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Abstract   

  A fast algorithm for reconstructing the profile of random rough surfaces using 

electromagnetic scattering data is presented. The algorithm is based on merging a fast forward 

solver and an efficient optimization technique. The steepest descent fast multipole method 

(SDFMM) is used as the three-dimensional (3-D) fast forward solver. A rapidly convergent 

descent method employing a “marching-on” strategy for processing multi-frequency and multi-

incidence angle data is introduced to minimize an underlying cost function. The cost function 

represents the error between true (synthetic) and simulated scattered field data. Several key 

issues impact the accuracy in reconstructing the rough profile are examined in this work, e.g., the 

location and number of receivers, the incident and scattered directions, the surface roughness, 

and details regarding the manner in which sensitivity information is computed in the inversion 

scheme. The results show that using the multiple-incidence (one angle at a time) and the multi-

frequency (one frequency at a time) strategies lead to improve the profile reconstruction.  
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I.  INTRODUCTION 

  The presence of rough ground surface is considered a major source of clutter in subsurface 

sensing applications. The ground roughness causes considerable distortion to ground penetrating 

radar response (GPR), which makes it difficult for conventional signal processing techniques to 

be of use in processing the received GPR data. In some cases, it could be life threatening to 

experimentally measure the roughness of the ground profile (e.g., landmine fields). This is a 

significant challenge for subsurface sensing researchers, therefore the motivation of this work is 

to predict the random rough profile of the ground using a fast inversion algorithm. 

  The work we present here is related to two broad topics currently addressed in the literature: 

(i) forward scattering of electromagnetic fields from rough surfaces without or with buried 

targets [1-24], and (ii) estimating the surface profile or roughness statistics based on theoretical, 

experimental or computational techniques [25-38]. Several works have been published to analyze 

the electromagnetic field scattered from one- (1-D) and two-dimensional (2-D) random rough 

surfaces without and with buried targets [1-14] and [15-24], respectively. However, less has 

appeared on reconstructing the profile of rough surfaces especially the 2-D random rough 

dielectric surfaces [25-38]. The work in [25-26] presents methods for inferring roughness 

parameters of 1-D surfaces from the average electromagnetic data. The work in [27-28] discusses 

some analytical and experimental methods to determine the roughness statistics of 1-D and 2-D 

surface profiles using electromagnetic data. All work in [29-37] present methods for 

reconstructing the profile of 1-D rough surfaces, either perfect electric conducting (PEC) 

surfaces [29-33] or dielectric surfaces [34-37]. The work in [38] presents a technique for 2-D 

PEC rough profile reconstruction. In reality, the ground is randomly rough in two dimensions 
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(i.e. x and y directions) with non-perfect conducting material (e.g., soil, sand, vegetation, water, 

etc), which makes it more challenging to reconstruct its profile.  

  Our algorithm is based on combining a 3-D fast forward solver with nonlinear programming 

technique, which uses electromagnetic waves scattered from the rough ground surface (GPR-

type data). The well-developed steepest descent fast multipole method (SDFMM) will be used 

here as the fast forward solver [39-41], [14-19]. Briefly, the SDFMM is a hybridization of the 

fast multipole method (FMM) [39-41], the method of moments (MoM) [42-43], and the steepest 

descent integration rule (SD) [41]. This fast forward solver is combined with the efficient 

optimization technique of Fletcher and Powell [44-46] to minimize a cost function relating 

parameters of the unknown surface structure to the observed field data. Although real collected 

GPR-data should be used in the reconstruction process, for simplicity in this work, synthetic 

data, generated using the 3-D SDFMM computer code, will be used to test the reconstruction 

algorithm. Several key issues will be examined such as the reconstruction accuracy, the influence 

of number and locations of receivers, the computational expenses of the algorithm, the type of 

cost function (e.g., complex or amplitude error of electric field), and the surface roughness. 

It is important to emphasize that the concept of combining a forward scattering solver with 

an optimization technique is similar to the concept used in [34-38]. The current work is based on 

integral-equation-FMM computational technique which accounts for all multiple scattering 

mechanisms from the surface, however, the work in [34-38] was based on Kirchhoff 

approximation which accounts only for the single scatter and not the multiple scattering [13].    

Our inversion technique uses marching-on schemes of the incident angle and frequency. One 

issue often arises with marching-on methods, is how to choose the criteria for deciding the order 

and length of each scheme. In this work, we present results indicating that marching-on methods 
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offer a feasible approach to provide high quality reconstruction of rough surfaces. We consider, 

beyond the scope of this work, the more general questions concerning synthesizing specific 

iterative strategies for nonlinear problems to guarantee some level of convergence (e.g. data 

ordering, number of iterations per data subset, etc). Such problems are difficult as generally 

discussed, but not dealt with, by Natterer et al [47] and Dorn et al [48]. The application-oriented 

work presented here is an attempt to answer some of these questions.  

This paper is organized as follows; the methodology of the algorithm and mathematical 

formulations are summarized in Section II and in Appendices A and B, the numerical results are 

presented and discussed in Section III, and the concluding remarks are given in Section IV.  

II. METHODOLOGY 

 The reconstruction algorithm of the rough surface profile begins with assuming a 

mathematical model of the surface that can approximately define its height variation. This 

surface model includes a number of unknown parameters that need to be recovered during the 

reconstruction process. For example, the surface profile can be assumed deterministic (e.g., 

sinusoidal), similar to the work reported in [38], or random based on the B-spline function, 

similar to the work reported in [34-37]. The second key issue of the algorithm is to define an 

appropriate cost function to be minimized. This cost function represents the error between true 

data (GPR-type data) and simulated data generated during the searching process. The third key 

issue is computing the synthetic and simulated data using the direct method based on a 3-D fast 

forward solver of the electromagnetic waves.  In this work, we examine the utility of two cost 

functions ( )!C defined as: 

( ) ( ) ( ) ( ) (1)                         and  
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in which, True

i
E  and Sim

i
E  represent the scattered complex electric fields for true-data (GPR-type 

data) and simulated data, respectively. The subscript i represents the receiver’s number, where 

r
N  is the total number of receivers located above the ground. The vector !  represents the 

unknown parameters to be recovered in order to reconstruct the profile of the rough surface. The 

number of elements of vector !  varies according to the assumed mathematical model of the 

surface profile. For example, !  includes 2 parameters in case of sinusoidal surfaces, but it could 

include more parameters in case of using B-spline functions, as will be discussed in Section III.  

The cost function in (1) will be minimized until an acceptable error is achieved as discussed later 

in this Section.  

A. Forward scattering (direct) method: 

All field computations, either to generate synthetic data True

i
E  or simulated fields Sim

i
E at 

each receiver, are obtained using the 3-D SDFMM fast forward solver [41]. The SDFMM 

accelerates the method of moments (MoM) solution of the surface integral equations given by 

[41-43]:  

( ) ( ) ( )[ ] (2a)                          
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where tang. refers to tangent to the scatterer’s surface 
1
S , J  and M  are the surface electric and 

magnetic currents, respectively, r is the position vector, and 
1

!  and 
2

!  are the intrinsic 

impedances of the air and the ground, respectively. The expressions of the integro-differential 

operators 2,1
L  and 2,1

K  are given in Appendix A. Upon discretizing the surface 
1
S  using the 
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RWG triangular patches (Raw, Wilton, Glisson), the surface currents, J and M , are 

approximated by  [41-43]: 

( ) ( ) ( ) ( ) (3)                               , 1
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in which j  is a vector basis function and [ ]
21
III =  is the current unknown coefficient vector. 

After some algebraic manipulations, a linear system of equations is obtained, VIZ = . The 

expression of the impedance matrix Z  is given in Appendix A, the vector V  is the tested 

tangential incident electric field inc
E and normalized magnetic field inc

H
1

!  on the scatterer’s 

surface 
1
S  [41-43]. As well known, using the MoM to solve this system of equations is 

computationally expensive either for large-scale scatterers or when the scatterer is involved in 

inversion techniques. Therefore the fast forward solver, the SDFMM, is employed in the current 

inversion algorithm. Basically, when using the FMM [39-41], the matrix Z  is expressed as: 

FFNF
ZZ + , where NF

Z  and FF
Z  represent the near field (NF) and the far field (FF) parts, 

respectively [39-41]. The elements of NF
Z  are computed directly and are multiplied by the 

vector I  similar to the standard MoM, while the elements of FF
Z  are not directly computed nor 

stored, but their contribution to the matrix vector multiplication is conducted in one step using 

the inhomogeneous plane wave expansions [39-41]. The interaction decomposition into near 

field, NF, and far field, FF, is implemented according to the distance, in free space wavelength, 

between the interacting elements on the scatterer’s surface [39-41]. As reported by Jandhyala et 

al in [41], the computational complexity of the SDFMM is O(K), for the CPU time and computer 

memory requirements per iteration, while it is O(K2) for the MoM, where K is the total number 

of surface current unknown coefficients. Once, the surface currents are computed, the scattered 
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(radiated) electric fields Sim

i
E  can be easily obtained in both the near- and/or the far- zone similar 

to the work reported in [14-19]. 

B. Optimization method: 
The estimated vector !̂   will be obtained upon minimizing the cost function ( )!C  in (1) as:  

!̂ = arg(min
!

(C(!)))                                              (4)  

A rapid steepest decent optimization approach, developed by Fletcher and Powell [44-46], is 

implemented here. For faster and more efficient computations, the elements of the unknown 

vector !  will be restricted to certain limits, i.e., upper and lower bound constraints will be a 

priori provided (
UBLB

!!! "" ). In its most basic form (without the constraints) the iterative 

inversion technique to search for the unknown vector !  is given by [44-46]: 

(5a)                                                        ˆˆ
1 kkkk

d!"" +=
+

 

in which k is the iteration index, 
k

!  is the k-step, and the vector 
k
d  is the vector that minimizes 

the quadratic equation ( )dq  as (see details of Fletcher and Powell algorithm in [44-46]): 

q d( ) = 0.5d
T
Hkd + ck

T
d,    d !R

n
                                  (5b)  

in which R is the real domain, c
k
= !C "̂

k( )  is the gradient of the cost function ( )!C , and the 

matrix H contains the true curvature information for the feasible region and can be regarded as a 

reduced inverse Hessian matrix (see [44-46] for details including a discussion concerning the 

manner in which bound constraints are incorporated into the processing).  

 Computationally, a key component of this approach is the calculation of the gradient of the 

cost function.  In this work, we make use of finite difference approximations for the required 

sensitivity analysis [49]. Although such methods are somewhat less efficient than adjoint field 

techniques, they are more straightforward to code (especially given the SDFMM forward model) 
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and provide the necessary proof-of-principle results for this work. Indeed, the strong 

performance of the method obtained in this work provides motivation for developing the 

required adjoint field computational tools based on the SDFMM forward model.   

 To be specific, the gradient of the cost function is evaluated numerically using the central or 

the forward difference equations [49]. Equation (5a) shows that solving the inverse problem 

requires solving the forward problem large number of times, either to compute Sim

i
E at each 

receiver in (1) or to compute the gradient c
k
 in (5b) with respect to each parameter of vector ! . 

Notice that the mathematical model assumed for the unknown rough surface profile determines 

the number of associated parameters of ! , consequently it determines the number of derivatives 

involved in the gradient c
k
= !C "̂

k( ) . It is also important to emphasize that each iteration of the 

Fletcher and Powell search algorithm involves studying the behavior of the cost function in order 

to determine the best possible search direction (see details in [44-46]). This implies that for each 

iteration k, several runs of the 3-D forward solver are required. This scenario necessitates using 

an efficient and fast forward solver, such as the SDFMM, to retrieve the surface profile in 

realistic time. The geometry of the problem is shown in Fig. 1a, while the flowchart of the 

inversion algorithm is shown in Fig. 1b. 

When using a gradient descent method to solve nonlinear inverse problems, several 

important issues arise including: (i) the mathematical model of the unknown rough surface 

profile with its unknown parameters, (ii) the behavior of cost functions with respect to variations 

in these parameters, and (iii) the convergence of the algorithm with respect to the initial guess of 

these parameters. In addressing (i), we make use of a number of well-studied parametric models 

for the roughness profile. Unfortunately, issues (ii) and (iii) are less amenable to meaningful, 

closed form analysis.  Thus, we present here a number of numerical examples which illustrate 



 9 

the general behavior of the cost function and convergence of the inversion method which we see 

across the range of examples provided in Section III.  

The results, for investigating the above issues, are obtained using the fast forward solver 

SDFMM for a surface size 224.1224.1 ! m2 at f = 1GHz. The incident electromagnetic wave is 

represented by a Gaussian beam normally incident to the surface with horizontal polarization 

[14-19]. The incident beam illuminates a circular spot on the ground of diameter ~49cm. In this 

Section, the relative dielectric constant of the ground is assumed 18.05.2 i
r

!="  (Bosnian dry 

soil [14]). The horizontal electric field scattered from the ground in the far-zone at normal 

incidence is calculated to obtain the cost function ( )!C . This implies that the co-polarized waves 

(HH) are obtained at single receiver, i.e., 1=
r
N , in this example. In all results presented in this 

work, the interactions between elements on the scatterer’s surface are considered FF when their 

FMM blocks are separated by 2 or more finest blocks, where each block has dimensions of 

00
32.032.0 !! "  [41].  

C.  Rough surface models: 

To investigate the above issues, two rough surface models are used as follows: 

(i)   2-D sinusoidal rough surface: in Example 1, the surface is assumed sinusoidal similar to 

Harada et al [38], ( ) ( ) ( )LyLxHyxh /2cos /2cos , !!= , where H and L are the surface maximum 

height and period, respectively. The behavior of the cost function ( )!
1
C  in (1) is plotted versus 

the surface parameters H and L as shown in Fig. 2a. The results show a pronounced local 

minimum point for L=1λ0 and H=0.15λ0. The inversion algorithm is tested to recover the 

unknown parameter H, assuming, for simplicity, that the surface period is known (L = 1λ0), as 
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shown in Fig. 2b.  Zero initial value of H (i.e., flat surface) is used in the algorithm recovering a 

sinusoidal surface with relative error less than 3% with respect to the true surface. 

(ii)   2-D B-spline rough surface: in Example 2, the previous test is repeated for a 2-D rough 

surface approximated by a tensor-product B-spline function as follows [50-51], [34]: 

( ) ( ) ( ) (6a)                                                    ,
1

4

1

4

,! !
"

"=

"

"=

#
n mN

n

N

m

mnmn ySxSyxh $   

in which 
mn,

! are the unknown coefficients with total numbers of 4+
n
N  and 4+

m
N  in x and y-

directions, respectively, and ( )xS
n

 and ( )ySm  are equally spaced knots fifth-order B-spline 

functions for x and y, respectively, given by (Eq. 6 in [34]), and Appendix B:  

( )

(6b)                                         ,         

   ),(

maxminmaxmin

)5()5(

          yy yxxx
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Notice that a fifth-order B-spline function is represented by a piecewise fourth-order polynomial 

[50]. The expressions for )5(
s , 

n
x  and 

m
y  are given in Appendix B. 

 In this Example, the true surface is modeled using the B-spline function of (6a), with all 

coefficients 
mn,

! as random numbers generated using a computer random generator from uniform 

distribution. The produced random rough surface is enforced to have a zero mean height.  The 

total number of coefficients is 2561616 =! , assuming 12==
mn
NN . For simplicity, 254 

coefficients are assumed known, while only two coefficients are unknown. The inversion 

algorithm is tested to recover the unknown coefficients, 
15,7

!  and 
2,11

! , as shown in Fig. 2c. 

Zero initial values of 
15,7

!  and 
2,11

!  are used in the inversion algorithm.   

D. Computational requirements: 

In Examples 1 and 2, the inversion algorithm required 76 and 88 runs of the 3-D SDFMM 

forward solver to achieve 10-6 error in the cost function, for the sinusoidal and tensor-product B-
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spline surface, respectively. Each run required 231 MB computer memory and approximately 15 

CPU minutes, to achieve tolerance of 10-3 of the TFQMR iterative solver (transpose-free quasi-

minimal residual algorithm). A surface discretization distance of 0.08λ0 is used for all the cases 

in this work at f = 1GHz. All computational work is conducted using the COMPAQ ALPHA 

server 667 MHz server.   

III. NUMERICAL RESULTS 

In this Section, several numerical examples of reconstructing the profile of groove-like random 

rough surfaces are presented (see Fig. 3a). All results presented in this section are for ground 

surface of dimensions 0.10.1 ! m2 and relative dielectric constant 01.00.4 i
r

!="  (realistic dry 

soil [34-37]). The incident wave is a Gaussian beam illuminating a circular spot of diameter 

40cm in the x-y plane on ground (see Fig. 3a). This implies that a 3-D scattering mechanism is 

involved in the inversion algorithm, where all fields are computed using the SDFMM code. The 

random rough surface is approximated by the 1-D B-spline function, ( ) ( )!
"

"=

#

1

4

nN

n

nn
xSxh $ , where 

( )xS
n

 is a fifth-order B-spline function given in (6b) and in Appendix B, with 12=
n
N  leading to 

a number of unknown coefficients 16=
n

! , as discussed in Section II. In all results presented 

here, true surfaces are generated using the above B-spline function, with 16 random number 

coefficients obtained using a computer random generator from uniform distribution. Also, all 

true random rough surfaces are enforced to have zero mean height. The random coefficients are 

appropriately normalized to generate rough surfaces with a priori assumption of the surface 

height range, i.e., minimum to maximum heights. The height ranges considered here are 6cm in 

Figs. 3-8 (similar to the work reported in [34-37]), 12cm in Figs. 9a-b and 15cm in Figs. 9b-c. 
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These values are used to define the lower and upper constraints,
UBLB

!!! "" , e.g. for the 6cm 

surface height case, the lower and upper limits are -3 and 3cm, respectively, for all coefficients.  

In Figs. 3b-f, the inversion algorithm is tested to reconstruct the profile of the rough surface 

based on received data with y-polarized fields at 11 receivers located at 15cm above the ground 

mean plane and separated by 6cm (between x=20.4cm and x=80.4cm). The gradient of the cost 

function c in (5b) is evaluated in this example using the central difference equation [49]. The 

cost function ( )!
1
C  in (1) is used in this example. Data obtained based on multiple incidence 

strategy at single frequency (f=1GHz) is employed in the inversion algorithm.  Instead of using 

the data at all receivers and all incident angles simultaneously, we only use the data at all 

receivers simultaneously, but for one incident angle at a time, while updating the cost function 

after each determination of the parameters corresponding to each incident angle. This procedure 

can be considered as marching on in angle and it is, in a way, similar to the nonlinear Kaczmarz-

type approach used by Dorn et al in [48]. Our algorithm begins with zero initial values of the 

unknown coefficients (i.e., flat surface) at normal incidence for 2 inversion iterations as shown in 

Fig. 3b. The output values of the coefficients are then used as initial values in the algorithm at 

0,10 ==
ii !" !  for 2 inversion iterations, as shown in Fig. 3c. This process is repeated at the 

incident angles !"# ==
ii

,10
! , followed by 0,20 ==

ii !" ! , and !"# ==
ii

,20
! , as shown in 

Fig. 3d-f, respectively. The estimated spline coefficients at one angle are used to manually 

update the initial guess at the succeeding angle. Two iterations were chosen at each angle, based 

on several numerical results (not presented here), showing slight improvement in the 

reconstruction when more iterations are used. Figs. 3b-f show good results in the profile 

reconstruction upon implementing the multiple-incidence strategy. In addition, the results of Fig. 

3 show that the small roughness features of the surface were not accurately recovered, as will be 
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discussed later in this section. In the current example (f=1GHz), each inversion iteration required 

56-65 runs of the 3-D SDFMM forward solver, where each run required, on the average, 11 CPU 

minutes, to achieve a TFQMR tolerance of 10-2, and 165 MB computer memory.   

In Figs. 4a-e, a comparison between the magnitude and phase of the electric field scattered 

from the true surface and from the estimated surface is shown, for the same data of Fig. 3 where 

the cost function ( )!
1
C  was used. Notice that the error in the phase (dashed line) is always larger 

than the error in the magnitude (solid line), as will be discussed later in this section. Also, notice 

that the error in the amplitude is diminishing in Fig. 4e compared with Fig. 4a. In this example, 

the beam width limits are x=30cm-70cm, and the 11 receivers are located between x=20.4cm-

80.4cm. 

A comparison between the single- and multiple-incidence strategies at f=1GHz is shown in 

Fig. 5a. These results are obtained using total 10 inversion iterations for the same cost function 

and central-difference gradient formula of Fig. 3. The results of Fig. 5a clearly show that the 

multiple-incidence strategy provides a better reconstruction of the surface profile. Another 

important issue in the inversion algorithm is the required CPU time, which can be tremendously 

improved by implementing the forward-difference formula for the gradient, as shown in Fig. 5b. 

The results are obtained upon running the inversion algorithm for total 10 iterations at f=1GHz, 

using the same multiple-incidence strategy of Fig. 3. The results show insignificant difference 

between the reconstructed surface profile based on the central-difference formula compared with 

that based on the forward-difference formula, especially within the beam width limits (x=0.3-

0.7m). Notice that, the central-difference formula of the gradient required evaluating the 3-D 

scattering problem 56-65 times/inversion iteration, compared with 27-34 runs upon 



 14 

implementing the forward-difference formula. This approach has lead to substantial saving in the 

CPU time. Therefore, the forward-difference formula is adopted in the remainder of this work.  

To demonstrate the enhancement in profile reconstructions, upon using the multiple-

incidence strategy, in Figs. 3 and 5, an error criterion defined by the quantity 
22

/
truetruere
hhh !  

is adopted. The error is plotted in Fig. 5c vs the incident angle, following the same order of 

angles used in the strategy. The quantities 
re
h  and 

true
h  represent the reconstructed and the true 

surface profiles, respectively. Notice that each point in the plot represents the error when that 

incident angle is used in a marching-on scheme in conjunction with all the other incident angles 

to the left of that point. The positive and negative signs of the incident angles in Fig. 5c indicate 

to 0=
i! , and !" =

i , respectively. In addition, Fig. 5c shows a comparison between the 

gradient central formula of Figs. 3b-f, and the gradient forward formula of Figs. 5a-b, for the 

multiple incidence case. The results of Fig. 5c clearly show the reduction in the error upon using 

the multiple incidence strategy. In addition, it shows the insignificant difference in the error upon 

using the forward versus the central formula, except at normal incidence. The forward formula, 

unexpectedly, shows better results than the central formula at normal incidence.  

As mentioned earlier, the results of Figs. 3-4, show inaccurate reconstruction of the surface 

small-scale roughness, implying the need for higher frequencies, to be demonstrated in Figs. 6-7. 

In addition, using the cost function ( )!
2
C  instead of ( )!

1
C , given in (1), has shown better profile 

reconstruction, since it implicitly accounts for the phase information of the scattered electric 

fields. Therefore the function ( )!
2
C  will be adopted in the remainder of this work. However, the 

numerical results show that using ( )!
1
C  or ( )!

2
C  still demonstrate smaller error in the electric 

field amplitudes compared with the phase, similar to Fig. 4. This issue may be resolved by using 
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a new cost function of appropriate weights of the phase and magnitude, which is not in the scope 

of this work.  

The results of Fig. 6a-d, demonstrate the reconstruction of four different rough surfaces with 

profiles dominated by small-scale roughness. Single-incidence in the normal direction is used 

here at f=2GHz. The number of receivers is increased to 29 instead of 11 receivers. In Fig. 6a, 

the 29 receivers are located between x=8.4cm and x=92.4cm while the 11 receivers are located 

between x=35.4 and x=65.4cm. In both cases, the receivers are located at 7.5cm above the 

ground mean plane with separation distance of 3cm. The results of Figs. 6a-c show good 

agreement with the true surface profile, even outside the limits of the beam width (i.e., outside 

x=0.3-0.7m). Also, the profile-reconstruction obtained using the 11 receivers is compared with 

using the 29 receivers in Fig. 6a, demonstrating the improvement obtained by increasing the 

number of receivers. However, the profile reconstruction in Fig. 6d does not show good 

agreement with the true profile, almost everywhere.  

In this case, the multiple-incidence strategy at single-frequency (2GHz) is implemented 

trying to improve the profile reconstruction, as shown in Fig. 7a. Similar to Fig. 3, the 

reconstruction algorithm begins at normal incidence with zero initial values of the coefficients 

(i.e., flat surface). The algorithm is executed for 2 inversion iterations at 0=
i

! , followed by 2 

iterations at each of the angles; 0,10 ==
ii !" ! , !"# ==

ii
,10
! , 0,20 ==

ii !" ! , and 

!"# ==
ii

,20
!  (marching-on in angle). The estimated coefficients at each incident angle are 

used as initial values for the succeeding angle, etc. The results in Fig. 7a show better profile 

reconstruction, upon implementing the multiple-incidence strategy. To achieve realistic CPU 

time, a range of surface discretization distances of 0.08λ0-0.12λ0, was experimented at f = 1.5-

2GHz, leading to use 0.12λ0 discretization for the 1.5-2GHz cases. In Fig. 6d, each inversion 
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iteration involved 30 runs of the 3-D SDFMM forward solver, where each run required, on the 

average, 18 CPU minutes, to achieve a TFQMR tolerance of 10-2, and 148 MB computer 

memory. 

To improve the results of Fig. 7a, instead of using the data at all receivers, all incident angles 

and all frequencies simultaneously, we only use the data at all receivers simultaneously, but for 

one frequency at a time followed by one incident angle at a time. The cost function ( )!
2
C  is 

updated after each determination of the coefficients corresponding to each frequency and each 

incident angle. This combined approach, multi-frequency/multiple-incidence, can be referred to 

as marching-on in frequency/angle, and is implemented again for the profile of Fig. 6d. The 

scheme begins with running the inversion algorithm using data at 1GHz and normal incidence 

for 2 iterations (Fig. 7b), followed by using data at 1.5GHz and normal incidence for 2 iterations 

(Fig. 7c), then data at 2GHz and normal incidence for 2 iterations (Fig. 7c). Zero initial guess of 

the spline coefficients is assumed in Fig. 7b, then after 2 inversion iterations at 1GHz, the 

estimated coefficients are used as initial guess in Fig. 7c, and again after 2 inversion iterations at 

1.5GHz, the estimated coefficients are used as initial guess in Fig. 7d for 2 inversion iterations at 

2GHz.  Then, in Fig. 7e, the multiple-incidence is implemented with initial guess equal to the 

estimated coefficients of Fig. 7d at normal incidence, followed by the same sequence of incident 

angles as used in Fig. 7a (5 points). The results of Fig. 7e show good agreement with the true 

surface profile upon implementing the multi-frequency strategy, followed by the multiple-

incidence strategy (same 5 points of Fig. 7a), all at 2GHz. In addition, comparing the results of 

Fig. 7d (multi-frequency at normal incidence) with those of Fig. 6d (single frequency at normal 

incidence) apparently shows reconstruction improvement due to the multi-frequency strategy. 
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Fig. 7f, shows the error 
22

/
truetruere
hhh !  for the results of Fig. 7a (or Fig. 6d), when 

implementing the single frequency/multiple-incidence (dashed-line), demonstrating the error 

reduction upon marching-on in angle. The results show additional error reduction upon 

implementing the multi-frequency followed by the multiple-incidence (solid-line), shown in Fig. 

7e. Notice that in Fig. 7f, the error is slightly changing between the fourth and fifth incident 

angles, i.e., 0,20 ==
ii !" !  and !"# ==

ii
,20
! , respectively. In Fig. 7f, each point in the plot 

represents the error when that incident angle is used in a marching-on scheme in conjunction 

with all the other incident angles to the left of that point.  

In the above results of Figs. 3, 5, 6d and 7a, consistent errors were observed near the edges of 

the surface. In some cases the error is more pronounced near one edge more than the other, e.g., 

in Figs. 3b-f, the error is larger between x = 0.8-1.0m, while in Fig. 7a, it is larger between x=0-

0.3m. The same observation was reported by Galdi et al [34-37]. This is due to using numerical 

methods for profile reconstruction, where the incident waves near the edges are deliberately 

minimized to eliminate artificial edge effects (~-30dB here). This approach leads to minimize the 

scattered waves from the near edge regions, and consequently to produce inaccurate retrieval of 

the profile at these regions. In some cases, these errors are reduced upon increasing the number 

of receivers, as shown in Fig. 6a, where the number of receivers is increased from 11 to 29. The 

results of Fig. 6d show inaccurate reconstruction almost everywhere, but more pronounced near 

the left edge (x=0-0.3m). As mentioned earlier, Fig. 7a shows improved profile reconstruction 

than Fig. 6d, upon applying the multiple-incidence, except near the right edge (x=0.8-1.0m). 

Although, these errors are minimized in Fig. 7e, but are not completely eliminated [34-37]. 

Our ultimate goal of estimating the unknown profile of the rough ground surface is to remove 

the clutter due to the rough surface from the data, for example, in the mine detection application. 
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The upper plot in Fig. 8 shows a 3-D spheroid target of dimensions 5.499 !! cm3, buried at z = -

4.5cm under the rough profile of Fig. 6a. In this figure, there are only 11 receivers located at z 

=7.5cm above ground with separation of 3cm, between x=35.4cm and x=65.4cm. All results here 

are at normal incidence. The lower plot shows the target signature obtained by subtraction. The 

electric field scattered from the true-surface with the buried target represents the true-data. The 

electric field scattered from the true-surface or from the estimated surface profile, with no buried 

target, is subtracted from the true-data. The solid line in Fig. 8b represents the ideal target 

signature (i.e. surface known), while the dash-dot line represents the estimated target signature 

(i.e., surface estimated). The estimated profile is obtained based on the single-frequency strategy 

(2GHz) and single incidence ( !

0=
i

! ). The results show that the estimated signature is in 

reasonable agreement with the ideal signature only at receivers # 5, 6 and 7, located right above 

the target. The target signature looks asymmetric in Fig. 8b due to the asymmetry of the random 

rough surface profile.  

In all the cases shown in Figs. 3-8, the surface height ranges from minimum ~-3cm to 

maximum ~3cm (i.e. 6cm height range), which is increased to 12cm range in Figs.9a-b and 15cm 

range in Figs. 9c-d. The 29 receivers are positioned above the ground, between x=8.4cm and 

x=92.4cm, at z=10cm in Figs. 9a-b and at z=15cm in Figs. 9c-d, with separation distance of 3cm. 

Fig. 9a shows the reconstruction results for the 12cm height surface at 1GHz using the marching-

on in angles at 7 points ( !

0=
i

! , !

10=
i

! and 0=
i! , !

10=
i

! and !" =
i , !

20=
i

! and 0=
i! , 

!

20=
i

! and !" =
i , !

30=
i

! and 0=
i! , and !"# ==

ii
,30
! ). In Fig. 9a, the surface height 

range is ~12cm with f= 1GHz and zero initial guess of the coefficients at !

0=
i

! . The same 

strategy, discussed earlier, for updating the initial guess of the coefficients at each succeeding 

angle is implemented. In Fig. 9b, the frequency is increased to 2GHz and the marching-on in 
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angle is repeated using the same data of Fig. 9a. In Fig. 9c, the surface height range is increased 

to ~15cm with f= 1GHz and zero initial guess of the coefficients at !

0=
i

! . The marching-on in 

angle using the same 7 points of Fig. 9a is repeated. In Fig. 9d, the frequency is increased to 

2GHz and the marching-on in angle is repeated using the same data of Fig. 9c. The error 

criterion 
22

/
truetruere
hhh !  for the cases shown in Figs. 9a-d is presented in Fig. 9e. The 

reconstructed profiles in Figs. 9a-d are shown for !

30=
i

!  and 0=
i! . Although reasonable 

reconstruction of the surface is still observed in Figs. 9c-d at the 15cm height case, especially at 

2GHz, however, the results are not as good as those for the 6cm (shown earlier) or the 12cm 

height case shown in Figs. 9a-b. This could be interpreted due to a non-negligible amount of 

multiple scattering associated with rougher surfaces. In the current work, both the synthetic and 

simulated data are obtained using the SDFMM, which accounts for all multiple scattering 

mechanisms form the rough surface. This was not the case in the work reported in [34-37] or 

[38], where the synthetic and simulated data were obtained using the Kirchhoff approximation, 

which accounts only for the single scatter from rough surface [13]. The influence of increasing 

surface roughness on deteriorating profile reconstruction or inferring of surface parameters, 

using other techniques, were also reported in the literature [25], [29], [30-33]. In Fig. 9e, the 

results show that for the 12cm at 1GHz case the error is slightly fluctuating upon marching-on in 

angle, while at 2GHz the error is also fluctuating but with a tendency to decrease with angle. For 

the 15cm at 1GHz case, more fluctuations in the error is observed but with tendency to increase 

upon marching-on in angle, while at 2GHz the error is still fluctuating but with tendency to 

decrease with angle.  The required computer memory in Figs. 9a-d is 165MB and 157MB for the 

1 and 2GHz cases, as previously discussed. The average CPU time per run for the cases shown in 
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Figs. 9a-d is 8.4, 16, 8.6, and 18 minutes, respectively. On the average, 32-35 SDFMM runs 

were required per inversion iteration. 

 Although all examples shown in this paper are for the horizontal co-polarized waves , the 

presented algorithm can handle the fully polarimteric case, where any of the co- or cross- 

polarized waves can be employed in the inversion technique (i.e. HH, VV, HV, VH) [52]. The 

fully polarimetric capability of the inversion algorithm will be helpful in imaging small targets 

buried under the rough ground, which will be the subject of a future work. 

CONCLUDING REMARKS 

 A fast computational inversion algorithm is presented in this work based on the SDFMM 

fast forward solver combined with the Fletcher and Powell searching technique. The issues of 

wave direction, computational aspects, receiver locations and number, gradient numerical 

formula and surface roughness are investigated. The results show that implementing the multi-

frequency strategy, demonstrates good improvement in the surface profile reconstruction. In 

addition, the profile reconstruction has been improved upon implementing the multiple-incidence 

strategy even at single frequency. Deterioration in surface reconstruction is observed as surface 

roughness increases, which could be due to a non-negligible amount of surface multiple 

scattering. The results presented in this work, were produced in realistic time because of two 

main factors; (i) the efficient 3-D fast forward solver (SDFMM), and (ii) the optimized Fletcher 

and Powell searching algorithm.  

 In this work, we presented results indicating that marching-on methods offer a feasible 

approach to provide high quality reconstruction of rough surfaces. More future investigations are 

needed to address the more general questions concerning synthesizing specific iterative strategies 

for nonlinear problems to guarantee some level of convergence.  
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Appendix A 

The integro-differential operators  are given by [41-43]: 
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The vector ()!X  represents the surface electric or magnetic currents, J  and M , respectively. 

The intrinsic impedances 
111

/!µ" =  and 
222

/!µ" =  are for the air and ground material, 

respectively. The permittivity and permeability are 
01

!! =  and 
01

µµ =  for the air and 
2

!  and 

2
µ , for the ground. The 3-D scalar Green's function is: 
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where 
iii

k µ!"=  is the wave number, and r !  and r  are the source and observation points, 

respectively. The impedance matrix Z  is given by [41-43]: 
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and B  on a surface S . The matrix Z  in (A4) is a NN 22 !  matrix, where 2N is the total 

number of unknown surface current coefficients I  [41-43]. 

Appendix B 

The equally-spaced knots fifth-order B-spline function )()5( Xs is given by ([34]), [50]-[51]:  

(B1)          

54                                                            ,)5)(115/8(

43             ),460330780655)(115/8(

32               ),660210300155)(115/8(

21                   ),42030205)(115/8(

10                                                                   ,)115/8(

  )(

4

432

432

432

4

)5(

!
!
!

"

!!
!

#

$

<%&

<%+&+&&

<%+&+&

<%+&+&&

<%

=

XX

XXXXX

XXXXX

 XXXXX

XX

Xs  

in which X is xxx
n

!" /)(  or yyy
m

!" /)( , and 
n
x  and 

m
y  are given by: 

(B2)                      /)( ,/)

   ,   ,         

minmaxminmax

minmin

  NyyyNx(xx 

ymyyxnxx

mn

mn

!="!="

"+="+=  

The minimum and maximum values of x and y in (B2) are 5.0
minmin

!== yx , 5.0
maxmax

== yx .  
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List of Figures 
 

Fig. 1 (a) Problem configuration (cross section), (b) Flowchart of inversion algorithm. 
 
Fig. 2  (a) cost function behavior for 2-D sinusoidal surface, (b) convergence of inversion 
algorithm of 2-D sinusoidal surface, assuming a surface period of 

0
1!=L , (c) Convergence of 

inversion algorithm for 2-D tensor-product spline-function model with 2 unknown coefficients 
(

15,7
!  and 

2,11
! ) . True values are represented by the diamond shape in (b) and (c). 

 
Fig. 3 (a) Groove-like rough surface illuminated in the x-y plane by a 2-D Gaussian beam.  
 
Fig. 3b-f Reconstruction of rough surface using 5 points of multiple-incidence strategy at f = 
1GHz, (b) normal incidence, (c) 0,10 ==

ii !" ! , (d) !"# ==
ii

,10
! , (e) 0,20 ==

ii !" ! , 
(f) !"# ==

ii
,20
! . Each incident angle was run for 2 inversion iterations.  

 
Fig. 4 Absolute error between electric field scattered from true surface and electric field scattered 
from reconstructed surface of Figs. 3a-e, (a) normal incidence, (b) 0,10 ==

ii !" ! , (c) 
!"# ==

ii
,10
! , (d) 0,20 ==

ii !" ! , !"# ==
ii

,20
! . Solid line is for amplitude and dotted 

line is for the phase. 
 
Fig. 5a-b    Surface profile reconstruction, (a) comparison between single-incidence at normal 
and multiple-incidence. (b) comparison between central-formula and forward-formula gradients 
(multiple-incidence of Fig. 3). f=1GHz and 10 total number of inversion iterations used in case. 
 
Fig. 5c  Error criterion, 

22
/

truetruere
hhh ! , vs the incident angle for the multiple-incidence 

results shown in Figs. 3b-f and Figs. 5a-b for the gradient central formula (solid line) and 
forward formula (dashed line), respectively, at f=1GHz. Notice that each point in the plot 
represents the error when that incident angle is used in a marching-on scheme in conjunction 
with all the other incident angles to the left of that point. The positive and negative incident 
angles indicate to 0=

i! , and !" =
i , respectively. 

 
Fig. 6   Reconstruction of 4 surface profiles using single-incidence ( 0=

i
! ) and single-frequency 

(2GHz). The 29 receivers are located at 7.5 cm above the ground mean plane separated by 3cm.  
All results are obtained after total of 10 inversion iterations.  
 
Fig. 7a   Reconstruction of surface profile in Fig. 6d using 5 points of multiple-incidence strategy 
at 0=

i
! , !

10=
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!  and 0=
i! , !

10=
i

!  and !" =
i , !

20=
i

!  and 0=
i! , !

20=
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!  and 
!" =

i  at 2GHz. The 29 receivers are located at 7.5 cm above the ground mean plane separated 
by 3cm.    
 
Fig. 7b-e   Reconstruction of surface profile in Fig. 6d using multiple-frequency strategy at  (b) 
1GHz, (c) 1.5GHz, (d) 2GHz at 0=

i
! , followed by 5 points of multiple-incidence strategy at 

(e) 0=
i

! , !

10=
i

!  and 0=
i! , !

10=
i

!  and !" =
i , !

20=
i

!  and 0=
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20=
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!  and 
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!" =
i  at 2GHz. The 29 receivers are located at 7.5 cm above the ground mean plane separated 

by 3cm.    
 
Fig. 7f   Error criterion, 

22
/

truetruere
hhh ! , vs the incident angle when using multiple incidence 

at single frequency 2GHz (dashed line) as shown in Fig. 7a or Fig. 6d, and when using the multi-
frequency followed by multiple-incidence (solid line) as shown in Fig. Notice that each point in 
the plot represents the error when that incident angle is used in a marching-on scheme in 
conjunction with all the other incident angles to the left of that point. The positive and negative 
incident angles in Fig. 5c indicate to 0=

i! , and !" =
i , respectively. 

 
Fig. 8  (a) 3-D spheroid target of dimensions 5.499 !!  cm3, buried at z = -4.5cm under the 
rough surface of Fig. 6a., (b) ideal and estimated target signatures, where total of 11 receivers are 
used here. 
 
Fig. 9   Reconstruction of rougher surface profiles using 7 points of multiple-incidence strategy, 

0=
i

! , !

10=
i

!  and 0=
i! , !

10=
i

!  and !" =
i , !

20=
i

!  and 0=
i! , !

20=
i

!  and !" =
i , 

!

30=
i

!  and 0=
i! , !

30=
i

!  and !" =
i  for surface height range as: (a) ~12cm, 1GHz, zero 

initial guess, (b) ~12cm, 2GHz, with initial guess equal to the estimated coefficients in Fig. 9a, 
(c) ~15cm, 1GHz with zero initial guess, and (d) ~15cm, 2GHz with initial guess equal to the 
estimated coefficients in Fig. 9c. (e) error criterion 

22
/

truetruere
hhh !  for the cases shown in 

Figs. 9a-d.  The positive and negative signs of incident angles indicate 0=
i!  and !" =

i , 
respectively.  The results in Figs. 9a-d are for !

30=
i

!  and 0=
i! . 
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Fig. 3 b-f   
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Fig. 6   a-d 
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Fig. 7a    
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Fig. 7b-f    
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Fig. 8   a-b 
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