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Abstract
In this work, we present a shape-based approach to 3D image reconstruction
from diffuse optical data. Our approach differs from others in the literature in
that we jointly reconstruct object and background characterization and local-
ization simultaneously, rather than sequentially process for optical properties
and postprocess for edges. The key to the efficiency and robustness of our
algorithm is in the model we propose for the optical properties of the back-
ground and anomaly: we use a low-order parameterization of the background
and another for the interior of the anomaly and we use an ellipsoid to describe
the boundary of the anomaly. This model has the effect of regularizing the in-
version problem and provides a natural means of including physical properties
determined via another imaging modality for additional stability. A Gauss-
Newton-type algorithm with linesearch is implemented to solve the underlying
non-linear least squares problem and thereby determine the coefficients of the
parameterizations and the descriptors of the ellipsoid. Numerical results show

the effectiveness of this method.
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1. Introduction

In diffuse optical imaging, modulated, near-infrared light is transmitted into the body from
an array of detectors placed on the surface of the region to be imaged3. The diffuse optical
systems then measure the photon fluence that results from the interaction (scattering and
absorption) of photons by that region of the body. The goal is to use the diffuse optical
data to reconstruct an image of the space varying optical absorption and reduced scattering
coefficients in the region of interest. These physical parameters are directly related to the
hemodynamic state of the tissue. Because the hemodynamics are directly impacted by
e.g. the presence of a tumor in the case of breast imaging' or activity in the cortex for
functional brain mapping?, diffuse optical tomography (DOT) offers the hope of providing
significant insight in a non-invasive manner into these and related problems.

From an information extraction perspective, the DOT problem amounts to the deter-
mination of the subsurface structure of the tissue given a limited quantity of fluence data
obtained at the air-tissue interface. Reconstructing a 3D image of the absorption and scat-
tering coefficients is an example of a discrete ill-posed problem, meaning that the quality
and accuracy of the reconstruction are especially sensitive to noise in the data and other un-
modeled physical effects. Generally, some form of regularization must be used to desensitize
the problem to noise. To further complicate matters, the problem is nonlinear, and for our
application, breast tissue imaging, the discrete problem is highly under-determined.

The ultimate goal of breast imaging is obviously the localization and characterization of
tumorous regions in the tissue. In the case of DOT imaging, the existence of a tumor is
signaled more by a change in the optical absorption coefficient than the reduced scattering

coefficient. Hence in this paper, we concern ourselves only with the recovery of this parameter



although our methods can easily be generalized to problems wherein scattering perturba-
tions are also of interest. The task of isolating these localized perturbations is significantly
complicated by the fact that the “nominal” breast is far from a homogeneous, known back-
ground in which the perturbations are embedded. The classical approach to overcoming this
difficulty is to voxelate the region of interest and treat the values of the absorption coefficient
in each voxel as an unknown. Stable recovery of the thousand or even millions of voxel values
is facilitated though the use of Tikhonov-type regularization scheme. Tumor localization is
accomplished by post-processing the resulting reconstruction to segment background from
anomalous regions.

The nonlinearity of the problem necessitates that a forward solver be incorporated directly
into the inversion method. Hence, such an imaging approach can quickly become intractable
when the number of voxels becomes large. Further, such methods require the selection of a
regularization parameter to lessen the effects of the noise, and choosing the right parameter
is far from simple. Some methods proposed in the literature for 3D DOT imaging are not
applicable in our case because they assume data can be taken across the entire surface of
the object to be imaged (see, for example*), whereas in breast tissue imaging, the data can
only be collected over a limited surface area.

Newer techniques, presented only in a two-dimensional scenario, treat the absorption co-
efficient as if it were a piecewise constant function. Under such an assumption, two classes
of methods have been proposed. Some assume the absorption values in the background and
anomalies are known, and seek only to find a low dimensional descriptor of the absorption
perturbation boundaries®. Other proposed schemes first generate a pixel-based reconstruc-

tion of the 2D region of interest. The resulting image is post-processed to obtain an initial



indication as to the number of anomalies, their boundaries and contrasts. Iterative schemes
are employed to improve the estimates of the boundaries and their absorption values®. In
addition to the fact that these methods have only been examined for two dimensional geome-
tries, the robustness of the piecewise constant (PWC) assumption to data consistent with
a spatially inhomogeneous background and tumor has not been examined for 3D problems
involving limited data.

In this paper, we present an approach to the tumor localization and characterization
problem which is designed directly for full three dimensional diagnostic scenarios and which
is sufficiently flexible to allow us to begin the quantitative exploration of the effects of
unknown inhomogeneities specifically in the non-tumor regions of the breast. Our work here
was motivated by our past experience with “anomaly characterization” problems for two
dimensional inverse scattering type of problems. The method we presented in'® for the 2D

10 we used B-spline basis functions to define a

case is closely related to the method in%. In
low-order parameterization of the boundary of the anomaly; therefore, only a few unknowns
had to be recovered to determine the boundary. At the same time, we explicitly modeled
the variations in the background as a weighted linear combination of a small (< 5) collection
of space-varying basis functions. The problem became one of jointly estimating the control-
points specifying the boundary and the few expansion coefficients describing the background
and anomaly, respectively.

For three dimensional problems, the use of B splines to model surfaces is not at all natural.
While one could resort to other, less parametric modeling approaches (e.g. using level sets

as in”), again three dimensional implementations are quite involved. Thus, in this paper,

we consider the estimation of anomalies which have an ellipsoidal shape. FEllipsoids are



defined by the (z,y, z) location of their center, the lengths of their three axes, and a set of
three rotation angles. Thus estimating a “best fit” ellipsoidal anomaly requires only that
we determine these nine geometric parameters as well as a small (less than 10) number of
parameters which model the spatial variations of the absorption coefficient over the support
of the ellipsoid and over the background; a far less under-determined task than full voxel
estimation or even level-set methods.

In practice, tumors are clearly not ellipsoidal; however use of a parametric model as we
are advocating is nonetheless advantageous for a number of reasons. As we demonstrate in
§ 4, the estimation of an ellipsoid can provide important information concerning the location,
size, orientation, and contrast of even a non-ellipsoidal object. Such information in and of
itself will have medical benefit. Moreover, this level of localization can be used to focus the
effort of other, less parametric methods (level sets, constraint imaging methods, etc.) thereby
improving their performance and lowering their computational cost. This is a task we reserve
for future effort. Finally, and most importantly, by limiting our attention here to ellipsoidal
objects, we are more easily able to examine the far more challenging and relevant problem of
anomaly localization in the presence of unknown, volumetric, “background” perturbations.
If one cannot recover simple shapes under such a scenario, it is hardly worth the effort to
look at more elaborate shape-based inversion schemes.

The results in § 4 do in fact demonstrate the utility of this parametric inversion approach.
We show through a large number of numerical examples that it is possible to accurately re-
cover the size, location, and orientation of an ellipsoid-shaped object when the model we
employ to describe the background (i.e.non-anomalous) variations in the absorption coeffi-

cient is not able to reproduce the true spatial variations. Moreover, even when the true object



is not itself an ellipsoid, the structure we recover using our inversion approach does provide
strong localization of the true anomaly thereby indicating that our shape-based method has
the potential for use in and of itself as well as a “focus of attention” preprocessor for other
finer grain imaging algorithms. Thus the numerical experiments in this paper demonstrate
that this shape-based inversion scheme is robust to the types of modeling errors which will
be encountered when processing real sensor data and justify both the further development
of this technique and other related geometries inversion schemes.

This paper is organized as follows. In Section 2, we provide the mathematical formulation
of the problem. The description of the model and the correspondingly reformulated non-
linear inversion problem is provided in Section 3. Extensive numerical results are presented

in Section 4 while conclusions and future work are detailed in Section 5.

2. Mathematical Description and Background

As indicated in § 1, the work in this paper is aimed at absorption imaging for breast analysis.
Within this context, we are particularly concerned with DOT sensing systems which can be
used as an adjunct to traditional mammography. For this class of problems the breast is
constrained by a pair of compression plates. Hence, under the assumption that the optodes
are located far from the edges of the compressed breast, it is appropriate to employ a slab-
geometry to describe the sensing system.

To model these sensing systems, it is well known that the Boltzman transport equa-
tion is the best mathematical descriptor of the underlying physical process relating optical
properties to photon fluence/flux®. However, a more tractable mathematical model, known
to be accurate and also widely used, in a medium such as breast tissue, where scattering

dominates absorption, is the diffusion equation®. In terms of diffusion modeling, one always



has the choice of computing using the partial differential equation (PDE) or an equivalent
integral equation (IE) formulation. Generally, the sparse matrix structure arising from the
discretization of the PDE is preferable to the requirement of handling large dense matrices
which is encountered when using an IE approach. As we discuss in a forthcoming paper,
however, for the slab geometry of interest here, the IE matrices possess significant structure
which can be exploited to partially erase these differences.

To derive this model we let r = (z,y, 2) denote an arbitrary point in space. For a source

s located at position 7, we have

Bros(r) = Gincalr) + [ Glr.¥)uons (7 (7). @)

Here, the incident field at source s, @ipcs, and G are known. The volume 2 is the region
of interest. The G is an appropriately scaled green’s function for a slab geometry based on
nominal, constant values of absorption and scattering. A method of images approach is used
to construct G(r,7)°. The unknown quantities are @ s the fluence (or flux, depending on
location) due to the input at source s, and g, the function representing the perturbation of
the absorption about the aforementioned nominal value.

All quantities depend on the intensity modulation frequency of light: that is, there is
one such equation for each modulation frequency. For ease of notation, and because our
results are presented for data obtained when the light was not intensity modulated, we have

suppressed the dependence on frequency.



Discretizing (1), at any position ry, the total fluence/flux due to source s is given by

¢tot,s(7“k) ~ Qsinc,s(rk) + A Z G(Tka Tm)¢tot(rm)’y(7nm)a (2)

rm EN

where A is a constant dependent on the grid spacing.

Let n denote the number of voxels and m denote the number of detectors. Let the

(1)

inc,s

subvectors of length n, (/5&2,5, 1) have entries ¢y s(7%), Pinc,s(rx) where i € Q. Then by
moving the summation to the other side of (2), the equation can be written in matrix vector
form by as

(I, — GYDIAG(Y)) ), = B (3)

inc,s?

where I, denotes the n x n identity matrix, DIAG(v) is a diagonal matrix with v on the main
diagonal, and G has entries AG(ry, ), where 7, 7 € €.
Likewise, if we let ¢§§2,s, Z(i)cs have entries @ior,5(7k); Pine,s(Tx) With 7, a detector location,

the corresponding matrix-vector equation can be written, according to (2), as

Dlots = Bines + GDIAG(Y) Bl (4)

Here, G has entries AG(ry, ) Where 7y is a detector location but r,,, € Q. If there are m

detectors, the ¢o,, 62, , are m-length vectors and G® is m x n.

inc,s
The total field due to source s that is available to us for imaging is only that which is

(2)

. 2 .
collected over the receivers, namely ¢§02,5. Since ¢y,

is known, the available data according



to (4) is

Ys = 1(&2272,5 - (b'fz)c,s

= GPDiac(7)gh

= G®D1ac(dio,)y

hs(7)- ()

But since ¢§},275 is a function of the vector + through (3) there is a nonlinear relation
between the data ys; and the unknown, .
If we stack the subvectors ys, hs(y), we obtain the model y = h(v). Thus, the problem

we should be solving given data y is the nonlinear least squares problem

min W (5 — h() |5, ©)

where the weighting matrix W is often taken as the inverse square root of the covariance
matrix of any noise corrupting the data. There are several difficulties with the solution to
this nonlinear least square problem. First, the solution is sensitive to small changes in y such
as noise, even if there are as many equations as unknowns ;. Worse, the problem is usually
underdetermined (there are n unknowns 7; and only mk components in the data vector y,
where k is the number of sources,) so there are generally many solutions.

Most traditional methods of estimating the desired solution to this underdetermined and

ill-posed problem take a Tikhonov approach. That is, the solution is approximated as the
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solution to the regularized problem
min [|[W(y — h(y)l5 + A0(7)

where )\ is a positive regularization parameter that balances the fidelity to the data with
damping the noise effects and ©(v) is a regularization operator such as ||y||3. The differences

among DOT imaging methods can be summarized as follows:

e Differences in forward model h: Often, A is taken to be linear because the solution of

linear equations is considerably faster. However, nonlinear models, based either on the

partial differential equation or the integral equation formulation, are more accurate.

e Choice of ©: A typical choice is ||Ly|[5 where L is a matrix and 1 < p < 2. The
regularization term can have the effect of making the solution unique. On the other
hand, the model we describe for g does some of the stabilization for us — if the slab is
not too thick, no additional © term is needed, which eliminates the additional annoying

difficulty of choosing a regularization parameter.

e Definition of v: Most methods consider « as a vector of unknown values, and therefore

the space over which the problem is minimized is huge (R"). With our formulation of

v, however, we greatly reduce the dimension of the search space.

3. The Model for Perturbation of Optical Absorption

Our modeling approach is founded on the underlying assumption that there is a single
localized anomaly (although if we knew we were searching for more than one, we could

readily adapt our model and algorithm to find it) somewhere in a tissue medium which itself
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is volumetrically heterogeneous with respect to the assumed “constant” background used to
construct the Green’s function for our model. Now, if we knew a priori the contrast of the
anomaly for which we were searching and any volumetric perturbations not associated with
the anomaly, the problem would become one of boundary localization. Likewise, if we knew
the boundary, we could optimize for the contrasts. In this paper, we assume that neither is
known and develop a procedure for jointly estimating low order models for the anomaly shape
and contrast as well as more “global,” non-anomalous volumetric perturbations required to
capture the inherent heterogeneity of nominal, non-tumorous breast tissue.

First, we consider how to model absorption inhomogeneities in the background as well as
in the anomaly. Assume for a moment that we do know the boundary of the anomaly. Then

we can define S(r) as the characteristic function

1 r € anomaly

S(r) =
0 otherwise
Next, we assume that the value of the perturbation at a point in the background tissue can
be expressed as the linear combination of a small number, say N,, of known basis functions.
We assume the same about the value inside the anomaly, although the number, N, of basis
functions and the type may be different. This is the approach that we took in'?, except we
only considered a two dimensional version of the problem. We now define the value of the

perturbation function at the point r according to

Ngx1 JZEX\I
Y(r) = S(r) Ba(r) 7@ +[1 = S(r)] By(r) "8
1x N, 1x Ny

12



Notice that B, (r) (likewise By(r)) is a row vector whose entries are the values of the anomaly
(background) basis functions at r, and the components in « (3) are the expansion coefficients.
We note that formally, we should define v as the mollified version of the following equation
so that it will be differentiable in the desired parameters (see Sections 3B,3C), but at our
current level of discretization, the algorithm acts as though we are in fact dealing with the
differentiable, mollified version.

Upon discretization, the equation becomes

v=SBia+ (I — S)Byf (7)

where S now represents a diagonal n X n matrix with 1’s and 0’s on the diagonal, I denotes

the identity matrix of the same size and

B, € RNe B, e R™M o e RN, B e RM™.

In other words, Bj is the discretization of B,(r) over all voxels r; in the region of interest
while By is the discretization of By(r).

Thus, if S is known, there are a total of N, + N, unknowns that we need in order to define
7. In the remainder, we discuss how to describe the boundary of the anomaly (and therefore

define S) in terms of a small number of unknowns.
A. Describing the Boundary

In'’, the DOT problem posed was two-dimensional. In 2D, the problem of parameterizing
a boundary was handled by a B-spline basis. Specifically, the boundary was a linear combi-

nation of a small number of B-spline basis functions, and the so-called control points ((x,y)

13



coordinate pairs) were the only unknowns. Generalizing this idea to 3D is not straight-
forward so we look for a better 3D alternative. We assume that our anomalies resemble
either spheres or ellipsoids, which is not unreasonable in the context of breast imaging given
the limited spatial resolution possible from DOT data. The benefit of using such shapes
as spheres and ellipsoids is that they can be completely described in terms of only a few
unknowns.

We begin by characterizing an ellipsoid, and consider the sphere as a special case. To
completely characterize an ellipsoid, we need only the lengths of the semi-axes, a centroid
location, and a set of orthogonal basis vectors describing the orientation of the axes. In

mathematical notation, we need
e A length-3 vector, ¢, denoting the centroid of the ellipsoid

e A diagonal matrix, D = DIAG(d), whose (absolute) diagonal entries d; are the lengths

of the semi-axes.

e An orthonormal matrix U whose three columns are the coordinates of the semi-axes.
Alternately, we can store three angles from which U can be defined. We call this

three-length vector 6.

Thus, a point 7 = (x,y, z)” is determined to be on or in the ellipsoid if

DU (r = o)l; < 1. (8)
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The matrix U is defined from the vector of angles 6 by

cos(f;)

sin(f;) 0

—sin(6;) cos(f;) 0

0

0 1

cos(fs)

0

0 sin(02)

1 0

—sin(fy) 0 cos(fs)

cos(f3)

sin(f3) 0

—sin(f;) cos(6s) 0

0

0 1

We note that there are multiple ways to define a rotation matrix from three angles''. The one

we use here is referred to as the ‘x-convention’. We also tried the ‘pitch-yaw-roll convention’

and found the representation of U makes little difference as far as the performance of the

algorithm.

Therefore, given the characterization for an ellipsoid as noted above, one can use (8) to

determine if the center of a voxel lies on or in the ellipsoid; if so, the corresponding diagonal

entry in S in (7) is assigned a 1, otherwise, it is set to zero.

The discussion simplifies if we decide to use spheres. In this case, D will be a multiple

of the identity. So rather than keeping track of a three-vector d, we keep track of a single

number (the radius). That is, d will be a scalar. Since for spheres U remains the identity

(since rotations need not be considered), we do not need to keep track of angles, either.

B. Reformulated problem

Thus, S is defined in terms of a small number of unknowns that characterize the ellipsoid.

Given the preceding discussion and our model for v, (6) simplifies, in the case of ellipsoids,

to

min |[W(y — h(e, B, ¢,d, 0))]]3-

aiﬂicidia

15
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In the special case of spheres, the optimization problem further simplifies to

min [[W(y — h(a, 8, ¢, d))|3, (11)

aiﬁ7c5d

where d is scalar. Notice that we have reduced the search space considerably: instead of
optimizing over R", we are optimizing over the N, + N, entries in o and S and the 9 entries
in the vectors ¢, d, (4 entries in the spherical case).

Now A is a nonlinear function of the parameters because h is a nonlinear function of 7y (5),
and 7 depends on «, 8 explicitly and d, ¢, # implicitly through S (7). Hence (10), (likewise
(11)) is a nonlinear least squares problem in our parameters. (See the remark in previous
section regarding the differentiability of +y in d, ¢, 6.)

C. Computational Issues

According to (5) and (3), in order to compute data generated by a given absorption pertur-
bation +y requires the solution of a large linear system (3) at each source. However, for each
source, the matrix involved is the same. Further, the matrix is highly structured, making
it possible to develop and apply a preconditioned block iterative method to solve over the
sources simultaneously: this is discussed further below.

We propose to solve the minimization problems (10), (11) using a Gauss-Newton type
of approach. For simplicity, we discuss only the ellipsoidal case here and note that the
simplification in the case of spheres is straightforward.

Define the function €(a, 8, ¢,d, 0) = W (h(«, 5, ¢,d,0)—y). Then an equivalent formulation

16



of the problem is (dropping the dependence on the unknowns for ease of notation)

1
min —¢’e.
aiﬂ7c!d50 2

The Gauss-Newton algorithm is an iterative method for determining the solution to nonlinear
least squares problems. That is, given an initial guess, say vg, of the solution vector v (v
is given by v = [a”, BT, T, d¥, 7)), the algorithm produces a sequence of iterates vy that
converge (under certain assumptions'?) to v. Each search direction, s, computed by the

Gauss-Newton approach to this problem is given by the solution to the normal equations

(JTJ)s = =J"e, (12)

where J denotes the Jacobian of ¢ with respect to the unknowns, evaluated at the current
estimates, and e is the current value of the residual. The updated guess for the unknowns
is given by vgy1 = v + 5. We describe our algorithm as “Gauss-Newton-type” rather than
as Gauss-Newton since some of the entries in our Jacobian are computed through the use
of finite difference approximations and the columns of the Jacobian are only approximately
solved for via an iterative method.

Let p denote one of the parameters that describe . From (5) we have:

O¢s Oh
s _w
op op

9
= WG(5-DIAG(Sit,)7)

= WG® (Diag( )%—FDIAG(QS(I) )61) (13)
7 8p tot,s ap

17



But from (3) it is easy to show

(1)
Oihs — GOD1AG(gf),) O] (1)

I, — GMDiac
( ) . o

It follows that to compute the necessary derivatives we must proceed as follows:

1. Given current v, compute ¢§},2,5 from (3).

2. For each parameter p do:

(a) Compute (or estimate) g—g.

(b) Solve the matrix-vector equation (14).

(¢) Compute the products in (13) to find %—Zj.

Now note that Step 2a involves the same matrix, regardless of the source (and regardless of
the parameter, for that matter). Therefore, we can solve for them “simultaneously” if we
solve the block equation

AX = B, X,B aren x k,

where A = (I, — G®DIAG(y)), X is an n x k matrix obtained by placing the vectors %}1’}'5
side-by-side for each of k£ sources, and B has columns G(l)DIAG(qSS,z,s), one column for each
source s. Note that we can likewise compute ¢§§2,s for all sources s in Step 1 in a similar
manner, and that the matrices in Steps 1, 2a are the same. The solutions are generated
with an iterative method. The iterative method is an approximate solver. Iterations are
terminated when the relative residual norm ||AX — B||/||B|| is less than some user defined

tolerance, and in this sense, the derivative evaluations are approximate for all the parameters.

We use a preconditioned block MINRES!® algorithm for each block system solve. (Since
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MINRES can only be used for a symmetric system, the equation is first “symmetrized”
by multiplying through by the appropriate diagonal matrix. The preconditioner is also
a diagonal matrix.) As the computation of columns of the Jacobian is independent, the
columns can be computed in parallel if the algorithm is to be run on a parallel computer.

Thus, our approximation to .J is as follows. The first N, columns of .J in row ¢ correspond
to derivatives with respect to «, the next N, to derivatives with respect to 3, and the
remaining 9 columns (or 4 in the case of spheres) correspond to estimates of derivatives in
¢, d, 0, respectively. Note that no finite difference approximation in Step 2a is needed to
compute the derivatives with respect to o and £.

We found that even when the Jacobian matrix was reasonably well conditioned, the full
Gauss-Newton step (12) was not appropriate for every iteration. Therefore, we employed a
linesearch'?!'* to scale the length of the step. In other words, we updated v according to
Vp+1 = U +0xS, where 0, was a positive scalar selected at step k by the linesearch subroutine.
The linesearch routine requires the evaluation of the function being minimized (namely %eTe)
and its gradient. Thus, each step of the line search is not cheap, requiring the same number
of block linear system solves as are needed to form the Jacobian. However, just as the
columns of the Jacobian can be evaluated in parallel, so can the gradient computations.
The Gauss-Newton algorithm when implemented with a linesearch is often called “damped”
Gauss-Newton!2.

In order to generate our first search direction from (12) we must generate a Jacobian and
residual e. This means we must provide a starting guess to the algorithm; that is, we must
begin with an initial ellipsoid (sphere) and initial values for o and 5. Once the initial ellipsoid

is chosen, some care must be taken in choosing the starting guesses for «, 5. These values
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should not be completely arbitrary because they are related to the initial ellipsoid/sphere.
In our approach, we fixed the parameters defining the starting ellipsoid/sphere and used
Gauss-Newton with no linesearch (i.e. we are minimizing (10) only with respect to «, )
to determine the initial values for o and 5. We continued taking Gauss-Newton steps until
relative mean-square error between successive approximations was .01; usually, this required

only two or three steps.

4. Numerical Results

All results were computed in Matlab in IEEE floating point double precision arithmetic and
were built as an extension of the Photon Migration Imaging (PMI) Toolbox'®. As discussed
in § 2, a slab geometry is considered as a model for current breast imaging scenarios. There
were 16 sources on the top of the slab and 16 detectors on the top and 16 on the bottom.
Data were collected at DC only (that is, zero frequency intensity modulation was used),
making the length of the data vector y equal to 512. The slab was 6 cm thick with the
sources and detectors spanning 6 x 6 cm on each surface. The region of interest in which the
optical image was reconstructed spanned 6 x 6 x 4 cm centered between the two planes of
the slab. The size of each voxel was either 2 x 2 x 2 mm or 2.5 x 2.5 x 2.6 mm as described
below. The values of the background optical properties that were used to construct the
Green’s function matrix were an absorption coefficient (u, value) of 0.05 cm ™! and reduced
scattering coefficient (1) of 10cm ™! .

We used centered differences to compute approximate first derivatives with respect to the
descriptors of S. The behavior of our algorithm was somewhat dependent on the spacing we
used to define these centered differences: clearly, the spacing cannot be too small, since then a

change in S is not observed on the grid we are using and the Jacobian will always be singular.
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Of course the spacing defining the differences cannot be too large, or the approximation to
the derivatives becomes poor. In our experiments, we used a spacing of Imm (1.25mm for
the coarser grid) for derivatives with respect to change in centroid and change in axis lengths,
and 7/4 spacing for the angular derivatives. These values are one half of the grid spacing
and were determined to work well by trial and error.

Both shot and electronic noise was added to the data. The fractional standard deviation
in the total signal ranged from 107%% to 200% with a mean standard deviation of 5%. The
inverse of the square root of the diagonal noise covariance matrix, W in (10), was then
computed and used to whiten the data.

In the first set of experiments, we report results in detail for a total of seven configurations
of objects and background structures using a 2 x 2 x 2mm grid. The first six examples are
concerned with illustrating the effects of mismatch in our knowledge of the background
variations in our ability to recover a spherical inclusion (examples 1-3) and an ellipsoidal
anomaly (examples 4-6). In each case, N, = 1 (i.e. the value inside the anomaly was
constant) and therefore « is a scalar'. Because the primary purpose of these examples is to
illustrate and analyze the effects of background model mismatch, the true objects we seek to
characterize are in fact spherical in shape for the first set of examples and ellipsoidal for the
second. To model a “lumpy” background, in these first six examples By, is constructed using
sinusoidal functions of space. The specific functions used in these examples were not chosen
particularly to highlight the utility of our approach but rather represent results which are

illustrative of the general performance of this method.

1 Given the relatively small size of the anomaly and given the resolution being used, according to the results
in'®, we do not expect taking N, bigger than one to be helpful.
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In experiments (examples 7-8), we report results on the performance of the algorithm
on a 2.5 x 2.5 x 2.6 mm grid when a) the “lumpy” background is specified by supplying
the discrete By directly, rather than discretizing a continuous function By,(r), and b) the
anomaly is neither a sphere nor an ellipsoid.

In all examples, « was a single coefficient with value .15. Due to our model, specifying this
coefficient is the same as specifying the perturbation value inside the anomaly as .15cm™?.
The values of the expansion coefficients [;, on the other hand, do not correspond directly
to a background perturbation value (unless By(r) = 1) and hence are unitless. Note that all

images are images of the absorption perturbation v or estimates thereof, and not absolute

absorption.
Example Figures
Number | B, used to generate data By, used for inversion
1| 1 1 | 1]
sin(3z) + 1,
2A cos(8y) sin(2y) + 1, 1 2 and 3
sin(5z) + 1
sin(3z) + 1, sin(3z) + 1,
2B cos(8y) sin(2y) + 1, cos(8y) sin(2y) + 1, 2 and 4
sin(5z) + 1 sin(5z) + 1
sin(3z) + 1, sin(wz) + 1,
3A cos(8y) sin(2y) + 1, sin(&y) + 1, 2
sin(5z) + 1 sin(kz) + 1
sin(3z) + 1, L
3B cos(8y) sin(2y) + 1, cos(x) + cos(y), 2 and 5
sin(5z) + 1 cos(2)

Table 1. Setup for spherical inversion examples

A. Inverting for Spherical Anomalies

The primary purpose of this set of examples is to explore the effects of unknown and perhaps

mismatched background heterogeneities on our ability to localize and characterize spheri-
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Example Radius|Contrast Location Final voxel
Number cm | cm™! (cm, c¢m, cm) error
! Truth | 0.80 0.15 |(-0.60, 1.00, 3.40) 1
Estimate| 0.76 0.17 |(-0.60, 0.99, 3.34)
oA Truth | 0.80 0.15 |(-0.60, 1.00, 3.40) 08
Estimate| 0.86 0.10 |(-0.46, 1.00, 3.46)
op | Druth [ 080 | 015 |(-0.60,1.00,3.40)]
Estimate| 0.86 0.17 |(-0.60, 1.00, 3.39)
Truth | 0.80 0.15 |(-0.60, 1.00, 3.40)
3A Estimate] N/A | N/A N/A N/A
Truth | 0.80 0.15 |(-0.60, 1.00, 3.40)
3B - 295
Estimate| 0.83 0.08 |(-0.39, 1.07, 3.35)

Table 2. Spherical reconstruction results

cal anomalies. By “mismatched” we mean that the functions in B, used to generate the
background absorption structure, are different from those used during the inversion process.
The experimental conditions are summarized in Table 1 where we indicate the background
basis functions used for generating the data, those used in the inversion procedure, and the
relevant figures in the text in which the performance is illustrated.

Summary results for our method are provided in Table 2. Here we indicate the accuracy
to which we can estimate the size, location, and contrast of a spherical anomaly located at
(70, Yo, 20) = (—0.60,1.00,3.40) cm with a radius of 0.80 ¢cm and a contrast of 0.15 cm™'.
The difference between the number of voxels (out of about 20,000) in the estimated sphere
and the true sphere is also provided. Each of the three examples is discussed in greater detail

below.

1. Ezample 1: Sphere, PW( matched model

In this example N, = 1 for the true image (i.e. the background is assumed constant) and

B, is the vector of all ones. Therefore, the true image is piece-wise constant (PWC). In
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the reconstruction, the N, and B; used are the same as for the true image, meaning there
is no “model mismatch” between the true solution and the computed solution (i.e. the
reconstruction is also PWC).

We assumed that no good starting guess for the location of the sphere was known. There-
fore, we took the starting guess as the largest sphere that fit inside the region of interest — a
sphere of radius 2cm centered at the origin. Thus, there was a 3914 voxel difference between
the starting guess and the true anomaly.

The values computed by our algorithm are summarized in the first two lines of Table 2.
We see that when the model is well matched, we can recover the spherical structure almost
perfectly. The significance of the small, 11 voxel, difference between the real sphere and the
estimated one is illustrated in Figure 1 which compares 2D cross-sectional sparsity plots of
the entries in S for the exact solution with that of the reconstruction. That is, a colored
mark indicates a 1 in the corresponding position in S, and no color indicates a 0. Clearly,
our algorithm has done an excellent job of both characterizing and localizing the anomaly.
We stress that this performance is fairly consistent over different noise realizations, and can
improve — in some experiments, there was only a 5 voxel difference between the true and

computed anomalies.

2. Example 2A: Sphere, model mismatch

Here, we have taken N, = 3. The function By(r), where r denotes an (z,y,z) triple, is
defined as

By(r) = [sin(3z) + 1, cos(8y) sin(2y) + 1,sin(5z) + 1],
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Fig. 1. Sparsity plots, moving down from the top of the region of interest (where height=1cm),
depict the location of true and reconstructed anomalies for Example 1. The plus marks indicate the
location of the true anomaly. The black dots indicate voxels missed by the reconstructed anomaly
as the reconstructed anomaly was slightly too small. The horizontal axis is increasing z from left
to right but the tick marks give matrix column index. The vertical axis is decreasing y from top
to bottom and the tick marks indicate matrix row index.

and the corresponding matrix By is determined by evaluating B, at all points r; inside the
region of interest. The true values of the coefficients (; are 2.0e-3, 2.0e-3, and 1.00e-3. The
anomaly itself was the same as in Example 1. We note that the background perturbation
was found to have a maximum of 9.97e-3, a minimum of 1.74e-5, and an average value of
4.96e-3.

As discussed previously, one goal of this work was to establish the effect of lumps in the
background tissue on reconstruction. Hence here we reconstruct using N, = 1 and take By
in the reconstruction is a single vector of all ones (corresponding to By(r) = 1). The starting

guess for the sphere is the same as in Example 1. As we see from Table 2, in spite of the
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height2.6 cm

height4 cm

Fig. 2. True image, slices moving down from surface of the region of interest, Examples 2A
and 2B. Value inside the anomaly is .15 cm™!: colormap is truncated to show the background
variation, so the anomaly appears as a bright white spot.

mismatch in the model, there is only a small degradation in performance. The 98 voxel
mismatch which can be attributed to the fact that the radius is slightly overestimated and
the x, z centers are slightly off target, as can be seen in the spy plots in Figure 3. Finally,
we observe that the value of £ in the reconstruction was 4.7e-3 which is very close to the
average value of the true background perturbation, while the relative error between the true

and computed o was 28 percent.

3. Ezample 2B: Sphere, matched model
We expected an improvement if in fact the same background bases were used in the recon-
struction as was used to generate the true image in the preceding example. So here we

repeated example 2A, except the By(r) used in the reconstruction was the same as that for
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Fig. 3. Sparsity plots depict the reconstruction error in shape for Example 2A. The black
plus marks indicate points that were inside the reconstructed anomaly that were not inside
the true anomaly. The black dots indicate points that were inside the true anomaly that
were not inside the reconstruction. The horizontal axis is increasing x from left to right
but the tick marks give matrix column index. The vertical axis is decreasing y from top to
bottom and the tick marks indicate matrix row index.

the true figure. The estimated parameter values shown in Table 2 lead to a final estimate of
S having only a 12 voxel mismatch. Thus, by correctly modeling the background perturba-
tions, we can obtain a significant improvement in localization and in the estimated value of

«. Figure 4 shows slices in depth of the reconstruction.

4. Ezample 3: Sphere, multiple model mismatches
In this test we have taken N, = 3 both to generate the true image and to generate the

reconstruction. However, By(r) for the true image is the same as those in the previous two
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Fig. 4. Reconstruction with matched background basis functions in Example 2B, slices are
shown moving away from the top surface. Reconstructed a value is 0.168. The colormap
truncation is the same as was used to display the true image, so the reconstructed anomaly
appears as a bright white spot.

examples while By(r) for the reconstruction is incorrectly assumed to be

By(r) = [sin(wz) + 1,sin(Cy) + 1,sin(kz) + 1]

and we experimented with different values of the parameters w,n, and k. For small values of
the parameters (e.g. < 4), the reconstructions were worthless (no better than or worse than
the starting guess). This is understandable since no matter what the expansion coefficients,
the high frequency bumps in the true background cannot be captured with this basis.

Next we tried By(r) = [1, cos(z) + cos(y), cos(z)] in the reconstruction. Again, high fre-

quency bumps cannot be captured in this basis, but since we have allowed for constant
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variation, we expect the algorithm to behave similar to 2A in that the background perturba-
tion should converge to roughly the average value of the true background. This is in fact the
phenomenon we observed. The reconstructed values for the anomaly are provided in Table 2.
The background expansion coefficients were estimated to be B =[4.84e-4,-3.90e-6,-4.87e-4].
Observe that the maximum, minimum and mean values for the reconstructed background
were 5.34e-3, 4.57e-3, 5.04e-3. Hence, the reconstructed background was almost constant
again at about the average value of the background perturbation. Sparsity plots in Figure
5 comparing the true sphere with the reconstructed sphere put the 115 voxel mismatch in
perspective. Comparing with example 2A, we are lead to believe that a piecewise constant

background assumption can be superior to using incorrect basis functions if nothing is known

about the background perturbation a priori; this deserves further study.

Example| By(r) used to generate data By(r) used for inversion Figures
Number
4 | 1 | 1 | 6 |
sin(7z) + 1,
5A sin(4y) + 1, 1 7 and 8
sin(3z) + 1
sin(7z) + 1, sin(7z) + 1,
5B sin(4y) + 1, sin(4y) + 1, 7 and 9
sin(3z) + 1 sin(3z) + 1
sin(7z) + 1, sin(7z) + 1,
6 sin(4y) + 1, sin(8y) + 1,
sin(3z) + 1 sin(10z) + 1

Table 3. Setup for ellipsoid experiments

B. Inwverting for Ellipsoidal Anomalies
In this subsection, we examine the background model mismatch issue for the more complex

problem of estimating the structure of an ellipsoidal absorption anomaly. The background
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Fig. 5. Sparsity plots depict the difference between the location of true and reconstructed
anomalies for Example 3. The black dots indicate which voxels are in the true anomaly that
are missed by the reconstruction while the plus marks indicate voxels in the reconstruction
that are not in the anomaly. Clearly the reconstruction has the anomaly shifted slightly to
the right in z. The horizontal axis is increasing = from left to right but the tick marks give
matrix column index. The vertical axis is decreasing y from top to bottom and the tick
marks indicate matrix row index.

Example Axis lengths Location Angles Contrast|Final voxel
Number (cm, cm, cm) (cm, cm, cm) (rad, rad, rad) cm~! error
, | Truth [(1.10, 0.50, 0.80)[(0.70, -0.90, 2.40)[ (0.79, 0.79, 0.00) [ 0.15 26
Estimate|(0.83, 1.11, 0.54)((0.69, -0.90, 2.42)| (-8.64, 0.81, 1.58) | 0.12
_, | Truth [(1.10,0.50, 0.80)[(0.70, -0.90, 2.40)[ (0.79, 0.79, 0.00) | 0.15 2450
Estimate|(1.99, 2.21, 1.60)((0.68, -0.79, 3.02)| (-15.4, 0.44, 2.01) | 0.014
5B Truth |(1.10, 0.50, 0.80)((0.70, -0.90, 2.40)| (0.79, 0.79, 0.00) | 0.15 91
Estimate|(0.82, 1.10, 0.53)[(0.69, -0.91, 2.41)| (0.53, -1.49, 0.78) | 0.13
6 Truth |(1.10, 0.50, 0.80)((0.70, -0.90, 2.40)| (0.79, 0.79, 0.00) | 0.15 701
Estimate|(1.75, 1.54, 0.66)((0.77, -0.78, 2.47)|(-12.0, -0.21, 0.35)| 0.036

Table 4. Ellipsoid results. See comments at the beginning of Section 4 B for further infor-
mation on how to judge results in this table.
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structures used for the experiments are summarized in Table 3 while the inversion results
are provided in Table 4.

In Table 4, note that the periodic nature of entries in the rotation matrix U in (9) implies
that different angles can affect essentially the same rotation (i.e. the 6; are not unique), so
we report them in Table 4 only for completeness. Further, note that different orderings of
axis lengths combined with certain rotation matrices can generate the same ellipsoid, so it
is the values of the axis lengths, and not their ordering in the triple, that are important.
Therefore, to better gage the quality of the ellipsoidal reconstruction, one should look at the

voxel mismatch numbers.

1. Ezample 4: Ellipsoid, PWC matched model

In this example N, = 1 for the true image (i.e. the background is assumed constant) and B,
is the vector of all ones. The true value for S was taken as 5e-3. In the reconstruction, N,
and B, are the same, meaning there is no model mismatch between the true solution and
the computed solution.

The values obtained by the reconstruction are shown in the first row of Table 4 and
the estimate of 8 was 5.00e-3. There was a difference of 26 voxels between the true and
reconstructed ellipsoid. The sparsity plots, which visually depict the S matrices in each
case, are shown in Figure 6. From the plot it is obvious that the axis rotation is accurately

captured.

2. Example 5A: Ellipsoid, model mismatch 1
Now we specify a lumpy background for the true image using N, = 3 and By(r) = [sin(wz) +
1,sin(Cy) + 1,sin(kz) + 1]7, with w = 7;¢ = 4;x = 3. This gives a max background

perturbation value of 1.20e — 2, a minimum perturbation value of 3.07¢ — 5 and an average
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Fig. 6. Sparsity plots depict the location of true and reconstructed anomalies for Example 4.
The black dots indicate the true anomaly, the centers of the black circles show areas of the
reconstructed anomaly that lie outside the true anomaly (in other words, the reconstruction
is represented the dots plus the circles). The horizontal axis is increasing x from left to right
but the tick marks give matrix column index. The vertical axis is decreasing y from top to
bottom and the tick marks indicate matrix row index.

of 5.98¢ — 3. Cross-sectional slices in depth for the true image can be seen in Figure 7.

The reconstructed values for the ellipsoid parameters are provided in Table 4. The esti-
mate of 8 was; 4.95e — 3. As in the sphere example, we observe that the background value
that is calculated by the algorithm is close to the mean value of the background perturbation
and the x coordinate for the center is reasonable but otherwise, the estimate is fairly far off.
The algorithm has trouble locating the true center initially (namely the z-coordinate), due to
the nature of the background perturbation. Once a bad estimate of the center was obtained
by the algorithm, it never seemed to recover and got stuck in a local minimum very early

on. This type of phenomenon is related to the location and spread of the “peaks” in the
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Fig. 7. True image used in Examples 5A, 5B. True « value is .15. The colormap is truncated
to show background detail, so the anomaly appears in bright white.

background perturbation (see Section 4 E and Example 6 below) — when the peaks are wide
and of high enough value, they obscure the true size and location of the anomaly. There
was a 3,450 voxel mismatch (compared to a 8,817 voxel mismatch for the starting guess);

see Figure 8.

3. Ezxzample 5B: Ellipsoid, matched model

Finally, we use the true image in Example 5A, but we reconstruct with the correct basis. The
reconstruction is vastly different than in 5A and fairly close to perfect. Comparing Figures
9 and 7, shows that despite the large difference in the estimates of the rotation angles, when

used to construct U, these values do in fact lead to the correct axis orientation.
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Fig. 8. Cross-sectional display of locations of reconstructed ellipsoid (dots and plus marks)
vs. true ellipsoid (plus marks) for Example 5A. The oversized reconstruction is the result of
not appropriately accounting for a lumpy background.

4. Ezample 6: Ellipsoid, model mismatch 2

We performed almost the same experiment as in 5A except that in By, the values of ¢ and &
were changed to 8 and 10, respectively. This gave a max background perturbation value of
1.20e-2, a minimum of 4.39¢e-5 and an average of 5.85e-3. The reconstructed « value was only
3.57e-2 — not quite as small as estimated in Example 5A, but still about 1/4 the magnitude
it should be. The value for 3, 5.18e-3 is close to the average background value again. The
centers estimate was somewhat off although still better than Example 5A. The lengths of
the axes were too large at d; = 1.75;dy = 1.54;d; = .66. There is a 701 voxel mismatch
versus to 3,450 in Example 5A. Comparing the results in 5A with these results, we conclude

that if an incorrect basis is used in the reconstruction, the texture of the true background
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Fig. 9. Reconstructed perturbation for example 5B. The reconstructed value of « is 0.13.
The colormap truncation is the same as that used in Figure 7.

perturbation can have a significant impact on reconstruction quality.

C. Ezample 7: Sphere in Lumpy Background

In these experiments, we explore further the effect of a lumpy background on the reconstruc-
tion process, but where the lumpy background does not correspond to a functional expression
By(r). Instead, we deal only with the discrete formulation of the problem; that is, we specify
the background through a single digital image. We take By to have a single column, but to
get the values in that column, we apply a 3D highpass filter to a 3D white noise array and
unstack the array to obtain a vector. There are two parameters that allow the background to
change: one parameter , s, sets the maximum value of the background, and the other, w, is

a negative number in (-15,0) that controls the width of the lumps by controlling the filtering
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effect of the highpass filter. For example, when w ~ —1, the lumps are small whereas when
w is increasingly large and negative, the lumps become smaller (compare Figs 10,11, for
example).

The true value of o was 0.15 and the true value of 8 was 1. The anomaly was a sphere of
radius 1 and center located at (0.5,1.1,3.7). The idea was to reconstruct with a sphere and a
PWC model for the absorption perturbation in the background and anomaly. In Table 5 we
can see that both the maximum value of the background perturbation as well as the width
of the lumps does influence the reconstruction. Further experiments, not reported here for
the sake of brevity, using increasingly large negative w parameters also support the trend
observed in the table. In short, as the lumps widen, the maximum value has to become
smaller in order to be able to get a reasonable reconstruction. Figure 10 and 11 show cross-
sections of the true solution when the background was created with s, = .005,w = —1 and
se = .005,w = —2, respectively. (Note that the colormap has been truncated so that the
background is better seen — the value of the bright white anomaly is actually 0.15 cm™!.)

The last row in Table 5 and the Figure 12 show that it is still possible to get good
localization and characterization of the anomaly if the correct background basis vector is
used, even when the PWC reconstruction fails. Hence, future work should consider how to
estimate the background basis functions (see also further remark in Section 5).

D. Ezample 8: Non-ellipsoidal Structure

With this example we begin to explore the effect of applying our ellipsoidal model and
algorithm when the true anomaly is neither a sphere nor an ellipsoid. We used a PWC
model both to generate the true image and in the reconstruction (i.e. B,(r) = 1 for both

the true absorption perturbation and the reconstructed absorption perturbation.
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Fig. 10. Cross-sectional slices moving down from the surface for the true solution in Section
4C with s, = .005,w = —1. True value of a is 0.15: colormap is truncated to show
background detail.
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For the first experiment, the true anomaly was the concave, non-ellipsoidal shape shown in
black in the image in Figure 13, and the perturbation value inside the anomaly was 0.15cm™!
while outside it was 0.005. In the reconstructions, we assume S is defined by an ellipsoid.
The ellipsoidal shape that is reconstructed by our algorithm is shown in red in Figure 13.
There is a 98 voxel mismatch. The reconstructed perturbation value is correct outside the
anomaly (0.005cm™!). Inside the anomaly the perturbation value is low at 0.08cm™!, (this
represents a 44 percent error) but it is clearly much larger than the background perturbation.
The overall localization is very good.

For the second experiment, the shape was the submarine-shaped object in black shown in

Figure 14, and the perturbation value inside the anomaly was again 0.15cm ™. As in the first
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Fig. 11. Cross-sectional slices moving down from the surface for the true solution in Sec-
tion 4 C for s, = .005, w = —2.

o | B, generated b center Radius|Voxel mismatch
truth | .15 lumps 1 (.5,1.1,3.7) 1

bkg values

Se | w

.01 -1 |.008 PWC .002 (-1.25,1.70,4.01)| 2.64 2892

.005( -1 |.06 PWC 9.8 x 107* | (.48,1.12,3.59) | 1.15 133

.005| -2 1.003 PWC 9.6 x 10°*| (.28,1.62,4.7) | 3.05 3255

.001] -2 |.09 PWC 2.02 x 107*| (.50,1.08,3.61) | 1.08 61
.005] -2 [.16] lumps 1.00 | (.50,1.10,3.69) | .99 | 7

Table 5. Results when reconstructing with PWC basis for various lumpy backgrounds. The
last row gives values when reconstructing with the correct basis. When interpreting the last

column, keep in mind that the voxel mismatch between the starting guess and true solution
is 1856.

experiment, in the reconstruction phase we use an ellipsoid to define S. The reconstruction

is shoen in red in Figure 14. There is a 94 voxel mismatch between the true shape and the
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Fig. 12. Cross-sectional slices moving down from the surface for the reconstructed solution in
Section 4 C for s, = .005, w = —2 using the correct B, in the reconstruction. Reconstructed
« value is .16 and the colormap truncation is the same as was used in Figure 11.

reconstruction. The reconstructed perturbation value inside the anomaly is still somewhat
low at 0.10cm™! (this represents a 33 percent error), but the reconstructed value in the
background is correct (.005) and the localization is very good.

Both results suggest that the ellipsoidal algorithm performs almost as well as can be
expected given the model mismatch and that it could be used as a starting point for a
related imaging scheme with more flexible parametrically described shapes.

E.  Summary of Experimental Results
Although not detailed explicitly here in the interest of space, a number of other experiments
were performed. In general, we noticed the following types of behavior, given that such an

arbitrary starting guess was used in all cases:
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Fig. 13. Example 8A: Cross-sectional plots moving down from the surface comparing the
shape/location of the true object with the reconstructed shape. The true anomaly is marked
with black dots, the reconstruction is overlaid using plus marks . The horizontal axis is
increasing z from left to right but the tick marks give matrix column index. The vertical
axis is decreasing y from top to bottom and the tick marks indicate matrix row index.

1. If the anomaly was centered far from the “origin” ([0,0,3]), or if the Thickness of the
medium was much larger than 6¢cm, the algorithm did not perform well: it could often
estimate the centroid, but was not effective at shrinking the axis lengths. This is to be
expected because the problem effectively becomes more severely underdetermined in
that instance and the coverage from the sensors in these regions of space are sparser.
A possible help for this would be to use additional data from different modulation
frequencies, which we did not consider in the present work. Another possibility is
to use an additional regularization term that encourages shrinkage relative to the

estimated value inside the anomaly, similar to what we did in'?, but then one needs to
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Fig. 14. Example 8B: Cross-sectional plots moving down from the surface comparing the
shape/location of the true object with the reconstructed shape. The true anomaly is indi-
cated with black dots, the reconstruction is overlaid using plus marks. The horizontal axis
is increasing = from left to right but the tick marks give matrix column index. The vertical
axis is decreasing y from top to bottom and the tick marks indicate matrix row index.

worry about the choice of regularization parameter. Finally, as money/physics allow,
improvements will be gained by increasing the number of sources/detectors at the cost

of increased computation time.

2. If the background perturbation was non-constant but a PWC assumption was used
in the reconstruction, the types of lumps in the background perturbation affected the
reconstruction. More specifically, the wider the peaks of the lumps, the smaller the

peak values needed to be to obtain an accurate reconstruction.

3. Further work needs to be done to determine how much inaccuracy can be tolerated in
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the solutions returned by the iterative solver.

. Spheres can be used as a first step to approximate ellipsoids. When the spherical
algorithm is run, it does a relatively good job of identifying the correct center of the
ellipsoid, but the resulting sphere tends to have a radius which is smaller than the
longest semiaxis. Then if that sphere is used as a starting guess to the ellipsoidal
algorithm, the algorithm can get stuck in a local minimum, so care must be taken in
using the spherical result to initialize the ellipsoidal algorithm. One possible remedy
is to initialize the ellipsoidal algorithm with a sphere or ellipsoid having a larger-than-

estimated radius but using the computed center.

. The results show that localization had to be very good to get a reasonable estimate of

the value inside the anomaly.

. Useful information on localization could be obtained even if the anomaly was not

spherical/ellipsoidal.

. Finally, we note that we expect that as we refine the grid the approximations to the
derivatives will correspondingly be improved, and therefore we expect the performance

of our algorithm to improve.

Conclusions and Future Work

We have described an algorithm, based on a low-order parametric model, for jointly localizing

and characterizing the absorption perturbation in breast tissue. Experimental results show

the robustness of the algorithm under certain restrictions that may hold true in practice.

The background basis vectors used in our experiments were discretizations of continuous

functions and were selected to show the strengths and limitations of our approach — they
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were not necessarily related to physical properties of breast tissue. However, a key benefit
of our approach when viewed in the discrete setting is that other choices of realistic basis
vectors are possible. For example, suppose that another imaging modality were able to
localize some inhomogeneities in the tissue (blood vessels or fat, for example). A segmented
“image” localizing that type of inhomogeneity can serve as a column in the By matrix. This
is one area of current interest to us.

Future work includes the extension of our method to more than one anomaly. We claim
that if an initial estimate from some other imaging scheme suggests the presence of say
k anomalies, it is straightforward to extend our model and algorithm to find all £ such
anomalies. The question remains whether or not it is possible to find £ anomalies without
such initial information.

Our approach can be extended to jointly solve for perturbation in both absorption and
scattering coefficients by specifying a similar model for the scattering coefficient using pos-
sibly different basis functions but the same S. More work is required to discern the value
of adding data at other modulation frequencies as well as to identify the limits of resolu-
tion of our algorithm as the number of sources and/or detectors are increased. Finally, the
application of this method to real sensor data is an area of some interest to us in the near

future.
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List of Figure Captions

Figure 1: Sparsity plots, moving down from the top of the region of interest (where
height=1cm), depict the location of true and reconstructed anomalies for Example 1. The
plus marks indicate the location of the true anomaly. The black dots indicate voxels missed
by the reconstructed anomaly as the reconstructed anomaly was slightly too small. The hor-
izontal axis is increasing x from left to right but the tick marks give matrix column index.
The vertical axis is decreasing y from top to bottom and the tick marks indicate matrix row

index.
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Figure 2: True image, slices moving down from the surface of the region of interest, Exam-
ples 2A and 2B. Value inside the anomaly is .15 cm™!: colormap is truncated to show the
background variation, so the anomaly appears as a bright white spot.

Figure 3: Sparsity plots depict reconstruction error in shape for Example 2A. The black
plus marks indicate points that werer inside the reconstructed anomaly that were not inside
the true anomaly. The black dots indicate points that were inside the true anomaly that
were not inside the reconstruction. The horizontal axis is increasing x from left to right
but the tick marks give matrix column index. The vertical axis is decreasing y from top to
bottom and the tick marks indicate matrix row index.

Figure 4: Reconstruction with matched background basis functions in Example 2B, slices
are shown moving away from the top surface. Reconstructed o value is .168. The colormap
truncation is the same as for the true image, so the reconstructed anomaly appears as a
bright white spot.

Figure 5: Sparsity plots depict the difference between the location of true and reconstructed
anomalies for Example 3. The black dots indicate which voxels are in the true anomaly that
are missed by the reconstruction while the plus marks indicate voxels in the reconstruction
that are not in the anomaly. Clearly the reconstruction has the anomaly shifted slightly to
the right in . The horizontal axis is increasing x from left to right but the tick marks give
matrix column index. The vertical axis is decreasing y from top to bottom and the tick
marks indicate matrix row index.

Figure 6: Sparsity plots depict the location of true and reconstructed anomalies for Example
4. The black dots indicate the true anomaly, the centers of the black circles show areas of the

reconstructed anomaly that lie outside the true anomaly (in other words, the reconstruction
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is represented by the dots plus the circles). The horizontal axis is increasing x from left to
right but the tick marks give matrix column index. The vertical axis is decreasing y from
top to bottom and the tick marks indicate matrix row index.

Figure 7: True image used in Examples 5A, 5B. True « value is .15. Colormap is scaled to
show background detail.

Figure 8: Cross-sectional display of locations of reconstructed ellipsoid (dots and plus
marks) vs. true ellipsoid (plus marks) for Example 5A. The oversized reconstruction is the
result of not appropriately accounting for a lumpy background.

Figure 9: Reconstructed perturbation for example 5B. The reconstructed value of « is 0.13.
The colormap truncation is the same as that used in Figure 7.

Figure 10: Cross-sectional slices moving down from the surface for the true solution in
Section 4 C with s, = .005, w = —1. True value of « is 0.15: colormap is truncated to show
background detail.

Figure 11: Cross-sectional slices moving down from the surface for the true solution in
Section 4 C for s, = .005, w = —2.

Figure 12: Cross-sectional slices moving down from the surface for the reconstructed solu-
tion in Section 4 C for s, = .005,w = —2. Reconstructed « value is .16 and the colormap
truncation is the same as was used in Figure 11.

Figure 13: Example 8A: Cross-sectional plots moving down from the surface comparing
the shape/location of the true object with the reconstructed shape. The true anomaly is
marked with black dots, the reconstruction is overlaid using plus marks. The horizontal axis
is increasing z from left to right but the tick marks give matrix column index. The vertical

axis is decreasing y from top to bottom and the tick marks indicate matrix row index.
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Figure 14: Example 8B: Cross-sectional plots moving down from the surface comparing
the shape/location of the true object with the reconstructed shape. The true anomaly is
marked with black dots, the reconstruction is overlaid using plus marks. The horizontal axis
is increasing z from left to right but the tick marks give matrix column index. The vertical

axis is decreasing y from top to bottom and the tick marks indicate matrix row index.
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