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Abstract. Spectroscopic Diffuse Optical Tomography (DOT) can directly image the

concentrations of physiologically significant chromophores in the body. This information

may be of importance in characterizing breast tumors and distinguishing them from benign

structures. This paper studies the accuracy with which lesions can be characterized given

a physiologically realistic situation in which the background architecture of the breast is

heterogeneous yet highly structured. Specifically, in simulation studies, we assume that

the breast is segmented into distinct glandular and adipose regions. Imaging with a high-

resolution imaging modality, such as Magnetic Resonance Imaging, in conjunction with a

segmentation by a clinical expert, allows the glandular/adipose boundary to be determined.

We then apply a two-step approach in which the background chromophore concentrations of

each region are estimated in a nonlinear fashion, and a more localized lesion is subsequently

estimated using a linear perturbational approach. In addition, we examine the consequences

which errors in the breast segmentation have on estimating both the background and

inhomogeneity chromophore concentrations.

§ To whom correspondence should be addressed (gboverma@ece.neu.edu)



1. Introduction

Near infrared (NIR) light is beginning to show great promise as a means of noninvasively

probing tissue. NIR light is able to penetrate several centimeters through the body, and

the differences between the spectra of Oxy-Hemoglobin (HbO) and Deoxy-Hemoglobin

(HbR) make spatially localized functional imaging of the body’s hemodynamics possible.

In addition, H2O and lipids have spectral peaks in this region, in principle making possible

the imaging of these chromophores as well (Cubbedu et al. 1999). In contrast to imaging

modalities such as X-rays and MRI, NIR imaging can be accomplished using non-ionizing

radiation and low-cost, potentially portable, electronic components. However, imaging the

body’s chromophore distributions, which we will refer to here as Diffuse Optical Tomography

(DOT), is made quite difficult by the highly turbid nature of NIR light propagation within

tissue, with photons generally experiencing many scattering events in their paths.

Near-infrared spectroscopy and imaging has been applied to a number of biomedical

applications (Boas, Brooks, Miller, Dimarzio, Kilmer, Gaudette & Zhang 2001), including

functional brain imaging (Chance et al. 1998, Franceschini et al. 2000), monitoring of strokes

(Vernieri et al. 1999), neonatal hymodynamics (Hebden et al. 2002), and the imaging of breast

tumors (Dehghani et al. 2003, Franceschini et al. 1997, Grosenick et al. 1999). In the domain

of breast imaging, DOT, by virtue of its ability to directly measure physiologically significant

parameters, may prove to be a valuable adjunct to X-ray mammography, a technology that is

currently prone to a high rate of false-positive tumor detections (Elmore et al. 1998) (Banks

et al. 2004) (Fletcher & Elmore 2003).

In DOT, tissue is illuminated by NIR light sequentially at a number of source locations,

generally coupled to the body by means of fiber-optic components. In frequency-domain

DOT, the light is RF modulated, producing Diffuse Photon Density Waves (DPDW’s)

within the body. The resulting attenuation and phase shifts are measured at a number of

detector positions, with Photomultiplier Tubes (PMT’s), Avalanche Photodiodes (APD’s),

or Charged-Coupled Devices (CCD’s) used for light detection. The significant problems of

sensor calibration are described elsewhere (Boas, Gaudette & Arridge 2001, Oh et al. 2002).

The measured amplitude and phase shifts (with respect to a theoretically known background)

are used to reconstruct the optical properties, specifically the absorption and reduced

scattering coefficient, µa(λ) and µ′

s(λ), at a given wavelength of light, λ. This reconstruction

is typically accomplished using either linearized methods, which make a number of

assumptions with respect to inhomogeneity size and/or contrast, or through the use of

nonlinear optimization approaches (i.e. gradient-descent or Newton-based), which can be

very computionally costly.

Although DOT holds a great deal of promise for breast-cancer screening, it presents

very difficult technical problems. The most significant limitations of DOT imaging are the

smoothing and nonlinear properties of the light propagation model, the consequences of
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which are the ill-posedness and nonlinearity of the inverse problem, respectively. This ill-

posedness can be ameliorated by means of regularization, but this introduces the further

difficulty of regularization operator and regularization parameter selection.

Early work in this field concentrated on reconstruction of the medium’s optical

properties for a given wavelength of light (Jiang et al. 1996, Jiang et al. 1997, Milstein

et al. 2002). Recently, researchers have begun to combine measurements taken at a number of

wavelengths, reconstructing an image at each wavelenth and using a least-squares fit in order

to estimate the distribution of chromophoes within the body (McBride et al. 1999, Pogue

et al. 2001).

Most recently, a method has been proposed to directly image the chromophore

concentrations within the body (Gaudette et al. 1999, Hillman 2002, Li et al. 2004, Li

et al. 2005) without first estimating the optical properties. Simulation results have shown a

reduction in cross-talk and improvement in resolution made possible by this “direct” form

of spectroscopic imaging as compared to the “indirect” approach previously reported in the

literature.

The issue of the heterogeneity of breast tissue, with respect to tissue optical properties,

has only recently begun to be examined. One study (Shah et al. 2004) directly examined

this question, making use of NIR frequency-domain spectroscopy at seven wavelengths for

31 patients. Significant, reproducible, spatial heterogeneity was observed for hemoglobin

concentration, H2O concentration, and lipid concentration, with the degree of heterogeneity

being somewhat age-dependent. As this research made use of spectroscopy rather than

diffuse optical imaging, the question of how the heterogeneity within the breast is spatially

distributed has not yet been clearly answered. A study (Cubbedu et al. 2000), making

use of time-domain data, also found significant differences between measurements of total

hemoglobin, oxygen saturation, and amounts of H2O and lipids made at different points

on the surface of the breast, as well as differences between reflectance and transmission

measurements. Another study (Shah et al. 2001), making use of frequency-domain data for

four wavelengths over a wide range of modulation frequencies, found variations in breast

hemoglobin concentration, µ′

s, and breast water content to be correlated with age. These

variations were postulated to be a result of the breast’s changing composition, and specifically

with the atrophy of the glandular tissue as a woman ages. A larger study (Cerussi et al. 2001),

using measurements at seven wavelengths, confirmed these results and found breast lipid

content to be correlated to age as well. Two studies (Srinivasan et al. 2003, Durduran

et al. 2002) investigating the bulk properties of the breast found a correlation between Body

Mass Index (BMI) and total hemoglobin concentration. It therefore seems reasonable to

postulate that there are significant optical differences between the glandular and adipose

tissues present in the female breast, although this assumption has not been definitively

validated by empirical investigations.

In this paper, we assume that the breast is composed of distinct glandular and adipose
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regions with piecewise constant optical properties, and that the boundary between them

can be determined by concurrent imaging with a higher spatial resolution imaging modality,

such as X-ray imaging, ultrasound, or magnetic resonance imaging (MRI). The existence of

these regions, whose size and properties vary as a woman ages and, most likely, at different

points in the menstrual cycle, is clear from MRI scans, as in Fig. 1. In our simulations, we

examine the effect on reconstruction quality of significant differences between glandular and

adipose tissues in blood volume and in lipid concentration.

A number of papers have addressed the use of prior information in the solution of the

inverse problem. Researchers (Pogue & Paulsen 1998) showed that hemodynamic imaging of

a rat cranium could be improved by including anatomical information from a high-resolution

MRI scan. Li (Li et al. 2003) examines the linear inverse problem with a spatial constraint,

incorporating the spatial prior by means of a second regularization parameter in the region

in which the anomaly is believed to reside. Simulation results showed that the suggested

multiple regularization parameter selection algorithm is robust to incorrect prior information.

Others (Hero et al. 1999) introduced an algorithm to make use of noisy information about

the shape of a region’s boundary in estimating the radionucleide uptake within the region.

A number of studies (Huang et al. 2003, Brooksby et al. 2003) have combined NIR imaging

with other modalities and have quantified the improvement in anomaly characterization,

using measurements at a single wavelength, achieved by means of incorporating prior spatial

information from coregistered MRI and ultrasound images. The use of prior spatial and

spectroscopic prior information has been reported (Intes et al. 2004), as well as a Bayesian

approach to the inclusion of a priori anatomical information (Guven et al. 2005).

Here, we study the importance of accurately modeling the background structure to

localizing a tumor and characterizing its spectroscopic properties. To this end, information

from other imaging modalities can be used to demarcate the boundary between the two

tissues, and the estimation of the spectral properties of each tissue type is reduced to a low-

dimensional nonlinear optimization problem. In a realistic imaging situation, our information

about the breast structure is likely to be imperfect, due to a number of factors: noise in the

underlying X-ray or MRI measurements and image artifacts in the reconstructions for these

imaging modalities, segmentation errors, and errors in the simultaneous co-registration of

several three-dimensional images.

In this work, we examine, both qualitatively and quantitatively, the sensitivity of the

tumor spectroscopic reconstruction with respect to errors in our prior knowledge of the breast

background structure. Four cases are explored: assuming that the breast is homogeneous,

assuming a dilated glandular region, assuming an eroded glandular region, and knowledge

of the true background structure. In the dilated and eroded cases, the estimated glandular

segmentations are greater and smaller in volume, respectively, than the true glandular region,

as shown in Fig. 2. Given our segmentation, we first estimate the overall chromophore

concentrations of the two regions directly, using a Gauss-Newton optimization approach,

4



and then estimate the inhomogeneity using a linear, perturbational algorithm. Thus, errors

in estimation of the tumor’s spectroscopic properties will occur in two places: error in

computing the mismatch between the expected and actually measured data, and error in

the sensitivity matrices used in the linear perturbational model.

Our results qualitatively show that even incorrect information about the background

structure is useful in quantifying tumor chromophore concentrations and in reducing imaging

artifacts, particularly for perturbations in oxyhemoglobin and deoxy-homoglobin (HbR and

HbO), which are assumed to be much greater than the differences in blood volume and

oxygen saturation between the two tissue types. As we have assumed that glandular and

adipose tissues differ more sharply in their lipid content, reconstruction of perturbations of

the same order is more problematic. We also quantify the reconstruction error as a function

of regularization parameter, both within and outside the tumor, for all four cases, assuming

perturbations in individual chromophores within the tumor. We find that large errors in

the estimation of one chromophore’s perturbation tend to be relatively isolated within that

chromophore’s reconstruction.

2. Methods

2.1. Forward Modeling

In the simulations that follow, we make use of the diffusion approximation (Arridge 1999,

Boas 1996): to model the steady-state intensity and phase distribution due to a modulated

source, making use of a zero partial flux boundary condition (Aronson 1995, Haskell

et al. 1994) to model the air-tissue interface:
{

−∇ · D(r)∇φ(r, ω) + (µa(r) + jω
v

)φ(r, ω) = S0(r, ω) r ∈ Ω
1
2
Rφ φ(r) − D(r)Rj n̂ · ∇φ(r) = 0 r ∈ Ω̄\Ω

(1)

where the diffusion coefficient, D(r) is 1
3µ′

s
(r)

, µa(r) is the absorption coefficient, and µ′

s(r)

is the reduced scattering coefficient. The photon fluence is φ(r, ω), a function of position, r,

and modulation frequency, ω. The isotropic source intensity is S0(r, ω), and v is the speed of

light in tissue. The dependence of all the parameters on the wavelength, λ is implicit. The

spatial extent of the diffusive region is Ω. The Fresnel boundary reflection coefficients for

the photon density and current are Rφ and Rj , respectively, and n̂ is the direction normal

to the boundary.

In a typical DOT experiment, tissue is illuminated at M source positions, and, for each

source, measurements are made at N detector positions. This procedure is repeated for a

number of wavelengths. It is also possible to make use of a number of modulation frequencies,

but we will assume that all experiments use a modulation frequency of 70 MHz. We further

make the assumption that the absorption at each point in space is a linear combination of
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C chromophores whose spectra have been experimentally determined (Li et al. 2005):

µa(r, λ) =

C
∑

j=1

εj(λ)cj(r) (2)

where εj(λ) is the extinction coefficient of chromophore j for light of wavelength λ, and

cj(r) is the chromophore concentration. Specifically, we assume that the absorption at each

wavelength is due to the following four chromophores: oxy and deoxy-hemoglobin, H2O, and

lipids. Motivated by Mie scattering theory, the reduced scattering coefficient is modeled as

follows:

µ′

s(r, λ) = a(r)λ−b(r) (3)

where a(r) represents the scattering amplitude and b(r) is related to average particle size.

In our simulations, the following wavelengths of light have been used: 685, 750, 808, 830,

906, and 980 nm. The first four wavelengths are intended to quantify concentrations of HbR

and HbO, and the last two are situated near peaks in the spectra for H2O and lipids, and

are intended to discern their concentrations. The discretized absorptions and concentrations

have the following relationship:

µa = Ec (4)

where and µa, c are stacked vectors of absorption and concentration values for

each voxel: µa =
[

µa(685) µa(750) µa(808) µa(830) µa(906) µa(980)
]T

, c =
[

cHbO cHbR cH2O cL

]T

. The matrix E transforms an image in terms of chromophore

concentrations into an image in terms of absorptions at each wavelength.

2.2. Inverse Problem Solution

As the inverse problem for DOT is generally severely underdetermined and ill-posed, some

form of regularization, or prior information, is necessary in order to stabilize the inversion

procedure. Thus, the inverse problem is often reduced to minimization of the following

functional (Arridge 1999, Milstein et al. 2002, Li et al. 2003):

L = arg min
c,a

||y − h(c, a)||2
Σ−1

n

+ r(||c||22 + ||a||22) (5)

where Σn is the measurement noise covariance matrix (assumed to be diago-

nal in this paper), y =
[

y685 y750 y808 y830 y906 y980
]T

. and h =
[

h685 h750 h808 h830 h906 h980
]T

, hλ being the hypothesized measurements at wave-

length λ, which can be generated by means of the finite-difference method. The regularization

parameter is denoted by r. We note that, in this work, we are making use of an identity

regularization functional.
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The adjoint method (Arridge 1999, Arridge 1995) can be used to compute, with fairly

low computional cost, a first-order linear perturbational approximation for the change in the

model solution, h, with respect to changes in each voxel’s chromophore concentrations and

scattering amplitude relative to a known background:

h ≈ h0(c0, a0) + J(c0, a0)p (6)

where

J =
[

block diag(J685
µa

J750
µa

J808
µa

J830
µa

J906
µa

J980
µa

)E | Ja

]

(7)

and

p =

[

cp

ap

]

(8)

with cp =
[

cp,HbO cp,HbR cp,H2O cp,L

]

being the vector of concentration perturbations,

and ap being the vector of perturbations in scattering amplitude. The vector h0(c0, a0) is the

incident field, which is dependent on an assumed background chromophore distrubution c0

and the background scattering amplitude distribution a0. The Jacobian matrix at wavelength

λ with respect to absorption perturbations is Jλ
µa

(c0, a0), where the dependence on c0 and a0

will be assumed to be implicit, and the Jacobian matrix with respect to scattering amplitude

is:

Ja =
[

(J685
a )T (J750

a )T (J808
a )T (J830

a )T (J906
a )T (J980

a )T
]T

(9)

In order to simplify the exposition of our simulations, we assume in our simulations that all

tissues have the same scattering amplitude. The least-squares solution to the linear inverse

problem is then:

p̂ = JTΣ
−

1

2

n (Σ
−

1

2

n JJTΣ
−

1

2

n + rI)−1Σ
−

1

2

n (y − h0(c0, a0)) (10)

In Eq. 10, we note than an error in our knowledge of the background concentrations

can cause a systematic reconstruction error, by introducing an error in our estimate of

the incident field, h0(c0, a0), and by causing inaccuracies in the Jacobian, J. It is these

systematic errors that are analyzed in the simulation results that follow.

The direct spectral reconstruction approach to the inverse problem does impose an

additional computational cost compared to more traditional processing schemes. Rather than

solving for the absorption and scattering perturbations at each wavelength independently,

we solve for all chromophore concentrations simultaneously, making use of measurements

at all wavelengths. In the case of an identity regularization function and our particular

configuration of sources and detectors, the solution is still computationally feasible with non-

specialized computing hardware, and, if a more complex regularization function is employed,

iterative methods, such as the LSQR algorithm (Paige & Saunders 1982), may be employed.
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In this paper, we make use of the Generalized Cross-Validation (Golub et al. 1979, Golub

& von Matt 1997) approach to regularization parameter selection, which is based on the

Bayesian criterion of minimizing expected reconstruction error.

2.3. Estimation of background chromophore concentrations

Before the linear inverse problem can be solved, we must first estimate the inci-

dent field, h0(c0, a0), in Eq. 10. Here, we assume that the breast is piece-

wise constant, with distinct glandular and adipose regions, and we must esti-

mate the chromophore concentrations in these regions. We solve this optimization

problem using the Gauss-Newton method, solving for the parameter vector g =
[

g1,HbR g1,HbO g1,H2O g1,L g1,a g2,HbR g2,HbO g2,H2O g2,L g2,a

]T

, where the adi-

pose and glandular regions are labeled region 1 and region 2, respectively.

Now, we define the following indicator vectors, assuming a lexicographic ordering of the

breast voxels in the forward problem:

(ij)k =

{

1, voxel k is in region j

0, voxel k is not in region j
(11)

The Jacobian with respect to changes in background chromophore concentrations is

computed as follows:

Jg = J















i1 0 0 0 0 i2 0 0 0 0

0 i1 0 0 0 0 i2 0 0 0

0 0 i1 0 0 0 0 i2 0 0

0 0 0 i1 0 0 0 0 i2 0

0 0 0 0 i1 0 0 0 0 i2















(12)

where J is the Jacobian with respect to voxel-wise changes in concentration and scattering

amplitude.

Estimation of the parameter vector, g, then proceeds by means of the Gauss-Newton

algorithm, with a cubic line search.

2.4. Reconstruction Error Analysis

In this section, we analyze the image reconstruction error in the case of Gaussian noise,

decomposing it into deterministic and stochastic components. Firstly, we assume that

y = ym + n, where ym is known and n is a zero-mean vector of Gaussian noise, with

covariance matrix Σn. For the sake of clarity, we assume in the analysis that follows that

h0, n, J, and y have been pre-multiplied by Σ
1/2
n .

The expected mean-squared reconstruction error for a given regularization parameter

can be written as follows:

C = E||M(c0 + p) − M(ĉ0 + JT (JJT + rI)−1(ym + n − h0))||
2
2 (13)
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where c0 is the true background, p is the true perturbation, ĉ0 is the estimated background,

and M is a selection matrix, focusing on a particular region of interest.

Assuming that the noise is statistically uncorrelated with c0, p, ĉ0, ym, and y0, we can

show that:

C = Cbias + Cvariance (14)

where:

Cbias = ||M(c0 + p) − M(ĉ0 + JT (JJT + rI)−1(ym − h0))||
2
2 (15)

Cvariance = tr((JJT + rI)−1JMT MJT (JJT + rI)−1) (16)

Thus, mean-squared error is comprised of two components: Cbias, the bias, represents the

deterministic component of the error, and Cvariance, the variance, represents the stochastic

component of the error, which originates from the amplification of the measurement noise.

In the results that follow, we will be primarily interested in the bias that results from making

incorrect assumptions about the breast background structure.

3. Results and Discussion

An MRI image of a healthy breast, shown in Fig. 1, was manually segmented into air,

glandular, and adipose regions and interpolated onto a 2.5 mm uniform grid as shown in

Fig. 2, part (a). The simulation results presented here were generated by a finite-difference

forward model with 2 mm uniform grid spacing. A tumor of diameter 2 cm was simulated,

centered at (x = 13 cm, y = 10 cm, z = 2.5 cm). The breast thickness is 7.5 cm, and we made

use of simulated 70 MHz frequency-domain measurements, using 40 sources and 9 detectors,

with a geometry as shown in Fig. 3. We assumed the following chromophore concentrations

for the adipose and glandular regions, respectively: (20 µM HbO, 5 µM HbR, 30% H2O

40% Lipid), and (22 µM HbO, 5.5 µM HbR, 40% H2O 10% Lipid). The true chromophore

distributions of breast tissue are yet to be determined experimentally, but we have chosen

values to be consistent with published results (Shah et al. 2004). The following chromophore

concentrations were simulated for the tumor, which has a greater blood volume and a lower

oxygenation than the surrounding tissue (Fishkin et al. 1997): (40 µM HbO, 15 µM HbR,

20% H2O 10% Lipid). The simulated tumor has a 50% perturbation in H2O content, and

has the same lipid concentration as the surrounding glandular tissue. Amplitude-dependent

Gaussian noise with a variance of 1% was added to the measurements, and an identically

distributed Gaussian phase uncertainty with a variance of 1◦ was assumed (Zhang et al. 2001).

We estimated background chromophore concentrations and reconstructed perturbations

for four cases: true knowledge of the breast background structure, an assumed homogeneous

background structure, a dilated glandular region, and an eroded glandular region. In the

latter two cases, we increased and decreased the volume of the glandular part of the breast

using erosion and dilation operators, as shown in Fig. 2, parts (b) and (c). The true volume
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of the glandular tissue is 355 cm3, and that of the adipose tissue is 817 cm3. We dilated the

glandular tissue to a volume of 544 cm3, and eroded it to a volume of 239 cm3.

The results of the background concentration estimation for the four cases is shown in

Table 1. These results are graphically illustrated in Fig. 4. We note the fairly large variation

in the estimates, particularly in the concentrations of H2O and Lipids, for which there is a

greater difference between the two regions. In part (b) of Fig. 4, the true tumor chromophore

concentrations are also shown for the purpose of comparison.

In each of the above cases, we computed the Jacobian using these estimated background

properties, and solved the linear inverse problem to reconstruct an image of the perturbation,

making use of Eq. 10. The regularization parameter was chosen using the GCV criterion.

The true solution, for the z = 2.5 cm slice is shown in Fig. 5, and the reconstructions, for

the same slice, can be seen in Fig. 6. We note that an excellent spectroscopic reconstruction

of a tumor in an inhomogeneous background can be obtained, provided that the background

structure is known with a high degree of accuracy, as shown in part (a). On the other hand,

the reconstruction assuming a homogeneous background is plagued by large image artifacts,

shown in part (b). In comparing the dilated and eroded glandular cases, shown in (b) and

(c), with the homogeneous case, we note that even imperfect prior information is useful in

reducing image artifacts. In addition, the reconstructions for HbR and HbO in (c) and (d)

are superior to the reconstruction for H2O concentration, which is to be expected given the

larger difference between the adipose and glandular tissue in their H2O content. We believe

that the superiority of reconstruction in the case of the assumed eroded glandular structure

as compared to the case of the assumed dilated structure is not a general result, but rather

is an effect introduced by particular cases studied in our simulations.

In order to further quantify the effect of imperfect background information on

spectroscopic image reconstructions, we have computed the image reconstruction bias for

each of the four cases, using Eq. 15, for perturbations in individual chromophores only.

This bias is essentially computed by generating a linear reconstruction for each value of

the regularization parameter, without any noise added to the measurements (zero-mean

random noise manifests itself only in the variance). By using a perturbation in a single

chromophore only, we can directly examine the reduction in bias as a function of the

regularization parameter and also examine cross-talk, which is the leakage of a perturbation

in one chromophore into the reconstruction for another chromophore.

Fig. 7 shows the per-voxel reconstruction bias for a 10 µM perturbation in HbO only as

a function of the regularization parameter. The square root of the mean bias for voxels within

and outside the tumor is shown using solid and dashed lines, respectively. Each quadrant

shows the bias for all four chromophore reconstructions, for a given background structure

assumption. In the case of perfect background structural information, shown in part (a),

for the HbO reconstruction and voxels within the tumor we see the following behavior: for

a large value of the regularization parameter, the bias is, as expected, 10 µM, meaning that
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no perturbation is reconstructed where one is expected. The bias decreases to a minimum

value as we reduce the level of regularization. After this point, discretization error in the

iterative, numerical solution of the forward model tends to be amplified, resulting in image

artifacts. Strictly speaking, this numerical quantization noise is deterministic, but different

forward model implementations will produce quantitatively very different quantization noise

realizations. Thus, our bias calculations for small values of the regularization parameter

are particular to our finite-difference forward model implementation and grid resolution,

although these results are likely to be qualitatively accurate for any numerically computed

forward model. An additional reason for the bias tending to increase exponentially, even

in the case of perfect background structural information, as we decrease the regularization

parameter beyond a certain point, is that the actual measurements used in the inversion

make use of a fully nonlinear model, while our inversion procedure assumes that a first-order

linearization is accurate. Thus, this aspect of the model mismatch is amplified. The bias

in the HbO reconstruction does not reach a minimum of zero because the regularization

used here is not sufficient to overcome the inherent blurring in the forward model. Other

regularization schemes may allow for a further reduction in bias.

For the HbO reconstruction, the value of the regularization parameter at which we see

a minimum in the bias varies approximately two orders of magnitude, depending on the

background structure assumption that is being made. Clearly the lowest achievable bias is

attained when the background structure is known perfectly, shown in quadrant (a). We also

see in this quadrant that even with perfect information, at the point that minizes bias in

HbO there is still a small degree of spectroscopic cross-talk between the HbO reconstruction

and the reconstructions for the other three chromophores. In quadrant (b), where we assume

a homogeneous background, the minimum achievable bias is somewhat higher than in the

case of perfect background information, as expected, and, at the value of the regularization

parameter where the bias is minimized in HbO, we are beginning to see considerable bias

in the H2O reconstruction. In parts (c) and (d), in which we assume dilated and eroded

glandular structures, respectively, it is somewhat surprising that the minimal achievable

bias in HbO is not much different than in the case of perfect information, but, at this

minimal point, we are beginning to see considerable bias in the reconstructions for the other

three chromophores. In all four cases, the GCV algorithm returned a choice of regularization

parameter between 0.1 and 1.0.

The square root of the mean bias for voxels outside of the tumor is shown using

dashed lines, essentially quantifying the degree to which image artifacts are reconstructed

by our inversion approach. Given our noise model and background assumptions, the H2O

reconstruction shows the greatest sensitivity to background modeling errors, as the value of

the regularization parameter at which the image artifacts tend to increase exponentially is

consistently higher than for the remaining chromophores. It is also interesting to observe that

the value of the regularization parameter at which the bias seems to increase exponentially
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differs for the bias within the tumor as compared to the bias outside the tumor. This

indicates that when there is background modeling error, we have a trade-off between tumor

reconstruction accuracy and background artifact suppression. We note the differences in

regularization parameters at which point the artifacts tend to increase exponentially for the

four background structure assumptions, which clearly show the greater presence of image

artifacts as our knowledge of the background medium worsens. Parts (b), (c), and (d) show

that a large bias in the estimate of background lipid concentration can be mitigated, to a

certain extent, by the image reconstruction. It may be that more sophisticated approaches

to the inverse problem solution can reduce the image artifact bias somewhat. For example,

penalizing the image gradient rather than the image norm may tend to produce solutions

which are more concentrated in a single region.

In order to analyze the minimal bias that is possible, both within and outside the tumor,

we plot the reconstruction bias within the tumor vs. the bias for voxels outside the tumor in

Fig. 8, over a wide range of regularization parameters. The optimal inversion scheme would

intersect the origin, minimizing both the bias within the tumor and the image artifacts. For

the reasons discussed above, even in the case of perfect background structural knowledge,

we cannot achieve this goal, but our analysis shows the extent to which the best achievable

reconstruction result varies as our knowledge of the background structure worsens. We

note that assuming dilated or eroded background structures increases the within-tumor bias

only modestly, given an optimal means for choosing the regularization parameter, but these

assumptions increase the bias for voxels outside the tumor more substantially. As expected,

the worst achievable result is attained when we assume a homogeneous background structure,

in which case the minimum achievable bias within the tumor is significantly higher than for

the other three cases, and the level of image artifacts is somewhat worse as well.

We have repeated the analysis above for perturbations in HbR, H2O, and lipids,

obtaining results that are qualitatively very similar to the case of an HbO perturbation.

We have also computed the variance of the image reconstruction for the four cases of spatial

prior information mentioned above, as we vary the regularization parameter. As expected

from Eq. 16, in which the background structure estimate does not appear, the variance does

not noticeably depend on the prior information used in the reconstruction.

4. Conclusion and Future Work

We have described a two-step algorithm for combining a high-resolution segmentation of

the breast into distinct tissue types with a spectroscopic DOT reconstruction. In our

approach, the background chromophore concentrations in the glandular and adipose regions

are estimated using nonlinear Gauss-Newton iterations and the perturbation is estimated

with a linearized spectroscopic reconstruction. If the segmentation is known with precision,

we are able to both localize and characterize the tumor with very high accuracy.
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Given that the true structure of the breast, as evidenced by MRI scans, is likely

to be heterogeneous, we have explored the importance of this heterogeneity in linearized

reconstructions. Specifically, we have reconstructed a perturbation when the breast

background is assumed to be heterogeneous, though highly structured. We have examined

the case where the breast is assumed to be homogeneous, and cases in which the assumed

glandular tissue volume is “dilated” or “eroded” with respect to the true structure. In

each of these cases, we have first estimated the background chromophore concentrations and

then computed a perturbation assuming this estimate of the background optical properties.

Our results clearly show that even incorrect knowledge of the background can be useful

in localizing anomalies, but that the mismatch between our assumptions and reality can

introduce severe bias in image reconstructions.

It is interesting to note that incorrect spatial prior structural information seems to

have an asymmetric effect on the image reconstruction. This is evidenced by the fact that

the minimum achievable bias within the simulated tumor increases more slowly than the

minimum achievable bias outside of the tumor (i.e. the level of image artifacts) as the

quality of our prior structural information worsens. It may be possible to use this tendency

in image reconstruction algorithms, utilizing approaches specifically designed to designed to

focus the solution of the inverse problem within a region of limited spatial support. Further

research will also examine whether the prior information about the background structure

can be applied in a probabilistic manner.

The analysis that we have conducted here gives us a framework for understanding

the effect of our assumptions on reconstruction bias. As we improve our algorithms, the

statistical approach shown here can quantify the reconstruction accuracy gains that are

achievable, potentially justifying the additional computational cost. It is quite clear that, if

there is significant optical heterogeneity within the breast, some sort of structural background

prior information may be necessary if we are able to obtain quantatively accurate images

using linearized methods. Future work will address whether this situation is improved if

we make use of fully nonlinear optimization methods, and will also address the question

of regularization parameter selection in the case of model mismatch. We also plan to

examine how the results reported here generalize to the case where not only the constituent

components of the breast are heterogeneous, but its scattering coefficient is spatially variant

as well.
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Table 1. Estimates of background chromophore concentrations

Adipose region

HbO (µM) HbR (µM) Water (%) Lipid (%)

True concentrations 20 5 30 40

Homogeneous assumed 21.09 5.29 36.21 22.63

Dilated glandular assumed 19.18 4.81 27.07 49.96

Eroded glandular assumed 20.20 5.05 31.22 36.30

Glandular region

HbO (µM) HbR (µM) Water (%) Lipid (%)

True concentrations 22 5.5 40 10

Homogeneous assumed 21.09 5.29 36.21 22.63

Dilated glandular assumed 21.72 5.43 38.14 15.23

Eroded glandular assumed 22.47 5.64 42.13 4.02
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Fig. 1. Slices of a fat-suppressed MRI scan at several depths. (a) z = 1.2 cm (b) z = 2.4 cm

(c) z = 4.0 cm

Fig. 2. Breast geometries used in the simulation. (a) Geometry derived from manually-

segmented MRI Image (b) Geometry with a dilated glandular region (c) Geometry with an

eroded glandular region

Fig. 3 Source and detector configurations used in the simulations. (a) Source configuration

(b) Detector configuration

Fig. 4 Estimated background chromophore concentrations (a) Adipose tissue (b) Glandular

tissue, with the true chromophore concentrations of the tumor shown for the purpose of

comparison.

Fig. 5 True solution for absorption concentrations

Fig. 6 Linear reconstructions of chromophore concentrations given a number of assumptions

about the breast background. (a) Reconstruction assuming accurate knowledge of

background structure. (b) Reconstruction assuming a homogeneous background. (c)

Reconstruction assuming a dilated glandular region. (d) Reconstruction assuming an eroded

glandular region.

Fig. 7 Reconstruction bias for an HbO-only perturbation as a function of the regularization

parameter. (a) Reconstructions bias when the background is known exactly. (b) Bias when

a homogeneous background is assumed. (c) Bias assuming a dilated glandular region. (d)

Bias assuming an eroded glandular region. Note that the bias is given in the units that

are natural for each chromophore (i.e. µM for HbO and HbR and percentage for H2O and

Lipids). The horizontal axis shows the logarithm, base 10, of the regularization parameter.

Fig. 8 Within-Tumor bias vs. outside-tumor bias, for a perturbation in HbO only, for each

of the background structure assumptions, over a wide range of regularization parameters.

18



(a) (b) (c)

Figure 1. Slices of a fat-suppressed MRI scan at several depths. (a) z = 1.2 cm (b) z =

2.4 cm (c) z = 4.0 cm
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(a) True segmentation (b) Dilated glandular (c) Eroded glandular

Figure 2. Breast geometries used in the simulation. (a) Geometry derived from manually-

segmented MRI Image (b) Geometry with a dilated glandular region (c) Geometry with an

eroded glandular region
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(a) Source geometry (b) Detector geometry

Figure 3. Source and detector configurations used in the simulations. (a) Source

configuration (b) Detector configuration
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(a) Adipose tissue (b) Glandular tissue

Figure 4. Estimated background chromophore concentrations (a) Adipose tissue (b)

Glandular tissue, with the true chromophore concentrations of the tumor shown for the

purpose of comparison.
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Figure 5. True solution for absorption concentrations
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(a) Known background (b) Homogeneous background

(c) Dilated glandular (d) Eroded glandular

Figure 6. Linear reconstructions of chromophore concentrations given a number of

assumptions about the breast background. (a) Reconstruction assuming accurate knowledge

of background structure. (b) Reconstruction assuming a homogeneous background. (c)

Reconstruction assuming a dilated glandular region. (d) Reconstruction assuming an eroded

glandular region.
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Figure 7. Reconstruction bias for an HbO-only perturbation as a function of the

regularization parameter. (a) Reconstructions bias when the background is known exactly.

(b) Bias when a homogeneous background is assumed. (c) Bias assuming a dilated glandular

region. (d) Bias assuming an eroded glandular region. Note that the bias is given in the

units that are natural for each chromophore (i.e. µM for HbO and HbR and percentage for

H2O and Lipids). The horizontal axis shows the logarithm, base 10, of the regularization

parameter.
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Figure 8. Within-Tumor bias vs. outside-tumor bias, for a perturbation in HbO only,

for each of the background structure assumptions, over a wide range of regularization

parameters.
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