the spine boundary pixels are much more far away from the 
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backbone. For the purpose of accurate estimation of local dendrite thickness, as much as possible spine 

boundary pixels should be excluded. Thus, β  should also have a higher bound. Usually, the value of 

parameter β  is set according to the quality of the segmented results. If the quality of the image is very 

low, β should be set to a larger number to lower the probability of being trapped in the local minimums. 

For images with ordinary quality, small value of β  can be chose to exclude more spine boundary pixels. 

For all the images demonstrated in this paper 2=β . The reason that we choose the median value of local 

distances is based on the observation: most of the local non-protrusion boundary pixels have the same 

distance to the backbone, which is a good estimation of the local thickness of a dendrite. 

 As we mentioned before, not all spine candidates are actually a spine. Some criteria are set here to 

help to remove those false spines. 

 

Area criterion: 

Only those candidates whose area is larger than a threshold can be a real spine. 
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                                           (11) 

Here iC  is the spine candidate found by above detection algorithms; 0A is the area threshold. This 

criterion is set to help remove the false positives along the rough dendrite boundary. Usually 

neurobiologists do not consider very small protrusions as spine components. This threshold can be 

manually set before the batch processing. Usually the value is related to the choice of different views. For 

example, in our experiments (where 0.084 micrometer/pixel), we ignore all small protrusions whose area is 

less than 5 pixels. 

 

Edge criterion: 

Only those candidates that locate outside the trunk of the dendrite can be a real spine. 

⎪⎩

⎪
⎨
⎧

≤
>

= '''

'''

 if   spine, anot  is
 if         spine, a is

ii

ii

CC

CC
i NN

NN
C

                                              (12) 

Here 
'

iCN is the number of boundary pixels of a spine candidate, which are also the boundary pixels of a 

local dendrite; 
''
iCN is the number of boundary pixels of a spine candidate, which are not the boundary 

pixels of the local dendrite (pixels inside the dendrite). This criterion is introduced to remove the false 

detected spine components which protrude deep into the dendrite.  
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 For the purpose of easy implementation, the algorithm for attached spine detection is based on the 

projection of backbone and the image of whole stack. However, the idea of estimation of the thickness of 

local dendrite pieces and the criteria to remove the false positives can also be implemented in 3D. 

 Besides the advantage of being able to high-content batch process, our approach also has better 

detection results compared with the existing approaches. Figure 6 shows the comparison of spine 

detection results between our method and Koh’s method [3]. Compared with the existing spine detection 

algorithms, our method has the following advantages: 

• Better detection results for very weak spines. Either for attached spine or detached spine 

components 

• Fewer false positives caused by the broken dendrite part. This is due to our robust adaptive 

thresholding method. 

• The shape of the spines is better represented, e.g., the bottom of the attached spine is a line close 

and parallel to the edge of dendrite. For Koh’s approach, sometimes the position of the spine 

bottom cannot be found correctly, which means either only a part of the spine is detected or 

nearby dendrite tissue is segmented as the spine. 

 

3.5. Post Processing 

There are mainly two purposes for post processing. One is to adjust the numbers of detected spines, 

and the other one is to provide measurements about the spines and dendrites. The number of blobs 

detected as spines is not actually the real number of spines. In some cases, a spine can be broken into 

several parts in the image. One reason is that the signal around the neck of some thin spines is weak such 

that the spine is broken into the detached head and attached base components after segmentation.  

 A merging algorithm is performed to combine those detached and attached parts. The merging 

algorithm considers every attached spine or spine base, checking for possible merges with other detached 

components in local region. It is possible that several detached components are recognized as the parts of 

a single spine. This happens when the detached components are combined with the same attached spine 

base. 

 There are two criteria for the merging algorithm: the separated components should be close enough, 

and the separated components should satisfy certain relative orientation requirement. It is easy to 

implement the first criteria. For the second criterion, suppose 21PP  is the cutting line of the attached spine 

base on the dendrite; 21CC  is the connection line of the centers of attached component and detached 

component; θ  is the angle between 21PP  and 21CC . If 0θθ ≥ , then the separated components are 

considered to be the parts of the same spine. A suggested range for the threshold 0θ is: ]45,30[ 00
0 ∈θ

. In our cases, 
0

0 40=θ . Compared to Koh’s method which requires the accurate position of the tip of 

each protrusion, this method is more robust to noise and bad segmentation. 
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 During post processing, some important measurement of spines and dendrites are acquired. 

NeuronIQ provides the function to measure dendrite length, spine length, spine density, spine volume, 

spine section area, spine section perimeter, spine neck width, etc. For the purpose of comparison with 

manual results, only spine length and spine density are discussed in this paper. 

 Spine length and spine density are two of the most important properties for neurons. The spine 

density is defined as: lnd /= , where l  is the length of a dendrite, and n  is the total number of spines 

on that dendrite.  

 The length of a dendrite is calculated based on the backbone image. One common approach for this 

problem is to first code the backbone by using some chain coding algorithms, e.g. Freeman Chain Coding 

[6] or Primitives Chain Coding [7].  The total length of the dendrites is calculated afterwards: for 2D 

images, when two pixels are in 4-neighborhood to each other, the total length is increased by 1; when two 

pixels are in 8-neighborhood but not in 4-neighborhood to each other, the total length is increased by 

1.414.  

 The problem for the coding based algorithm is that the codes may become complex when the 

structure of the dendrites is complex. The coding becomes complex because it tries to store the exact 

location information for each pixel. However, we do not need to know the exact location of each pixel of the 

dendrite in order to figure out the total length of the dendrite. Based on this idea, we propose a fast and 

efficient algorithm to estimate the length of a dendrite: 

 

(1) get the total number of pixels 0n ;  

(2) get the total number of pixels which have one (8-4)-neighbor, say 1n ;  

(3) get the total number of pixels which have two (8-4)-neighbors, say 2n ; 

(4) calculate the length of dendrite: 
2

)2()12()1( 21
0

nnnl +⋅−
+−=  

 

A (8-4)-neighbor is defined as a pixel which is in the 8-neighborhood, but not in the 4-neighborhood at the 

same time. The number of (8-4)-neighbor for each backbone pixel can be easily obtained by filtering 

backbone image. The filtering window is defined as: 

⎥
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Actually, 1n  and 2n can be obtained by one time filtering. This method can be easily extended to 3D 

images. We just need to find the total number of (26-18) neighbors in the similar way. 
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 By applying the same method, the length of each spine is obtained by calculating the length of branch 

relative to the spine. The branch is obtained from the medial axis image and backbone image.  

 

4. Results and Discussions 
 

4.1. Results analysis based on single image 

To validate our algorithms, the results obtained by NeuronIQ are compared with the manual results 

image by image.  The results for spine numbers, spine density, and spine length distribution are 

compared in detail in this section. The manual detection is performed without knowing the automated 

detection results. An expert will observe several neighboring slices before mark each spine. The whole 

image stack is divided into 4 regions. The expert can zoom into each region during observation. The 

manual detection and measurement are performed in 3D. Figure 7 (a) is just a 2D demonstration of the 

manual results. 

Figure 7 shows the manually and automatically detected spines for one image sample. There are totally 69 

spines detected both manually and automatically in this image. Compared with the manual results: there is 

one spine missed (spine number 70), and there are four small spines not manually detected (spine number 

73, 74, 75, and 76).  The reason of missing in automatic detection is mainly because the intensity of the 

spine is very low compared with the nearby dendrite. As for manual detection, those small size attached 

spine components are most likely to be ignored by human. 

The reason that the manually measured dendrite length is smaller than the automatic result is that the 

manual result is only an estimation of the actual dendrite length: estimate curve with several connected 

lines. The detailed spine length distribution can be found in Figure 8. 

 The mean square error (MSE) for the manually and automatically measured spine lengths is 0.0292. 

The length distributions for manual and automatic results are also tested by two-sample 

Kolmogorov-Smirnov test. The null hypothesis that the two distributions are the same is not rejected, which 

means that there is no obvious difference between the two distributions. The probability that the dendrite 

length distributions of manual and automate results are the same is 99.13%. The biggest difference 

between these two distributions is 075.0 . 

 

4.2. Results analysis based on image set 

In addition to the single image comparisons, the manual and automatic results are also compared in 

image set.  We randomly select 16 images in our image dataset [8] for validation purpose. The spine 

densities are compared first. As we can see from the result shown in Figure 9, there is obvious linear 

relation between the manually and automatically measured spine densities. Two reasons cause the 

difference between manually measured spine density and the automatic measured results: one is the 

difference of dendrite length measured, and the other is that the very small spines are likely to be ignored 

manually.  
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 Besides comparing with the manual results, we also compare the results obtained by our approach 

with those obtained by applying Koh’s method [3]. Spine detection results of 5 neuron dendrite images are 

compared. The 5 image stacks are 5 views from 5 different neurons. The false positives and false 

negatives are decided by comparing with the manual results. We can see clearly from the results that our 

method has less wrong detection and missing compared with Koh’s method. The missed spines are 

obviously reduced by using our method. 

 

4.3. Discussion 

From the results shown above we can see clearly that our approach has obviously better performance 

in spine detection compared with other existing methods. The spine length distribution and spine density 

obtained are also very similar to the manual results. Besides being automatic, our approach also has the 

following advantages: 

 

 Robust local thresholding can obviously reduce the possibility of missing spines. Spines with 

relatively low intensity values will not be segmented as background according to a globally set 

threshold. At the same time, the false positives are reduced because of the control parameter α
stated in Equation (3). 

 The measurement of spine components is more consistent. This is a very important property for 

the neuroscientists, who are interested in comparing the measurement in different conditions. 

Nevertheless, it is not the case for the global threshold based algorithms [3][13]: the size of the 

spines are sensitive to the global threshold; however, manually set global thresholds from a 

person cannot keep constant even for the same image. 

 The shapes of both attached and detached spine parts are better represented. the base of 

attached spine components will not protrude into the dendrite. This can be observed from the 

comparison between our method and Koh’s method, in both Figure 5 and Figure 6. 

 For the detection of attached spine components, our method is more robust to noise and the rough 

dendrite boundary compared with local maximal distance (tips of a protrusion) based algorithms, 

such as Koh and Xu’s approaches [3][13]. This is because these kinds of methods are prone to be 

trapped in the local maximums because of the noise. On the contrary, our local dendrite thickness 

estimation method, which relies on the median values of more than ten pixels, is much more 

robust. 

 

 There remain unsolved problems in our approach however. We can successfully solve the problem to 

combine an attached spine component with its detached components. In cases that there are only two or 

more detached spine components in the image and without a relative attached spine component, we 

cannot find an efficient way to combine those detached spine parts without wrongly combining the parts 

from different spines.  This is the problem we need to address in our future work. 
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5. Conclusions 
 

In this paper we discuss the algorithms implemented in our automatic spine detection software: NeuronIQ. 

The comparison between manual results and automatic results is also presented. It shows that our 

algorithms have a high spine detection rate with both low false positives and false negatives. The manual 

and automatic measurements of spines show close similarity. No obvious difference is found according to 

our tests. 

  Besides the satisfying results, another attractive property of our approach is that it is able to batch 

process a large number of images. This means that no human interference is required during 

preprocessing, segmentation, backbone extraction, spine detection and measurement, although the 

parameter adjustments, such as the size of filtering windows, might be needed before the processing of a 

new dataset. This highly automatic approach provides a pragmatic solution for enabling high throughput 

screening in the research of neuron science. 

 With robust segmentation results and highly accurate spine detection results, we are interested in 

more complex and specified analysis of the dendrite properties. Our future works will include spine 

classification and dendrite reconstruction. We believe that highly automate image processing approaches 

would greatly help the neuroscientists improve the productivity and efficacy of their research, especially for 

some manually time-consuming tasks such as quantitative morphological analysis about neuron images. 
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