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ABSTRACT 

 
 In image processing, deformable models known as active contours have 

been used extensively to locate object boundaries in images.  In this thesis, we 

combine concepts from two active contour methods, energy-minimizing snake 

active contours and charged active contours based on electrostatics to segment 

cells in images of human epidermal cell cultures.  The first method uses energy 

minimization and forces computed from the gradient of an image to deform a 

contour so that it conforms to the boundary of an object the contour is placed in 

proximity to.  The second method accomplishes the same task by using forces 

based on charged particle dynamics.  We will show that by using the energy 

minimization model from the snake active contour and forces based on charged 

particle dynamics that we are able to segment the nucleus and cell wall of human 

epidermal cells. 
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1.1 Introduction 
 
 In 2007, the American Cancer Society estimated that 559,650 people will 

die in the United States of cancer in that year alone.  This amounts to more than 

1,500 people per day [1].  On a positive note, studies show that the five year 

relative survival rate for all cancers diagnosed has increased to 66% (1996-2000) 

from 51% (1975-1977).  This increase in survival rates is attributed in part to the 

progress made in detecting certain cancers at an earlier stage. 

 In order to improve detection at an earlier stage of cancer, as part of their 

work, the Optical Diagnostics for Diseased and Engineered Tissues (ODDET) 

group at the Tufts BME department has been working on developing novel optical 

methods to non-invasively detect precancerous lesions.  The group’s work has 

centered on the epithelium, a cell layer lining organs, where most cancers 

develop.  The group is investigating the presence of light scattering and 

florescence signals that change when normal epithelial cells become transfected 

with human papillomavirus (HPV) or when they undergo processes that signal the 

onset of cancer [2]. 

 During the course of their research, experiments using cell cultures are 

performed.  These experiments require that cells be monitored over time to 

observe their development.  Therefore images of the cells are taken.  One of the 

first steps in the monitoring process is segmenting the cells.  While this can be 

done manually, the process can be time consuming, it is difficult to reproduce 

results and the results are dependent on the individual who performed the 
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segmentation.  The focus of this thesis is to develop a tool that automatically 

segments the cells with as little human interaction as possible. 

 

1.2 Research Focus 
 
 Segmentation is the process of subdividing an image into its constituent 

regions or objects.  There are the traditional model-free segmentation methods 

such as edge detection and thresholding that are based on the discontinuity (edge 

based) and similarity (region based) of pixels in an image [3].  These methods 

make use of local image information to segment an image and are relatively 

simple.  However, automating them is quite difficult as they require considerable 

expert-user interaction due to the complexity and variability of shapes of objects 

of interest in an image [4].  In addition, due to image artifacts such as noise which 

cause the boundaries of image structures to be indistinguishable, these methods 

tend to just highlight the edges in an image as opposed to segmenting the image.  

As a result, these methods usually require some sort of post processing to clean up 

the segmented image.  The main drawback of these methods is that the edges they 

find do not necessarily correspond to object boundaries within an image.  Unless 

one is working with “nice” images that have objects with very distinct boundaries, 

these methods tend to produce segmented images with gaps in boundaries and 

phantom edges. 

 In the last two decades, model-based segmentation methods known as 

deformable models have been greatly studied.  This is due to the fact that these 

methods have the ability to segment, match and track image structures using 
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constraints derived from the image [4].  In addition, these methods can make use 

of a priori knowledge about the location and shape of objects in an image in the 

segmentation process.  This basically means that the method allows users or 

higher level processes to use their knowledge about the location of objects in an 

image to guide the segmentation process. 

 One such deformable model, developed by Kass et al in 1988, known as 

snake active contour models practically set the stage for all future work that was 

done (and is still being done) in the field of deformable models for segmentation.  

The name “active contour” basically means we are dealing with a contour (curve) 

that is dynamic in that it moves and changes its shape.  The word snake is used to 

describe how the contour appears to slither like a snake as it moves.  The work 

done by Kass et al is the foundation upon which the work done for this thesis is 

based. 

 The idea of a snake active contour proposed by Kass et al is an active 

contour model “using an energy-minimizing spline guided by external constraint 

forces and influenced by image forces that pull it toward features such as lines 

and edges.  Snakes are active contour models:  they lock onto nearby edges, 

localizing them accurately” [5].  A snake active contour is a parametric curve, C, 

defined within the image domain that dynamically evolves (reshapes itself) from 

its initial shape and location under the influence of forces defined within the curve 

(known as internal forces) and forces calculated from image (known as external 

forces) to finally settle on the boundary of an object it is placed in proximity to.  

The process of going from the initial curve to the final curve is cast as an energy 
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functional minimization problem by Kass et al.  In the process of minimizing its 

energy, the curve is moved by the internal and external forces which cause the 

curve to be drawn to its minimum energy shape and location which turns out to be 

an object boundary.  At this location the internal and external forces balance each 

other out, therefore stopping the snake’s deformation. 

 Snake active contours have been used extensively for segmentation and 

more advanced methods have been developed such as geometric active contours 

[6] and active contours without edges [7].  Active contours have been used to 

segment and track structures ranging from macroscopic to microscopic in scale 

including the brain, arteries and chromosomes [4]. 

 Due to the promising results that have been obtained with active contours 

in segmenting various types of objects, we decided to use them for the 

segmentation of the cell images obtained by the ODDET group.  The images 

collected by the group consisted of co-registered monochrome image triplets 

consisting of a DIC (differential interference contrast) image made with 

transillumination, a fluorescent image taken with excitation and emission filters 

specific to FAD (flavin adenine dinucleotide) and a fluorescent image taken with 

excitation and emission filters specific to NADH (nicotinamide adenine 

dinucleotide).  Our initial aim was to use all three images in the segmentation 

process because each image contained different type of information about the 

cells.  However, we ended up just using the NADH images because the DIC 

images did not provide much useful information and the FAD images were too 

noisy compared to the NADH images. 
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 Initially, the snake active contour method presented by Kass et al was used 

to segment the human epidermal cells in the NADH images.  Unfortunately, the 

method did not give good results if the contour was not initialized very close to 

cell of interest.  To overcome this limitation, reading the active contour literature 

and experimenting with other methods, led to charged active contours based on 

electrostatics (charge active contour) by Yang et al [8].  By combining the energy 

minimization model from the snake active contour and forces based on 

electrostatics dynamics suggested by Yang et al [8], we were able to obtain 

satisfactory results segmenting the nucleus and cell wall of the cells in the NADH 

images. 

 The outline of the paper is as follows.  The following chapter presents 

some basic principles of image processing and introduces traditional edge-based 

segmentation methods which are referred to in later chapters.  Chapter 3 presents 

the mathematical foundations of snake active contours and charged active 

contours.  Chapter 4 describes the implementation details of the snake active 

contour method and the combined snake and charged active contour method.  The 

results obtained from both methods are presented in Chapter 5.  The conclusion 

and future work are discussed in Chapter 6. 

 Please note that the technical name for the method proposed by Kass et al 

is snakes: active contour model.  However, during the course of this paper as it is 

in the published literature words such as snakes, active contour, snake active 

contour, classical snake, contour and curve will be used interchangeable to refer 

to snakes: active contour model. 
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CHAPTER 2: TRADITIONAL SEGMENTATION 

METHODS 
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2.1 Image Processing Basics 
 
 In digital image processing, a gray scale (monochrome) image is defined 

as a discrete 2-dimensional function f(x, y), composed of a finite number of 

elements known as pixels.  Each pixel has spatial coordinates given by (x, y).  The 

value of the function f at any pair of coordinates (pixel location) is proportional to 

the brightness (intensity of light) of the image at that location.  Since we are 

dealing with discrete monochrome images, there are a finite number of brightness 

levels.  Each brightness level is known as a gray level.  The images used for this 

thesis have 65, 536 levels.  A value of 0 is black while a value of 65,535 is white.  

The values between those two are shades of gray, with higher values being lighter 

shades of gray than lower values. 

 An edge is a change in gray levels between neighboring pixels in an 

image.  The rate of change can be rapid or slow resulting in a strong or weak 

edge.  Locating edges in an image is usually done by applying edge detectors 

and/or edge enhancers to the image. 

 When an edge detector is applied on an image the result is a binary image 

(An image that has only two possible gray level values for each pixel.) known as 

the edge map.  The edge map allows one to distinguish between edge and non-

edge pixels.  For example, edge pixels will be white while non-edge pixels will be 

black.  Edge enhancers on the other hand, can not distinguish between edge and 

non-edge pixels.  They just increase the contrast between edge pixels and non-

edge pixels in an image.  The following section will present an edge enhancer, the 
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gradient, and two edge detectors, thresholding and canny which are used in 

implementing the combined snake and charged active contour. 

 

2.2 Gradient 
 
 The gradient is a mathematical operator from vector calculus.  The 

gradient of a scalar field (a function) is a vector field where each vector points in 

the direction of greatest increase of the function.  Applied to an image, the 

gradient gives the directions and rates of change of gray levels from pixel to pixel.  

The gradient at each image pixel is a vector whose components are calculated by 

the derivatives of the image in the direction of the coordinate axes.  The gradient 

of an image I(x, y) at location (x, y) is defined by the vector: 

⎥
⎦

⎤
⎢
⎣

⎡
=

∂
∂

+
∂
∂

=∇
y

x

G
G

y
I

x
II     (2.1) 

where Gx and Gy are the partial derivatives of the image with respect to the 

horizontal and vertical directions.  The magnitude and direction of the gradient 

are given by: 
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Iangle arctan)(    (2.3) 

The gradient of an image as indicated by (2.1) is computed by taking the partial 

derivatives of the image in the horizontal and vertical directions.  This is 

accomplished by convolving two spatial filters (also known as masks), that 

implement first order derivatives, with the image in the horizontal and vertical 
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directions to get two images Gx (horizontal edge image) and Gy (vertical edge 

image).  There are a number of such masks such at the Roberts and Sobel masks 

[3] but the simplest ones are the following: 

[ ]101 +−  

Figure 1: Horizontal Gradient Mask 
 

[ ]T101 +−  

Figure 2: Vertical Gradient Mask 
 

The following figures illustrate the result of taking the gradient of a simple image. 

 

Figure 3: Test Image 1 
 

 

Figure 4: Gradient Image of Test Image 1 - obtained using Eqn. 2.2 
 

 

Figure 5:  Zoom on Vector Field produces by taking the gradient of Figure 3 
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Analyzing figures 3 through 5, two important observations can be made.  First, in 

homogeneous regions the gradient is zero (black).  This indicates that there is no 

change in the gray levels of neighboring pixels.  Second, at an edge, in the 

gradient image, the magnitude of the gradient is proportional to the rate of change 

in gray level.  This is seen in figure 5 where the vectors on the left, indicating the 

transition from black to white in figure 3 have a much large magnitude than the 

vectors on the right that indicate a transition from gray to white.  Another thing to 

note is that in the gradient image the color of an edge depends on how strong (rate 

of pixel gray level change) an edge is.  The stronger an edge, the whiter the pixels 

at that location will be in the gradient image. 

 

2.3 Thresholding 
 
 Thresholding is a simple image segmentation technique.  The basic idea is 

to assume that the image is comprised to two types (or classes) of pixels: 

background and object pixels, each with a different gray level.  Thresholding is 

performed by choosing a threshold value from the gray scale range of the image 

and following a rule that marks pixels above or under threshold differently.  For 

example, using a 256 gray scale range, pixels that fall below the threshold are 

labeled with gray level “0” (black) while those above the threshold are labeled 

with gray level “255” (white).  The result of thresholding an image in such a 

manner is a binary image. Here is an example of a thresholding rule: 

 valueThreshold
),(255
),(0

)( =
⎩
⎨
⎧

>
≤

= T
TyxI
TyxI

yxIT   (2.4) 
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I(x, y) represents the original image and IT(x, y) is the image after thresholding.  

Image thresholding can also be performed using multiples threshold values, which 

will separate the pixels into the desired number of classes.  Figures 6 through 9 

illustrate the results of taking the threshold on Test Image 2 shown in Figure 6. 

 

 

 

Figure 6: Test Image 2 
 

 

 

Figure 7: Histogram of Test Image 2 
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Figure 8: Test Image 2 after Thresholding with T = 75 
 

 

Figure 9: Test Image 2 after Thresholding with T = 150 
 

Depending on the image one is working with finding the right threshold 

value that properly segments the image for the application at hand can be a very a 

daunting task.  This is especially true if the image does not have a histogram that 

indicates clear demarcations of the pixel gray levels in the image. 

 

2.4 Canny Operator 
 
 The canny operator is one of the most well known and used edge detection 

methods in image processing.  It was developed by John Canny in 1983 for his 

Masters thesis at MIT [9]. 

 The canny operator is a multi-step process that incorporates image 

thresholding and image gradient to detect edges.  First, the image of interest is 

smoothed to reduce noise.  Second, the gradient of the image is taken.  This is 
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done to obtain regions with high spatial derivatives which indicate the presence of 

edges.  Third, the edges in the gradient image are thinned (made one pixel thick).  

This is accomplished by suppressing (setting to zero by a process known as non-

maxima suppression) pixels that do not have the maximum gray level amongst 

their surrounding pixels.  Forth, a thresholding technique referred to as hysteresis 

is used to clean up the thinned gradient image.  Hysteresis works by using two 

threshold values.  If the magnitude of a pixel is above the high threshold, it is 

labeled as an edge (set to gray level 255).  If it is below the low threshold it set to 

zero (labeled as a non-edge).  If a pixel happens to fall between the two 

thresholds, it is set to zero unless it is connected to a pixel that is above the high 

threshold (this removes single edge points which cause broken edges).  The result 

of these four steps is a binary image indicating the edges in the image.  Figure 10 

shows the results of apply the canny operator on Test Image 2. 

 

 

Figure 10: Result of Canny Operator Applied to Test Image 2 
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CHAPTER 3: MATHEMATICAL BACKGROUD 
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3.1 Introduction 
 
 In their survey of deformable models in medical image analysis [4], 

McInerney and Terzopoulos provide the following mathematical formulation of 

deformable models: 

 The mathematical foundations of deformable models represent the 

confluence of geometry, physics, and approximation theory.  Geometry 

serves to represent object shape, physics imposes constraints on how the 

shape may vary over space and time, and optimal approximation theory 

provides the formal underpinnings of mechanisms for fitting the models 

to measured data. 

 The name “deformable models” stems primarily from the use of 

elasticity theory at the physical level, generally within a Lagrangian 

dynamics setting. The physical interpretation views deformable models as 

elastic bodies (e.g. rubber band) which respond naturally to applied forces 

and constraints. Typically, deformation energy functions defined in terms 

of the geometric degrees of freedom are associated with the deformable 

model. The energy grows monotonically as the model deforms away from 

a specified natural or “rest shape” and often includes terms that constrain 

the smoothness or symmetry of the model. In the Lagrangian setting, the 

deformation energy gives rise to elastic forces internal to the model. 

Taking a physics-based view of classical optimal approximation, external 

potential energy functions are defined in terms of the data (the image with 

the object to be segmented) of interest to which the model is to be fitted. 

These potential energies give rise to external forces which deform the 

model such that it fits the data. 
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3.2 Snake Active Contour 
 
 A snake is an energy minimizing parametric curve, C, represented by the 

vector v(s) = (x(s), y(s)), where x and y are coordinate functions of s, the 

normalized arc length.  s  [0, 1] is the parametric domain.  For the purpose of 

this thesis we will be dealing exclusively with closed curves so C (0) = C (1). 

∈

 

Figure 11: Parametric Curve with Control Points v(s) = (x(s), y(s)) 
 

To conform to the boundary of an object it is placed in proximity to, a 

snake works by minimizing an associated energy functional.  The energy 

functional associated with the snake can be viewed as the representation of the 

energy of the snake and the final snake corresponds to the minimum of this 

energy [4].  A snake conforms to the boundary of an object by deforming its 

shape and moving through the spatial domain of the image until it reaches a 

location (theoretically the object’s boundary) where its energy functional  is 

at a minimum.  The energy functional is defined as follows: 

*
snakeE

dssEE snakesnake ))((
1

0

* v∫=         (3.1) 

dssEsEE extsnake ))(())((
1

0
int

* vv +=∫     (3.2) 
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))(())(( sEsEE conimageext vv +=           (3.3) 

dssEsEsEE conimagesnake ))(())(())((
1

0
int

* vvv ++=∫   (3.4) 

where Eint, Eext, Eimage and Econ respectively denote internal energy, external 

energy, external image energy and external constraint energy [5].  The internal 

energy, Eint, is calculated based on the shape and location of the snake and serves 

to preserve the continuity and smoothness of the snake.  The external energy term, 

Eext, is composed of two terms: the external image energy term and the external 

constraint energy term.  The external image energy, Eimage, is calculated using 

image information, typically the negative magnitude of the gradient of the image, 

and is used to drive the snake towards image features like lines, edge and 

subjective contours [5].  The external constraint energy, Econ, is an optional term 

that is responsible for forcing the snake away or towards any particular feature in 

the image.  This optional term is defined by a user or some other higher level 

process.  The expanded general form of the energy functional without the optional 

constraint energy term is: 

dssE
sd

ds
ds
dsE extsnake ))(()(

2
1)(

2
11

0

2

2

22
* vvv

++=∫ βα      (3.5) 

where α(s) and β(s) are non-negative weighting parameters that control the 

snake’s tension (elasticity) and rigidity (inability to bend).  In most applications 

and for this thesis they are treated as constants [5].  From calculus of variations, 

the snake that minimizes the energy functional must satisfy the following Euler 

equation [4]: 
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In compact form: 

0)()()()( ////// =∇−− extEssss vv βα        (3.7) 

The above equation can be viewed as a force balance equation: 

0int =+ extFF              (3.8) 

where Fint = and F)()()()( ////// ssss vv βα − ext = extE∇− .  Fint and Fext denote 

internal force and external force respectively.  The internal force discourages 

stretching and bending while the external force pulls the snake towards the 

desired image edges [10].  Using these force terms, the deformation process of the 

snake can be viewed as an interaction of forces.  The deformation process stops 

when the forces balance each other out Fint = -Fext, i.e. when the snake is on the 

boundary. 

In order to find the solution to (3.7), the snake is treated as a function of 

time t as well as s i.e. v(s, t) [10].  The partial derivative of v with respect to t is 

then set equal to the left hand side of (3.7): 

extt Etststs ∇−−= ),(v),(v),(v ////// βα      (3.9) 

When the solution v(s, t) stabilizes, the term vt(s, t) goes to zero and we obtain the 

solution v(s, tfinal) to equation (3.7). 

 

 

 

 

 20

emiller
Cross-Out



3.2.1 Internal Energy and Force 
 

2

2

22

int 2
1

2
1

sd
d

ds
dE vv βα +=            (3.10) 

 
 The internal energy, Eint, and internal force are functions of the contour 

and are composed of two terms.  The first term makes the snake act like a 

membrane to resist stretching thus enabling the snake to be continuous.  The 

second term causes the snake to act like a thin-plate to resist bending making the 

snake smooth.  The coefficients α and β, known as the tension and rigidity 

parameters are scaling factors that control the relative influence of the membrane 

and thin-plate terms.  α determines the extent to which the snake can stretch at a 

point s on the snake while β determines the extent to which the snake can bend at 

a point s.  By increasing the value of α one increases the “tension” in a snake 

thereby reducing the length of the snake.  On the other hand, increasing the value 

of β increases the bending “rigidity” of the snake and makes the snake smoother 

and less flexible [4].  Setting β to zero at a point s on the snake allows the snake 

to become second-order discontinuous and develop a corner [5]. 

 

3.2.2 External Energy and Force 
 

As was previously mentioned, Eext, the external energy (without the 

optional external constraint energy term), calculated from the image that contains 

the object one is try to segment, is responsible for pushing the snake towards an 

object’s boundary.  This is accomplished by using the gradient image.  If I is the 
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original image containing the object to be segmented, ∇ I, the gradient image will 

have high gray levels at pixels located at edges in I.  By setting Eext as follows: 

2))(( Iv ∇−=sEext     (3.11) 
 

near an edge the energy of the snake will drop drastically.  As a result, the energy 

minimizing nature of the snake will push the snake towards an edge and hold it 

there. 

 

3.3 Charged Active Contour 
 
 The charged active contour is an active contour model based on charged 

particles (electrons and protons), electrostatics and particle movement.  As in the 

snake active contour model, a contour is used to locate the boundary of an object.  

This is accomplished by modeling the curve as a set of connected positive 

charged particles and the edge pixels in the image as fixed negative charges.  This 

presence of charges creates an “electrostatic field” which moves the positive 

charges (the contour) to the negative charges (the object boundary).  The force 

exerted by the electrostatic field is composed of two forces: a boundary attraction 

force which attracts the protons to the electrons and a boundary competition force 

which causes the protons to repel each other. 

 

3.3.1 Boundary Attraction Force Field 
 
 The construction of the boundary attraction force is based on the location 

of boundary pixels in the image of interest and the strength (gray level) of the 

pixels.  The boundary pixels obtained from an edge enhancer or edge detector are 
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treated as fixed negative charges with magnitude proportional to their edge 

strength [8].  Let N denote the number of negative charges at locations r1, r2… rN 

across the edge map and let f (ri) denote the magnitude of the edge map at each of 

these locations.  Using the above notation, we can assign a charge qi to each edge 

pixel at location ri as follows: qi = - f (ri) < 0.  The electrostatic field EA 

(attractive electrostatic field) generated by these negative charges can be 

computed according to Coulomb’s Law as [8]: 
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where X is the set of all possible locations in the 2D domain of the image.  

Expanding (3.12) we obtain: 
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This electrostatic vector field is a bi-directional force field pointing towards the 

negative fixed charges, i.e. the edges. 

 As previously mentioned, the active contour can be considered as a set of 

connected positive charged particles.  Let M denote the number of positive 

charges at locations s1, s2… sM each with a charge pj, where pj > 0.  The attractive 

electrostatic force felt by the positive charges at locations s1, s2… sM on the 

contour is: 

XssEsF ∈= jjjjA p ),()( A         (3.13) 
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In this thesis, a constant unit positive pj charge is assigned to all contour points.  

Since the contour and the fixed charge are of opposite polarity, from electrostatic 

theory, the electrostatic boundary attraction force will push the contour towards 

object boundaries. 

 

3.3.2 Boundary Competition Force Field 
 
 The boundary competition force causes the protons on the contour to repel 

each other.  This is necessary so that free positive charges on the contour do not 

approach object boundaries that are already occupied by other positive charges of 

the contour.  This competition force is the result of an electrostatic field that is 

continuously adapting as the contour evolves and reaches boundaries [8].  The 

electrostatic competition force field is defined such that: (a) Contour points 

(positive charges) that are on object boundaries endow the most to the field with 

contributions proportional to the edge strength of the edge pixels they are on.  (b)  

The force upon a contour point due to the electrostatic competition field is 

proportional to the inverted strength of the edge covered by contour point [8].  

This results in contour points in homogeneous regions feeling the most 

competition force while those on top of strong edges feel very little of the force.  

This ensures that contour points that have detected boundaries stay there but push 

away nearby contour points from the same boundary point.  Condition (a) is 

accomplished by weighting the contour charges with the edge function,  = - 

f(s

jp′

j) pj.  The resulting electrostatic competition field is composed of vectors that 
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point away from the edges already occupied by contour points [8].  Using 

Coulomb’s Law the competition field is: 
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The competition force, FC, described in (b) which prevents contour points from 

approaching the same boundary location is generated by weighting contour 

charges with an edge stopping function, i.e. g (.) = 1 – f (.). 

XssEssF ∈= jjCjjjC pg ),()()(    (3.15) 

The following is an example from [8] illustrating the effect of the competition 

force: 

Consider positive point charges pa and pb on the active contour at 

positions sa and sb.  If these two points are both in homogenous regions, 

EC(sa) and EC(sb) are small, and they exert little competition force upon 

each other (and on other snake points).  However, both of them are 

strongly repelled by any other points that have already reached 

boundaries.  When one of this pair, say pa, reaches a boundary, it (along 

with all other snake points on object boundaries) will alter the electrostatic 

field according to (3.14), with its contribution to the field being 

proportional to its edge strength f(sa).  The impact of this electrostatic field 

on pa itself is however minimized since the force FC(sa) is weighted by 

g(sa) (in (3.15)), i.e. the stopping function prevents it from being pushed 

away from the boundary.  The snake point pb on the other hand provides 

little contribution to this field, but will be most affected by the competition 

force FC(sb) due to the large value of g(sb) in the homogeneous region.  

When both snake points reach a boundary, they both contribute to the 

electrostatic field but have barely any influence on each other. 
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3.3.3 Joint Electrostatic Force 
 
 By combining the attraction force and the competition force we obtain the 

joint electrostatic force J, the net force on the contour, which is constantly been 

updated as contour points move: 

[ ]
)s(F)1()s(F

)s(E)s()1()s(E)s(J

jCjA

jCjjjAjj pgp

λλ

λλ

−+=

−+=
         (3.16) 

Lambda (λ) is a real positive constant that balances the contributions between the 

boundary attraction force and the boundary competition force. 
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CHAPTER 4: IMPLEMENTING ACTIVE CONTOURS 
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4.1 Implementation of Snake Active Contour 
 
 In order to numerically compute the minimum energy contour that solves 

(3.5) we must discretize the energy functional  and the contour C.  This is 

done by using numerical methods and treating the snake as a contour consisting of 

n vertices (control points) connected by straight lines.  Integrals become 

summations and derivatives become finite differences.  Putting this together using 

(3.1) through (3.5) and representing a point on the contour as v

*
snakeE

i = (xi, yi) we 

obtain: 
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Since we are dealing with closed contours the first and last vertices are at the 

same location, therefore vfirst = vlast.  From [5] and (3.7), the corresponding Euler 

equation to be used for the energy minimization of the active contour is: 
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Combining (4.2a) and (4.2b) we obtain: 
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Writing (4.2c) in matrix form we obtain the following pair of equations: 

0),(
=

∂
∂

+
x

yxEextAx     (4.3) 

0
),(
=

∂
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+
y

yxEextAy     (4.4) 

A is a pentadiagonal banded matrix of size (n x n) where n is the number of 

vertices in the contour.  As a simple example, let us assume we have a contour 

with n = 6 as illustrated in figure 11.  Each row of A, m, contains the coefficients 

of the expanded version of (4.2c) (without the Eext term) for i = m. 

 

 

Figure 12: Snake with N=6 vertices 
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To solve (4.3) and (4.4), the right hand sides of the equations are set equal to the 

product of a step size and the negative time derivatives of the left-hand sides [5]. 
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In the above equations, gamma (γ) is the step size and the subscript t is the 

iteration step.  At equilibrium, the time derivative goes to zero and we end up 

with solutions to (4.6) and (4.7).  The solutions to (4.6) and (4.7), x and y, are 

obtained iteratively by matrix inversion: 
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where I is an n x n identity matrix. 
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4.2 Combined Snake and Charged Active Contour 
 
 Implementing the combined snake and charge active follows the exact 

same steps outlined in section 4.1.  The only difference it that instead of using Eext 

= I∇− , Eext = J, the joint electrostatic force developed in section 3.3.3. 

 

4.2.1 Segmenting the NADH Cell Images 
 
 We segmented cells in the NADH images by implementing the combined 

snake and charged active contour method (abbreviated as CSCAC).  The 

implementation was carried out using MATLAB. 

 To be able to use CSCAC, one must be able to clearly distinguish between 

edge and non edge pixels so that one can assign negative charges to the edge 

pixels.  The NADH images had non-uniform illumination and contained a lot of 

noise which made it practically impossible to distinguish between the edges of 

cells and the rest of the image.  To overcome these drawbacks adaptive 

thresholding was applied to the NADH images.  Adaptive thresholding refers to a 

variety of thresholding techniques which threshold an image by breaking it into 

sub-images and then use a different threshold on each sub-image.  We performed 

adaptive thresholding by using 2D convolution to obtain an average image of the 

NADH image, subtracted the average image from the NADH image and then 

threshold the resulting image.  The adaptive thresholding we used was not able to 

completely detect all the edges of every single cell in the NADH images but 

managed to do so for a good number of the cells. 
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The following is the simple pseudo-code of the algorithm implementing the cell 

segmentation. 

1. Load NADH image. 

2. Apply adaptive thresholding on the image. 

3. Use the canny operator on the thresholded image to obtain an edge map. 

4. User clicks in the center of the nucleus of the cell they want segmented. 

5. Using the edge map, use CSCAC to find the boundary of the nucleus. 

6. Once the boundary of the nucleus is found, remove the pixels in the edge 

map that belong to the boundary of the nucleus. 

7. Using the new edge map, use CSCAC to find the boundary of the cell 

wall. 
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CHAPTER 5: RESULTS 
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 This chapter presents the results of using the CSCAC method on NADH 

images.  The original NADH images are quite large with a size of 800 x 600; 

therefore the images are cropped to just the cell one is interested in segmenting.  

Figures 13 through 18 show the results of the CSCAC on six different cells.  In 

addition to the original and segmented cell images, figure 18 also shows the 

adaptively thresholded image that is used in the segmentation process.  Using a 

synthetic image, figure 20 illustrates the progression of a snake from its original 

location to its final location on the object’s boundary. 

  

Figure 13: Result 1 
 

  

Figure 14: Result 2 

 34



Figure 15: Result 3 
 

  

Figure 16: Result 4 
 

  

Figure 17: Result 5 
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Figure 18: Result 5 
 

   

 

Figure 19: Snake Progression 
 

Analyzing the figures above, the performance of CSCAC at segmenting the cells 

is remarkable considering that the cells do not have clearly demarcated nuclei or 

cell wall boundaries. 
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CHAPTER 6: CONCLUSION 
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 In this thesis, we sought to address the problem of segmenting cell in 

NADH images.  The images had a lot of negative attributes such as noise, non-

uniform illumination and indistinguishable cell boundaries which had caused 

traditional segmentation methods to fail.  To address this failure, we presented an 

extension of the work by Kass et al. on snake active contours to segment the cells.   

We found that by combining Kass’s work with the concept of charged active 

contours developed by Yang et al. that we were successful at segmenting the 

cells. 

Using the combined active contour methods to solve the segmentation 

problem was not a straight forward endeavor.  Due to the absence of clear cell 

demarcations in the images, the actual NADH images were not directly used in 

the segmentation process.  Instead the NADH images were preprocessed using 

adaptive thresholding to obtain a clearer image (in the sense that it had less noise 

and had clearer cell boundaries) which was used in the segmentation process. 

 Further work that can stem from this thesis is the development of a 

method that eliminates the NADH image drawbacks of noise and indistinct cell 

boundaries.  Although adaptive thresholding gave good results it failed to work 

for all cells.  Developing a technique that can over come this will increase the 

range of cells that the combined snake and charged active contour can segment. 
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