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Abstract

In many applications, the recorded data will almost certainly be a degraded version of

the original object that is desired, due to the imperfections of physical measurement systems

and the particular physical limitations imposed in every application where data are recorded.

The situation becomes more complex due to random noise, which is inevitably mixed with

the data and may originate from the measurement process, the transmission medium or

the recording process. In many practical situations, the degradation can be adequately

modeled by a linear system and an additive white Gaussian noise process. The objective is

to estimate the original object given the degraded measurements and the matrix describing

the forward transformation. Examples of linear inverse problems include image restoration

and reconstruction, inverse scattering, seismic analysis, non-destructive testing, etc.

In many cases, the forward transformation acts as a smoothing agent and destroys many

high-frequency features in the original object. Mathematically, this means that the system

matrix is either ill-conditioned or singular in which case a straightforward inversion is either

impossible or results in a solution which is excessively contaminated by the noise. To stabilize

the problem, one usually uses a regularization procedure where additional information about

the original object is incorporated; one may force the computed solution to be smooth,

for example. Regularization methods always include a parameter, called the regularization

parameter, which controls the degree of smoothing or regularization applied to the problem.



If the regularization parameter is too small the solution will be noisy, and if it is too large

the solution will be over-smooth. The two basic problems in the regularization of discrete

linear inverse problems are the speci�cation of an appropriate prior model that re
ects the

properties of the original object as closely as possible and the determination of appropriate

regularization parameters that produce the closest approximation to the original object under

the assumed prior model.

We concentrate our e�orts on the solution of the prior speci�cation and the regularization

parameter selection problems. In the �rst part of the thesis, we focus on the image restoration

problem. Speci�cally, we deal with developing multiscale prior models for images to obtain a

highly 
exible framework for adapting the degree of regularization to the scale and orientation

varying features in the image. We demonstrate an e�cient half-quadratic algorithm for

obtaining the restorations from the observed data.

In the second part, we develop a multi-variate generalization of the conventional L-curve

method, the L-hypersurface, for the selection of multiple regularization parameters. The

L-curve is one of the simplest and most popular methods for selecting a single regularization

parameter. It is based on a plot of the residual norm against the solution norm drawn in

a log scale. It has been numerically shown that the corner of the L-curve, which is de�ned

as the point on the L-curve with the maximum curvature, provides a good regularization

parameter. We extend the notion of the curvature for plane curves to the notion of Gaussian

curvature for hypersurfaces and choose the regularization parameters as those maximizing

the Gaussian curvature of the L-hypersurface. Then we deal with the problem of decreasing
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the computational e�ort associated with the practical implementation of the generalized

L-curve method.
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Chapter 1

Introduction

In many applications in the applied sciences and engineering, the need arises to �nd a good

approximation to an unknown object given a collection of its linearly transformed and noisy

measurements. Such inverse problems arise in a variety of �elds such as image processing

[65, 70, 71], medical imaging [15, 16, 27, 63], computer assisted tomography (CAT, PET)

[13,64], non-destructive testing, inverse scattering [17,60], seismic analysis [18], inversion of

Laplace transforms, etc. [5, 8, 43, 44, 51]. Of particular interest in this thesis are the image

restoration and reconstruction problems for which the goal is to recover an image given its

blurred and noise corrupted measurements [2, 52, 65, 70].

A number of well-recognized challenges exist which complicate the process of generating

a solution to the underlying inverse problem. Most of the problems encountered have to do

with the loss of information associated with the forward transformation which usually acts

as a smoothing agent and wipes out the high frequency information in the original object.
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This makes the problem ill-posed in the sense that small perturbations in the observed data

can result in large, non-physical artifacts in the recovered image [2, 70]. Such instability

is typically addressed through the use of a regularization procedure that introduces a pri-

ori information about the original object into the inversion process. The prior information

underlying the most commonly used regularization schemes is that the object is basically

smooth [2]. While the resulting restorations are less sensitive to noise, it is well known that

the smoothness assumption impedes the accurate recovery of important features, especially

edges [2, 4, 65, 70]. Regularization methods always include a parameter, called the regular-

ization parameter, which controls the degree of smoothing or regularization applied to the

problem [56]. Two basic di�culties in �nding regularized solutions of inverse problems are

the speci�cation of an appropriate prior model that re
ects the properties of the original

object as closely as possible and the determination of appropriate regularization parameters

that produce the closest approximation to the original object under the assumed prior model.

The research presented in this thesis spans these two basic problems related to the solution

of discrete linear inverse problems: in the �rst part we concentrate on the image restoration

problem. Speci�cally, we will deal with developing multiscale prior models for images to

obtain a highly 
exible framework for adapting the degree of regularization to the scale

and orientation varying features in the image. We demonstrate an e�cient half-quadratic

algorithm [46] for obtaining the restorations from the observed data.

The multiscale image restoration/reconstruction scheme developed in the �rst part of this

thesis requires the selection of multiple regularization parameters and leads to a generalized
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L-curve framework, the discussion of which is the subject of the second part. The L-curve

is one of the simplest and most popular methods for selecting a single regularization param-

eter [56, 58, 86]. The method is based on a plot of the size of the solution (measured by an

appropriate norm) against the size of the data mismatch for all valid regularization parame-

ters. Intuitive justi�cations and numerical experiments indicate that the so-called \corner"

of the L-curve gives a regularization parameter which provides acceptable estimates in terms

of closeness to the original object. We �rst develop a multi-dimensional extension of the

conventional L-curve method to select multiple regularization parameters simultaneously.

Then we deal with the problem of decreasing the computational e�ort associated with the

practical implementation of the generalized L-curve method.

1.1 An Overview of Discrete Linear Inverse Problems

Discrete linear inverse problems are a special case of inverse problems in which the observa-

tions, g 2 Rm, and the original object, f 2 Rn, are related through a set of linear equations

characterized by the ill-conditioned or singular system matrix H 2 Rm�n often obtained by

discretizing a continuous integral equation. In this thesis, we are not particularly interested

in the discretization process but rather we will assume that we have a set of noisy linear

equations g = Hf + e for which an approximation f� to the original object f is desired.

By doing so we will avoid the discussion of regularization techniques phrased in terms of

functional analytic language, geared towards in�nite-dimensional problems. Regularization

can be discussed using elementary linear algebra which is far more accessible to many people
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with diverse backgrounds. The linear algebra setting is also much closer to the way in which

regularization methods are implemented in practice.

The major di�culty associated with solving discrete linear inverse problems is that the

systems are ill-conditioned and sometimes under-determined. Often there is a severe loss of

information from f to g. In particular, if the system is under-determined, H�1 is obviously

not well de�ned. Moreover, even if H were invertible, since the matrix H is ill-conditioned

there is little control over the propagation of measurement errors from the data to the

solution. These observations can be made more precise by introducing operator theoretic

terms, but the basic problem is clear: given g and H, the solution space typically contains

many objects, f1, f2, with transformed values, Hf1, Hf2, close to g can be very di�erent.

A practical way of coping with the uniqueness and the stability problems is to use a reg-

ularization procedure [8,91] which introduces a priori information about the original object

into the inversion process and helps stabilize the problem. For instance, one may assume that

the original object is smooth. Typically the prior information is mathematically expressed in

terms of a parametric model. The subset of parameters that are used to control the degree

of smoothing or regularization applied to the problem are termed the regularization parame-

ters [8,44,56]. A small regularization parameter is likely to result in a noisy solution while a

large regularization parameter may over-smooth the computed solution. Sophisticated regu-

larization schemes may require the use of several regularization parameters which should be

estimated from the data. Methods are available to perform this task [26,30,53,58,79,95,99].
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Of particular interest in this thesis are the image restoration and reconstruction prob-

lems in which the objective is to estimate a 2-D array of pixels representing a true scene

from its linearly transformed and noise corrupted measurements. The distinction between

the restoration and reconstruction problems lies in the space in which the observed data

is represented. In image restoration problems the data are merely a blurred version of the

original image while in image reconstruction problems the data are represented in an entirely

di�erent domain than the original image (an example is the Radon transform domain in CAT

applications). In image reconstruction problems the system matrix H is not a degradation

matrix but rather a description of the physics of a known measurement process which facili-

tates the observation of an otherwise unobservable image. A major issue in solving the image

reconstruction and restoration (IRR) problems is the computational complexity associated

with the solution of large dense sets of linear equations. For a typical 256� 256 image, the

size of the system matrix is 65; 536� 65; 536 which makes the problem prohibitively expen-

sive to solve unless H and the regularization operators are structured to allow some kind of

a diagonalization. In IRR problems, computational e�ciency is a great virtue and a main

motivation of some of the developments presented in this thesis. The second important prob-

lem in IRR is the fact that the ultimate authority that will assess the success of a particular

IRR algorithm is the human eye, which prefers sharp restorations/reconstructions (tolerat-

ing noise in the vicinity of edges) over smooth ones. There are examples in the literature

(see for example [2]) showing images which are very close in terms of quantitative measures

(MSE, for example, which measures the l2 norm of the di�erence between the original and
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restored images) but far apart in terms of visual quality. Traditionally, the prior information

underlying the most commonly used regularization schemes is that the image is basically

smooth [2]. While the resulting restorations are less sensitive to noise, it is well known that

the smoothness assumption impedes the accurate recovery of important features, especially

edges.

In response to this problem, there has recently been considerable work recently in the

formulation of \edge-preserving" regularization methods that result in less smoothing to

the areas with large intensity changes in the reconstructed image. These methods neces-

sarily require non-quadratic regularization functions and therefore result in nonlinear image

restoration algorithms. Along these lines, Geman and Yang [46] introduced the concept of

\half quadratic regularization" which addresses the nonlinear optimization problem that re-

sults from using such functions. Later, Charbonnier et. al. [25] built upon the results of this

work by providing the conditions for edge preserving regularization functions. They showed

that any edge-preserving regularization function can be transformed, through a set of auxil-

iary variables, to a quadratic function and gave a deterministic algorithm for optimization.

Another recent advance in this area is the Total Variation (TV) based image restoration

algorithms [10, 11, 69, 98]. In this approach, images are modeled as functions of Bounded

Variation [98] which need not be continuous. Therefore, formations of edges are encouraged

and the restorations obtained by the TV-based algorithms look sharper than those obtained

by conventional techniques, especially if the exact image is piecewise continuous.

With the introduction of the wavelet decomposition and the multiresolution analysis [75],
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a new class of IRR schemes, where the original inverse problem is expressed and solved in

another domain through some kind of multiscale decomposition, have arisen. It has been

recognized empirically that the wavelet decomposition has certain advantages in terms of

modeling [74, 75]. Meyer [76] has shown that the wavelet domain is a natural basis for

the representation of objects belonging to the Besov Spaces [39, 76, 96]. Besov spaces typ-

ically contain objects with discontinuities (edges in 2-D). In terms of statistical language,

subbands of wavelet decompositions of \edgy" objects follow generalized Gaussian (GG) dis-

tributions. Using the GG distribution for modeling subbands of images has been apparently

�rst reported in [75] in the context of image compression. Later, Donoho and Johnstone [37]

introduced what they call wavelet shrinkage for smoothing noisy data (de-noising). Wavelet

shrinkage takes the wavelet coe�cients of the noisy image and shrinks those whose absolute

values are smaller than a threshold towards zero. Clearly, the logic behind such an approach

is that the smaller wavelet coe�cients are due to noise and larger ones carry important

features, speci�cally edges, in the image and hence must be preserved. In a series of pa-

pers [33{36, 38] Donoho and Johnstone show that wavelet shrinkage leads to near-optimal

noise removal properties when the images are modeled as members of several Besov spaces.

Moulin et. al. [80] and Simoncelli [88] considered similar de-noising schemes by modeling

the subbands of the wavelet decomposition of images stochastically as GG distributed.

Aside from these developments, there is a large body of work on wavelet-based, statistical

regularization methods. These methods have largely concentrated on the use of multi-scale

smoothness priors [4,77,78,92,100]. While the issue of edge preservation is considered [4,100],
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it is based on the processing of the output of an edge detector applied to the noisy data in

order to alter the degree of regularization in a multiscale smoothness constraint. Our research

in this thesis is di�erent from these methods in that the edge-preservation is directly built

into the prior model. Our IRR scheme is motivated by the wavelet shrinkage estimators of

Donoho and Johnstone.

1.2 Contributions

In this section, we review the contributions of this thesis to the solution of linear inverse

problems and to the regularization parameter selection problem.

1.2.1 Multiscale Image Restoration

In chapter 3 of this thesis we consider a statistically based, wavelet-domain approach to

edge-enhanced image restoration. Along the lines of [19, 23, 87], we employ a stochastic in-

terpretation of the regularization process. Speci�cally, we regard the image as a realization

of a random �eld for which the wavelet coe�cients are independently distributed according

to generalized Gaussian (GG) distribution laws [12]. This model is motivated by two factors.

First, recent work [19] suggests that these models, which have heavier tails than a straight

Gaussian distribution, provide accurate descriptions of the statistical distribution of wavelet

coe�cients in image data. Second, in addition to being a basis for l2(R) (i.e. square in-

tegrable functions de�ned on the real line), wavelets also are unconditional bases for more

exotic function spaces whose members include functions with sharp discontinuities and thus
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serve as natural function spaces in which to analyze images [23, 31, 76]. Because the norms

in these Besov spaces are nothing more than weighted lp, 1 � p � 2, norms of the wavelet

coe�cients, it is shown easily that deterministic regularization with a Besov norm constraint

is equivalent to the speci�cation of an appropriately parameterized GG wavelet prior model.

We make use of GG wavelet priors in a number of ways. We show that their use in an

image restoration problem does in fact signi�cantly improve the quality of edge information

relative to more common smoothness priors. We also provide an e�cient algorithm for solving

the convex, non-linear optimization problem de�ning the reconstruction. By appropriately

structuring the weighting pattern on the wavelet lp norm, we demonstrate that these models

provide an easy and 
exible framework for adaptively determining the appropriate level of

regularization as a function of the underlying structure in the image; in particular, scale-to-

scale or orientation based features. We verify the performance of this restoration scheme on

a variety of images comparing the results both to smoothness constrained methods and the

TV restorations.

1.2.2 Regularization Parameter Selection

The multiscale image restoration algorithm introduced in chapter 3 leads to a multidimen-

sional generalization of the conventional L-curve method developed in [56] for choosing a

single regularization parameter. In chapter 4, we introduce the L-hypersurface method

for choosing multiple regularization parameters simultaneously. The notion of curvature

9



which is used to �nd a single regularization parameter is extended to the notion of Gaus-

sian curvature. It is shown through numerical examples that the Gaussian curvature of the

L-hypersurface as a function of regularization parameters provides valuable information re-

garding the behavior of the mean square error surface. In particular we show that the regions

where Gaussian curvature reaches a local maxima contain acceptable regularization param-

eters in terms of minimizing the mean square error between the original and reconstructed

objects. We provide details regarding the implementation of the L-hypersurface method in

typical multiply constrained least squares problems with arbitrary regularization functionals.

Furthermore, we combine the L-hypersurface method with the multiscale IRR algorithm to

obtain a highly 
exible algorithm which determines the appropriate level of regularization

as a function of the underlying structure in the image; in particular, scale-to-scale or orien-

tation based features. To reduce the computational complexity associated with computing

the Gaussian curvature of the L-hypersurface method, we provide an approximation of the

Gaussian curvature through discrete derivatives.

In many cases, evaluating points on the (Gaussian) curvature of the (generalized) L-

curve is computationally very demanding and one would prefer using a standard optimization

strategy instead of exhaustive search to locate the regularization parameters that correspond

to the (generalized) corner. However, the (Gaussian) curvature function possesses many

extrema and therefore poses a di�cult optimization problem. In chapter 5, we consider

an alternative approach for approximating the maximum curvature point which consists of

replacing the Gaussian curvature by a surrogate function which is far easier to optimize. We

10



prove that in the one parameter case, minimization of this surrogate function is essentially

equivalent to the maximization of the curvature function. We demonstrate through numerical

examples that, although there is little performance loss as compared to the maximization of

the Gaussian curvature, the computational burden is orders of magnitude smaller.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 contains background material for

linear inverse problems and in particular regularized image restoration and reconstruction.

The method of regularization is described in detail. In addition, common regularization

parameter selection methods are explained in this chapter. In chapter 3, a multiscale image

restoration algorithm for edge-enhanced image restoration will be given. In chapter 4, we

introduce a multi-variate generalization of the conventional L-curve method for choosing

multiple regularization parameters. In chapter 5, we explore the issue of decreasing the

computational complexity of the L-hypersurface method. Finally, in chapter 6, we summarize

the results and contributions of this thesis, and indicate future research directions.
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Chapter 2

Background

In the �rst part of this section, a brief overview of the image restoration problem and

wavelet theory will be presented. In the second part, common regularization parameter

selection methods and, in particular, the L-curve method [56,58] will be reviewed. Since the

conventional L-curve method forms the basis for our generalized L-curve scheme, we review

the theory here, before we introduce our algorithms in Section 4.

2.1 Image Restoration Background

In many applications recorded images represent a degraded version of the original scene.

For example, the images of extraterrestrial objects observed by ground based telescopes

are distorted by atmospheric turbulence [70] while motion of a camera can result in an

undesired blur in a recorded image. Despite the di�erent origins, these two cases along with

others from a variety of �elds, share a common structure where the exact image undergoes

12



a forward transformation and is corrupted by observation noise [29]. The source of this

noise is the disturbance caused by the random 
uctuations in the imaging system and the

environment. The goal of image restoration is to recover the original image from these

degraded measurements.

A grey-scale image, f , can be considered as a collection of pixels obtained by digitizing

a continuous scene. The image is indexed by (i; j), 1 � i; j � 2J (the image size is chosen as

a power of 2 for convenience), and the intensity at the position (i; j) is denoted by f(i; j).

In image reconstruction and restoration problems, the objective is to estimate the image

f(i; j) from its degraded measurements. Mathematically, such a scenario can be adequately

represented by the following linear formulation

g(k; l) =
X
k0

X
l0

H(k; l; k0; l0)f(k0; l0) + e(k; l) (2.1)

where g contains the sampled values of our degraded image,H is a known operator represent-

ing the linear degradation and e is the disturbance which we assume to be white Gaussian

noise with variance �2
e and mean zero. The model equation in (2.1) can be represented more

compactly as a linear matrix equation by forming the vectors g, f and e from the lexicograph-

ically ordered elements of the two-dimensional arrays g(:; :), f(:; :) and e(:; :), respectively.

In this way we obtain

g = Hf + e (2.2)

where the vectors g, f and e represent, respectively, the lexicographically ordered degraded

image, the original image, and the disturbance. The known square matrix H represents the

linear distortion. H can have very large dimensions (65; 536� 65; 536 for a 256� 256 image)

13



and is typically ill-conditioned.

2.1.1 Regularized Image Restoration and Reconstruction

One of the approaches to obtain an estimate of the original image from (2.2) is to minimize

the following

J(f) = kg �Hfk22 (2.3)

which results in the pseudo-inverse estimate f y

f y =
�
HTH

��1
HTg (2.4)

where superscript T denotes the transpose of a matrix or a vector. We now assume that we

know a singular value decomposition (SVD) of H [49],

H = U�VT
; U;V orthogonal, � = diag(�1; : : : ; �n); �1 � : : : � �n � 0 : (2.5)

For H 2 Rm�n with m � n, U is a square, orthonormal m � m matrix, V a square,

orthonormal n� n matrix, � = diag(�1; : : : ; �n) a rectangular, diagonal m� n matrix with

diagonal entries �i;i = �i. The least squares solution corresponding to (2.3) is given by

f y = V�yUTg =
nX

i=1;�i 6=0

1

�i

�
uTi gtrue + uTi e

�
vi; (2.6)

where gtrue = Hf is the noiseless data, the ith columns vi;ui of V;U are the singular vectors

corresponding to the ith singular value �i, and

�y = diag
�
�
y
i

�
; �

y
i =

8>>><
>>>:

1
�i

if �i 6= 0

0 otherwise

(2.7)
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We assume that gtrue satis�es the discrete Picard condition [55]; that is the generalized

Fourier coe�cients juTi gtruej of gtrue decay on the average faster than the singular values �i.

As a result of the white noise assumption, the generalized Fourier coe�cients of the noise

juTi ej are roughly constant for all i with expected value

E

n
juTi ej

o
=

�e

n1=2
; i = 1; : : : ; m (2.8)

As a consequence, the generalized Fourier coe�cients of the perturbed right hand side juTi gj

level o� at approximately �e
m1=2 even if the noiseless right hand side gtrue satis�es the discrete

Picard condition because these generalized Fourier coe�cients are dominated by juTi ej for

large i. Ill-conditioned matrices are characterized by the presence of very small singular

values �i. It is clear from the representation (2.6) that the least-squares solution f y is

dominated by the juTi ej corresponding to the small �i since the generalized Fourier coe�cients

of the noise level o� according to (2.8) while juTi gtruej is insigni�cant compared to the noise

because of the discrete Picard condition. Therefore, the minimum norm least squares solution

is useless for problems with tiny but nonzero singular values.

In order to demonstrate the adverse e�ects of the noise and the ill-conditioning of the

system matrix on the least-squares solution f y, we generated a test problem where the

32 � 32 system of linear equations, gtrue = Hf , was obtained by invoking the shaw(32)

command in Hansen's regularization toolbox [57] in MATLAB. The exact right hand side

is modi�ed by adding zero mean Gaussian distributed noise, e, to gtrue so that SNR =

variance(gtrue)
�2e

= 102 (we will sometimes express the SNR in dB in which case SNR is de�ned

as 10 log

�
variance(gtrue)

�2e

�
). Figure 2.1 (a)-(c) show the original object, the data, and the
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Figure 2.1: (a) The original object f . (b) The noiseless data gtrue. (c) Noisy data (solid line)
g super-imposed on gtrue (broken line). SNR = 102.

perturbed data, respectively. We then computed the least-squares solutions f y corresponding

to the exact gtrue and noisy right hand sides g as displayed in Fig. 2.2 (a) and (b). As can

seen in Fig. 2.2 (a), most of the generalized Fourier coe�cients of the unperturbed prob-

lem juTi gtruej satisfy the discrete Picard condition although eventually, for large i, both the

singular values and the Fourier coe�cients become dominated by rounding errors. For the

noisy problem in Fig. 2.2 (b) we see that the Fourier coe�cients for the noisy right hand side

become dominated by the perturbation errors for i much smaller than it is in Fig. 2.2 (a).

We also see from Fig. 2.2 (b) that the Fourier coe�cients of the perturbed system still satisfy

the discrete Picard condition for small i. To have an acceptable solution we should dampen

out the components for which the perturbation dominates and leave the rest of the compo-

nents for small i intact. This objective can be achieved through the use of a regularization

procedure [8,9,44,91] where a unique and stable estimate f� is sought by incorporating prior

information on the original object. This has the e�ect of replacing the original ill-conditioned

16



0 5 10 15 20 25 30 35
10

−20

10
−15

10
−10

10
−5

10
0

10
5

i

σ
i

|u
i
T g

true
 |

|u
i
T g

true
 | / σ

i

0 5 10 15 20 25 30 35
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

10
20

i

σ
i

|u
i
T g |

|u
i
T g | / σ

i

(a) (b)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

4

6

8

10
x 10

10

(c) (d)

Figure 2.2: (a) Picard plot for exact right hand side (r.h.s.) gtrue. (b) Picard plot for noisy
r.h.s. g. (c) Least squares solution f y obtained from the exact right hand side gtrue. (d)
Least squares solution f y obtained from the noisy right hand side g.

problem with a well-conditioned one whose solution approximates that of the original.
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2.1.2 Tikhonov Regularization

The simplest and the most well-known regularization method is that of Tikhonov [91] which

consists of replacing the problem (2.3) with the problem of �nding a solution to the following

min
f

kg�Hfk22 + �kRfk22 ; (2.9)

where � > 0 is a regularization parameter and R is a regularization operator, usually chosen

to be the identity matrix or a discrete approximation of a derivative operator. For example,

for a 1-D object f , R can be D(1) or D(2) where

D(1) =

2
666666664

1 �1
. . .

. . .

1 �1

3
777777775
2 R(n�1)�n (2.10)

and

D(2) =

2
666666664

1 �2 1

. . .
. . .

. . .

1 �2 1

3
777777775
2 R(n�2)�n (2.11)

are approximations to the �rst and second derivative operators.

The solution of (2.9) is

f�(�) =
�
HTH+ �RTR

��1
HTg : (2.12)

For the time being let us assume R = I and write (2.12) in terms of the SVD of H

f�(�) =
nX
i=1

 
�i

�
2
i + �

uTi g +
�i

�
2
i + �

uTi e

!
vi : (2.13)
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In light of the SVD analysis of the least-squares solution carried out in the previous para-

graph, it is easy to see that the purpose of the regularization is to dampen or �lter out the

contributions to the solution coming from the small singular values. In (2.13) the contri-

bution of the noise components uTi e due to singular values �i < � is much less than it is

in (2.6). Therefore f�(�) contains less distortion than f y and can be closer to the original

noise-free solution f . As the regularization parameter � increases, the e�ect of the noise in

the regularized solution becomes less evident. Note, however, that as � increases we move

further away from the original problem and may run the risk of having an over regularized

solution.

In Fig. 2.3 (a) and (b) we display the regularized solutions corresponding to the shaw(32)

problem. We used the the Tikhonov method with identity as the regularization operator. In

Fig. 2.3 (a) we display the regularized solutions as a function of the regularization parameter

and Fig. 2.3 (b) we plot the regularized solutions for � = 10�5
; 10�2

; 100. Note that the

regularized solutions become more oscillatory as the regularization parameter decreases and

the regularized solutions corresponding to the smaller values of � clearly show the e�ects of

noise. On the other hand for large � the solution becomes smoother and can no longer follow

the variations present in the original object. From Fig. 2.3 (b) it is seen that among the cases

illustrated, the regularized solution is closest to the original object for � = 10�2 = 1

SNR
.

If R 6= I the solution f�(�) can no longer be expressed in terms of the SVD of H. In such

a case, one must use the Generalized Singular Value Decomposition (GSVD) of the matrix

pair (H;R) [49, 59]. Assuming H 2 Rm�n and R 2 Rp�n and m � n � p, the GSVD of
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Figure 2.3: (a) Variation of the regularized solution with respect to the regularization pa-
rameter. (b) Selected regularized solutions and the original object.

(H;R) is given by

H = ~U

2
6664
~� 0

0 In�p

3
7775X�1

; R = ~V

"
B 0

#
X�1

; (2.14)

where columns of ~U 2 Rm�n and ~V 2 Rp�p are orthonormal, X 2 Rn�n is nonsingular and

~� and B are p� p diagonal matrices such that

~� = diag( ~�1; : : : ; ~�p); B = diag(�1; : : : ; �p): (2.15)

Furthermore, the diagonal entries of ~� and B are non-negative and ordered such that

0 � ~�1 � : : : � ~�p � 1; 1 � �1 � : : : � �p � 0; (2.16)

and they are normalized such that

~�i
2 + �

2
i = 1; i = 1; : : : ; p : (2.17)
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The generalized singular values of (H;R) are de�ned as the ratios


i =
~�i

�i
; 
1 � : : : � 
p � 0 i = 1; : : : ; p: (2.18)

Note however that the matrices ~U, ~V and ~� are di�erent from the matrices appearing in

the ordinary SVD of the matrix H. Using the GSVD of (H;R), the regularized solution can

be written as

f�(�) =
nX
i=1



2
i


2i + �

~uTi g

~�i
xi ; (2.19)

where xi is the ith column of X. One noteworthy di�erence between (2.19) and (2.13) is that

in the latter the solution space is spanned by the vi while in the former the solution is a linear

combination of the xi. The basic limitation of the Tikhonov regularization with identity is

that while the left singular vectors [vi]i=1;:::;n form a good basis for the representation of

the column space H, they may not be suitable for recovering the original object f . Thus

if the same operator H occurs in two di�erent inverse problems, the basis functions for the

representation of the solution will be the same if R = I, even though the type of object

to be recovered may be quite di�erent in the two problems. Tikhonov regularization with

an operator R other than the identity provides an e�ective means of changing the basis

functions for the representation of f . Unfortunately, there is little publicized work that

provides guidance for choosing the regularization operator R. It has been argued that an R

matrix which leaves the vector [1; : : : ; 1]T unregularized is a superior choice over I [82].

Finally, it is useful to note that (2.12) is equivalent to the following problem

min
f

kg �Hfk22 subject to kRfk22 < C (2.20)
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for the appropriate choice of the constant C. From this perspective, the Tikhonov method can

be seen as a modi�cation of the original least squares problem which restricts the solution

to lie in a ball of radius C in a Hilbert space P with the norm jjf jjP = jjRf jj2. This

corresponds to incorporating prior information on the original object f that the object lies

in P with a known bound on its norm. As we will see in the next section, the method

of regularization can also be expressed in the statistical language as a Bayesian estimation

technique [7]. It has been pointed out by several authors that many regularization schemes

developed in the context of functional analysis have corresponding interpretations in terms

of Bayesian estimation where a speci�c prior distribution is assumed on the original object

[29, 50, 93, 94]. In the rest of this thesis, we will prefer using the Bayesian interpretation

of the regularization theory in developing our IRR algorithms but we will also indicate the

relation of the Bayesian estimation technique under consideration to its functional analytic

counterpart where appropriate.

2.1.3 Statistical Interpretation of the Regularization

In the Bayesian image restoration method of interest here the prior information is quanti�ed

by specifying a probability density on f . Then the prior information is combined with the

information contained in g to produce an estimate of the unknown image. We assume here

a linear, additive Gaussian noise model so that the probability density for g given f is

P (gjf ; �e) = 1

(2��2
e)

m=2
exp

(
� 1

2�2
e

kg�Hfk22
)
; (2.21)
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where �2
e is the variance of the noise. If it so happens that the probability distribution for

f , which is dependent on a set of parameters �, is in the form

P (f j�) / exp f��(f ; �)g ; (2.22)

then by Bayes's rule, the Maximum a Posteriori (MAP) estimate, f�, is obtained by mini-

mizing the following log posterior density function with respect to f [3, 7]

J(f ; �e; �) =
1

2�2
e

kg�Hfk22 + �(f ; �): (2.23)

The function �(f ; �), called the energy function in the context of Bayesian estimation, is the

energy attributed to the image f , and � is the vector of possibly unknown model parameters.

We give low energy to the images which coincide with our prior conceptions and high energy

to those which do not. Thus, if our prior belief about the true image is that it is smooth,

then the energy is a measure of the roughness.

One of the most commonly used energy functions has the form

�(f ; �) =
1

2�2
kRfk22 ; (2.24)

where R is a di�erential operator. In stochastic terms, this choice implies that Rf is a vector

of zero mean independent identically distributed Gaussian random variables with variance

�
2. Substituting �(f ; �) in (2.24) into (2.23) we obtain the cost function for the constrained

least squares (CLS) restoration

J(f ; �; �) =
1

2�2
e

kg �Hfk22 +
1

2�2
kRfk22 ; (2.25)
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Figure 2.4: (a) Vertical di�erence image of the Cameraman. (b) Distribution of the vertical
di�erences, rvf , of the Cameraman image. Broken line depicts a Gaussian distribution with
the same mean and variance.

which yields the estimate

f�(�) =
�
HTH+ �RTR

��1
HTg ; (2.26)

where � = �2e
�2

is the regularization parameter. Note that (2.26) is exactly the same as

(2.12), thereby establishing the connection between statistical and the functional analytic

interpretations of the regularization. The criterion (2.25) contains two terms; the �rst, kg�

Hfk22, expresses the �delity to the available data g and the second, kRfk22, the smoothness

of the estimate. Therefore, the regularization parameter � represents the trade-o� between

�delity to the data and smoothness of the estimate f�(�).

Looking at (2.23), we can immediately identify two issues of primary importance associ-

ated with the MAP estimation procedure. The �rst issue is the determination of an appro-

priate prior model, �(f ; �). The CLS image restoration scheme outlined above assumes that

the gradient of the image follows a Gaussian distribution. This assumption, however, is not
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Figure 2.5: (a) Original Blocks image. (b) Degradation kernel. (c) Degraded Blocks. (d)

The CLS restoration with R = D(1).

true in general since images typically consist of smooth areas separated by occasional edges.

This empirical observation implies that the gradient of the image should follow a distribution

which is concentrated around zero due to the contribution of smooth areas with heavy-tails

representing the contribution of the edges. Figure 2.4(b) shows the histogram of the vertical

di�erences of the Cameraman image. For comparison, the mean and the variance of the

vertical di�erence image were computed, and a Gaussian pdf with the same mean and vari-

ance was plotted on top of the histogram of the vertical di�erence image. As observed from
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Fig. 2.4(b), the distribution of the vertical di�erence image is notably non-Gaussian. The

CLS image restoration scheme has been criticized on the grounds that it applies too much

penalty to the edges in the image and produces an over-smooth restoration. An example

of this phenomena is provided in Fig. 2.5. We generated a test problem by degrading the

128 point Blocks signal (Fig. 2.5 (a) ) extracted from the Donoho's Wavelab Toolbox [20]

in MATLAB. The blurring kernel was a Gaussian function h(t) = 1p
��2

h

exp

�
� t2

2�2
h

�
with

�h = 4:0 as seen in Fig. 2.5 (b). We will use this test problem frequently in subsequent sec-

tions and refer to the problem as simply Blocks. We added zero mean white Gaussian noise

to the degraded Blocks so that SNR = 30dB. The degraded noisy signal is shown in Fig. 2.5

(c). We restored the degraded signal by CLS using R = D(1) and the best regularization

parameter minimizing the l2 norm of the error between the original and restored signals.

The resulting restoration is shown in Fig. 2.5 (d). As observed, the edge information present

in the original signal is completely lost and edges are replaced by smooth transitions. There-

fore, it is of great interest to develop so-called edge-preserving prior models for the purposes

of restoration.

After specifying an appropriate prior, the second important issue is the determination of

the regularization parameter(s) which would yield a good compromise between the �delity

to the data and smoothness of the solution. Note that in the CLS restoration scheme the

regularization parameter is de�ned as � = �2e
�2
. Therefore, the MAP estimation procedure

described here provides an answer to the regularization parameter selection problem. If the
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�
2
e and �

2 are known we immediately obtain the regularization parameter upon substitu-

tion. However, such prior information is rarely available. Therefore, there arises a need for

techniques for determining the regularization parameter(s) which do not assume any side

information on signal or noise variance.

2.1.4 Half Quadratic Regularization

The regularization approach in (2.23) can be trivially extended to include multiple con-

straints. The reason for using multiple constraints is the desire to incorporate more a priori

information on the object to be restored/reconstructed in the hope of obtaining a better so-

lution. In some cases, multiple constraints are necessary to obtain a useful solution (see [15],

for example). We extend the regularization scheme in (2.23) in the following way:

min
f

(
kg�Hfk22 +

MX
i=1

�i�i(Rif)

)
; Ri 2 Rm�n

; (2.27)

where Ri, i = 1; : : : ;M are regularization operators and �i are the corresponding regular-

ization parameters, �i(Rif) =
Pm

j=1 �i([Rif ]j) with �i(t) being a function such as �i(t) = t
2

and the notation [Rif ]j denotes the jth element of the vector Rif . In order to �nd �rst order

conditions that must be satis�ed by the solution f�(�), we take the gradient of (2.27) with

respect to f and set the result equal to zero to get

Kf�f
� = HTg; (2.28)

where

Kf� = HTH+
1

2

MX
i=1

�iR
T
i diagk=1;:::;m

"
�
0
i([Rif

�]k)

[Rif�]k

#
Ri : (2.29)
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Except for a few special cases, minimizing (2.27) for arbitrary �i is a di�cult task because

(2.28) is nonlinear in f�. Note that the formula (2.28) de�nes f� only implicitly since f�

appears in the expression for Kf� on the left hand side of (2.28. In order simplify the min-

imization task, Geman and Yang [46] introduced the concept half-quadratic regularization.

In their own words, \The basic idea is to introduce a new objective function which, although

de�ned over an extended domain, has the same minimum in f� and can be manipulated with

linear algebraic methods" . The method simply consists of solving (2.28) iteratively starting

from an initial solution vector f0

Kf j f
j+1 = HTg; (2.30)

where f j is the solution obtained at the jth iteration and

Kf j = HTH+
1

2

MX
i=1

�iR
T
i diagk=1;:::;m

"
�
0
i([Rif

j]k)

[Rif j]k

#
Ri : (2.31)

(2.30) is iterated until kf
j+1�f jk
kf jk < tol, where tol is a small positive constant (we use tol = 10�5

in our examples). Note that when f j is known, (2.30) is the solution to the following quadratic

problem

min
f
kg�Hfk22 +

MX
i=1

�ik[Q(j)
i ]1=2Rifk22 (2.32)

where Q
(j)
i = diagk=1;:::;m

�
�0i([Rif

j ]k)

[Rif
j ]k

�
. It is proven in [25] that if �i(t), i = 1; : : : ;M satisfy

the following conditions, (2.27) has a unique solution f� and the iterates f j produced by the

half-quadratic algorithm in (2.30) converges to f� as k !1:

1. �i(t) is convex.

2. �i(t) � 0, 8t with �i(0) = 0.
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3. �i(t) = �i(�t).

4. �i(t) is continuously di�erentiable.

5. limt!0+
�0
i
(t)

t
= C, 0 < C <1.

6. �0i(t) � 0, 8t.

7. �000i (0) = 0.

8. �
(4)
i (0) exits.

The last two items are technical assumptions used in the convergence proof. If the condition

that �i(t) is convex is relaxed, the half-quadratic algorithm still converges but probably

computes a local minimum of (2.27) [25].

2.2 Common Parameter Selection Methods

The problem of choosing a suitable regularization parameter which would yield an estimate

as close to the original object as possible has received considerable attention in the past and

is still an open problem. There are methods which rely on prior information such as a bound

on the (semi)norm of the signal or the noise level. A well known example is the Morozov's

discrepancy principle [79]. On the other hand, methods such as Generalized Cross Validation

(GCV) [26] and the L-curve [56,58] do not require any side information. We note that all of

the methods mentioned above deal with choosing a single parameter.
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Figure 2.6: (a) Illustration of the discrepancy principle. '+' indicates the intersection of
kg�Hf

�(�)k with �u. (b) GCV function. 'x' indicates the minimum of the GCV function.

(c) Corresponding estimation error plot.

2.2.1 The Discrepancy Principle

One method that has attained a widespread interest is the discrepancy principle, usually

attributed to Morozov [79]. The idea is simply to select the regularization parameter � so

that the residual norm is equal to an a priori bound �u for the norm of the errors u in the

right hand side, i.e.,

kg �Hf �(�)k = �u; where kuk � �u (2.33)

Methods for solving (2.33) with respect to � can be found in [24]. Note that if the exact

system is consistent, then as �u ! 0, f(�) ! f . Figure 2.6(a) illustrates the discrepancy

principle on the Blocks problem.
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2.2.2 Generalized Cross Validation

The Generalized Cross Validation (GCV) [26, 99] method does not require any prior in-

formation on the noise variance or the norm of the object. GCV is based on statistical

considerations. That is, a good value of the regularization parameter should predict missing

data values. More precisely, the construction of cross validation criterion is argued as follows:

1. Construct an estimate f�(�; i) based on (2.25), but excluding the ith data point from

the �rst term.

2. Evaluate the corresponding prediction error pi(�) = gi � [Hf�(�; i)]i.

3. Repeat i) and ii) for i = 1; : : : ; n and compute the cross validation function

C(�) =
nX
i=1

p
2
i (�) : (2.34)

4. Repeat i) - iii) for a variety of values for � and choose �CV to minimize the cross

validation function.

Golub et. al. [48] introduced the generalized the cross validation argument and proposed

minimizing a generalized version of the ordinary cross validation function, the GCV function

G(�). C(�) and G(�) do not di�er greatly but the former has more pleasing mathematical

properties. The formula of G(�) is given by

G(�) =
kg�Hf�(�)k22

trace(I�HL(�))
; (2.35)
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where L(�) is the matrix which maps the data to the regularized solution, i.e. f�(�) = L(�)g.

In Tikhonov regularization, for example, L(�) is given by

L(�) = (HTH+ �RTR)�1HT
: (2.36)

Figure 2.6(b) shows the GCV function for the Blocks experiment. The GCV method has

proven its usefulness in numerous applications and has desirable theoretical properties [72].

However, two di�culties are associated with this method: the minimum of the GCV function

is often very 
at and, therefore, di�cult to locate numerically, and the method may fail to

compute the correct � when the errors are highly correlated [56].

2.2.3 The L-curve Method

A convenient tool for choosing a single regularization parameter which does not require any

side information is the L-curve method �rst introduced by Lawson and Hanson [73] and

popularized by Hansen [56, 58] et. al.. The L-curve is simply a logarithmic plot of residual

norm kg �Hf�(�)k22 (the �rst term on the right hand side (r.h.s.) of (2.23)) versus the log

of the reconstruction (semi)norm (second term on the r.h.s. of (2.23)) for a set of admissible

regularization parameters. In this way, the L-curve displays the compromise between the

minimization of these two quantities. It has been argued and numerically shown that the so

called \corner" of the L-curve, de�ned as the point with maximum curvature, corresponds

to a point where regularization and perturbation errors are balanced [56].

In Fig. 2.7 we plotted a typical L-curve along with the error between the original and

restored signals for a range of regularization parameters. The experiment for which the
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Figure 2.7: (a) A typical L-curve, (b) its curvature and (c) the error between original and
restored signals. Circle indicates the point with maximum curvature. f�(�) is the estimate

of f using � as the regularization parameter.

L-curve was computed was the Blocks problem solved with Tikhonov regularization with

identity [91]. The circle indicates the corner of the L-curve de�ned to be the point on the

curve (z(�); x(�)) = (log jjg�Hf�(�)jj2; log jjRf jj2) with maximum curvature �(�) [32, 81]

�(�) =
z
0
x
00 � x

0
z
00

[(x0)2 + (z0)2]3=2
(2.37)

where di�erentiation is with respect to �. The part of the L-curve to the left of the corner

contains a region where the regularization parameter is getting smaller and the error between

the original and reconstructed signals is dominated by the perturbation errors. The solution

(semi)norm is very sensitive to small changes in the regularization parameter indicating a

noisy solution. On the other hand, the part of the L-curve to the right of the corner is

a region where the regularization parameter is gradually increasing and the residual norm

is the most sensitive to the changes in the regularization parameter. In this region, the
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restored signal is excessively smooth. These two regions are clearly separated by the corner

point, hence the corner corresponds to a point where regularization and perturbation errors

are approximately balanced. Supporting this observation, the corner of the L-curve in this

example indicates a point which is very close to the point where the error between the original

and restored signals is a minimum (Fig. 2.7(c)).

The points to the left and right of the corner where the L-curve bands towards the abscissa

axis are called the false corners or knees of the L-curve. The regularization parameter � is

either too small (at the knee to the left of the corner) or too large (at the knee to the right

of the corner). Observe from Fig. 2.7(b) that the curvature function has local minima at the

false corners.

2.3 Orthonormal Wavelet Transform

In this thesis, we adopt a transform domain approach to the image restoration problem.

Before introducing our image model, we brie
y review the wavelet theory [28, 75, 76]. The

fundamental idea behind the discrete wavelet transform is to decompose a signal into a

sequence of increasingly \coarser" representations while at the same time retaining the in-

formation lost in moving from a �ne scale to a coarser scale. Following the literature on

orthonormal wavelets, elements of the 1-D signal y = [y1; y2; : : : ; yn]
T are called the �nest

scale scaling coe�cients and are denoted by y
(0)
J with n = 2J . Beginning with y

(0)
J , a lower

resolution representation for y
(0)
J is obtained by �rst passing y

(0)
J through a low pass �lter

l and then decimating the output by a factor of two. Thus, y
(0)
J�1 is coarser than y

(0)
J in
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Figure 2.8: Wavelet decomposition of an image.

that the �ltering/down-sampling operation removes the high frequency structure from the

original signal and y
(0)
J�1 is half as long as y

(0)
J . The detail lost in moving from y

(0)
J to y

(0)
J�1

is separately extracted by a high pass �lter h followed by down sampling by two. The

resulting vector of wavelet coe�cients is denoted by yJ�1 The �ltering/down sampling op-

eration can be repeated recursively on the scaling coe�cients to obtain a multi-level wavelet

decomposition of y

ŷ = [y
(0)T
j0

jyTj0j : : : jyTJ�1]
T
; (2.38)

where j0 is the coarsest scale at which y is represented and y
(0)
j0

denotes the vector of scaling

coe�cients at scale j0 and the vectors yj, j = j0; : : : ; J � 1, contain the wavelet coe�cients

at di�erent scales. In e�ect, the wavelet transform can be represented as an operator taking

the discrete signal y into its wavelet transform domain representation through matrix mul-

tiplication ŷ = Wy. Since the transform is orthonormal it is self inverting, i.e y = WT ŷ.

Figure 2.9 schematically depicts the three level wavelet decomposition of an image. As ob-

served, the wavelet decomposition produces three scales consisting of the wavelet coe�cients
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Figure 2.9: 3-level wavelet decomposition of an image.

representing the horizontal (indicated with H), vertical (indicated with V), and diagonal

(indicated with D) details in the image at each scale. On the upper left corner we have the

scaling coe�cients which represent a low resolution rendition of the original image f .

2.3.1 Wavelet Representation of Image Restoration Problem

It is possible to obtain the wavelet transform of higher dimensional signals through a separa-

ble representation. If l and h are the discrete low-pass and high-pass �lters associated with

a particular 1-D wavelet transform then the discrete high pass �lters fh(n)l(m); l(n)h(m);

h(n)h(m)g together with the low pass �lter l(0)(n;m) = l(n)l(m) can be used to form the

wavelet decomposition of f(n;m). This decomposition can be implemented by 1-D �lter-

ing of rows and columns of images. In Fig. 2.8, we have schematically illustrated a 1-level
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wavelet decomposition of an image f(n;m) with f
(0)
J (n;m) denoting the �nest scale scaling

coe�cients. The 1-level wavelet decomposition of the image f
(0)
J (n;m) produces four sub-

images of size 2J�1 � 2J�1, f
(k)
J�1; k = 0; : : : ; 3. f

(0)
J�1 represents the scaling coe�cients at

scale J � 1 and f
(k)
J�1; k = 1; : : : ; 3 are the wavelet coe�cients at scale J � 1 corresponding

to the vertical, horizontal and diagonal orientations in the image plane. Multi-level wavelet

decompositions of the image f(n;m) can be obtained by applying the 1-level wavelet de-

composition scheme, outlined above, recursively to the scaling coe�cients f
(0)
J�1(n;m). We

will use f
(i)
j to denote the vector of wavelet(scaling) coe�cients obtained by lexicographically

ordering the elements of the 2-D array f
(i)
j (m;n) and f̂ to denote a lexicographically ordered

version of all wavelet coe�cients f̂(n;m).

With the conventions above, we can represent the problem in (2.2) in the wavelet domain

as

Wg =
�
WHWT

�
Wf +We

ĝ = Ĥf̂ + ê; (2.39)

where W is the 2-D wavelet transform matrix, ĝ, f̂ and ê are the vectors holding the scaling

and wavelet coe�cients of the data, the original image, and the disturbance, Ĥ is the wavelet

domain representation of our linear degradation operatorH, andWTW = I follows from the

orthogonality of the wavelet transform. Note that since the wavelet transform is orthonormal

ê is again Gaussian with zero mean and variance �2
e .
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Chapter 3

A Multiscale Image Restoration

Algorithm

In this section, we consider a statistically based, wavelet-domain approach to edge-enhanced

image restoration in which we employ a stochastic interpretation of the regularization pro-

cess [19,23,87]. We note that almost all of the work to date on wavelet-based, statistical regu-

larizationmethods has concentrated on the use of multi-scale smoothness priors [4,77,78,100].

While Wang et. al. did consider issues of edge preservation in [100], their method was based

on the processing of the output of an edge detector applied to the noisy data to alter the

degree of regularization in a multiscale smoothness constraint. As described below and in

subsequent sections, our approach is signi�cantly di�erent as the edge preservation is built

directly into the regularization scheme itself.

Speci�cally, we regard the image as a realization of a random �eld for which the wavelet
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coe�cients are independently distributed according to generalized Gaussian (GG) distribu-

tion laws. This model is motivated by two factors. First, recent work [19,74,75,87] suggests

that these models, which have heavier tails than a standard Gaussian distribution, provide

accurate descriptions of the statistical distribution of wavelet coe�cients in image data. Sec-

ond, in addition to being a basis for l2(R), wavelets also are unconditional bases for more

exotic function spaces whose members include functions with sharp discontinuities and thus

serve as natural function spaces in which to analyze images [23, 31, 76, 96]. Because the

norms in these Besov spaces are nothing more than weighted lp, 0 < p, norms of the wavelet

coe�cients, it is shown easily that deterministic regularization with a Besov norm constraint

is equivalent to the speci�cation of an appropriately parameterized GG wavelet prior model.

From this perspective, our work can be viewed as an extension of the research done mostly

in the area of image denoising.

Speci�cally, the wavelet domain image model of interest in this paper and the resulting

nonlinear restoration algorithm are related to the large body of work originating from the

wavelet shrinkage estimators �rst proposed by Donoho and Johnstone [39]. In a series of

papers [33, 35{37], Donoho and Johnstone have shown that wavelet shrinkage estimators

achieve near optimal estimation performance when the unknown signal belongs to Besov

spaces. Later, several authors contributed to the advancements in the area. The notion of

Besov regularization has been introduced by Amato and Vuza [96] and Chambolle-DeVore-

Lee-Lucier [23] and the resulting theory was interpreted in a function space setting. On

the other hand, Simoncelli and Adelson [19] developed a similar denoising scheme, which
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they called Bayesian wavelet coring, by stochastically modeling the image subbands. GG

modeling of image subands has later been analyzed by Moulin and Liu [80] and the connection

between the Besov Spaces and GG priors has been established.

In this work, we make use of GG wavelet priors in a number of ways. We show that their

use in an image restoration problem does in fact signi�cantly improve the quality of edge

information relative to more common smoothness priors. Inspired by the \lagged di�usivity"

�xed point iteration proposed by Vogel and Oman [98] for the solution of the TV problem, we

also provide an e�cient algorithm for solving the non-linear optimization problem de�ning

the restoration. By appropriately structuring the weighting pattern on the wavelet lp norm,

we demonstrate that these models provide an easy and 
exible framework for adaptively

determining the appropriate level of regularization as a function of the underlying structure

in the image; in particular, we consider scale-to-scale or orientation based features. This

adaptation is achieved through a data-driven choice of a vector of hyperparameters governing

the prior model. For this task, we introduce and make use of a multi-variate generalization

of the L-curve method developed in [56] for choosing a single hyperparameter. We verify the

performance of this restoration scheme on a variety of images, comparing the results both

to smoothness constrained methods and the TV restorations.

3.1 A Multiscale Prior Model for Images

A key component of our image restoration algorithm is the use of a multiscale stochastic

prior model for f . To motivate the particular choice of prior model used here, we consider
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the wavelet coe�cients of a typical image at a particular resolution. Wavelet coe�cients

are obtained by di�erentiation-like operations. Since the spatial structure of many images

typically consists of smooth areas dispersed with occasional edges, the distribution of wavelet

coe�cients should be sharply peaked around zero, due to the contribution of smooth areas,

and have broad tails representing the contribution of the edges [19].

Following the work in [19, 87] on image coding and denoising, we model the distribution

of wavelet coe�cients of images by a Generalized-Gaussian (GG) density [74, 75]

P

�
f
(i)
j (m;n)jp; �(i)j

�
/ exp

8<
:�1

p

������
f
(i)
j (m;n)

�
(i)
j

������
p9=
; ; (3.1)

where f
(i)
j (m;n) is the wavelet coe�cient at scale j, orientation i and the position (m;n); 1 �

m;n � 2j, 0 � p � 2 is a parameter which determines the tail behavior of the density func-

tion and �
(i)
j is a scale parameter similar to the standard deviation of a Gaussian density.

We will refer to the zero mean density in (3.1) as GG(0; �
(i)
j ; p). For p = 1 we have the

Laplacian density and for p = 2 we have the familiar Gaussian density. The tails of the GG

distribution become increasingly heavy as p approaches zero. We assume that the mean of

the image is subtracted from the image and that the scaling coe�cients f
(0)
j0
(m;n), are i.i.d.

GG(0; �
(0)
j0
; p).

The speci�cation of one � parameter for each scale and orientation results in an image

model far too complex to be of use in a restoration procedure. Nonetheless, the structure

of the model in (3.1) coupled with the speci�cation of the problem in the wavelet domain

does suggest a variety of simpli�cations which are of use for the restoration problem. In this

work, we consider the following three models:
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1. Model 1: The scaling coe�cients f
(0)
j0
(m;n), are i. i. d. with GG(0; �

(0)
j0
; p) and the

wavelet coe�cients are i. i. d. with exponentially decreasing variances, i.e. f
(i)
j (m;n) �

GG(0; �2��(j�j0); p); i = 1; 2; 3; j0 � j � J � 1 with j0 the coarsest scale, � the scale

parameter corresponding to j0 and � � 0 (Fig. 3.1(a)). The rationale behind this

model is that it is equivalent to a deterministic modeling of the image as a member of

a Besov space [76].

2. Model 2: The scaling coe�cients f
(0)
j0
(m;n), are i. i. d. with GG(0; �

(0)
j0
; p) and the

wavelet coe�cients at a particular scale are i. i. d. with GG(0; �j; p); j = j0; : : : ; J� 1

(Fig. 3.1(b)). This model is useful in cases where the variance of the wavelet coe�cients

at di�erent scales cannot be well-approximated by a simple exponential law.

3. Model 3: The scaling coe�cients f
(0)
j0
(m;n), are i. i. d. with GG(0; �

(0)
j0
; p) and the

wavelet coe�cients at di�erent orientations (horizontal, vertical or diagonal) are dis-

tributed with GG(0; �(i)2��(j�j0); p); i = 1; 2; 3; j0 � j � J � 1 (Fig. 3.1(c)). Such a

model is most suitable for images with signi�cantly di�erent characteristics in di�er-

ent orientations as might arise in geophysical restoration problems involving layered

structures.

We make several observations regarding these models. First, they are indeed of low di-

mensionality. In addition to the � and p parameters, Model 1 is characterized by two �

coe�cients: one for the coarsest scale scaling coe�cients and one multiplying the exponen-

tial for the wavelet coe�cients. There are a total of J � j0 + 1 �'s for Model 2 and four

� values required to characterize Model 3. In subsequent sections, we shall see that the
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Figure 3.1: (a) Model 1 (b) Model 2 (c) Model 3 prior models.

number of regularization parameters to be determined in the restoration algorithm is equal

to the number of �'s characterizing the prior model being used. Moreover, an appropriate

on-line choice of the model parameters provides a mechanism for adapting the level of reg-

ularization in an image to the underlying scale-to-scale structure (Models 1 and 2) or to

orientation-dependent structure (Model 3). While the above three models certainly do not

represent an exhaustive enumeration of all possible multiscale regularization approaches, as

seen in Section 4.4.2, they do provide a strong indication as to the utility of this type of

modeling technique for image restoration.

3.1.1 Hyperparameter Estimation

In this section, we comment on the estimation of the hyper-parameters, p, �, and �
(i)
j . In a

restoration algorithm, these parameters could be estimated from the data by assigning ap-

propriate priors to each and maximizing the resulting log-likelihood function with respect to
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the hyper-parameters and the image. However, such an approach presents many computa-

tional di�culties and unnecessarily complicates the problem. Instead, we choose to simplify

the problem by �xing the p and � a priori. Generally, the performance of the regularizer

is impacted to a greater extent by the on-line identi�cation of the � parameters [40] (or

as explained in subsequent sections, quantities closely related to �) so we concentrate our

e�orts on identifying good choices of �.

The issue of selecting an appropriate p is extensively discussed in Section 3.21 . As for

the selection of �, we propose using a �xed a priori choice obtained from the empirical study

of a number of images. We computed the � values for set of images seen in (Fig. 3.2) by

calculating the slope of the line �tted to the logarithm of the p-norm of the wavelet coe�cients

at di�erent scales. According to our �ndings, for most images representing natural scenes

the � value which produced the best �t to the image data under the Model 1 scheme (for

p = 1) fell between 0:6 and 1:6 with mean �̂ � 1:2 and variance Ef(� � �̂)2g � 0:11 (see

Fig. 3.2). In the absence of the knowledge about the exact value of � for a speci�c image, �̂

can be used as a substitute. We evaluated the e�ects of varying the � value on a number of

restoration problems and saw that the results were relatively insensitive to variations of �

in the range [0:6; 1:6] suggested by the observations. That is, the performance of multiscale

restoration was robust against misspeci�cations of the �. This aspect of our regularization

scheme can also be observed from the numerical examples supplied in Section 4.4. The fact

that the same � is used for Model 1 restorations in all cases irrespective of the exact image

considered, yet that the restored images were remarkably similar to Model 2 restorations,
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clearly illustrates this point.

In [41], Dufour and Miller investigate the degradation in estimator performance for p =

2:0 as the � is varied around the optimal value. The results in that work indicate that the

performance is quite insensitive to variations in �. In particular, their results show that 30%

error in the speci�cation of � results in 10% degradation in MSE. This result was obtained

for p = 2:0. The work of Moulin and Liu [80] indicates that the GG distribution family

becomes more robust to misspeci�cations of the model parameters as p decreases, hence we

expect even lower degradation for p � 1:0.

mandrill: α=0.6117

cameraman: α=1.3331

harbour: α=0.8695

bridge: α=0.9941

airfield: α=1.1047

peppers: α=1.5376

airplane: α=1.5281

barbara: α=1.0487 crowd: α=1.4889

Figure 3.2: A set of images and the corresponding � values for p = 1:0. Mean is �̂ = 1:1685.

To conclude, use of a �xed a priori estimate of � is justi�ed on the grounds that � = 1:2

(for p = 1:0) represents a good value for most natural scenes, and performance of the Model
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1 restoration scheme introduced in our paper is robust to variations in � around the optimal

value as both our results and previous research [41, 80] suggest.

3.2 A Multiscale Image Restoration Algorithm

The MAP estimate of the wavelet coe�cients of the original image is found by maximizing

the log-likelihood function in (2.23). Substituting the prior probability density developed in

Section 3 into (2.23), the MAP estimate of f̂ is seen to be the minimum of the following cost

function with respect to f̂ (assuming for the time being that the �
(i)
j are known)

J(f̂ ;�) = kĝ � Ĥf̂k22 + �
(0)
j0
kf (0)j0

kpp +
J�1X
j=j0

3X
i=1

�
(i)
j kf (i)j kpp ; (3.2)

where �
(i)
j = 2�2

p

�
�
(i)

j

�p are weighting parameters and � = [�
(0)
j0
; �

(1)
j0
; : : : ; �

(3)
J�1]

T . The formula-

tion in (3.2) easily accommodates the Model 1-3 regularization schemes discussed in Section

3 by de�ning the appropriate relationships for �
(i)
j . For example, putting �

(0)
j0

= �1 and

�
(i)
j = �22

�(j�j0) results in the Model 1 regularization scheme while assigning a di�erent �j

to each scale in the wavelet domain without regarding the orientation we obtain the Model

2 regularization scheme. Suppose that J(f̂ ;�) has a minimum in f̂ . Then at a stationary

point f̂�, the gradient of J(f̂ ;�) must vanish. Unfortunately, the lp norm terms appearing in

(3.2) are not di�erentiable for p � 1. Hence, we propose the following smooth approximation

to the lp norm, raised to the power p, as in [98]:

kxkpp �
X
i

��
jxij2 + �

�p=2 � �
p=2

�
; (3.3)
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where � � 0 is a stabilization constant and xi denotes the i-th element of the vector x.

Substituting (3.3) into (3.2) and taking the gradient of the cost function we arrive at the

following equation for f̂�:

D� = diag

"
�i

(jf̂ �i j2 + �)1�p=2

#N2

i=1

; (3.4)

�
ĤT Ĥ+

p

2
D�
�
f̂� = ĤT ĝ; (3.5)

where f̂ �i is the i-th element of f̂� and �i is the associated regularization parameter. The

above equation gives the �rst order conditions that must be satis�ed by f̂�. By direct analogy

with the lagged di�usivity method of Vogel and Oman [98], we can develop a �xed point

iteration to solve for f̂�. Starting with an initial point f̂0, we solve the following equation for

f̂k+1: �
ĤTĤ+

p

2
Dk

�
f̂k+1 = ĤT ĝ; (3.6)

where Dk is obtained by replacing f̂ �i by f̂ki in (3.4). The iteration is terminated whenever

kf̂k+1�f̂kk
kf̂kk < 
, with 
 being a small positive constant (
 = 10�5 is used in our experiments).

The �xed point iteration in (3.6) is a special case of the \half quadratic regularization"

scheme introduced by Geman et. al. [46] and the ARTUR scheme due to Charbonnier et.

al. [25]. Adopting the notation in [25] we de�ne the following function

�(t) =
�
t
2 + �

�p
2 � �

p
2 : (3.7)

The approximated cost function can be expressed in terms of the function �(t). Furthermore,

�(t) satis�es the conditions 1-8 presented in Section 2.1.4 so that the restoration algorithm is

convergent in the sense that the sequence J(f̂k;�) is convergent and that f̂k+1� f̂k !k!+1 0
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pointwise. In the special case where �(t) is convex (which occurs if p � 1) and Ĥ is full-

rank, the iterates f̂k converge and the computed solution is the unique minimum of (2.23).

However, when p < 1, �(t) is not convex and the algorithm computes a local minimum of

(3.2) [25].

The iterative algorithm in (3.6) requires the solution of a very large linear matrix equa-

tion. Note that the matrix appearing on the right hand side of (3.6) is symmetric and

positive de�nite. Therefore, the conjugate gradient (CG) algorithm [49] can be conveniently

used to compute the solution f̂k+1 in (3.6) at each step. In this way, the algorithm given

in (3.6) is doubly iterative in that an outer iteration is used to update the solution f̂k and

an inner iteration is used to solve the system of equations in (3.6) by the CG method. The

special structure of the matrices Ĥ and Dk could be used to decrease the computational cost

substantially. The �rst matrix, Ĥ, is merely the wavelet domain representation of our degra-

dation operator. If the kernel is convolutional, it has been shown by Zervakis et. al. [102]

that this matrix can be diagonalized by a special Fourier transform matrix by invoking the

circulant assumption. On the other hand, the second matrix D is diagonal in the wavelet

domain. Therefore, the vector matrix multiplications required for the implementation of the

CG algorithm can be computed in an e�cient way by going back and forth between the

wavelet and the Fourier transform domains. In this case, the cost of multiplying a vector

with the matrix ĤT Ĥ + p

2
Dk is dominated by the cost of the FFT which is O(N2 logN),

where N = 22J is the number of pixels in the image.

We note that the iterative algorithm in (3.6) can be e�cient even in the case where Ĥ
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is not convolutional since the wavelet domain representation of a wide range of operators is

sparse [39]. In those cases, standard techniques for sparse matrices can be used to reduce

computational complexity.

3.2.1 Selection of GG family; The Shape Parameter p

The possibility that multiple local minima of (2.23) may exist for p < 1 presents an interesting

trade-o�. From a computational viewpoint, it is highly desirable to use p � 1, since in this

case the cost function is convex and global convergence is guaranteed. However, in empirical

studies of the wavelet coe�cients of images it has been shown that the GG model for the

distribution of the wavelet coe�cients usually corresponds to p < 1 and a typically recognized

value is p = 0:7 [74].

There are basically two arguments against using p < 1:

1. p < 1 leads to a non-convex optimization task.

2. We have observed through numerous experiments that there is no practical di�erence

between the restored images corresponding to the p = 1 and the best p-value (in terms

of the model �t to the original image) cases (see Section 4.4 on how to compute p).

The item 1. above is obviously an important consideration for any image restoration algo-

rithm. In general, if the optimization task is non-convex, one has to �nd a way to determine

the global minimum using, for example, simulated annealing or a continuation method. Since

the computational e�ort required by a global search is very high, such an approach can only

be justi�ed on the grounds that the restored images are signi�cantly better when p < 1,
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which brings us to item 2. above. We would like to point out that use of GG priors with

0 < p � 2 was analyzed in the context of image denoising by Moulin and Liu in [80]. In

this work, numerical experiments performed on the barbara and peppers images have shown

that there was only 15% di�erence in the MSE values (MSE = kf � f̂k22=N2, N =number

of pixels and f and f̂ are the original and estimated images, respectively) over the range

0:5 < p � 1. In particular, it was observed that p = 0:7 minimized the MSE for both images.

For p = 0:7 and p = 1:0, the respective MSE values were 33:64 and 33:68 for the barbara

image and 30:00 and 30:53 for the peppers image, a minor di�erence.

In numerous experiments we performed on typical indoor and outdoor scenes as well as

the arti�cial datasets provided in the Donoho's Wavelab toolbox, we observed no signi�cant

improvement in the restored images when using the best p-value, which was typically between

0:5 and 1:0, as compared to p = 1. Furthermore, we have also seen that p = 1 consistently

gave the better results, both in terms of visual satisfaction and the MSE values, than the

entire range 1 < p � 2. Our observations obtained through empirical study of various images

coupled with the results in Moulin and Liu's work suggest that the bene�ts of using p < 1

as opposed to p = 1 are so small that we would rather use p = 1:0 for which the resulting

optimization problem is convex.

Note that for p < 1, the �xed point iteration in (8-9) still works but it is not guaranteed

to provide the global minimum. In order to approximate the global minimum, we describe

a very simple continuation method (in Section 4.4) where the solution for p < 1 is obtained

by supplying the solution for p = 1:0 (which is unique) as the initial approximation to the
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half-quadratic algorithm in equation 3.6. Since the optimization problem is continuous in

p, we expect the solution obtained by this process to be an approximation to the global

minimum. There is still no guarantee that the resulting solution is the global optimum,

nevertheless we obtained good results using this method. The �rst example in Section 4.4

shows that only modest improvement can be gained by taking p < 1. In this example,

we computed the p-value that produces the best �t to the high-frequency subbands of the

mandrill image, which was found to be p = 0:7280, and then computed a restoration by

using the continuation method described above. Clearly, this is not a realistic situation since

we used the original image for estimating the p-value. The results reveal that there is almost

no di�erence in the visual quality of the restoration for p < 1 as compared to p = 1:0. This

example, together with earlier results in [80], suggests that p = 1:0 can be conveniently used

as an a priori estimate. Note that we do not claim that p = 1:0 should always be used. In

fact, there may be cases where a reliable prior estimate of p is available and that it is known

that using this value will make a big di�erence in the quality of the restoration as compared

to using p = 1:0. Rather, we are saying that in the absence of such information, p = 1:0

should be used since it was observed empirically that p = 1:0 provides good restorations for

typical natural scenes and global convergence is guaranteed.

Finally, we would like to point out that Moulin's work indicates that adapting the p-

value to each scale and orientation in the wavelet domain does not improve the restoration

results. On the contrary, Moulin found out that using a scale varying p results in degraded

performance over the simpler estimator using a �xed p for all scales [80].
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3.2.2 Selection Stabilization Constant �

The role of the parameter � is two-fold. First it controls how close the approximation in

(3.3) is to the original lp norm. Using a relatively small � provides better restoration of

edges in the image since a smaller � value provides better approximation to the lp norm.

Second, it essentially determines the convergence speed of the algorithm. While we do

not intend to carry out a numerical analysis of the �xed point iteration in (3.6), the basic

reason is that for � = 0, �(t) in (3.7) is not di�erentiable at t = 0 and instability in the

numerical computations may arise. If � is relatively large, the algorithm is fast, and the

convergence speed deteriorates as � gets smaller. Therefore, � should be set so as to achieve

a compromise between the convergence speed and the edge preservation. Based on our

experience on natural scenes, we found that restorations obtained for � � 1 were visually

indistinguishable from the restorations obtained for � � 1.

3.2.3 Numerical Examples

In this section we demonstrate the performance of the proposed multiscale restoration al-

gorithm on a simple deconvolution problem. The \1-D image" under consideration is the

\Blocks" [37] sequence as seen in Fig. 3.3(a). This image was degraded by a Gaussian

convolutional kernel, h(x) = 1p
2��2

expf� x2

2�2
g, with � = 4:0. Zero mean white noise was

added to the degraded image to set the SNR at 30dB. The degraded image obtained in this

way is shown in Fig 3.3(b). We computed two restorations corresponding to the the CLS
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Figure 3.3: (a) Original Blocks image. (b) Degraded Blocks. (c) Restoration error versus

regularization parameter for the CLS algorithm. (d) Restoration error versus regularization
parameters for the multiscale algorithm. In this plot, �1 regularizes the scaling coe�cients

while �2 is the regularization parameter for wavelet coe�cients (e) CLS restoration. (f)

Multiscale restoration with p = 1:0.
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algorithm with a di�erential regularizer and our multiscale algorithm with Model 1 regular-

ization scheme. In order to evaluate the potential performance improvement of our multiscale

algorithm over the CLS algorithm, we chose the required regularization parameters by min-

imizing the restoration error de�ned as, kf � f�(�)k22, with respect to the regularization

parameters. Figure 3.3(c) shows the variation of the restoration error with the regulariza-

tion parameter � for CLS. In Fig. 3.3(e) we display the CLS restoration obtained by using

the \best" regularization parameter whose location is indicated in Fig. 3.3(c) with a cross.

For our multiscale algorithm, we employed a 5-level wavelet decomposition with the Haar

basis. In accordance with the Model 1 regularization scheme, we have two regularization

parameters �1 and �2 which determine the amount of regularization applied to the scaling

and the wavelet coe�cients, respectively. The parameters of our multiscale algorithm were:

p = 1:0, � = 0:01 and, � = 1:2. The regularization parameters for the scaling and the

wavelet coe�cients were obtained by minimizing the restoration error with respect to both

parameters. The variation of the restoration error with respect to the regularization param-

eters is displayed in Fig. 3.3(d). In this plot, �1 regularizes the scaling coe�cients while �2 is

the regularization parameter for the wavelet coe�cients. Figure 3.3(f) shows the restoration

obtained by our multiscale algorithm.

As observed from Fig. 3.3(e), the CLS algorithm produces an over-smooth restoration

and completely fails to recover the edge information in the image. On the other hand

the multiscale algorithm does a much better job in preserving edges in the image while

suppressing the high frequency oscillations in 
at areas caused by the presence of noise.
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This example shows that our proposed multiscale image restoration algorithm is capable

of producing much better results than the conventional CLS algorithm if the image under

consideration contains edges. However, the results in this example were obtained under the

assumption that the best parameters (in the sense of minimizing the restoration error) were

available. In a practical situation, these parameters are typically unknown and therefore

should be estimated from the available data. In order to accomplish this task, in the next

section we develop a multi-dimensional extension of the conventional L-curve method to

select multiple regularization parameters required by our multiscale algorithm. Then we will

combine the generalized L-curve method with the multiscale image restoration algorithm

introduced here to obtain a highly 
exible image restoration scheme which automatically

adjusts the degree of regularization according to the scale or orientation varying structure of

the underlying image. Examples will be provided in Section 4.4 which compare and contrast

the performance of our algorithm to that of the classical and more recent edge-preserving

image restoration algorithms in practical situations.
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Chapter 4

A Multi-dimensional Extension of the

L-curve Method: The L-hypersurface

As described in the previous chapters, our multiscale IRR algorithm requires the determi-

nation of several regularization parameters which are essential for good performance. In

the literature, there are a number of methods developed for one-parameter regularization

schemes including the discrepancy principle [79], generalized cross validation [26], the L-

curve method [56], the minimum bound method [47, 83, 84] e.t.c. [61, 62, 90, 101]. One can

even use the so-called experimental method, in which the regularization parameter is tuned

by the user, which was jokingly described in a conference [89] by James Nagy1 as, \turning

the focus ring of your photography machine which comes to sharp focus when you turn it

just the right amount". It is easy to see the complications of a two-parameter regularization

1Professor Nagy is a member of faculty in the Department of Mathematics at Emory University.
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scheme by extending James Nagy's analogy by visualizing a more complicated photogra-

phy machine that has two focus rings to be adjusted. Such a photography machine would

require signi�cantly more user input and time and therefore it would be nice if an \auto-

focus" mechanism could be developed. In search of such a mechanism we decided to use a

multi-variate generalization of one of the known methods in the literature. The extension

of methods developed for a single parameter to choose multiple regularization parameters is

often a non-trivial task. In this thesis, we introduce the L-hypersurface method for use in

linear inverse problems that require multiple regularization parameters. The L-hypersurface

is based on the classical L-curve method. It is an M -dimensional (M is the number of reg-

ularization parameters) function of the regularization parameters and provides signi�cant

information about the likelihood of a particular parameter set being optimum.

4.1 Why the L-curve?

Our �rst requirement for an appropriate parameter selection method is that it not depend on

any side information such as the signal norm, kfk, or the noise variance �2
e . This immediately

rules out many possibilities, leaving the L-curve and the GCV method as the most prominent

candidates.

GCV has a number of desirable properties. The solution estimates converge to the true

solution as the error norm goes to zero (in a continuous setting) or the number of data

samples goes to in�nity (in a semi-discrete setting). GCV locates the best parameter by
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minimizing the GCV function which is reproduced below for convenience:

G(�) =
kg�Hf�(�)k22

trace(I�HL(�))
; (4.1)

where L(�) is the matrix which maps the data to the regularized solution, i.e. f�(�) =

L(�)g. A multi-dimensional extension of the GCV method is conceptually straightforward

as the method can be trivially extended by considering a two-parameter GCV function.

However, the GCV method is not suitable for our multiscale regularization algorithm because

computing the term in the denominator of the GCV function in (4.1) is computationally a

formidable task. The diagonal entries of the matrix L(�) in (4.1) can only be computed from

the knowledge of the wavelet domain representation of the entire matrix H. For a 256� 256

image H is an 65; 536� 65; 536 matrix and demands enormous storage requirements.

Although only a few theoretical properties of the L-curve method are known (see for

example Hansen [56] and Reginska [86]) the method has found considerable interest due to

its simplicity, and has been applied successfully in a variety of di�erent applications. On the

other hand, the L-curve method has been criticized on the grounds that it fails to �nd the

right regularization parameter [54, 97]. More speci�cally, Vogel [97] is concerned with the

limiting process of a semi-discrete model problem

gi = Anf + �n; i = 1; : : : ; n ; (4.2)

where An is an operator from a Hilbert space H to Rn, � is the discrete white noise and

f 2 H. In this setting, a regularization parameter selection method is said to be convergent
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if it yields a parameter �(n) for which

E

n
jjf�(n);n � f jj2

o
! 0 as n!1 ; (4.3)

where E denotes the mathematical expectation operator. He showed that, under some

speci�c assumptions on f and the decay of the singular values of An, the regularization

parameter obtained by the L-curve method, �L�curve(n), does not go to zero as n!1 and

hence (4.3) cannot be satis�ed.

Similarly, Hanke [54] has considered a continuous problem

y
� = Kx; K : X ! Y; (4.4)

where X and Y are Hilbert spaces and y� 2 Y is the given data, possibly contaminated by

noise of magnitude � > 0. If �� is the regularization parameter obtained by a regularization

parameter selection method, the following must be satis�ed for convergence:

x
�
�� ! K

y
y as y

� ! y ; (4.5)

where Ky is a pseudoinverse of K and y is the noiseless data. Again, Hanke has shown

that the regularization parameter obtained by the L-curve method fails to satisfy (4.5) for

\smooth" x. Hanke concluded that L-curve might yield a parameter which is likely to be

too small as � ! 0.

It is not clear whether the convergence issue has any importance in a practical situation

where the noise level is signi�cantly non-zero and the number of data samples is �xed.

Furthermore, Vogel and Hanke's results apply only under very speci�c assumptions on the
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signal/operator, limiting their scope. Based on our experience and the results regarding the

application of the L-curve method to practical instances of inverse problems we can only say

that the method is indeed useful. As we will see in the next few sections, a multi-dimensional

extension of the conventional L-curve can be developed and implemented for the multiscale

IRR algorithm.

4.2 The L-hypersurface

In this section we will develop a multi-dimensional extension of the conventional L-curve

method using a generic multiple-parameter regularization scheme that includes many popular

regularization schemes as its special cases. Before proceeding we note that the idea of a

multi-variate L-curve was �rst proposed by Brooks [15] et. al. in the context of the inverse

problem of electrocardiography. Facing the problem of choosing two or more parameters

simultaneously, Brooks [15] et. al. tried to extend the idea of the L-curve by drawing the

residual norm against two side constraint norms. They named the resulting plot the \L-

surface" (the L-hypersurface in our terminology).

In order to extend the L-curve, we consider the following multiply constrained regular-

ization approach:

min
f

(
kg �Hfk22 +

MX
i=1

�i�i(Rif)

)
; Ri 2 Rm�n

; (4.6)

where Ri, i = 1; : : : ;M are regularization operators and �i are the corresponding regulariza-

tion parameters, �i(Rif) =
Pm

j=1 �i([Rif ]j) and the notation [Rif ]j denotes the jth element
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of the vector Rif . We assume that �i(t) is a continuously di�erentiable, convex, non-negative

(�i(t) � 0; 8t), even function which satis�es the following conditions [25]:

i. �0(t) � 0; 8t � 0,

ii. limt!0+
�0
i
(t)

t
= C; 0 < C <1,

where prime denotes di�erentiation. These two conditions on �i(t) ensure that there is a

unique solution to the minimization problem in (4.6) and that a half-quadratic algorithm

can be found to compute the minimum of (4.6).

The formulation in (4.6) includes many popular regularization techniques as its special

cases. For example, by taking, �i(t) = t
2
; i = 1; ::;M , and Ri as a discrete approxima-

tion to the ith order di�erentiation, we obtain the conventional Tikhonov method with the

Sobolev norm as a constraint. The multiscale IRR algorithm developed in Chapter 3 is also a

special case of (4.6). In this case, the quantities of interest (g;H; f ;n) represent the wavelet

decomposition of the related quantities, �i(t) = (jtj2 + �)p=2; i = 1; : : : ;M with 1 � p � 2

and � a small positive constant, and Ri; i = 1; ::;M are operators extracting the desired

portions of the wavelet coe�cients.

By taking the gradient of (4.6) with respect to f and setting the result equal to zero we

obtain the following �rst order condition that must be satis�ed by the solution f�:

Kf�f
� = HTg; (4.7)

where Kf� = HTH + 1
2

PM
i=1 �iR

T
i diagk=1;:::;m

h
�0i([Rif

�]k)

[Rif
�]k

i
Ri. Note that f� can be approxi-

mated by a half-quadratic iterative algorithm (Section 2.1.4) .
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To construct the L-hypersurface, we �rst introduce the following quantities

f�(�) = argmin
f

J(f ;�) (4.8)

z(�) = kg �Hf�(�)k22; (4.9)

xj(�) = kRjf
�(�)kpp; j = 1; : : : ;M: (4.10)

With the above de�nitions, the L-hypersurface is de�ned as a subset of RM+1 associated

with the map S(�) : RM
+ !RM+1 such that

S(�) = (�x1(�); : : : ; �xM(�); �z(�)) ; (4.11)

where �xi = log xi; i = 1; : : : ;M and �z = log z. In simple terms, the L-hypersurface is a plot

of the residual norm as a function of the constraint norms drawn in log scale for a range of

regularization parameters.

Figure 4.1(a) and (b) show a typical L-hypersurface and the corresponding estimation

error surface, kf � f�(�)k2, for baart(100) problem from Hansen's Regularization Toolbox.

In Fig. 4.1(a), x1 = kf�(�)k2 and x2 = kD(1)f�(�)k2 where D(1)f = [f2�f1; f3�f1; : : : ; fn�

fn�1]
T , fi representing the ith element of the vector f . Observing Fig. 4.1(a) we realize

that the L-hypersurface, for this example, has an odd shape which is getting narrower at

the bottom and almost degenerating to a 1-D curve in R3. This phenomena considerably

complicates the visualization and the interpretation of the behavior of the L-hypersurface.

Note also that we are unable to establish a direct relationship between the L-hypersurface

in Fig. 4.1(a) and the estimation error surface in Fig. 4.1(b). Considering these di�culties

we propose extending the notion of curvature for plane curves to the notion of Gaussian
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Figure 4.1: (a) A typical L-surface, (b) corresponding estimation error surface.

curvature for surfaces in the hope of �nding a better way of visualizing and analyzing the

L-hypersurface.

4.3 The Gaussian Curvature of the L-hypersurface

In a one-parameter regularization scheme, the corner of the L-curve is de�ned as the point

with the maximum curvature on the L-curve. The curvature at a point q of a plane curve is

the rate with which the angle between the tangent to the curve at q and the x-axis changes

with respect to the arclength [32, 81] (arclength ds

dt
= k�0(t)k2 where �(t) = [x(t); y(t)] is

the curve parameterized by t 2 R). The curvature can be viewed as a simple, geometrically

meaningful transformation of the L-curve which emphasizes the turning points, which for

our application are practically the only interesting points. Our goal in using the Gaussian
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curvature of the L-hypersurface is to simplify the interpretation and to reveal important

regions of the L-hypersurface where good regularization parameters are located. In the next

section, we describe the geometrical meaning and the mathematics of the Gaussian curvature.

4.3.1 Gaussian Curvature: Geometrical Interpretation and the

Math

The Gaussian curvature is a scalar quantity which measures how much and in what way

a surface is warped in the vicinity of a point. Before going forward with the de�nition we

note that the Gaussian curvature exists only if the surface under consideration is regular.

Roughly speaking, a regular surface is obtained by taking pieces of a plane, deforming them,

and rearranging them in such a way that the resulting �gure has no sharp points, edges, or self

intersections so that there is a unique de�nitive tangent plane at points of the �gure [32,81].

Mathematically, to be regular, a surface has to be di�erentiable with no self-intersections and

the columns of the following (M +1)�M matrix of the linear map dS must be independent:

dS =

2
66666666666664

@�x1
@�1

: : :
@�x1
@�M

...
. . .

...

@�xM
@�1

: : :
@�xM
@�M

@�z
@�1

: : :
@�z
@�M

3
77777777777775
: (4.12)

Thus, each of the minors of order M � 1 of dS must have a determinant di�erent than zero.

The regularity condition guarantees that for every point q on S we can associate a unique

plane that is tangent to the surface at q. The tangent plane at q, which we denote by Tq,
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Figure 4.2: Tangent plane Tq and the normal vector Nq to a surface S at point q.

is spanned by the columns of the matrix dS in (4.12). There are two unit vectors that

are normal to the tangent plane Tq at q; each of them is called the unit normal vector at

q and is denoted by Nq. They can be obtained by �nding the vector lying in the null-

space of dST : M � (M + 1) in (4.12). Let's de�ne a curve s(t) = S(�[t]), s(0) = q with

�(t) = [�1(t); : : : ; �M(t)] and t 2 (��; �) is a parameter. The normal to S along s(t) is

N(s[t]) = Nq(t). Then

dN [s(t)]

dt
= N

0
q(0) = dN(s0[0]) = Aqs(t) : Tq ! Tq (4.13)
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is a linear map and measures how N(t) pulls away from Nq in a neighborhood of q. In one

dimension the matrix Aq characterizing the linear map at the point q is a scalar and is called

the curvature. In higher dimensions, the determinant of this linear map det(Aq) is called

the Gaussian curvature. Working out the math it can be shown that for the L-hypersurface

the Gaussian curvature at a point � is given by [45]

�(�) =
(�1)M
wM+1

jPj ; (4.14)

where w2 = 1 +
PM

i=1(
@�z
@�xi

)2 and Pi;j = @2�z
@�xi@�xj

. We can infer the shape of the surface in

the vicinity of the point q by examining the sign of �(�). In R3 (i.e. a two-parameter

L-hypersurface) a point of a surface is called

i. Elliptic if det(Aq) > 0 (see Fig. 4.3).

ii. Hyperbolic if if det(Aq) < 0.

iii. Parabolic if det(Aq) = 0, with Aq 6= 0.

iv. Planar if Aq = 0.

At an elliptic point the Gaussian curvature is positive. The surface looks like a bowl (or

inverted bowl) and all curves passing through q have their normal vectors pointing towards

the same side of the tangent plane. At a hyperbolic point, the Gaussian curvature is negative

and therefore there are curves through q whose normal vectors at q point toward any of

the sides of the tangent plane. The surface looks like a saddle. At a parabolic point the

surface is planar in one direction: an example is a point on a cylinder. Finally, at a planar
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(a) (b)

(c) (d)

Figure 4.3: The shape of a surface in the vicinity of (a) Elliptic (b) Hyperbolic (c) Planar
(d) Parabolic points.

point the surface looks like a plane. A moment's thought reveals that in the vicinity of a

good regularization parameter vector �, the L-hypersurface has to be elliptic. That is, the

curvature must be greater than zero. Negative curvatures are not interesting because at a

negative curvature point cutting the surface by the z � x1 plane produces a convex/concave

curve indicating that �1 is in the vicinity of the correct corner while cutting the surface by

the z � x2 plane produces a concave/convex curve which signals that �2 is close to one of

the false corners or the knees.

Figure 4.4 (a) shows the Gaussian curvature of the L-hypersurface in Fig. 4.1 (a) and

Fig. 4.4 (b) is the corresponding estimation error, kf � f�(�)k2, surface. We immediately
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Figure 4.4: (a) Gaussian curvature of the L-surface in Fig. 4.1 (b) corresponding estimation
error surface.

observe that the Gaussian curvature plot presents a remarkably clear picture. The points on

the curvature plot where the curvature achieves a local maximum seems to track the local

minimum of the estimation error surface. Good regularization parameters can be located very

easily by inspection of Fig. 4.4 (a). We note that the form of the Gaussian curvature surface

is not speci�c to the particular problem at hand but is quite general. Similar curvature plots

can be obtained for di�erent regularization schemes/problems.

4.3.2 Gaussian Curvature: Computational Details

The Gaussian curvature of the L-hypersurface can be computed in a straightforward but

tedious way from (4.14). One important thing to notice in (4.14) is that the formula (4.14)

requires @�z
@�xi
; i = 1; : : : ;M and @2�z

@�xi@�xj
; i; j = 1; : : : ;M which are usually unavailable. On
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the other hand @�z
@�i

and @2�z
@�i@�j

can be easily obtained and can be used to compute the partial

derivatives of �z with respect to �xi through a linear transformation. Details are provided

in Appendix A. From the formulas in Appendix A, it can be easily seen that the following

quantities are needed to compute the numerical value of the Gaussian curvature at a point

�:

�z; �xi;
@�z

@�j
;
@�xi

@�j
;

@
2�z

@�j@�k
;
@
2�xi

@�j@�k
; i; j; k = 1; : : : ;M: (4.15)

The quantities �z and �xi can be computed from the knowledge of f� alone. On the other hand,

each of the remaining partials requires the solution of a matrix-vector equation which is of the

same size as the original inverse problem. Thus, for each point � on the curvature surface,

in addition to computing f�, we need to solve M + M(M+1)

2
linear equations. Considering

that the curvature must be estimated for many regularization parameter vectors � to obtain

a reliable estimate of the best parameters we realize that the L-hypersurface method adds

a signi�cant computational burden to the already complicated inverse problem. Therefore,

it is of great interest to develop methods that reduces the computational cost of the L-

hypersurface method.

4.4 Numerical Experiments

In this section, we will evaluate the performance of the L-hypersurface method by

� comparing the e�ciency of the L-hypersurface method to that of the multi-parameter

GCV [85]
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� implementing the L-hypersurface method in conjunction with the multiscale IRR al-

gorithm presented in the previous Chapter.

Results, summarized below, indicate that the L-hypersurface method o�ers at least compa-

rable, if not better, performance as compared to the GCV and it works quite well with the

multiscale IRR algorithm in practical situations.

4.4.1 Numerical Results: E�ciency of the L-hypersurface Method

In this section, the performance of the L-hypersurface method for choosing two regularization

parameters, � = [�1; �2], will be evaluated and compared with the GCV method. The

measure of performance we employ is the the classical e�ciency E [30]

E =
kf�(�best)� fk2
kf�(�L)� fk2 ; (4.16)

where �L is obtained by either the L-hypersurface or the GCV method and the vector of

best regularization parameters �best are those minimizing the l2 norm of the error between

the original and the estimated objects, kf�(�)� fk2. Since kf�(�best)� fk2 � kf�(�L)� fk2

by de�nition of �best, the e�ciency values are spread over an interval from zero to one,

with a value close to one indicating good performance and a value close to zero indicating

poor performance. The global performance of the L-hypersurface and GCV methods were

evaluated by observing the values of E obtained over 100 experiments which di�ered only

by simulated noise. These 100 e�ciency values were then used to create a histogram by

partitioning the range [0; 1] into 10 intervals of equal length. We believe that such a histogram

is a good summary of the performance of a parameter selection method.
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The performance of both methods were evaluated in a signal deconvolution experiment

where the signal of interest is the 128-point \Blocks" sequence extracted from Donoho's

Wavelab software package [37]. It was degraded by a Gaussian convolutional kernel of

variance �h = 4:0. Zero mean white Gaussian noise was added to the degraded signal

to obtain SNR's of 40dB and 100dB. The inversion scenario in (4.6) was implemented with

R1 = I; R2 = D(1) and �i(t) = t
2
; i = 1; 2 where D(1) is a matrix representing the discrete

approximation to di�erentiation.

Figure 4.5(a)-(b) and (c) display the L-hypersurface, the GCV function and the MSE

surface obtained for a particular noise realization for the case of SNR = 40dB, respectively.

Note that the 
at appearance of the GCV function contrasts heavily with the nicely de�ned

contours of the L-hypersurface in Fig. 4.5 (a). Notice that the ridges of the L-hypersurface

in Fig. 4.5 (a) correlate well with the local minimum of the MSE surface in Fig. 4.5 (c).

Such behavior is not speci�c to this experiment but rather general. We performed numerous

experiments by changing the signal, degradation or noise level and obtained exactly the same

results.

In Fig. 4.5 (d) and (e), we plot the histograms of E values obtained on 100 experiments

for the L-hypersurface and the GCV methods for SNR = 40dB case, respectively. At each

experiment, � maximizing the curvature of the L-hypersurface and the � minimizing the

GCV function were found by exhaustively searching an interval � 2 [10�8
; 100]� [10�8

; 100].

From Fig. 4.5 (d), we observe that a large number of e�ciency values for the GCV method lie

in the close vicinity of one but the histogram indicates that these good e�ciency values were
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accompanied by a rather long tail in the distribution extending well into the territory where

the performance is quite poor. As a conclusion we can say that although GCV is quite good

in general it has a tendency to to produce unacceptable performance occasionally. Examining

Fig. 4.5 (e) reveals that the L-hypersurface method is considerably more robust than GCV

and all of the observed values of the e�ciency fall in the range 0:9 � 1:0.

Figure 4.5 (f) and (g) display the respective histogram of e�ciency values for the L-

hypersurface and the GCV methods for SNR 100dB. As observed from Fig. 4.5 (g), the

L-hypersurface, in this case, performs almost perfectly in spite of the results in the literature

saying that the performance gets worse as SNR increases. Finally, GCV performs almost

the same as it did for SNR 40dB case.
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Figure 4.5: A typical (a) L-hypersurface, (b) GCV function, (c) mean square error,

kf � f�(�)k2 for the model experiment. Histogram of e�ciency values obtained over 100

experiments for (d) GCV at 40dB SNR (e) L-hypersurface at 40dB SNR (f) GCV at 100dB

SNR (g) L-hypersurface at 100dB.
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4.4.2 Combining the L-hypersurface with the Multiscale Image

Restoration Scheme: Numerical Results

In this section, we illustrate the performance of our proposed multiscale image restoration

algorithm in a practical situation where the relevant regularization parameters were selected

by the L-hypersurface method. We used the routines in Donoho's Wavelab toolbox [37] for

the computation of the forward and inverse wavelet transforms with Daubechie's eight tap

most symmetrical wavelets [28]. In all cases below, we limited the number of levels of wavelet

decomposition to 3.

4.4.2.1 Example 1: Restoration of Mandrill Image

In our �rst example, we used a Gaussian convolutional kernel, h(x; y) = 1
4�x�y

expf�x2+y2

2�x�y
g,

with �x = �y = 2:0 to blur the 256� 256 Mandrill image. Zero mean white Gaussian noise

was added to set the SNR to 30dB. In Fig. 4.6 (a)-(b) we display the original and the blurred,

noisy images.

We restored the degraded Mandrill image using our proposed multiscale regularization

scheme, and the Constrained Least Squares (CLS) algorithm with a 2-D Laplacian regular-

izer [2]. The relevant regularization parameters were determined using the L-curve or the

L-hypersurface method. In Fig. 4.6(c)-(e) we display the restored Mandrill images corre-

sponding to the CLS, and the multiscale algorithm. For our multiscale image restoration

method we computed three restorations, displayed in Fig. 4.6(d)-(f), according to the Model

1 and Model 2 regularization schemes described in Section 3. Figure 4.6 shows that our
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(a) (c) (e)

(b) (d) (f)

Figure 4.6: From left to right: (a) Original, (b) blurred and (c) restored by CLS (d) restored
by Model 1 regularization scheme (e) restored by Model 2 regularization scheme (f) restored
by Model 1 regularization scheme with optimal p and � values. The regularization parameters

were obtained by the L-hypersurface method.

algorithm produce restored images visually superior to the CLS algorithm. We also observe

that the images restored by our algorithm are a little sharper than the image restored by

the CLS algorithm and that the texture-like regions abundant in the Mandrill image (eg. the

hairs around the mouth of the Mandrill) are better recovered by our algorithm.

For the Model 1 restoration in Fig. 4.6(d) the L-hypersurface was used to determine two

parameters, �1 and �2 corresponding to the coarsest scale scaling coe�cients and the wavelet
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Figure 4.7: (a) Curvature of the L-hypersurface for Model 1 with � = 1:2 and p = 1:0 and
(b) the corresponding RMSE surface (c) Curvature of the L-hypersurface for Model 1 with
� = 0:67 and p = 0:7280 (optimal parameters) and (d) the corresponding RMSE surface (e)

L-curve for the CLS algorithm and (f) corresponding RMSE curve.

coe�cients as sen in Fig. 4.8 (a). In this case, the curvature of the L-hypersurface is a 2-D

function of the regularization parameters as seen in Fig. 4.7(a). Also shown in Fig. 4.7(b)

is a plot of RMSE,
q

1
N2kf � f�(�)k22, as a function of these regularization parameters. Ex-

amining these plots shows that the curvature surface has a distinct extended maxima along

which the norm of the error is very close to being a minimum. Thus, we see that the restora-

tion algorithm is not overly sensitive to the scaling coe�cient regularization parameter and
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Figure 4.8: (a) Model 1 (b) Model 2 (c) Model 3 regularization schemes as used in our

experiments. In each Model, the required regularization parameters, �j, are selected by the

L-hypersurface method. In Model 1 and 3 � is set to 1:2 a priori.

locating the correct regularization parameter for the wavelet coe�cients is more important.

In the Model 2 restoration in Fig. 4.6(e), each scale in the wavelet domain is assigned

a di�erent regularization parameter as seen in Fig. 4.8 (b). Based on the L-hypersurface

obtained for the Model 1 restoration in Fig. 4.7(a), we set the scaling coe�cient regularization

parameter to 10�5. Figure 4.9(a)-(c) shows the curvature of the L-hypersurface obtained for

this experiment. Since in this case the curvature is a 3-D function (one parameter for each

wavelet scale), each of the 2-D plots in Fig. 4.9(a)-(c) is actually a slice of the curvature

hypersurface with the regularization parameter corresponding to the coarsest scale being

constant. Again, the maxima of the curvature of the L-hypersurface track well the minima

of the the RMSE surface so that we are close to the \optimal" regularization parameters.

Higher dimensional L-hypersurfaces can be obtained by just augmenting the parameter set.
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Figure 4.9: (a)-(c) Curvature of the L-hypersurface and (d)-(f) RMSE plots for the mandrill
experiment.

We see little di�erence either in terms of the error norm or in terms of visual quality between

the Model 1 and Model 2 restorations in Fig. 4.6(d) and (e). This example veri�es the

primary assumption of Model 1 scheme where it was assumed that the variance of the

wavelet coe�cients decrease uniformly across scales according to an exponential law.

Finally, in Fig. 4.6(f) we display the Model 1 restoration corresponding to an idealized

case where the parameters � and p were estimated directly from the original image. Clearly,
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this is not a realistic situation since in practice the original image is not available. Nonethe-

less, this example is interesting since it gives us an idea about how much improvement can be

expected when using the optimal � and p values as opposed to �xed a priori choices � = 1:2

and p = 1:0. The optimal p was estimated by using the method proposed in [75] and was

found to be popt = 0:7280. The exponential parameter �opt was estimated by computing the

slope of the line �tted to the log �j for j = j0; : : : ; J � 1. It was found to be �opt = 0:6117.

Since popt yields a non-convex optimization task, we computed the restorations for this case

in 2 stages. The �rst stage starts with computing the restoration for p = 1:0, which is unique

and then the restored image for p = 1:0 is fed as the starting point to the restoration algo-

rithm with p = 0:7280. There is no guarantee that the restored image for popt corresponds

to the global minimum of the cost function, nevertheless we obtained good results with this

scheme. Figure 4.7(c)-(d) shows the L-surface and the RMSE surface for popt, respectively.

Figure 4.6(f) is the restoration obtained for this case. Finally, comparison of Fig. 4.6(f)

with Fig. 4.6(d) reveals that there is visually little di�erence between the restored images

corresponding to popt and p = 1:0 cases. This example illustrates that using p < 1 does not

yield a signi�cant improvement in the performance of the multiscale algorithm.

4.4.2.2 Example 2: Restoration of Bridge Image

In our second example, we �rst blurred the original Bridge image in Fig. 4.10(a) with a 9�9

uniform motion blur and added white Gaussian noise to the degraded image to set the SNR

at 40dB. The blurred image obtained by this way is shown in Fig. 4.10(b). We computed two
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(a) (b)

(c) (d)

Figure 4.10: (a) Original bridge image (b) Blurred at SNR = 40dB (c) Restored by the TV

algorithm (d) Restored by the Model 1 scheme

restorations corresponding to the Total Variation (TV) and our multiscale image restoration

schemes. The TV algorithm is a special case of the generalized image restoration scheme

in (4.6) for j = 1 in which taking p = 1 and R1f = rf gives the cost function for the TV

algorithm. The TV algorithm is a member of the recently introduced edge-preserving image

restoration algorithms whose penalty functions apply less regularization as the magnitude of

the gradient increases. In this way, the edges in the image which are associated with large
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Figure 4.11: (a) Curvature of the L-hypersurface for the multiscale algorithm. (c) Curvature

of the L-curve for the TV algorithm. (b)-(d) Corresponding RMSE plots.

gradients are well-preserved in the restoration process while the additive noise is suppressed.

We used the \lagged di�usivity" algorithm due to Vogel and Oman [98] to compute the

restored image and chose the regularization parameter by the L-curve method as seen in

Fig. 4.11(c). The restoration obtained in this way is displayed in Fig. 4.10(c).

For our multiscale algorithm, we applied the Model 1 regularization scheme with the L-

hypersurface choice of regularization parameters. As in the previous example, we determined
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2 regularization parameters corresponding to the scaling and the wavelet coe�cients (Fig. 4.8

(a)), respectively. The L-hypersurface and the corresponding RMSE plot obtained for this

experiment are shown in Fig. 4.11(a)-(b). Figure 4.10(d) shows the Model 1 restoration.

We observe that the restored images in Fig. 4.10(c)-(d) exhibit vastly di�erent visual

characteristics. The TV algorithm fails to recover many of the small features in the image

and produces an overly homogenized restoration resembling an \oil painting" of the original

scene. The multiscale algorithm is able to reproduce �ner detail thereby yielding a more

visually appealing restoration. Note that we used the same value � = 1:2 in both Mandrill

and Bridge examples regardless of the image considered.

4.4.2.3 Example 3: Restoration of Stripes Image

In our third example, we demonstrate the orientation adaptive nature of our approach.

In Fig. 4.12 (a), we display an arti�cial 32 � 32 image which has signi�cant structure in

the horizontal direction, but little in the vertical and diagonal directions. This image was

blurred by a Gaussian convolutional kernel with �x = �y = 1, and zero mean white Gaussian

noise was added to set the SNR at 30dB. Because of the large di�erences between the

structure in the horizontal and vertical directions, an ideal image restoration algorithm

should use di�erent regularization parameters for vertical, horizontal and diagonal directions.

With this in mind, in Fig. 4.12(c)-(d) we display the restorations obtained using Model

1 and Model 3 schemes which require three regularization parameters, �1, �2 and �3, as

displayed in Fig. 4.8(b)-(c), respectively. The L-hypersurface was employed to determine
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(a) (b)

(c) (d)

Figure 4.12: (a) Original image. (b) Blurred image, 30dB SNR. (c) Restored by the pro-

posed algorithm with Model 2 (scale adaptive) regularization. (d) Restored by the proposed
algorithm with Model 3 (orientation adaptive) regularization.

the required regularization parameters. For both Model 1 and Model 3 schemes we set

the scaling coe�cient regularization parameter to 10�5. For the Model 3 restoration, the

regularization parameters obtained for the vertical and diagonal orientations (in which the

image is constant) were approximately two orders of magnitude larger than the regularization

parameter obtained for the horizontal orientation. It is clear from Fig. 4.12(c)-(d) that the

orientation adaptive algorithm produces a much better restoration than the scale adaptive
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(a) (b)

(c) (d)

Figure 4.13: (a) Original Mandrill image (b) Blurred at SNR = 10dB (c) Restored by the

TV algorithm (d) Restored by the Model 1 scheme.

algorithm.

4.4.2.4 Example 4: Restoration of the Mandrill Image; Low SNR Case

In this example, we explore the low SNR behavior of our multiscale algorithm as com-

pared to the TV algorithm. The original Mandrill image as shown in Fig. 4.13 (a) was

blurred with the Gaussian convolutional kernel from Example 1 but this time the noise level
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was adjusted so that SNR is 10dB. The blurred, noisy image is shown in Fig. 4.13 (b). We

restored the degraded Mandrill image using our multiscale regularization algorithm with

Model 1 regularization scheme (see Fig. 4.8 (a)). We used � = 1:2 for the exponential pa-

rameter and determined the �1 and �2 values by the L-hypersurface method. The curvature

of the L-hypersurface and the corresponding RMSE surface obtained for our multiscale reg-

ularization scheme are displayed in Fig. 4.14 (a)-(b). For comparison, we also restored the
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Figure 4.14: (a) Curvature of the L-hypersurface for the multiscale algorithm. (c) Curvature
of the L-curve for the TV algorithm. (b)-(d) Corresponding RMSE plots.
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degraded Mandrill image using the TV algorithm with the L-curve choice for the regulariza-

tion parameter. In Fig. 4.14 (c)-(d) we display the curvature and the RMSE plots for the

TV algorithm.

Restored images corresponding to our multiscale algorithm and the TV algorithm are

shown in Fig. 4.13 (c) and (d), respectively. The extremely low SNR (10dB is regarded as

very low in image restoration applications where the convolutional kernel is wide) demands

relatively large regularization parameters (in other terms more smoothing) compared to the

previous cases. As a result, many of the details present in the original Mandrill image

are lost in both restorations. The TV restoration shown in Fig. 4.13 (c) contains large

patches of constant magnitude areas and the restored image looks like a piecewise constant

approximation to the original image. The multiscale restoration displayed in Fig. 4.13 (d),

on the other hand, no longer seems to be edge-preserving. Because of the large penalty

applied to the wavelet coe�cients, most of the edges and details represented by the wavelet

coe�cients are lost. The resulting restoration is mostly composed of contributions coming

from the scaling coe�cients which capture the smooth information in the image. However,

the restored image shown in Fig. 4.13 (d) is more realistic than the TV restoration in Fig. 4.13

(c). We note that there is a little more detail in multiscale restoration as compared to the

TV restoration. We leave it to the reader to assess the quality of the restored images.

4.4.2.5 Example 5: Restoration of Synthetic Aperture Radar (SAR) Images

In this example, we apply our multiscale IRR algorithm to the problem of the restoration
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(a) (b) (c)

Figure 4.15: (a) Original degraded image (b) Restored by the CLS algorithm (c) Restored
by our multiscale algorithm with Model 1 regularization scheme.

of SAR images [66, 68]. SAR images are a�ected by speckle, which appears as a granular

signal-dependent noise, whose e�ect is to degrade the performances of image segmentation

and classi�cation algorithms. A variety of techniques are applied for speckle reduction [66].

Here, we will employ our multiscale IRR algorithm to this problem and compare our results

with that of the CLS algorithm. Here, we model the observed SAR as the following:

g(x; y) = exp fh(x; y) � f(x; y)g � e(x; y) (4.17)

where x and y are the spatial coordinates, � denotes convolution and f is the true image, h is a

degradation operator, g is the recorded SAR image and e is the multiplicative noise, modeled

here as a stationary, uncorrelated Gaussian process independent of f with mean one and

variance �2
e . We assume here that the degradation operator h is a 2-D Gaussian function as

in Example 1, with �x = 1:0 and �y = 1:0 (these values are experimentally determined from

the spectral content of the original degraded image). We apply our multiscale IRR algorithm

as well as the CLS algorithm to logarithmically transformed data, �g(x; y) = log g(x; y), so
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that the problem becomes

�g(x; y) = h(x; y) � f(x; y) + e(x; y) : (4.18)

We restored the degraded images by our multiscale algorithm with Model 1 restoration

(a) (b)

(c) (d)

Figure 4.16: (a) Original degraded image (b) Restored by the CLS algorithm (c) Restored

by our multiscale algorithm with Model 1 regularization scheme (d) A detail image from (c).
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scheme as well as the CLS algorithm with 2-D Laplacian as the regularization operator.

Regularization parameters were determined by the L-hypersurface or the L-curve method.

In Fig. 4.15 (a) and Fig. 4.16 (a) we display the degraded images. Figure 4.15 (b) and

Fig. 4.16 (b) show the restored images corresponding to the CLS algorithm and Figure 4.15

(c) and Fig. 4.16 (c) are the images restored by our multiscale algorithm. As observed,

for both images multiscale restorations are much better than the restorations obtained by

the CLS algorithm. The CLS algorithm eliminates the noise at the expense of losing many

details such as the vehicles present in Fig. 4.16 (a) which are regarded as targets in many

applications. Also note that the shadows of trees, vehicles and other objects, regarded as

features for the purposes of identi�cation, have blurred edges. Our multiscale algorithm is

able to preserve the targets and the shadows in both images and at the same time does a

remarkable job in eliminating the noise.
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Chapter 5

E�cient Selection of Multiple

Regularization Parameters in a

Generalized L-curve Framework

In this section, we consider the selection of multiple regularization parameters in a L-

hypersurface framework. Based on the generalized L-curve, we develop what we denote

as the minimum distance function (MDF) for approximating the regularization parameters

corresponding to the generalized corner of the L-curve. It is shown through an L-curve model

that the regularization parameters minimizing the MDF essentially maximize the curvature

of the L-curve. Furthermore, the MDF approach leads to a simple �xed point iterative

algorithm for computing regularization parameters. Examples indicate that the algorithm

converges rapidly reducing the cost associated with the implementation of L-hypersurface
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method signi�cantly.

5.1 Introduction

Our goal in this section is to propose new methods for the choice of multiple regulariza-

tion parameters through the use of the L-hypersurface method. Our basic motivation is to

decrease the cost associated with the straightforward implementation of the L-hypersurface

method. As we have seen in the preceding chapters, the L-hypersurface method is a reliable

method with proven performance. It works very well with our multiscale IRR algorithm for

which many conventional parameter selection methods are either prohibitively complex or

lacks multi-variate extensions. In Chapter 4, we compared the performance of the L-curve

method against GCV and supplied results for a number of IRR experiments illustrating

good performance. Hence, the �rst question that comes to mind, \Does the L-hypersurface

method really work?" has been answered. Now we tackle the second logical question: \How

can we make the L-hypersurface method more e�cient?"

The L-curve method has been applied successfully to many practical instances of the

inverse problems [6, 14, 42, 56, 58] and is very-well known. There has been some publicized

work devoted to increasing its e�ciency [22,67]. In [67], the authors propose approximating

the regularized solution f�(�) by projecting the original problem onto a smaller dimensional

space. Then the regularization parameter is determined by applying the L-curve method to

regularize the projected problem. The regularized solution to the projected problem can be

computed in a fraction of time, using a fraction of storage. On the other hand, Calvetti et.
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Figure 5.1: (a) Curvature, �(�), of a typical L-curve. (b) Derivative of the curvature function,
d�(�)

d�
, in (a). Circles indicate the maxima/minima of �(�) in (a) and the zeros crossings of

of d�(�)

d�
in (b).

al. [22] propose a method based on computing what what they call an L-ribbon that contains

the L-curve in its interior. An L-ribbon can be computed fairly inexpensively by partial

Lanczos bi-diagonalization of the matrix of the given linear system of equations (see [22] for

details). In [58], the authors consider computing the curvature of the L-curve by �tting a

smoothing cubic spline to the points points on the L-curve. Since such a curve is smooth

and is twice di�erentiable, the curvature can be computed in a numerically stable way from

the �tted curve. They also propose an algorithm to locate the corner of the L-curve by �rst

starting with a few points to the left and right of the corner and successively zooming in to

the points where curvature is maximum.
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In Chapter 4, we located the generalized corner of the L-hypersurface by doing an ex-

haustive search over all selected regularization parameters. In general, evaluating points on

the curvature function of the L-hypersurface is computationally very demanding and one

would prefer using a standard optimization strategy instead of exhaustive search to locate

the best regularization parameters. The basic di�culty in this approach is that the curva-

ture function typically possesses many maxima/minima and therefore it is not suitable for

standard optimization techniques that might easily be caught in a local maxima/minima.

This phenomena is perhaps best illustrated by the plots in Fig. 5.1. Figures 5.1(a) and (b)

display the curvature �(�) of a typical L-curve obtained for Tikhonov regularization with

identity applied to the Blocks problem described in Chapter 2 and the derivative d�(�)

d�
of

the curvature function. In Fig. 5.1 (a), we marked the maximum/minimum points of the

curvature function with a circle. As observed, there are many local maxima/minima (15 to

be exact). Even if there were a single maximum, the maximization of the curvature function

would be quite di�cult because most optimization algorithms require the derivative of the

function to be minimized necessitating the derivatives of the third order of the residual and

the constraint norms.

Our plan in this work is to approach the problem not in terms of maximizing the curvature

function but in terms of minimizing a surrogate function replacing the curvature. We design

this surrogate function in such a way that it possesses a minimum point which is close

to the corner of the L-hypersurface and additionally it is much easier to optimize. We

prove that in the one parameter case, minimization of this surrogate function is essentially
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equivalent to the maximization of the curvature function. We develop a simple and e�cient

�xed point iterative algorithm to compute the regularization parameters that correspond to

the minimum of the surrogate function. We demonstrate through numerical examples that

although there is little performance loss as compared to the maximization of the curvature,

the computational burden is signi�cantly smaller.

5.2 Problem Setting

In this work, we consider a generalized multiply constrained least squares approach as in

Chapter 4:

min
f

(
kg�Hfk22 +

MX
i=1

�i�i(Rif)

)
; Ri 2 Rm�n

; (5.1)

whereRi are regularization operators and �i are the corresponding regularization parameters,

�i(Rif) =
Pm

j=1 �i([Rif ]j) and the notation [Rif ]j denotes the jth element of the vector Rif

andM is the number of constraints. We assume that �i(t) satis�es the conditions presented in

Chapter 4.2 so that there exists a half-quadratic algorithm to compute the unique minimum

of (5.1). Note that for M = 1 and �1(t) = t
2 and R1 = I, (5.1) reduces to the conventional

Tikhonov's regularization with identity. More exotic regularization schemes can be obtained

by appropriately structuring �i(t) and Ri. The solution f
� of (5.1) must satisfy the following

equation:

Kf�f
� = HTg; H 2 Rm�n (5.2)
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Figure 5.2: (a) The slowly extending bubble centered at O(a; b) �rst touches the L-curve at

the corner. (b) The distance from O(a; b) to the L-curve drawn as a function of �

where the matrix Kf� is given by

Kf� = HTH+
1

2

MX
i=1

�iR
T
i diagk=1;:::;m

"
�
0
i([Rif

�]k)

[Rif�]k

#
Ri: (5.3)

5.2.1 An Alternative De�nition of the Corner

A major shortcoming of the L-hypersurface method is that direct maximization by eval-

uating the curvature for a large number of regularization parameters is expensive. Further-

more, use of a conventional optimization technique to locate the maximum curvature point

is hampered by the fact that the curvature function usually possesses multiple extrema.

Considering these di�culties, we propose replacing the curvature function by a surrogate
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function which is far easier to optimize. Our ultimate goal is to choose the surrogate func-

tion so that the regularization parameters obtained from the optimization of this function

are close to those chosen by the L-hypersurface method. To give a 
avor of the simple geo-

metrical ideas behind our approach, we consider a typical L-curve as displayed in Fig. 5.2

(a). We denote the points where extreme solution norm and extreme residual norm regions

start by a and b respectively. Formally, the points a and b are de�ned as

a =  (kg�Hf�(�a)k22); b =  (�[Rf�(�b)]) (5.4)

where �a is the regularization parameter to the left of the corner where the L-curve becomes

approximately horizontal and �b is the regularization parameter to the right of the corner

where the L-curve becomes approximately vertical (see Fig. 5.2 (a)) and  is an appropriate

scaling function such as  (t) = log t or  (t) =
p
t. For Tikhonov's method we have the

following a priori estimates: �a = �
2
min, �b = �

2
max where �min and �max are the smallest and

the largest singular values of the matrix H (see discussion in page 49 of [59]).

We de�ne an origin, O = (a; b), and compute the distance from our origin O to the L-

curve. Suppose that there is a slowly expanding bubble located exactly at the originO. From

the geometry, it is easy to see that the �rst point on the L-curve that the bubble touches will

be close to the corner of the L-curve. Furthermore, as the bubble continues to expand, the

circle describing the boundaries of the bubble intersects the L-curve at exactly two points at

the left and right of the corner until the circle reaches extreme residual norm and extreme

solution norm regions. The radius of the circle is in fact the value of our distance function.

The statements concerning the behavior of the bubble describes our distance function. That
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is, the distance function is minimum at a point close to the corner and the function increases

as we go away from the origin until we reach extreme residual or signal norm regions. In this

way, we have de�ned a function whose minimum occurs at or near the corner and possesses

a single minimum in a wide range of regularization parameters. Hopefully, the newly de�ned

distance function will make our optimization task much easier.

5.2.2 The Minimum Distance Function

We begin with de�ning our surrogate function for a single regularization parameter (i.e. the

L-curve case) prove the associated optimality results and then give a generalized form of the

surrogate function for the multi-dimensional case.

De�nition 5.2.1 (Minimum Distance Function (MDF)) : Let O = (a; b) be the coor-

dinates of an appropriate origin. The minimum distance function, v(�), is the distance from

the origin O to the point �(�) = (�1(s); �2(s)) = ( [z(�)];  [x(�)]) on the L-curve:

v(�) = j [z(�)]� aj2 + j [x(�)]� bj2 (5.5)

Based on the de�nition of the MDF, we de�ne the minimum distance point as the fol-

lowing:

De�nition 5.2.2 (Minimum Distance Point (MDP)) : Let �a and �b be as de�ned

after (5.4). The minimum distance point is the point where the curvature of the L-curve is

positive and v(�) reaches a local minimum:

�
� = min

�2(�a;�b)
v(�) or v(��) = 0 with � 2 (�a; �b) :
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Next we go on to prove that the MDF function has at least one local minima in � 2

(�a; �b). However, before proceeding any further we introduce a parameterized model for

the L-curve which closely approximates the behavior of a family of L-curves while having a

representation simple enough for algebraic manipulations.

5.2.3 A Parametric Model for the L-curve

In many cases, formulas describing the components of the L-curve and its curvature are

so complicated that an exact theoretical analysis is intractable. However, the curvature

function obtained for a large class of linear inverse problems share a common structure where

the curvature is almost zero at all but three di�erent regularization parameters; one of them

is the corner where curvature is positive and the other two correspond to the false corners

or knees of the L-curve where the curvature is negative and the regularization parameter

is either too small or too large (see Fig. 5.1 for example). Note that this model does not

capture most of the of maxima/minima (those that exist in the range � 2 [10�25
; 10�10])

points of the curvature function in Fig. 5.1 (a). However, these maxima/minima points are

located in a region where curvature is close to zero and ignoring them is unlikely to cause

any problems. Based on these empirical observations, we propose a simple parametric model

for the curvature function where the curvature is assumed to be zero at all points except for

a narrow region around the \corners". In this model, we represent the curvature function

with three little bumps as seen in Fig. 5.3 (a):
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Figure 5.3: (a) Assumed curvature function. (b) the corresponding L-curve. The coordinates

of the origin is given by O = (a; b) = (�1(sa); �2(sb)).
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1

�0
G
�
s� �0

�0

�
� �1

1

�1
G
�
s� �1

�1

�
� �2

1
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�
s� �2
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�
(5.6)

where subscripts 1 and 2 represent false corners where the L-curve is concave, subscript 0

represents the desired corner, and � and � are parameters adjusting the location and spread

of the bumps. The function G(s) is given by

G(s) =

8>>><
>>>:

35
32
(1� s

2)3; for jsj � 1;

0 for jsj > 1

(5.7)

For convenience, we choose to parameterize the curvature function �(s) in terms of arclength

s =
Z �

�0

s
jd (x[u])

du
j2 + jd (z[u])

du
j2du: (5.8)

Since x(�) and z(�) are continuous functions of � and ds
d�

never vanishes, there is a one-to-

one correspondence between s and �. That is, given any s we can uniquely determine the
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corresponding � value [81].

There is a unique plane curve (up to a rigid motion) realizing �(s) in (5.6), as its curvature

[32]:

�(s) =

�Z s

0
cos �(u)du;

Z s

0
sin �(u)du

�
(5.9)

�(u) =
Z u

0
�(t)dt (5.10)

In our case, an explicit analytic formula for �(s) cannot be found. However, the equations

in (5.10) can be numerically solved from the following di�erential equation

d�(s)

ds
= (cos �(s); sin �(s)) : (5.11)

Here, �(s) =
R s
0 �(t)dt can be analytically computed from (5.6). Fig. 5.3 shows the L-curve

obtained from �(s) in (5.6) with (�0; �1; �2) = (5; 1; 7) and (�0; �1; �2) = (0:2; 0:5; 0:7) It is

easy to see from this �gure that �0 <
�

2
determines the angle between the approximately

horizontal and vertical parts of the L-curve to the right and left of the corner. On the

other hand, �0 is a measure of the width of the crossover region (i.e. the regions separating

horizontal and vertical parts). As �0 approaches zero, the corner of the L-curve becomes

sharper.

5.2.4 Properties of MDF

In this section, we prove, using the L-curve model introduced, that the � minimizing the

MDF essentially maximizes the curvature of the L-curve. To begin with, we de�ne the
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tangent vector to the L-curve, t(s):

t(s) =
d�(s)

ds
=

 
d�1(s)

ds
;
d�2(s)

ds

!
= (cos �(s); sin �(s)) : (5.12)

Based on (5.12), the unit normal, n(s), is de�ned as the unit length vector perpendicular to

t(s).

Considering the actual behavior of an L-curve it is easy to see that, t(0) is parallel to

the �1 axis (L-curve becomes horizontal as �! 0) and that t(s) becomes parallel to the �2

axis as s ! 1 (L-curve becomes vertical as � ! 1). This, in turn imposes the following

constraints on �i, i = 0; 1; 2:

�1 � �0 + �2 =
�

2
(5.13)

�0; �1; �2 <
�

2
(5.14)

Equation (5.13) ensures that there are exactly �

2
degrees between the tangent vectors t(0)

and t(1) and (5.14) is a natural consequence of the fact that �2(s) is a monotone decreasing

function of �1(s) [86].

We denote the origin chosen for the computation of v(s) by O = (a; b). Point a is given

by a = �1(sa) where sa < �0 � �0 and point b is given by b = �2(sb) where sb > �0 + �0.

Points on the L-curve where s = �i��i; i = 0; 1; 2 carry a special importance for us, namely

they represent the points where �(s) is zero and the L-curve switches between linear and

non-linear.

Before proceeding any further, we introduce the concept of parallel transport of a convex

plane curve (i.e. �(s) � 0).
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Figure 5.4: Parallel curve of a convex plane curve.

De�nition 5.2.3 Let �(s) be a convex plane curve (a curve for which �(s) � 0) positively

oriented. The curve


(s) = �(s) + rn(s) (5.15)

where r > 0 is a constant and n is the unit normal, is called a parallel curve to �(s) [32]

(Fig. 5.4).

It is easy to see from the de�nition that the parallel curve of a plane curve is obtained by

simply expanding the curve by a constant amount along the direction of the normal. The

parallel transport of a convex plane curve �(s), denoted by P(�), is de�ned as the region

covered by the parallel curves 
(s) for all r 6= 0 and all s such that 
(s) is de�ned. We use
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Figure 5.5: A typical L-curve.

the notation �[s1;s2](s) to denote the part of the curve � restricted to s 2 [s1; s2]. Thus for

the L-curve � in our example, P(�[s1;s2]
) covers all those points on the plane under the curve

from which we can draw a line perpendicularly intersecting the curve �[s1;s2]
. This property

of a parallel transport will play a crucial role in the proofs of Theorems 5.2.3-5.2.9.

Theorem 5.2.1 Let Q be a point on the plane below the convex curve �(s), which does

not lie on �(s). A line from Q to �(s) intersecting �(s) perpendicularly can be drawn if

Q 2 P(�).

Proof 5.2.2 Follows from the de�nition of P(�). 2

By using the concept of parallel transport, we are able to prove the following.
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Theorem 5.2.3 v(s) has a unique local minimum at s
� 2 [s�0 ; s

+
0 ] � [�0��0; �0+�0] if O =

(a; b) is in the region bounded above by the part of the L-curve lying between Q
�
0 = �(�0��0)

and Q
+
0 = �(�0 + �0) and the semi-in�nite rays n�0 ;n

+
0 emanating from the points Q

�
0 and

Q
+
0 and perpendicular to the L-curve at the cited points (shaded region in Fig. 5.5).

Proof 5.2.4 Given the point O = (a; b), by the de�nition of parallel transport and Theorem

5.2.1 there exists a scalar r� > 0 and s� 2 [s�0 ; s
+
0 ] such that O = �[s�0 ;s

+
0 ]
(s�)+r�n(s�). De�ne

the point on �[s�
0
;s
+
0
] at s

� as P = �[s�
0
;s
+
0
](s

�). Then we can write the vector from P to O,

�!
PO, as r�n(s�). If t(s�) denotes the tangent to �[s�

0
;s
+
0
] at P , it follows that

�!
PO � t(s�) = 0.

But by our earlier de�nitions, we have

t(s�) = [
d [z(s�)]

ds
;
d [x(s�)]

ds
];
�!
PO = [( [z(s�)]� a) ; ( [x(s�)]� b)]:

Thus, the condition
�!
PO � t(s�) = 0 implies

( [z(s�)]� a)
d [z(s�)]

ds
+ ( [x(s�)]� b)

d [x(s�)]

ds
= 0;

which is precisely the condition v0(s�) = 0 in De�nition 5.2.2. Therefore s� is a critical point

of v(s) for s 2 [s�0 ; s
+
0 ].

Now suppose the s� is not a minimum. Then there exists � such that v(s� + �) < v(s�).

This would imply that �[s�0 ;s
+
0 ]
(s� + �) must lie below t(s�) since it is closer to O than P is.

But this would contradict the fact that �[s�
0
;s+
0
] is convex. Therefore s

� must be a minimum

of v(s) in [s�0 ; s
+
0 ]. By a similar argument s� is also seen to be unique. 2

Theorem 5.2.5 Let O be an origin satisfying the hypothesis of Theorem 5.2.3. Let s
�
be the
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corresponding point minimizing v(s) in [s�0 ; s
+
0 ] � [�0 � �0; �0 + �0]. Then s

�
is the unique

minimum of v(s) for all s in (�1 + �1; �2 � �2).

Proof 5.2.6 By Theorem (5.2.3) we know that v(s) has a single minimum, v(s�), at s� 2

[�0 � �0; �0 + �0], so it su�ces to prove that v(s�) is the unique minimum in (�1 + �1; �0 �

�0)
S
(�0+�0; �2��2): Since the argument is the same for either subinterval, we assume with-

out loss of generality that there is another minimum in the left subinterval, s�� 2 (s+0 ; s2) �

(�0 + �0; �2 � �2). Let P = �(s��). By Theorem 5.2.1 applied to the curve �[s+0 ;s2]
, the

only way to draw a perpendicular line to P from O is if O 2 P(�[s+0 ;s2]
). Since O is not

in P(�(s+
0
;s2)

) by our assumption, we cannot draw a perpendicular line to P . Therefore

�!
PO � t(s��) = v

0(s��) 6= 0, a contradiction. It follows that s� is the unique minimum of v(s)

for s 2 (�1 + �1; �2 � �2). 2

Theorems 5.2.3 and 5.2.5 tell us that by placing the origin O = (a; b) inside the region

bounded by the perpendicular lines at zero curvature points s = �0��0 on the sides and the

L-curve above, we can actually create a function v(s) such that the minimum of v(s) is close

to the corner of the L-curve (point on the L-curve for which s = �0) and that v(s) possesses

a unique minimum for a wide range of s values. These are, of course, desirable properties for

a surrogate function replacing the curvature since our initial goal was to create a function

approximating the corner of the L-curve and having nice characteristics for the purpose of

optimization. Although Theorems 5.2.3 and 5.2.5 tell us a great deal about the behavior

of v(s), they do not tell us how to choose an appropriate origin satisfying the condition in

Theorem 5.2.3. However, as we will see in the next two theorems the choice of the origin
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O = (a; b) is not crucial for a well-behaved L-curve.
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b

b’
O(a, b)

β

β
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2
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1

n

n0
+

Q0
+= β(µ0+σ0)

θ0
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0
-

0σ )− 0µβ= -Q0
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θ0 π/2

β

(

(s)

Figure 5.6: Illustration for the proof of Theorem 5.2.7. Shaded region is P(�[�0��0;�0+�0]).

Theorem 5.2.7 As �0 approaches
�

2
, any origin O = (a; b) = (�1[sa]; �2[sb]), such that

sa < �0 and sb > �0, lies in P(�[�0��0;�0+�0]) for s 2 (�0 � �0; �0 + �0) and r > 0.

Proof 5.2.8 O = (a; b) falls to the outside of P(�[���0;�0+�0]) only if either O is in the

region to the left of n�0 = n(�0 � �0) or O is in the region to the right of n+
0 = n(�0 + �0)

(Fig. (5.6)). We investigate, without loss of generality, the �rst case.

Let us consider an origin O(a; b) = (�1[sa]; �2[sb]) with sb < �0 �xed and whose �1

coordinate a is determined by the intersection of the horizontal line �2 = b with n�0 . Since

P(�[�0��0;�0+�0]) (shaded region in Fig. 5.6) for r > 0 lies below n�0 , O = (a; b) as well as any

origin whose �1 coordinate is smaller than a results in an MDF whose minimum is outside
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the region covered by s 2 (�0 � �0; �0 + �0). In other words, the intersection of the line

�2 = b with n�0 determines the boundary beyond which an origin falling outside the region

P(�[�0��0;�0+�0]) can be found.

Since �1 � �0 + �2 = �
2
and �1; �2; �0 <

�
2
by our assumptions, �0 ! �

2
implies that

�1; �2 ! �

2
and as �0 ! �

2
the L-curve takes the limiting shape shown in Fig. 5.6 by the

dashed line. In the limit, as �0 ! �

2
, n�0 becomes horizontal and the line �2 = b cannot

intersect n�0 meaning that an O(a; b) that is outside P(�[���0;�0+�0]) cannot be found.

Hence, as �0 approaches �
2
, P(�[���0;�0+�0]) for r > 0 extends in such a way that the

�1 coordinate, a, of any origin O(a; b), satisfying the conditions in Theorem 5.2.7, falls in

P(�[���0;�0+�0]). 2

Now, we are ready to prove our �nal result.

Theorem 5.2.9 Denote the point where v(s) achieves a local minimum in [s�0 ; s
+
0 ] � [�0 �

�0; �0 + �0] by s
�
. Let O = (a; b) 2 P(�[s�0 ;s

+
0 ]
) for s 2 [�0 � �0; �0 + �0] and r > 0. Then,

lim�0!0 s
� = �0

Proof 5.2.10 By Theorem 5.2.3,

�0 � �0 � s
� � �0 + �0

The desired result is obtained by letting �0 ! 0. 2

By combining the results of Theorem 5.2.7 and 5.2.9 and recalling that v(s) is a function

of �1(s); �2(s) we obtain the following result.
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Corollary 5.2.1 Denote the point where v(s) achieves a local minimum in s 2 (�0��0; �0+

�0) by s
�
. Let O = (a; b) be such that a = �1(sa) where sa < �0 and b = �2(sb) where sb > �0.

Then,

lim�0!0 �0!�
2
s
� = �0

In other words, Corollary 5.2.1 says that as �0 ! �

2
and �0 ! 0 (e.g. the more the curve

looks like the letter L), the point s� for which v(s�) is a minimum coincides with the corner

of the L-curve �0 no matter where we choose the origin (provided that a falls to the right

of the corner and b falls below the corner). We use a heuristic for choosing such points in

the examples: namely, we take O = (log z(�2
min); log x(�

2
max)), where �min; �max denote the

smallest and largest singular values (or approximations thereof) of H.

5.2.5 Multidimensional Extension of MDF

Just as we have de�ned the MDF in the case of an L-curve, we may consider a multidimen-

sional extension of MDF in (5.5). The MDF for multiple regularization parameters is de�ned

as follows:

v(�) = j [z(�)]� aj2 +
MX
i=1

j [xi(�)]� bij2 (5.16)

where O = (a; b1; : : : ; bM) denotes the coordinates of our origin. Extension of the analysis

of the MDF in a multidimensional setting is quite complicated and intended for future

work: rather, we give an intuitive explanation of why MDF is expected to work for multiple

parameters.

First of all, examining Fig. (4.4) (a) reveals that the L-hypersurface is convex in the
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vicinity of the maximum Gaussian curvature point, �� (i.e. �(�) > 0). Therefore, the L-

hypersurface has a bowl shaped appearance around �� and any point on the L-hypersurface

lies above the tangent plane at ��. Hence, the unit normal to the L-hypersurface at ��,

N(��), de�nes a line whose points, when used as an origin for the computation of v(�),

yields an MDF which has a local minimum at ��. Thus, if we choose our origin O in the

close vicinity of the line de�ned by N(��), the minimum of v(�) hits a close point to the

generalized corner of the L-hypersurface. One heuristic for choosing such a point when

M = 2 (see Example 3) is to take O = (log z(�2
min; �

2
min); logx1(�

2
max; 0); logx2(0; �

2
max; 0)),

and analogously for M > 2.

5.3 An Iterative Algorithm for Approximating ��

Generally, we may use any appropriate optimization technique for �nding the � value which

minimizes v(�). However, many optimization algorithms require higher order partial deriva-

tives of z(�) and xi(�) with respect to �i; i = 1; : : : ; m. It is shown in Appendix A that each

of these partials can be computed from df�(�)

d�i
. df�(�)

d�i
, in turn, is obtained by solving a linear

system whose size is the same as that of the original problem. Clearly, the computational

e�ort associated with computing the required partials can be prohibitively large if the size of

the problem is big as is the case for any IRR problem. However, using elementary properties

of the MDF we can easily derive a �xed point algorithm for ��. Di�erentiating (5.16) with
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respect to �j, and equating the result to zero we obtain the following equation:

MX
i=1

( [xi]� bi) 
0[xi]

@xi

@�j
+ ( [z]� a) 0[z]

@z

@�j
= 0 (5.17)

Using (4.8, 4.9, 4.10), it is easy to show the following:

@z

@�j
= 2(Hf�(�)� g)TH

@

@�j
f (5.18)

@xi

@�j
= f�(�)TRT

i diag k=1;:::;m

"
�
0
i([Rif

�]k)

[Rif�]k

#
Ri

@

@�j
f (5.19)

Next, we consider (5.18):

@z

@�j
= 2(Hf�(�)� g)TH

@

@�j
f

= 2(HK�1
f�
HTg� g)TH

@

@�j
f

= 2(HTHK�1
f�
HTg �HTg)T

@

@�j
f

= 2gTHK�T
f�
(HTH�Kf�)

T @

@�j
f

= �2f�(�)T
 
1

2

MX
i=1

�iR
T
i diagk=1;:::;m

"
�
0
i([Rif

�]k)

[Rif�]k

#
Ri

!
@

@�j
f (5.20)

= �
MX
i=1

�i
@xi

@�j
(5.21)

where the last step follows from (5.19). Substituting (5.21) into (5.17) we obtain the following

equation for j = 1; : : : ;M :

mX
i=1

(( [xi]� bi) 
0[xi]� �i( [z]� a) 0[z])

@xi

@�j
= 0 (5.22)

Note that (5.22) is actually a collection of M di�erent equations. We can arrange those M

equations into a matrix-vector equation:

Jr = 0 (5.23)
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where [J]
j;i
= @xi

@�j
and

[r]i = ( [xi]� bi) 
0[xi]� �i( [z]� b) 0[z]; i = 1; : : : ;M: (5.24)

If J is nonsingular, (5.23) has only the trivial solution r = 0. However, the non-singularity

of J follows from our assumption that the surface is regular (observe that J is one of the

minors of dS in 5.21 obtained by taking the �rst M rows and M columns of dS. Hence J

must be nonsingular.) [32].

Thus (5.23) implies r = 0. Therefore, the solution of (5.22) is given by

�
�
i =

 
0[xi]

 0[z]

 (xi[�
�])� bi

 (z[��])� a
; i = 1; : : : ;M (5.25)

If  (t) = log t, (5.25) reduces to the following

�
�
i =

z(��)

xi(�
�)

 
log xi(�

�)� bi

log z(��)� a

!
; i = 1; ::; m (5.26)

Because (5.25) xi = xi(�
�) and z = z(��) are also functions of ��, (5.26) de�nes �� implicitly.

Based on the formula in (5.26), we propose the following iterative algorithm to approximate

�� in log scale:

�
(k+1)
i =

z(�(k))

xi(�
(k))

 
log[xi(�

(k))]� bi

log[z(�(k))]� a

!
; i = 1; ::; m (5.27)

where �(k) is the vector of regularization parameters at step k. The algorithm is started

with an appropriate initial regularization parameter vector �(0) and iterated until the relative

change in the iterates is determined to be su�ciently small.

Under some assumptions, we are able to prove1 that if M=1, the �xed point iteration

converges to a minimum of v:

1Proof is due to Dr. Misha Kilmer
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Theorem 5.3.1 Assume v(t) has only one critical point, say t
� � 0, in (�a; �b) and that v

is a minimum at that critical point. Further, assume that z(t);�x(t) are strictly increasing

functions of t over the interval. Then if the starting guess t
(0)

satis�es �a < t
(0) � t

�
and

z(t(0))

z(�a)
� 10;

and t
�
is such that

x(t�)

x(�b)
> 10;

then the �xed point iteration (5.27) converges to t
�
.

Proof 5.3.2 First, de�ne the iteration function as

�(t) � z(t)

x(t)

 
log[x(t)]� b

log[z(t)]� a

!
:

Then the �xed point iteration is written t(k+1) = �(t(k)).

The case t(0) = t
� is trivial, so in the remainder, we assume t(0) < t

�.

Let I denote the closed interval [�; t�] where � satis�es z(�)

z(�a)
= 10.

For all t in I, our assumptions imply v0(t) < 0. Using (5.21) we get

v
0(t) = 2x0(t)

 
1

z(t)
(log[z(t)]� a)� t

1

x(t)
(log[x(t)]� b

!
< 0:

But since x0(t) < 0, it follows that for all t in I,

�(t) > t:

In particular, this implies � � � t(k) > t
(k�1)

> � � � > t
(0) when t(0) 2 I.
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Now it is straightforward to show that the derivative of the iteration function is given as

�0(t) = �(t)
z
0(t)

x

 
1� 1

log[z(t)]� a

!
+
z(t)(�x0(t))

x2(t)

 
�(t)� 1

log[z(t)]� a

!
;

where

�(t) =

 
log(x(t))� b

log(z(t))� a

!
:

Using the fact that x(t)

b
� x(t�)

b
> 10 and z(t)

a
� 10 together with the positivity of x; z;�x0; z0,

it is easy to show that �0(t) > 0 for t in I.

Let t(k) < t
� (by de�nition, t(k) 2 I). By the Mean Value Theorem, there exists c 2

(t(k); t�) such that

�0(c) =
�(t(k))� �(t�)

t(k) � t�
:

Since we have assumed t
(k) � t

�
< 0 and we know �0(c) > 0, it must be the case that

t
(k+1) = �(t(k)) < �(t�).

Therefore, the iteration is producing an increasing sequence
n
t
(k)
o1
k=0

on the closed in-

terval I and the sequence is bounded above by t�. Thus, t(k) ! t
� if t0 2 I. 2

As a consequence, we know that if we pick a starting point for the single dimensional

�xed point iteration which satis�es the hypotheses, the iterates will all be positive. For

the multidimensional �xed point algorithm, it is di�cult to determine if and when the

algorithm is guaranteed to converge. We therefore leave this study of convergence for the

multidimensional case for future research, but note that in practice (see Example 3), this

has not been a di�culty for judicious choice of origin.
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5.4 Numerical Examples

In this section, we verify the statements made concerning the behavior of the MDF and

demonstrate the e�ectiveness of the iterative algorithm derived in 5.3 for both one and

multidimensional parameter selection problems.

5.4.1 Example 1

We generated a test problem of the form Hf = �g by using the function shaw(100) in

Hansen's Regularization Toolbox [57] in MATLAB. We modi�ed the exact right hand side

�g by adding normally distributed noise, n, scaled so that variance(n)

variance(�g)
= 10�5. We employed

Tikhonov's regularization with the identity to estimate the original solution f . The L-curve

for this problem was then computed by sampling � in 500 logarithmically equi-spaced points

between 10�37 and 102. The resulting L-curve is displayed in Fig. 5.7 (a). We chose three

di�erent origins and computed corresponding v(�) functions. Each one of the three origins

chosen were indicated by the symbols `o', '+' and 'x' in Fig. 5.7 (a). Origin `o' is

especially important since it is the one we advocated using. Its coordinates were calculated

as follows: First we estimated the smallest and largest singular values of the matrixH which

were found to be �min � 10�18 and �max � 10. It is known that [56], for � < �
2
min the L-curve

becomes almost a horizontal line and for � > �
2
max the L-curve becomes almost vertical. The

exact expression for the coordinates of the origin is O = (a; b) = (log z(�2
min); logx(�

2
max)).

In Fig. 5.7 (b) we display v(�) functions for each of the three origins selected. The minimum

of v(�) for each case is marked with the appropriate symbol from Fig. 5.7 (a). Also shown
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in Fig. 5.7 (c) is the plot of log(1 + j�(�)j) and the location of the minimum of the v(�)

functions for each case. The region in between the dash-dotted lines in Fig. 5.7 (b)-(c)

represents the part of the L-curve for which �(�) � 0. It is nicely seen from Fig. 5.7 (c)

that for all three cases the minimum of v(�) is inside the cross-over region of the L-curve

and that the minimum of v(�) for origin `o' comes very close to the maximum curvature

point. We also observe from Fig. 5.7 (b) that all three v(�) posses a single minimum in the

region where �(�) � 0 as predicted by Theorem 5.2.5.

115



−20 −15 −10 −5 0 5 10
−10

0

10

20

30

40

50

60

70

80

log  z

lo
g
  
x

−40 −35 −30 −25 −20 −15 −10 −5 0 5
0

10

20

30

40

50

60

70

80

log
10

   α

 v
(α

) 

(a) (b)

−40 −35 −30 −25 −20 −15 −10 −5 0 5
0

1

2

3

4

5

6

7

log
10

   α

lo
g

  
(1

  
+

 |
 κ

 |
 )

(c)

Figure 5.7: (a) L-curve for problem shaw (b) three di�erent MDF for di�erent choices of the
origin (c) curvature of the L-curve in (a).
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5.4.2 Example 2

For our second experiment we generated a 100�100 systemHf = �g by using the baart(100)

command in Hansen's' Regularization Toolbox inMATLAB. The exact right hand side �g is

modi�ed by adding normally distributed noise scaled so that variance(n)

variance(�g)
= 10�10. We sampled

the L-curve for this problem by using 500 logarithmically equi-spaced point in the interval

(10�37
; 102) as seen in Fig. 5.8 (a) . The largest and smallest singular values of H were

estimated to be �max � 3:2, �min � 2:5� 10�18 and the origin associated with these points,

(log z(�2
min); logx(�

2
max)), is marked with a `o' in Fig. 5.8 (a) .

To verify the conclusion reached in Theorem 5.2.7 and to demonstrate the convergence

behavior of the iterative algorithm in (5.27), we �rst found the regularization parameter

�corner maximizing the curvature of the L-curve and then used a number of di�erent origins,

O(a; b) = (log z(�a); logx(�b)), such that �a < �corner and �b > �corner, to compute v(�). The

region covered by the origins selected this way is indicated with the dash-dotted rectangle

in Fig. 5.8 (a) . We ran our iterative algorithm to �nd the �� minimizing v(�) for each case.

We employed the �2-method of Aitken [1] to accelerate the convergence of our algorithm.

In the �2-method of Aitken, �(k) values obtained in the previous iterations are extrapolated

to provide a new sequence which converges faster than the original sequence

�
(k+1) = �(�(k))�

�
�(�(k))� �

(k)
�2

�(�(k))� 2�(k) + �(k�1)
: (5.28)

Note that �2-method of Aitken has the same computational complexity as the original �xed

point iteration.

To provide a comparison we also minimized the MDF function for each origin by using
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a quasi-Newton method called BFGS [21] with a line search to ensure global convergence.

For both our algorithm and BFGS the stopping condition was j log10 �(k+1)�log10 �
(k)j

j log10 �(k)j
< 10�3

and the starting value was �(0) = 10
1
2
(log10 �a+log10 �b). The results of this experiment were

illustrated in Fig. 5.8 (a)-(f). In Fig. 5.8 (b), we plotted the curvature and indicated each

point computed by our iterative scheme by placing a dot at the corresponding position on

the curvature plot. Thus, the part of the curvature plot which appears bold signi�es those

points computed by our algorithm. It is seen from Fig. 5.8 (b), regularization parameters

minimizing v(�) falls into the cross-over region of the L-curve independent of the chosen

origin. This veri�es our assertion in Theorem 5.2.7.

A sample run of the iterative algorithm, for the origin we proposed, is demonstrated in

Fig. 5.8 (c), by indicating each point computed by the iterative algorithm with a `+' on

the MDF. Circle, in this �gure indicates the �nal point converged. Figure 5.8 (d) shows a

normalized histogram of the number of iterations needed for each run of our algorithm (the

algorithm was run for 56,244 di�erent origins within the box and it always converged to the

minimum of v). As illustrated in the �gure, for most of the origins chosen the �xed point

algorithm converges in fewer than 10 iterations. Now BFGS can require multiple function

and gradient evaluations at each iteration because of the line search. But evaluation of

either the function or the gradient requires the solution of a linear system of the size of

the original problem, making each iteration of BFGS a minimum of 2 times more expensive

than an iteration of our �xed point algorithm. Therefore, while the number of function

evaluations required by our algorithm is the same as the number of iterations, the number of
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function and gradient evaluations required by BFGS with line search is typically more than

twice the number of iterations ( Figure 5.8 (f) depicts the number of function and derivative

evaluations for BFGS with line search) thereby making our algorithm more e�cient than

BFGS.
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Figure 5.8: (a) L-curve for baart problem. The rectangle covers the region spanned by all
possible choices of origin. `o' is the origin we advocated. (b) Curvature plot. (c) A typical

run of our iterative algorithm. (d) Histogram of number of linear systems solved (equal to
the number of iterations needed) needed for each run of our algorithm. (e) Histogram of

number of linear system solved (greater than or equal to the twice the number of iterations)

for each run of BFGS with line search. 120



5.4.3 Example 3

In our �nal example, we try to demonstrate the utility of the MDF in a multiple regularization

parameter setting. The test problem of interest was generated by using phillips(100)

function. The exact right hand side is again modi�ed by adding normally distributed random

noise scaled so that variance(n)

variance(�g)
= 1:7 � 10�3. We obtained the regularized solution by using

Tikhonov's regularization in the following way

f�(�1; �2) =
�
HTH+ �1I+ �2L

TL
��1

HTg (5.29)

where I is the identity matrix and L is a discrete approximation to �rst order di�erentiation.

The minimum and the maximum eigenvalues of H were �min � 2:2� 10�6 and �max � 5:8.

The origin chosen for the computation of the MDF was O = (log z[�2
min; �

2
min]; logx1[�

2
max; 0];

log x2[0; �
2
max)].

We computed the MDF (v) and the mean square error (MSE), 1
N
kf � f�(�1; �2)k22, by

sampling regularization parameters at 20 logarithmically equi-spaced points between 10�8

and 103. The resulting MDF and MSE surfaces are displayed in Fig. 5.9 (a)-(b). We

compared the performance of BFGS with line search, which is guaranteed to converge to a

minimum of the MDF, with our �xed point iteration. Ideally, we are only interested in � � 0.

We note that neither of these methods is guaranteed to have non-negative iterates, but since

the non-negativity constraint is not violated at the minimum of v and both converge to the

minimum for reasonable starting points, we chose to ignore the non-negativity constraint.

We started our iterative algorithm with three di�erent initial values of � = [�1; �2]
T . The

stopping criteria we used for BFGS was that the norm of the gradient be less than 10�6.
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The stopping criteria we used for our �xed point algorithm was

max
i=1;2

j�ki � �
k�1
i j=j�k�1

i j � 10�4
:

In fact, 10�4 may be a smaller tolerance than is necessary to get good �1; �2 for a practical

reconstruction; however, since BFGS tended to converge to solutions where this measure was

of order of 10�4, this tolerance was useful for comparison purposes.

For each run, the points computed by our algorithm at each iteration are indicated on

both the MDF and MSE surfaces. In Fig. 5.9 (a)-(b), `+' indicates the trajectory of the

algorithm for �(0) = [10�3
; 10�7], `o' is the trajectory of the algorithm for �(0) = [10�5

; 10�5]

and `x' indicates the trajectory of the algorithm for �(0) = [10�7
; 10�3]. In all three cases,

our �xed point algorithm converged to the same point in fewer than 9 iterations. Recall that

for every iteration, one system of the form (5.29) needs to be solved.

In contrast, BFGS took 28 or 29 iterations, depending on the starting point, to converge

using the stopping criteria based on the norm of the gradient. Further, it took about 49

function evaluations plus the same number of gradient evaluations to reach convergence for

each of the three cases. Each function evaluation is equivalent to solving one linear system

of the form (5.29). Additionally, each gradient evaluation requires solving 2 additional linear

systems of the form (5.29). Thus, about 49 � 3 linear systems need to be solved before

convergence is reached. Therefore the number of linear systems required for BFGS with line

search to reach convergence was roughly 15 times more than for our �xed point algorithm.

Fig. 5.9 (b) shows that the �1; �2 values found by our �xed point iterative algorithm

indeed result in a close-to-optimal MSE. Fig. 5.10 shows the MDF with the trajectory of
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BFGS for �(0) = [10�5
; 10�5].
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Figure 5.9: (a) Plot of v function. (b) Corresponding MSE surface. `+', `o' and `x' indicate

the trajectory of our iterative algorithm for di�erent starting points.
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Chapter 6

Conclusions and Future Work

In this thesis, we have explored the two basic problems related to the regularized solution

of discrete linear inverse problems: specifying an appropriate prior that captures important

features of the object we desire to recover, and the selection of unknown parameters govern-

ing the behavior of this prior model. Our approach to the problem combined the essential

elements of both the statistical and the functional theoretic interpretations of the regular-

ization method. Speci�cally, we interpreted the theory in terms of Bayesian estimation in

developing our prior models and made use of the techniques developed in the context of func-

tional analytic interpretation of the regularization method to deal with estimating multiple

parameters required by our inversion algorithms.

In particular, in the �rst part of this thesis, we introduced a wavelet domain multiscale

image restoration algorithm for use in linear image restoration problems. Following the

recent results in the area of image denoising and coding, we developed a statistical prior
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model for modeling the wavelet coe�cients of images. Our priors are able to capture spatial,

scale and orientational characteristics of images accurately. We developed a half-quadratic

algorithm to solve the nonlinear optimization problem resulting from using such priors.

In the second part of this thesis, we made use of a multi-variate generalization of the

conventional L-curve method, the L-hypersurface, for choosing multiple regularization pa-

rameters. To resolve the di�culties associated with the visualization and the interpretation

of the complicated behavior of the L-hypersurface, we extended the notion of the curvature

for plane curves to the notion of Gaussian curvature for hypersurfaces. Gaussian curvature

can be viewed as a geometrically meaningful transformation of the L-hypersurface which em-

phasizes important points on the hypersurface. From numerical examples, it was seen that

the points where Gaussian curvature reaches a local maxima appear to be closely tied to the

local minima of the mean square error surface. We chose the regularization parameters as

those maximizing the Gaussian curvature of the L-hypersurface. Monte Carlo simulations

showed that this selection method is more robust than GCV and is capable of producing

results comparable to the optimal method. We integrated the L-hypersurface method with

our multiscale IRR algorithm to develop a highly 
exible framework for adaptively deter-

mining the appropriate level of regularization as a function of the underlying structure in

the image; in particular, scale-to-scale or orientation based features. We veri�ed the per-

formance of this restoration scheme on a variety of images, comparing the results both to

smoothness constrained methods and the TV restorations. Experimental results showed

that our algorithm can produce restorations which are visually signi�cantly better than that
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of the traditional techniques and at least comparable, if not better, than that of the the

edge-preserving algorithms in practical situations.

In the last part of the thesis, we dealt with reducing the computational load of the L-

hypersurface method. Based on simple geometrical ideas, we de�ned a surrogate function,

called the minimum distance function (MDF), to replace the curvature function. The analy-

sis we carried out on a proposed L-curve model indicated that, in the single parameter case,

the regularization parameters minimizing the MDF approximately maximizes the curvature

as the corner of the L-curve becomes sharper. This latter point was con�rmed by numerical

examples performed on actual L-curves. We also developed an iterative �xed point algorithm

to approximate the regularization parameters minimizing the MDF. In the case of a single

regularization parameter, we were able to prove the �xed point converges to a minimum of

the MDF under certain assumptions. It was shown through numerical experiments that the

iterative algorithm quickly converges. Thus, the computational e�ort associated with com-

puting approximations to the regularization parameters that correspond to the generalized

corner of the L-hypersurface has been greatly reduced. The potential tradeo� is a slight

degradation in the MSE of the reconstruction if the origin chosen is not optimal.

Even though the work presented in this thesis provides interesting ideas about the solution

to the discrete linear inverse problems and the associated multiple regularization parameter

selection problem, the issues we dealt with suggest numerous avenues for possible extensions

and future work. In the area of multiscale IRR scheme described in this thesis, the following

is a list of interesting future directions that require further investigation:
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� Adaptive determination of the p and � parameters appearing in our multiscale algo-

rithm.

� Determining how to structure the regularizer (i.e. which model to use) automatically.

� Analyzing the performance of the proposed multiscale MAP estimator by computing

the Cramer-Rao bounds.

In the case of the L-hypersurface method as discussed in this thesis the following outlines

interesting future work:

� Discrete approximations to the curvature of the L-hypersurface. That is, computing

the Gaussian curvature from the knowledge of the regularized solution f�(�) alone.

� Analysis of the properties of multiple parameter Minimum Distance Function (MDF)

and the convergence analysis of the of the �xed point iterative algorithm for the de-

termination of multiple parameters (FIDMP) described in Chapter 5.

� Application of the same geometrical modeling framework for the derivation and conver-

gence analysis of a �xed point iterative algorithm for the minimization of the Reginska

function [86]. The Reginska function, y(�) = kg �Hf�(�)kkLf�(�)k, is suggested as

an alternative to the maximum curvature point for the determination of a single reg-

ularization parameter. A local minimum of the Reginska function approximates the

maximum curvature point.
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Appendix A

Formulas for the Implementation of

the L-hypersurface

In this appendix, we provide analytical formulas for the numerical computation of the Gaus-

sian curvature of an M -parameter L-hypersurface represented as the following:

S(�) = (�x1(�); : : : ; �xM(�); �z(�)) ; (A.1)

where � = [�1; : : : ; �M ]T , �xi = log xi; i = 1; : : : ;M and �z = log z and xi and z are

the constraint norms and the residual norm as given in (4.9) and (4.10), respectively. The

curvature �(�) at a point � on the L-hypersurface is given by

�(�) =
(�1)M
wM+1

jPj (A.2)

where w2 = 1+
PM

i=1(
@�z
@�xi

)2, Pi;j =
@2�z

@�xi@�xj
. From this formula it is apparent that the �rst and

second order partial derivatives of �z with respect to �xi; i = 1; : : : ;M are needed. Since z(�)
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is not explicitly de�ned in terms of the constraint norms, we obtain the necessary derivatives

by implicit di�erentiation. We �rst de�ne the following quantities:

J =

2
666666664

@�x1
@�1

: : :
@�xM
@�1

...
. . .

...

@�xM
@�1

: : :
@�x1
@�M

3
777777775
; (A.3)

D2
� =

2
666666664

@2

@�2
1

: : :
@

@�1@�M

...
. . .

...

@2

@�M@�1
: : :

@2

@2�M

3
777777775
; d� =

2
666666664

@

@�1

...

@
@�M

3
777777775
: (A.4)

Note that, d� and D2
� are operators which represent the �rst and second order di�erentia-

tion with respect to the variables � = [�1; : : : ; �M ]T . By the de�nitions above, the partial

di�erentials of �z with respect to �xi are given by:

@�z

@�xi
= eTi J

�1d�[�z] (A.5)

@
2�z

@�xi@�xj
= eTj J

�TD2
�[�z]J

�1ei � dT� [�z]J
�T

2
666666664

eTj J
�TD2

�[�x1]J
�1ei

...

eTj J
�TD2

�[�xM ]J�1ei

3
777777775
; (A.6)

where ei denotes the unit vector with all zero entries except for the ith one and 1 � i; j �M .

Remembering the formulas Pi;j = @2�z
@�xi@�xj

and w
2 = 1 +

PM
i=1(

@�z
@�xi

)2 we realize that the

curvature at the point � can be readily computed by just plugging in the values @�z
@�i

, @2�z
@�i@�j

,

@�xk
@�i

, @2�xk
@�i@�j

into the equations in (A.6). These partial derivatives are given by:

@�z

@�i
=

1

z

@z

@�i
;

@
2�z

@�i@�j
=

1

z

@
2
z

@�i@�j
� @�z

@�i

@�z

@�j
; (A.7)

@�xk

@�i
=

1

xk

@�xk

@�i
;

@
2�xk

@�i@�j
=

1

xk

@
2�xm

@�i@�j
� @�xk

@�i

@�xk

@�j
; i; j; k = 1; : : : ;M (A.8)
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and

@z

@�i
= 2(Hf�(�)� g)TH

df�(�)

d�i
; (A.9)

@xk

@�i
= f�(�)TRT

k diag l=1;:::;m

"
�
0
k([Rkf

�]l)

[Rkf�]l

#
Rk

df�(�)

d�i
(A.10)

Finally, we have

@
2
z

@�i@�j
= 2

df�(�)

d�i
HTH

df�(�)

d�j
+ 2(Hf�(�)� g)TH

d
2f�(�)

d�id�j
; (A.11)

@
2
xk

@�i@�j
=

df�(�)T

d�i
RT

k diag l=1;:::;m

"
�
00
l ([Rkf

�]l)

[Rkf�]l

#
Rk

df�(�)

d�j
(A.12)

+f�(�)TRT
k diag l=1;:::;m

"
�
0
l([Rkf

�]l)

[Rkf�]l

#
Rk

d
2f�(�)

d�id�j

for i; j; k = 1; : : : ;M . The only remaining quantities that we need to obtain �(�) are the

vectors df�(�)

d�i
and d2f�(�)

d�id�j
which are provided below:

df�(�)

d�i
= �1

2
~K�1
f�
RT

i diag k=1;:::;m [�0i([Rif
�]k)]Rif

�(�) (A.13)

d
2f�(�)

d�id�j
= �1

2
~K�1
f�

"
RT

i diag k=1;:::;m [�00i ([Rif
�]k)]Ri

df�(�)

d�i
(A.14)

+ RT
j diag k=1;:::;m

h
�
00
j ([Rjf

�]k)
i
Rj

df�(�)

d�j

+
MX
l=1

�lR
T
l diag k=1;:::;m [�000l ([Rlf

�]k)]Rl

 
df�(�)

d�i
.*
df�(�)

d�i

!#

where :� denotes element-wise multiplication as in MATLAB and ~K�1
f�

is given by

~K�1
f�

= HTH+
1

2

MX
i=1

�iR
T
i diag k=1;:::;m [�00i ([Rif

�]k)]Ri (A.15)

Note that each of the derivatives of the regularized solution, df�(�)

d�i
and d2f�(�)

d�id�j
, can be

obtained by solving a single linear system with a positive de�nite system matrix ~Kf�.
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To summarize, the computation of the Gaussian curvature at a point � starts with

computing df�(�)

d�i
and d2f�(�)

d�id�j
. These vectors are then used to calculate @z

@�i
, @2z

@�i@�j
, @xk

@�i
,

@2xk
@�i@�j

through (A.9-A.9) and (A.11-A.12). Then we obtain the partials of logged quantities

from (A.7-A.8). These partials are then used to compute @�z
@�xi

and @2�z
@�xi@�xj

by (A.5-A.6) and

then we �nish with plugging in these values to the Gaussian curvature formula in (A.2).
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