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Abstract 
 
 

The branches extending from the cell body of neurons, the dendrites, receive more 

than 90% of the synaptic contacts made into that neuron. In many neurons of the 

mammalian brain, excitatory synapses involve specialized structures called dendritic 

spines that protrude from the dendrites and contain the molecules and organelles 

involved in the postsynaptic processing of the synaptic information. Neuron morphology, 

as captured in part by the structure of these spines, is illustrative of neuronal function 

and can be instrumental in better understanding the dysfunction seen in 

neurodegenerative conditions such as Alzheimer’s and Parkinson’s disease.  Hence 

researchers have shown great interest in quantitatively studying dendritic spine 

morphology and density both statically and as a function of time. Such studies are 

typically carried out through the analysis of data collected from a range of microscopy 

modalities including confocal laser scanning microscopy (CLSM) and two-photon laser 

scanning microscopy (2PLSM). 

 

Due to the size and complexity of these data sets, manually analyzing the 

morphological changes of dendritic spines is very time consuming. In the thesis, we 

describe robust, automated approaches for dendritic spine detection and measurement 

that are especially suitable to the batch processing of large neuronal image data sets. 

Our work is roughly divided into three related components. First, we focus on an image 

processing pipeline we have developed for the neuroinformatics processing system 

released from our lab called Neuron Image Quantitator (NeuronIQ), an integrated 
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system for automatic dendrite spine detection, quantification, and analysis. Second, to 

further improve detection results and solve a collection of related "hard problems" (such 

as disconnected spine segmentation) faced by existing automatic or semi-automatic 

methods, a post-processing segmentation algorithm based on a Maximum a Posteriori - 

orientated Markov random field (MAP-OMRF) is discussed in detail. Finally, we will 

present an efficient particle filter-based algorithm that is capable of tracking 

morphological changes in the spines over time.  Possible future topics will be discussed 

at the end of the thesis. 
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Chapter 1   Introduction 

1.1 Biological problems 

 

Neurons are typically composed of a soma, a dendritic tree and an axon [1]. The 

soma is the central part of the neuron, which contains the nucleus of the cell. The 

dendrites are cellular extensions of a neuron with many branches, where more than 

90% of input to the neuron occurs. Axons are the primary transmission lines of the 

neurons. Typical axons are usually about 1μm across, but may be up to several feet in 

length. Electrical stimulation is transmitted through an axon of upstream neurons onto 

dendrites via synapses (Figure 1.1).  

 

Figure 1.1: A typical neuron cell and how signals propagate down an axon to the cell body and dendrites 

of the next cell.1 Soma is the large blob in the center of neuron which connects all dendrites and axons. 

                                                 
1 The original image is listed at http://en.wikipedia.org/wiki/Neuron 



 9

The dendritic spine is a small (sub-micrometer) membranous extrusion of the 

dendrites that contains the molecules and organelles involved in the postsynaptic 

processing of the synaptic information. Typically dendritic spines have a bulbous head 

which is connected to the parent dendrite through a thin spine neck. Thus, physically 

the spines are connected to the dendrite although some spines seem ‘detached’ from 

the dendrite because of the small size of a spine and the low resolution in the z- 

direction in the 3D neuron image stacks, which can be observed in Figure (1.2). 

Dendritic spines possess a variety of shapes and can be categorized as different types, 

such as mushroom spines, thin spines and stubby spines, etc. However, the 

classification of spines is not strict. Electron microscopy studies have shown that there 

is a continuum of shapes between these categories. Time-lapse studies in the brains of 

living animals have shown that spines come and go, with the larger mushroom spines 

being the most stable over time.  

 

 

Fig. 1.2: Dendritic spines in two photon laser scanning microscopy2 

                                                 
2 The original image is listed at http://en.wikipedia.org/wiki/Dendritic_spine 
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There is some evidence that differently shaped spines reflect different 

developmental stages of a synapse. It has been shown that the volume of spines can 

change depending on the types of stimuli that are presented to a synapse [11]. The 

remarkable capacity of dendritic spines to change shape rapidly, viz. the spine plasticity, 

is implicated in motivation, learning, and memory [12]-[22]. In particular, long-term 

memory is believed in part related to the growth of new dendritic spines or the 

enlargement of pre-existing spines, which reinforces a particular neural pathway. By 

strengthening the connection between two neurons, the pre-synaptic cell can more 

efficiently activate the post-synaptic cell.  

 

The abnormalities in dendritic spine morphologies are believed to be associated 

with a variety of brain disorders. In particularly, neuron morphology is illustrative of 

neuronal function and can be instructive in the dysfunction seen in neurodegenerative 

conditions such as Alzheimer’s disease and Parkinson’s disease [23]-[33]. Cognitive 

disorders such as autism, mental retardation and fragile X Syndrome [34]-[39], may also 

be resultant from abnormalities in dendritic spines, such as the number of spines and 

their maturity status. For example, immature spines have impaired synaptic signaling 

compared with matured spines. Fragile X Syndrome is characterized by an 

overabundance of immature spines in cortical dendrites. 

 

Although biologists have shown great interest in quantitatively studying dendritic 

spine morphology, the analysis of neuronal microscope images has remained largely 
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manual. Even with the computer assistance, such analyses are still extremely time-

consuming, and subject to investigator bias, i.e., results cannot be easily confirmed by 

other investigators. Thus, automation is in great need for quantitatively analyzing 

dendritic spines. Automation is especially important for the analysis of the innumerable 

time-lapse images acquired to study the morphological changes of individual spines and 

the dynamics that underlie spine plasticity. The need becomes more and more urgent 

after the scope and practicality of time-lapse microcopies have been enormously 

extended with the development of high-sensitivity charge-coupled device (CCD) video 

cameras and automated image capture and analysis facilities.  

 

1.2 Background 

 

1.2.1  Neuron imaging techniques 

 

        Dendritic spines are very small membranous protrusion from a neuron's dendrite 

with spine head volumes ranging 0.01 3m  to 0.8 3m . Observing these tiny structures 

in vitro3 or in vivo4  was made possible only after modern fluorescence microscopes, 

such as confocal laser scanning microscopy (CLSM) and two-photon laser scanning 

microscopy (2PLSM) were introduced. These commonly used neuron imaging 

techniques will be briefly discussed in this section. We start by introducing the 

fluorescence technique which is closely related to these modern microscopes.  

                                                 
3 A technique of performing given procedures in a controlled environment outside of a living organism 
4 A technique of performing given procedures  in or on the living tissue of a whole living organism, which is 
opposed to doing experiments on a partial or dead one or in a controlled environment 
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1.2.1.1 Fluorescence microscope 

Fluorescence is a luminescence that is mostly found as an optical phenomenon in 

cold bodies.  Fluorescence occurs when a molecule relaxes to its ground state after the 

molecular absorption of a photon, which triggers the emission of another photon with a 

longer wavelength [2]. Usually the absorbed photon is in the ultraviolet range, and the 

emitted light is in the visible range. Fluorescence microscope [3] is a light microscope 

used to study properties of organic or inorganic substances using the phenomena of 

fluorescence.  

 

Fluorescence microscopy of tissues, cells or subcellular structures is accomplished 

by labeling an antibody with a fluorophore (a fluorescent chemical group) through a 

simple chemical reaction [46]. The antibody then tags the molecules by finding its target 

antigen within the sample. The specimen is illuminated with light of a specific 

wavelength which is absorbed by the fluorophores, causing them to emit longer 

wavelengths of light with different colors. The illumination light is separated from the 

much weaker emitted fluorescence through the use of an emission filter. 

 

1.2.1.2   Confocal laser scanning microscope 

In a conventional wide-field microscope, thick specimens will produce an image 

that represents the sum of sharp image details from the in-focus region combined with 

blurred images from the neighboring out of focus regions. Although this effect does not 

significantly deteriorate images at low magnification (10x and below), it will obviously 
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degrade the images acquired with high magnification objectives. Specimens having a 

thickness greater than three to five microns will produce images in which out-of-focus 

fluorescence tends to obscure details in the actual image plane. Contrast of the in-focus 

image will be reduced because of the effect of a blurred background. 

 

To address this issue, the easiest solution is to modify the specimen by slicing it 

into very thin sections, but it will not work for living cells or tissue sections in culture. 

Another solution is to modify the microscopy techniques. Confocal laser scanning 

microscopy (CLSM) is such a technique which helps to obtain high-resolution in-focus 

optical images of thick specimens through a process known as optical sectioning. 

 

Fig. 1.3: Light path and image formation in a CLSM5 

 

                                                 
5 The original image is listed at http://www.staff.kvl.dk/~als/confocal.htm 
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Several techniques are implemented to make CLSM able to offer observation of 

thin optical sections in thick specimens [4]. The light source is a laser that produces 

high-intensity, coherent light of a defined wavelength. Between laser and beam splitter, 

where the light is mirrored into the objective, a pinhole produces a sufficiently thin laser 

beam, which is later focused by objective projects into a focal volume within a 

fluorescent specimen. Since the emission pinhole is in a confocal position to the 

excitation pinhole, only the excited fluorescence from that point can be detected by the 

photomultiplier. Moreover, a special aperture in front of the photomultiplier is added to 

exclude any remaining out-of-focus fluorescence. With all the above mentioned 

techniques, out-of-focus fluorescence becomes a minor problem for CLSM imaging. 

 

1.2.1.3 Two-photon laser scan microscopy (2PLSM). 

In 1990, Denk et al introduced a two-photon excitation method into laser scanning 

fluorescence microscopy that allows imaging living tissue up to a depth of one millimeter 

[5]. The concept of two-photon excitation is based on the idea that two photons of low 

energy can excite a fluorophore in a quantum event, resulting in the emission of a 

fluorescence photon with a higher energy than either of the two excitatory photons 

[6][7]. Since the fluorescence intensity varies quadratically with the excitation intensity, 

the fluorescence intensity falls off sharply with distance from the focal point, resulting in 

a high degree of rejection of out-of-focus objects. 

 

The probability of the near-simultaneous absorption of two photons is extremely low 

[7]. Therefore a high flux of excitation photons, which are usually provided by a 
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femtosecond laser, is typically required. The fluorescence from the sample is collected 

by a high-sensitivity detector, such as a photomultiplier tube. The observed light 

intensity becomes one pixel in the eventual image. The whole image is acquired by 

scanning the focal point throughout a desired region of the sample. 

 

A significant advantage of multiphoton microscopy is the reduction of 

photobleaching of the sample [5]-[6]. Photobleaching is the photochemical destruction 

of a fluorophore which is a problem for fluoscence microscopes, since fluorescent 

molecules will eventually be destroyed by the light exposure necessary to stimulate 

them into fluorescing. The problem is more serious in time-lapse microscopy because of 

the long time exposure. Photobleaching of the entire specimen is actually the limiting 

factor in a CLSM: although the detected fluorescence in a confocal microscope 

originates at the focal point, the entire volume in the cone of illumination is illuminated 

by the excitation laser beam. However, it is possible for a multiphoton scanning 

microscope system to limit the excitation to the focal volume [5]-[6]6, which will restrict 

the photobleaching to the vicinity of the focal point. Thus 2PLSM is especially suitable 

for time-lapse imaging.  

 

 

 

 

                                                 
6 This is because those multiphoton systems can use excitation laser with lower energy and longer wavelengths, 
which scatter less as they pass through tissue. In addition, since the light does not need to travel through the 
scanning mirrors or confocal aperture before reaching the detector , the detector can be located as close to the 
objective as possible for maximum efficiency. 
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1.2.2 Image acquisition 

 

All the images processed in this thesis are obtained by our collaborator: Bernardo 

Sabatini’s lab7. Brain slices from the hippocampus were prepared from rat pups (P7) 

and cultured as described in Alvarez et al [8]. Slices were transfected with a green 

fluorescent protein (GFP) expressing vector and pyramidal neurons which were 

identified based on their characteristic morphology at 7-20 days post-transfection (DPT). 

Neuronal morphology was studied using 2-photon laser scanning microscopy (2PLSM) 

and a custom-built microscope [9] with a water immersion objective (Olympus 

LUMPlanFI/RI 60x, NA=0.9). The excitation wavelength was 910 nm provided by a 

Verdi 10-V.-Mirra laser (Coherent). Measurements performed on 100 nm diameter 

yellow-green fluorescent microspheres (FluorSpheres, Molecular Probes) indicated that 

the point-spread function of the microscope placed a lower limit on measurable widths 

of 550 nm. 

 

Images (512 x 512 pixels) of apical and basal dendrites8 of hippocampal pyramidal 

neurons were acquired at zoom 3 and 5 (image field, 64x64 µm and 42x42 µm, 

respectively). The 3D image stacks were 16-bit grey-scale with 1 µm optical section 

spacing. The analyzed dataset included a variety of genotypes to ascertain how well our 

algorithm detected spines with a wide distribution of morphologies. The manual analysis 

of spine density, length, and width were measured using custom software [10] by 

observers who were blind to the genotype. Spine lengths were measured from the 

                                                 
7 http://www.hms.harvard.edu/dms/neuroscience/fac/sabatini.html 
8 An apical dendrite and a basal dendrite are dendrites emerge from the apex or base of a pyramidal cell respectively. 
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junction with the dendritic shaft to the tip. To determine head width and primary dendrite 

thickness, the fluorescence was measured in a line across each structure and the width 

of the distribution where fluorescent intensity fell to 30% of maximum was calculated. 

 

The photomultiplier (PMT) plays an important role during image acquisition with a 

CLSM. The intensity of the images is controlled by increasing or decreasing the voltage 

of the photomultiplier. It is also possible to change the offset of the PMT, which can 

soften or harden the contrast in an image. By adjusting the voltage and offset of a PMT, 

we can produce an image with a black background and sufficiently outstanding 

fluorescence. Sometimes if the fluorescence is weak, the photomultiplier has to work at 

its limits. This will make the background spotted with white pixels caused by 

spontaneous electron delivered by thermal processes in the PMT. Improvement of the 

image quality in this case is by “averaging” several images. According to our 

experiment, median filter has a very good performance to remove this kind of noise. 

 

1.3  Objectives 

 

Here we are interested in designing a pipeline for automatic neuron image 

processing which will release the biologists from heavy manual burden for quantitative 

analysis of dendritic spines. The approaches should be automatic and able to deal with 

problems in various fields of image processing, such as denoising, segmentation, 

detection, and tracking (registration). They are supposed to be based on sound 

mathematical models which are able to describe the essential aspects of neuron images 
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with reasonable simplification. Most of the proposed algorithms are built based on the 

Bayesian models with combining various prior knowledge and information of observed 

data, from which optimal solutions are found. Last but not least, the algorithms should 

be able to deal with application problems in the real world and be validated by 

comparing with the manual results of different images acquired under various 

conditions.  

 

Recently, some automatic dendritic spines analysis algorithms have been proposed 

[40]-[44]. However, problems still exist and improvements are needed (please refer to 

Section 3.1 for the detailed discussion of those algorithms).  Compared with the existing 

algorithms, we expect the solutions proposed in this thesis to: 

1. reduce the missing spines and the false positives; 

2. segment the spines with much higher accuracy, viz. the shapes of the 

segmented spines are more similar to their actual shapes; 

3. measure the spines more consistently, viz. less human interventions which might 

induce the bias; 

4.  be robust to different imaging conditions and resolutions; 

5.  be able to process the time-lapse images, viz. track the morphological changes 

of dendritic spines in time sequence. 

 

1.4  Contribution 

  The algorithms proposed in this thesis can be roughly divided into three parts. In 

Chapter 3, we focus on the algorithms used in a neuroinformatics system called neuron 
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image quantitator (NeuronIQ) 9, an integrated data processing pipeline for automatic 

dendrite spine detection and quantitative analysis of spine morphometry [45]. The main 

purpose of NeuronIQ is to provide biologists an automated tool which is well suitable for 

batch processing a large dataset of image with little human interference. In Section 3.2, 

we introduce an automatic adaptive segmentation algorithm. In Section 3.3, the 

backbone extraction algorithm is presented.  With the information obtained above, the 

detached and attached spine components are detected separately by using different 

approaches. The detached spine components are found by local signal to noise ratio 

(SNR) analysis, and the attached spine components are detected using geometric 

properties of dendrites. The spine detection algorithms are discussed in Section 3.4. 

Certain post-processing algorithms, such as combination of broken spine components 

and measurement of spine density, are described in Section 3.5. In Section 3.6 the 

results show that NeuronIQ has obviously improved compared with other existing 

methods. 

 

In order to further improve the detection results and solve some common problems 

(e.g. distorted segmentation and obviously degraded detection performance for images 

with lower resolution) faced by existing automatic or semi-automatic methods, a post-

processing algorithm based on a maximum a posteriori - orientated Markov random field 

(MAP - OMRF) framework is proposed in Chapter 4, which improves the detection 

results for images acquired at various resolutions. In Section 4.2, the statistical model of 

OMRF will be discussed in detail. It is shown that the segmentation and detection 

                                                 
9 NeuronIQ is a tool developed by the bioimaging analysis group of CBI in Radiology Department at Methodist 
Hopital. The latest version of NeruonIQ can be downloaded at: http://www.methodisthealth.com/tmhs/basic-
right.do?channelId=-90590&contentId=191151&contentType=GENERIC_CONTENT_TYPE 
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results can be improved by combining the orientation information of both dendrite and 

spines, as well as the local intensity distribution information. To further increase the 

speed of processing and make the detection more robust, a region of interest (ROI) 

estimation algorithm based on iterative spine background correction is also presented. 

Obtaining the optimal solution will be discussed in Section 4.3. A knowledge-guided 

iterative conditional mode (KICM) algorithm is described, which is time efficient and can 

obtain better detection results for microscope neuron images compared with normal 

ICM algorithm.  

 

In Chapter 5 we will mainly focus on discussing the time lapse image processing. A 

revised iterative closest point (ICP) algorithm with feature selection for global 

registration is presented first in Section 5.2. Compared with the normal ICP algorithm, 

the registration of dendrites can be obviously improved. Then, the particle filter based 

tracking algorithm is described in detail, which can accurately track and measure the 

dendritic spines simultaneously.  

 

        In Chapter 6 we will first give a brief summary about the relationship of the 

proposed algorithms. Then some unsolved problems are discussed in detail, which are 

possible future topics based on the work presented in Chapter 3-5. 

 

 

 

 



 21

References 

 

[1] L.R. Squire, Fundamental Neuroscience, Third Edition, published by Elsevier (2008)  

[2] B. Valeur, Molecular Fluorescence: Principles and Applications, published by Wiley-

VCH (2001)  

[3] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Third Edition, Plenum 

Press, New York (2006) 

[4] J.B. Pawley, Handbook of Biological Confocal Microscopy, Third Edition, Berlin: 

Springer (2006)   

[5] W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence 

microscopy, Science, 248(4951): 73-76 (1990) 

[6] J. D. Bhawalkar, A. Shih, S. J. Pan, W. S. Liou, J. Swiatkiewicz, B. A. Reinhardt et al, 

Two-photon laser scanning fluorescence microscopy – from a fluorophore and 

specimen perspective, Bioimaging, Special issue: Nonlinear optical microscopy, 4(3): 

168-178 (2001)  

[7] Göppert-Mayer M, Über Elementarakte mit zwei Quantensprüngen, Ann Phys. 9: 

273–95 (1931) 

[8] A.V. Veronica, A.R. Dennis, B.L. Sabatini, Retraction of synapses and dendritic 

spines induced by off-target effects of RNA Interference, J. of Neurosci., 26(30): 7820-

25 (2006) 

[9] A.G. Carter, B.L. Sabatini, State dependent calcium signaling in dendritic spines of 

striatal medium spiny neurons, Neuron 44(3): 483-93 (2004) 



 22

[10] S.F. Tavazoie, V.A. Alvarez, D.A. Ridenour, D.J. Kwiatkowski and B.L. Sabatini, 

Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and 

Tsc2. Nature Neurosci., 8: 1727-34 (2005) 

[11] E.A. Nimchinsky, B.L. Sabatini, K. Svoboda, Structure and function of dendritic 

spines, Annu. Rev. Physiol. 64:313–53 (2002) 

[12] R. Yuste, T. Bonhoeffer, Morphological changes in dendritic spines associated with 

long-term synaptic plasticity, Annu. Rev. Neurosci., 24:1071–89 (2001) 

[13] P. Andersen, A. Soleng A, Long-term potentiation and spatial training are both 

associated with the generation of new excitatory synapses, Brain Res. Rev. 26:353–59 

(1998) 

[14] V.Y. Bolshakov, S.A. Siegelbaum SA, Regulation of hippocampal transmitter 

release during development and Long-Term Potentiation, Science 269:1730–34 (1995) 

[15] C. Boyer, T. Schikorski, C.F. Stevens, Comparison of hippocampal dendritic spines 

in culture and in brain. J. Neurosci. 18:5294–300 (1998) 

[16] F. Engert, T. Bonhoeffer, Dendritic spine changes associated with hippocampal 

longterm synaptic plasticity, Nature 399:66–70 (1999) 

[17] M. Fischer, S. Kaech, D. Knutti, A. Matus, Rapid actin-based plasticity in dendritic 

spine, Neuron 20:847–54 (1998) 

[18] B. Lendvai, E. Stern, B. Chen, K. Svoboda, Experience-dependent plasticity of 

dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876–81 (2000) 

[19] M.B. Moser, M. Trommald, P. Andersen, An increase in dendritic spine density on 

hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the 

formation of new synapses, Proc. Natl. Acad. Sci. 91:12673–75 (1994) 



 23

[20] R. Yuste, A. Majewska, K. Holthoff, From form to function: calcium 

compartmentalization in dendritic spines, Nat. Neurosci. 3:653–59 (2000) 

[21] M. Masanori, Factors critical for the plasticity of dendritic spines and memory 

storage, Neurosci. Res. 57(1): 1-9 

[22] K.J. Lee, J.G. Jung, T. Arii, K. Imoto, I.J. Rhyu, Morphological changes in dendritic 

spines of Purkinje cells associated with motor learning, Neurobiol Learn Mem., 

88(4):445-50 (2007) 

[23] B.T. Human, Molecular and anatomical studies in Alzheimer’s disease, Neurologia. 

16(3): 100-04  (2001) 

[24] A.V. Veronica, A.R. Dennis, B.L. Sabatini, Retraction of synapses and dendritic 

spines induced by off-target effects of RNA Interference, J. of Neurosci., 26(30): 7820-

25 (2006) 

[25] S. Knafo et al, Widespread changes in dendritic spines in a model of Alzheimer's 

disease, Cerebral Cortex, 19(3):586-592 (2009) 

[26] P. Mehraein, M. Yamada, T. Dziduszko, Quantitative study on dendrites and 

dendritic spines in Alzheimer's disease and senile dementia, Adv Neurol. 12:453-8 

(1975) 

[27] M. Knobloch, I.M. Mansuy, Dendritic spine loss and synaptic alterations in 

Alzheimer's disease, Molecular Neurobiology, 37(1):73-82 (2008) 

[29] I. Wasowicz et al, Quantitative age-related changes in apical dendrites and 

dendritic spines of CA1 pyramidal neurons among senescence accelerated mice 

(SAMP1TA/Ngs), Mechan. of Ageing and Develop., 90(1): 63-73 (1996) 



 24

[30] D.L. Moolman, O.V. Vitolo, J.P. Vonsattel, M.L. Shelanski, Dendrite and dendritic 

spine alterations in Alzheimer models. J Neurocytol. 33:377–387 (2004) 

[31] T.L. Spires-Jones, M. Meyer-Luehmann, J.D. Osetek, P.B. Jones, E.A. Stern, B.J. 

Bacskai, B.T. Hyman, Impaired spine stability underlies plaque-related spine loss in an 

Alzheimer's disease mouse model. Am J Pathol. 171:1304–1311 (2007) 

[32] C. R. Gerfen, Indirect-pathway neurons lose their spines in Parkinson disease, 

Nature Neurosci. 9: 157-158 (2006) 

[33] P. Anglade, A. Mouatt-Prigent, Y. Agid, E. C. Hirsch, Synaptic plasticity in the 

caudate nucleus of patients with Parkinson's disease, Neurodegeneration, 5(2): 121-

128 (1996) 

[34] A. Y. Hung et al, Smaller Dendritic Spines, Weaker Synaptic Transmission, but 

Enhanced Spatial Learning in Mice Lacking Shank1, J. of Neurosci., 28(7):1697-1708 

(2008) 

[35] C.M. Durand, Mutations in the gene encoding the synaptic scaffolding protein 

SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27 (2007) 

[36] T.V. Bilousova, L. Dansie, M. Ngo, J. Aye, J.R. Charles, D.W. Ethell, I.M. Ethell, 

Minocycline promotes dendritic spine maturation and improves behavioural 

performance in the fragile X mouse model, J. of Med. Genetics 46:94-102 (2009) 

[37] S.A. Irwin, R. Galvez, W.T. Greenough, Dendritic spine structural anomalies in 

fragile-X mental retardation syndrome, Cereb Cortex. 10(10):1038-44 (2000) 

[38] R. Galvez, W.T. Greenough, Sequence of abnormal dendritic spine development in 

primary somatosensory cortex of a mouse model of the fragile X mental retardation 

syndrome, Amer. j. of medical genetics, 135(2): 155-160 (2005) 



 25

[39] T.A. Comery, Abnormal dendritic spines in fragile X knockout mice: Maturation and 

pruning deficits, Proc. Natl. Acad. Sci. 94: 5401–5404 (1997) 

[40] I. Y. Koh, W. B. Lindquist, K. Zito, E. A. Nimchinsky, and K. Svoboda, An image 

analysis algorithm for dendritic spines, Neur. Comput. 14: 1283–310 (2002) 

[41] X. Xu, J. Cheng, R. M. Witt, B. L. Sabatini, S. T.C. Wong, A shape analysis method 

to detect dendritic spine in 3D optical microscopy image, Biomedal Imaging: Macro to 

Nano,. 3rd IEEE International Symposium, Apr. 6, pp554 – 557 (2006) 

[42] C. M. Weaver, P. R. Hof, S. L. Wearne, W. Lindquist, Automated algorithms for 

multiscale morphometry of neuronal dendrites, Neur. Comput. 16: 1353-83 (2004) 

[43] W. Bai, X. Zhou, L. Ji, J. Cheng, and S. T. Wong, Automatic dendritic spine 

analysis in twophoton laser scanning microscopy images, Cytometry A 71: 818-826 

(2007) 

[44] Y. Zhang, X. Zhou, R. M. Witt, B. L. Sabatini, D. Adjeroh, and S. T. Wong, Dendritic 

spine detection using curvilinear structure detector and LDA classifier. Neuroimag. 36: 

346–360 (2007) 

[45] J. Cheng, X. Zhou, E. Miller, R. M. Witt, J. Zhu, B. L. Sabatini, and S. T. Wong, A 

novel computational approach for automatic dendrite spines detection in two-photon 

laser scan microscopy. J. of Neurosci. Methods 165: 122-134 (2007) 

[46] K.R. Spring, M.W. Davidson, Introduction to fluorescence microscopy, 

http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html 

 

 

 



 26

Chapter 2: Technical background 

 

Segmentation plays a very important role in the automatic spine detection. Good 

segmentation robust to different imaging conditions can greatly reduce the difficulty of 

the post-processing (combining broken pieces, registration, measurement, etc.) and 

improve the efficiency of the whole algorithm. In the first part of this chapter, we will 

briefly survey the segmentation methods being used in medical image processing.  

 

One effective approach to automatically detect and measure the morphological 

changes of the spines is to track the spines in time-lapse imagery. In the second part of 

this chapter, we will discuss the tracking algorithms with a focus on the state space 

based Kalman filter and particle filter. 

 

2.1 Segmentation 

 

Medical image segmentation is a process to label each voxel in a medical image 

based on its tissue type or anatomical structure [70]. The structures of interest include 

the organs, bones, vessels, or abnormalities such as tumors and cysts [2]-[6]. The basic 

purpose of medical image segmentation is to assist doctors in evaluating the medical 

imagery. In this section we will first review some popular segmentation methods 

proposed in the literature, and then we will focus our discussion on the model based 

image segmentation methods. 
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2.1.1 Thresholding  

 

    Thresholding is one of the simplest methods of image segmentation. The 

segmentation is achieved by grouping pixels into different classes based on the preset 

intensity (or other quantifiable features) values - thresholds. Thresholding is an effective 

segmentation method if different structures in the image have obvious different intensity 

distributions. There can be one threshold (binary partitioning), or several thresholds 

(multiple thresholding).  The threshold can be global (global thresholding), or decided 

locally (adaptive thresholding). A survey on thresholding techniques can be found in [1]. 

 

    Although they have been successfully applied in medical image processing [2]-[6], 

there is a major drawback of threshold-based methods: they are sensitive to noise and 

intensity inhomogeneities because such methods are unable to take into account the 

spatial information of an image. In other words, only based on the intensity, they often 

lack the sensitivity (the rate of correct detection) and specificity (the complement of 

wrong detection rate) required for accurate segmentation. 

 

2.1.2 Clustering  

 

    Clustering algorithms are basically unsupervised classification methods, in which only 

unlabeled examples are given. There are three commonly used clustering algorithms: 

k -means algorithm, fuzzy c -means algorithm, and the expectation-maximization (EM) 

algorithm. The k -means algorithm [7]-[8] assigns each pixel to the cluster (a collection 
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of data who have the similar features) whose centroid is the nearest. The centroids are 

recomputed after the assignment of all pixels. The two steps are repeated until some 

convergence criterion is met. Despite its simplicity, one major drawback of k -means 

algorithm is that its performance largely depends on the initial random assignments. 

Besides, the global minimum of variance cannot be assured although the intro-cluster 

variance is minimized.  

 

    The fuzzy c -means algorithm is a generalized form of the k -means algorithm which 

allows the soft segmentations based on fuzzy set theory [9]-[10]: each pixel has a 

possibility of belonging to all clusters, rather than belonging exclusively to only one 

cluster. The probability of belonging is reciprocal to the pixel’s distance to the cluster 

centroid. Like the k -means algorithm, fuzzy c -means algorithm also depends on the 

initial classification and the minimum is a local minimum. 

 

Assuming that the data follow a Gaussian mixture model, the Expectation-

Maximization (EM) algorithm [11]-[14] is a more statistically formalized method which 

applies the same clustering principles as the fuzzy c -means algorithm. Generally it has 

better convergence properties compared with fuzzy c -means algorithm. To better 

describe the EM algorithm, below we give a simple example of how to apply EM 

algorithm for brain MR image segmentation. 

 

Suppose the intensity distributions of three types of brain tissues, i.e. white matter, 

gray mater and cerebrospinal fluid (CFS), are modeled as Gaussian distributions. Once 
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the parameters (means and variances) of all three tissue types are known, voxels can 

be segmented based on the intensity values. The EM algorithm can be used to find the 

maximum likelihood estimates (MLE) of those parameters. Let θ be the parameter 

vector, x be the observed data and z be the unobserved data. In this case, z represent 

which of the three tissue types each voxel belong to.  

 

The basic idea of EM algorithm is to alternate between estimating the expectation of 

the likelihood ( E step) and computing the maximum likelihood estimates of the 

parameters ( M  step). The process is repeated until a preset criterion is met. The steps 

can be formulated as: 

Expectation step: find the expectation of the log likelihood function given x under the 

current estimate of the parameters )(tθ  

],|),;([log)|( )()( tt LEQ θxzxθθθ                               (2.1) 

Maximization step: find the parameters which maximize the Q function 

)|(maxarg )()1( tt Q θθθ
θ

                                            (2.2) 

 

For brain MR image segmentation, the likelihood function is 
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and the parameter vector is 

),,,,,,,,( 321321321  θ ,                                   (2.4) 
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where N is the total number of voxels;  is an indicator function and f  is the probability 

density function of a multivariate normal; j is the prior probability of each type of tissue; 

j and j are the mean and covariance matrix respectively. 

 

    In general, the performance of the clustering methods largely depends on the initial 

classification results. Furthermore, the lack of spatial modeling makes these methods 

sensitive to noise and intensity inhomogeneities. 

 

2.1.3 Region growing  

 

    The simplest form of region growing method is the seeded region growing method. A 

set of seeds are firstly selected, then regions are iteratively grown by comparing their 

unallocated neighboring pixels [15]-[17]. The process continues until all pixels are 

allocated. To relax the requirement of the manually set seed points, split-and-merge 

method is proposed [18]. Seeds based region growing method is sensitive to noise 

which might cause the distortion of topology of the objects. To deal with this issue, a 

homotopic [19] and a fuzz theory based [20] region-growing algorithms are proposed. 

 

2.1.4 Model based segmentation 

 

    Methods for medical image segmentation are often application-specific: prior 

knowledge for the particular objects of interest is applied. Assuming that objects of 

interest have a repetitive form of geometry, model based segmentation methods are 
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widely applied in medical image processing because of the ability of such methods to 

impose various constraints into the prior models. In this section, we will discuss two 

popular models widely applied in medical image segmentation: Markov random fields 

(MRF) and active contours. 

 

2.1.4.1 Markov random fields  

 

    MRF models are widely used for image segmentation by encoding expected spatial 

correlations through contextual constraints of neighboring pixels. Usually, the correlation 

structure is such that pixels are expected to have the same or similar intensities, i.e. the 

image is piecewise constant or piecewise continuous.   

 

Let },...,{ 1 mFFF  be a family of random variables defined on the set S , a joint event 

is abbreviated as fF  where },...,{ 1 mfff  is a configuration of F . F is said to be a 

MRF on S with respect to a neighborhood system N if and only if both the positivity 

FffP  ,0)( ,                                          (2.5) 

and Markovianity 

)|()|( }{ iNiiSi ffPffP  ,                              (2.6) 

are satisfied. Here }{iS  is the set difference, }{iSf  denotes the set of labels at the sites 

in }{iS  and }|{ iiN Niff
i

  stands for the set of labels at the sites neighboring i . 

The label at a site is dependent only on those at the neighboring sites. 
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    The practical use of MRF models is largely ascribed to the equivalence between 

MRFs and Gibbs distributions [21]. A set of random variables F  is said to be a Gibbs 

random field on set S with respect to the neighborhood N if and only if its configurations 

obey a Gibbs distribution. A Gibbs distribution takes the form 

)(
11

)(
fU

Te
Z

fP


 ,                                        (2.7) 

where 





Ff

fU
TeZ

)(
1

is a normalizing constant called the partition function, T is a 

constant called the temperature which is usually set as 1.  )( fU  is the energy function. 

The energy 



Cc

c fVfU )()( is a sum of clique potentials )( fVc over all possible 

cliquesC . The value of )( fVc  depends on the local configuration on the clique c .  

 

    A clique for graph ),( EV is defined as a subset of sites in V , e.g., pair-site cliques are 

the subset of groups of two neighboring pixels. Here V  contains the nodes, 

E determines the links between the notes according to the neighboring relationship. 

One commonly used MRF model is called auto-models, in which Gibbs energy consists 

of only single-site and pair-site clique potentials. The energy can be described as 

 
 


1 2}{ },{

2,1 ),()()(
Ci Cii

iiiiii ffGfGfU  ,           (2.8) 

where 1C and 2C are the collection of single-site and pair-site cliques respectively; i and 

ii , are the control parameters. 
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    The MRF based segmentation methods have been widely studied for various types of 

medical images obtained by a wide range of modalities. These includes, but are not 

limited to, cardiac imaging [22]-[23], brain imaging [24]-[30], digital mammography [31]-

[32] acquired by magnetic resonance imaging (MRI), ultrasound, positron emission 

tomography (PET), and electron microscopy.  

 

    Within each of these fields, MRFs are used to address a wide range of image 

processing tasks. The main purpose for brain segmentation is to separate the brain into 

three kinds of tissues: gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF). Although the finite mixture (FM) model10 is the most commonly used model for 

statistical brain segmentation, it is sensitive to noise as a histogram-based model 

without spatial information. Various MRF algorithms are proposed to address the issue. 

Ruan et al [24] proposed a MRF based algorithm with multifractal analysis, which can 

effectively solve the problem of partial volume effects. Zhang et al [25] proposed a novel 

hidden Markov random field (HMRF) model to deal with the artifacts caused by biased 

field distortion. It has also been shown that mathematically the FM model is a 

degenerate version of the HMRF model. MRF approaches have also been extensively 

studied to segment brain voxels into active and inactive areas for the analysis of 

functional magnetic resonance imaging (fMRI) data [26]-[28]. By effectively fusing 

contextual dependencies within functional imaging data, the segmentation is much more 

robust to the noisy fMRI images. For cardiac image processing, Xiao et al [22] proposed 

a MRF-based method to address the problem of intensity inhomogeneities dominated 

                                                 
10 The method to describe a probability density function as a combination of a set of probability density functions 
with different weights 
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by nonuniform beam attenuation within the body in the ultrasound B-mode images. 

Juslin et al [23] successfully applied the MRF models in an automatic method to extract 

the heart volume from the cardiac PET images. Detection of clusters of 

microcalcifications in digital mammograms is critical for the early diagnosis of breast 

cancer. However, due to the small size of microcalcifications and the poor quality of 

images, it is hard to find reliable methods for an automatic detection of such clusters. To 

address these problems, D’Elia et al [31] proposed a tree structured Markov random 

field algorithm which can effectively extract the elementary homogeneous regions of 

interest on the image. Li et al [32] proposed a multiresolution MRF model to extract the 

region of interest, which can increases the speed of processing and performance of 

detection. 

 

The major difficulty for MRF models is the computational complexity. Usually, the 

local optimization algorithms such as iterative conditional modes (ICM) are applied to 

find the optimal solutions [24][25][28][32]. How to properly select the control parameters 

such as  and   in Eq. 2.4 is another common problem. A too high setting can result in 

an excessively smooth segmentation and cause the loss of important structural details.  

 

To present how MRF is applied in medical image segmentation, here we give an 

example of MRF approach for brain MR image segmentation [71]. Suppose vector 

y contains all individual intensity iy for each voxel i in the MR image. The task of 

segmentation is to determine the vector x so that for each pixel ix  (WM, GM, CSF). 

To model intensity inhomogeneities in MRI image, which are caused by 
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inhomogeneities of the magnetic fields and the sensitivity profile of the receiving coil, a 

smooth inhomogeneity field z is proposed. For any observed MR intensities y , the a 

posteriori probability of the segmentation x and the inhomogeneity z can be obtained by 

applying Bayes rule 

)()(),|()|,( zxzxyyzx pppp  ,                                        (2.9) 

where ),|( zxyp , )(xp and )(zp are the priori probability of the segmented image, the 

inhomogeneity and the conditional probability of the observation. The optimal solution 

which maximizes the probability can be found by simulated annealing (SA) [27][30] or 

iterated conditional modes (ICM) algorithms [24][25][28][32].  

 

   The priori probability )(xp can be modeled by MRF, namely neighborhood MRF. After 

defining a neighborhood system of six nearest neighbors   in 3-D (Figure 2.1), the 

probability can be expressed as 

)()( xx Eep  ,                                                                 (2.10) 

with the energy 
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where M is the total number of the voxels, i is the six-neighbor of voxel i , 
ji xxe  is 

potential between two voxels, which is minimal for neighboring voxels of the same 

tissue ( ji xx  ) so that neighboring voxels are intent to be segmented as the same type. 

 

   The inhomogeneity probability )(zp  can also be modeled by MRF, namely 

inhomogeneity MRF. After the 6-neighbor is defined, we have 
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)()( zUep z ,                                                               (2.12) 

with the energy (in which small inhomogeneity corrections are more probable than 

large) 
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where  and   are the weight factors. 

 

   The conditional probability ),|( zxyp  can be expressed by a Parzen-window 

distribution [72] 
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where 
ixky ,  is a set of 

ixn training points of tissue class ix  selected by a supervisor; the 

covariance matrix  is equal to 2 in the case of single-echo MR image ( 1d ) and to  

times the 2-D unit matrix for double-echo MR images ( 2d ). The detailed discussion of 

this distribution can be found in [73]. 
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

(e) 

 

Figure 2.1 Common nearest neighbors applied in MRF: (a) 4-neighbor in 2-D (b) 8-neighbor in 2-D (c) 6-

neighbor in 3-D, two voxles are neighbor if their faces touch (d) 18-neighbor in 3-D, two voxles are 

neighbor if their faces or edges touch (e) 26-neighbor in 3-D, two voxles are neighbor if their faces, edges 

or corners touch 

 

2.1.4.2 Active contours (snakes)   

 

    Active contours are curves or surfaces defined within an image domain that can 

move under the influence of internal forces defined within the curve or surface, and 

external forces computed from the image itself [33]-[35]. With a priori knowledge about 

the model, internal forces hold the model together and keep it from bending too much. 

External forces are defined to move the model toward an object boundary or other 

desired features within the image. A common external force is the potential force, which 

is the negative gradient of a potential function. Other forces, such as pressure forces 
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and distance potentials, can also be applied to achieve different goals. The deformable 

model can be considered as a kind of boundary mapping, which constructs a 

mathematical representation of an object boundary from an image [36]-[39]. Deformable 

models have shown great success in medical image segmentation [40]-[49]. 

 

    There are basically two types of deformable models: parametric deformable models 

and geometric deformable models. Parametric deformable models represent curves and 

surfaces explicitly in their parametric forms. Based on the theory of curve evolution and 

geometric flows, geometric deformable models represent curves and surfaces implicitly 

as a level set of an evolving scalar function. Their parameterizations are computed only 

after complete deformation, thus topological adaptiveness can easily be 

accommodated. Despite this fundamental difference, the underlying principles of both 

methods are very similar. A traditional snake is a curve given by 

]1,0[|,)(),(|)(  ssysxsx , that moves around in the image to minimize the energy 
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2

1
dssEssE ext xxx  ,              (2.15) 

where  and  are weighting parameters that control the deformable contour’s tension 

and rigidity respectively [53]. 

 

    The external force is written as the negative gradient of a potential function 

),( yxE which is derived from the image data and takes smaller values at object 

boundaries. For a grey-level image ),( yxI , typical external potential functions designed 

to lead to a deformable contour toward step edges are 
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2)1( |),(|),( yxIyxEext  ,                                              (2.16) 

or 

2)2( |)),(),((|),( yxIyxGyxEext   ,                            (2.17) 

where ),( yxG is a 2D Gaussian function with standard deviation  , and  is the 

gradient operator. Figure 2.2 demonstrates an example of external force which will pull 

an active contour towards the object boundary. 

 

 

Figure 2.2 The gradient vector flow (GVF) external force field for a U-shaped object 11. 

 

    The problem of finding a curve )(sx that minimizes the energy functional is known as 

a variational problem. It has been shown that the curve that minimizes E must satisfy 

the following Euler-Largrange equation [53] 
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11 The original image is listed on http://iacl.ece.jhu.edu/projects/gvf/. 
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To find a solution, the snake is made dynamic by treating )(sx as a function of time t as 

well as s , i.e. ),( tsx . The partial derivative of x with respect to t is then set equal to the 

left-hand side of above equation 
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When the solution ),( tsx stabilizes, the left side vanishes and we achieve a solution. 

Thus, the minimization is solved by placing an initial contour on the image domain and 

allowing it to deform according to above equation. 

 

      One of the major drawbacks of the snake algorithms is that the performance is 

sensitive to the initial contour. Several methods have been proposed to make them 

more robust to the initialization [49]-[52]. Another problem for the standard deformable 

models is the poor convergence to concave boundaries. Xu et al. [53] have proposed a 

gradient vector flow (GVF) based algorithm which can effectively solve this problem.  

 

2.2 Tracking 

 

Basically there are two major approaches for a visual tracking system: Target 

Representation and Localization (TRL) and Filtering and Data Association (FDA) [54]. In 

a TRL tracking system, the objects may be segmented as blobs and then tracked by 

block based correlation or optical flow algorithms [55]-[56]. In some cases the object 

boundary is extracted and tracked by active contours or condensation algorithms [57]-

[58]. Generally the objects are represented in the feature space. The localization is 

performed by the maximization of a similarity function of the target and the target 
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candidates. TRL is mostly a bottom-up process which needs to cope with the changes 

in the appearance of the target. The computational complexity is typically low. In 

contrast, FDA is mostly a top-down process, which involves incorporating prior 

information about the object via a prior model, defining object dynamics via a dynamic 

model, and evaluating different hypotheses via various optimization methods. This kind 

of approach is mostly built in a Bayesian framework, and the computational complexity 

is usually higher.  

 

Tracking spines in time lapse image sequence can be described as a problem of 

estimation of the state of a system that changes over time using a sequence of noisy 

measurements made on the system (for dendritic spine tracking, the states describe the 

size and orientation information a spine.) The state-space approach to modeling 

dynamic systems is especially convenient for handling multivariate data and 

nonlinear/non-Gaussian process. In order to analyze dynamic system, the system 

model (dynamic model) and the measurement model (observation model) are required. 

The system model describes the evolution of the state with time, while the 

measurement model relates to the noisy measurements of the state. 

 

        Suppose the evolution of the state sequence  Nkk ,x  is given by 

),( 11  kkkk vxfx ,                                                    (2.20) 

where kf is a function which describes the change of the states; },{ Nkk v is an i.i.d. 

process noise sequence; N is the set of integers. The objective of tracking is to 

recursively estimate the state kx based on the new observation  
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),( kkkk nxhz  ,                                                        (2.21) 

where kz is a function of the state kx  and the i.i.d. measurement noise kn .  

 

        Here is a simple example of state space base tracking: suppose a car is moving 

along the road with a constant velocity subject to random perturbations v in its 

trajectory, the state vector can be expressed as 

T
k kqkqkpkp )]( )( )( )([ 2121x ,                                  (2.22) 

where )]( )([ 21 kpkp and )]( )([ 21 kqkq are the actual position and velocity of the car at 

time k respectively, T is the transpose operator. If T
21 ])( )([ kzkzk z  is the observed 

position at time k  and Tnn ] [ 21n  is the measurement error, equation (2.20) and (2.21) 

are then described as 
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and 
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Tracking is basically composed with two steps: prediction and updating. 

Prediction is to estimate the prior probability of the state at time k  by using the system 

model. From Eq. (2.14) we have [59] 
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)|(),|( 11:11   kkkkk pp xxzxx  ,                                  (2.25) 

which is based on the assumption that the system can be described by a Markov 

process of order one. By applying Chapman-Kolmogorov equation, the predicted state 

kx  based on all the previous observation data can be described as 

   11:1111::1 )|()|()|( kkkkkkk dppp xzxxxzx .            (2.26) 

At time k , a measurement kz  becomes available which can be used to update the prior 

estimation via Bayes’ rule. This is performed in the step called updating 
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where )|( kkp xz  is the observation model at time step k ; )|( 1:1 kkp zz can be obtained 

from 

                             kkkkkk dpp xzzxzz )|,()|( 1:11:1 ,        

  kkkkkk dpp xzxzxz )|(),|( 1:11:1 ,     

                     kkkkk dpp xzxxz )|()|( 1:1 .                    (2.28) 

Generally, the optimal solution of the posterior probability described by Eq. (2.27) is 

intractable. However, in a restrictive set of cases such as the Kalman filter, solutions do 

exist. 

 

2.2.1 Kalman filter 

 

    There are some assumptions about the Kalman filter: 
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 The posterior density at every time step is Gaussian and hence can be 

parameterized by a mean and covariance. 

 1kv and kn are drawn from zero mean Gaussian distributions of known 

parameters 

 ),( 11  kkk vxf  and ),( kkk nxh are known linear functions 

Based on above assumptions, we have 

11   kkkk vxFx ,                                                           (2.29) 

kkkk nxHz  .                                                              (2.30) 

Here kF and kH are known matrices defining the linear functions. The covariances of 

1kv  and kn are 1kQ and kR respectively. The Kalman filter algorithm can be described 

as the following recursive relationship 

),;()|( 1|11|111:11   kkkkkkkp Pmxzx ，                           (2.31) 

),;()|( 1|1|1:1   kkkkkkkp Pmxzx ,                                   (2.32) 

),;()|( ||:1 kkkkkkkp Pmxzx  ,                                         (2.33) 

where 

1|11|   kkkkk mFm ,                                                          (2.34) 

T
kkkkkkk FPFQP 1|111|   ,                                               (2.35) 

)( 1|1||   kkkkkkkkk mHzKmm ,                                   (2.36) 

1|1||   kkkkkkkk PHKPP .                                                 (2.37) 

Here ),;( Pmx  is a Gaussian density with argument x , meanm , and covariance P  

k
T
kkkkk RHPHS  1| ,                                                     (2.38) 
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1
1|


 k

T
kkkk SHPK ,                                                            (2.39) 

kS and kK Are the covariance of the innovation term 1|  kkkk mHz , and the Kalman gain 

respectively. 

 

This is the optimal solution for the tracking problems if the highly restrictive 

assumptions can be satisfied. However, in most cases, the linear Gaussian 

assumptions cannot be hold. Particle filter is a widely used method to deal with the 

nonlinear non-Gaussian problems. 

 

2.2.2 Particle filter 

 

The particle filter is also known as the sequential Monte Carlo (SMC) [59], the 

bootstrap filtering [60], the condenstation algorithm [61], interacting particle 

approximations [62]-[63], and survival of the fittest [64]. It is a technique for 

implementing a recursive Bayesian filter without analytically calculating the posterior 

density function, which is intractable for nonlinear non-Gaussian problems. The 

posterior density function is estimated by a set of random samples with associated 

weights. As the number of samples becomes very large, this MC characterization of 

samples becomes an equivalent representation to the real posterior probability density. 

This process can be described by 





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i

i
kk

i
kkkp

1
:0:0:1:0 )()|( xxzx  ,                          (2.40) 



 46

where  s
i

k Ni ,...,1,:0 x is a set of support points with associated weights s
i
k Ni ,...,1,  ; 

and  kjjk ,...,0,:0  xx  is the set of all states up to time k . The states are estimated at 

time k , which are related to the states of sN particles at time k ; the weight for each 

particle can be sequentially estimated by different approaches such as sequential 

importance sampling (SIS) [65]. 

 

    A common problem with the SIS particle filter is the degeneracy phenomenon: after a 

few iterations, all but one particle will have negligible weight. The degeneracy implies 

that a large part of computational effort is devoted to updating particles whose 

contribution to the approximation to )|( :1 kkp zx  is almost zero. The effective sample size 

effN  is a suitable measure of degeneracy of the algorithm introduced in [68]-[69] 

)(Var1 *i
k

s
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N
N


 .                                                    (2.41) 

Here ),|(/)|( 1:1
*

k
i
k

i
kk

i
k

i
k qp zxxzx  is referred to as the “true weight”, which can hardly 

be measured precisely. However, effN  can be estimated by 


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,                                                        (2.42) 

where i
k is the normalized weight obtained defined in Eq. (2.40) 

 

    To reduce the effect of degeneracy, we can select an importance density 

),|( 1 kkkq zxx  which minimizes )(Var *i
k so that effN is maximized. The optimal 
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importance density function that minimizes the variance of the true weights 

i
k
* conditioned on i

k 1x and kz has shown to be [65] 
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The weight can be calculated as 

   k
i
kkkk

i
k

i
kk

i
k

i
k dppp xxxxzxz )|()|()|( 1111  . (2.44) 

Generally it is hard to sample12 from ),|( 1 k
i
kkp zxx   and to evaluate the integral over the 

new state. The analytic evaluation is possible only in some special cases. However, it is 

often convenient to choose the importance density as  

)|(),|( 11
i
kkk

i
kk pq   xxzxx ,                                           (2.45) 

so that  

 )|(1
i
kk

i
k

i
k p xz  .                                                      (2.46) 

 

    Resampling is another widely applied method to reduce the effect of degeneracy: 

Whenever a significant degeneracy is observed (i.e. when effN falls below a threshold), 

the particles are resampled. The basic idea of resampling is to remove particles with 

small weights by generating a new set sN
i

i
k 1
*}{ x . The new particles are resampled 

sN times from an approximate discrete representation of )|( :1 kkp zx given by 

                                                 
12 There are different ways of sampling from a random distribution in different situations. For example if the random 
variable is with real values, one common approach is to compose the pseudo-inverse function of the cumulative 
distribution function (CDF) of the random variable )(Ug . Then )(Ug is the acquired sample if U is a sample of a 

random variable with uniform distribution on (0,1). The detailed discussion can be found in [74] 
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

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1
:1 )()|( xxzx  ,                                        (2.47) 

so that j
k

j
k

i
k  )Pr( * xx . Since the resulting sample is in fact an i.i.d. sample from the 

discrete density described by Eq. (2.47), the weights are now reset to s
i
k N/1 . 

 

    It should be noticed that the resampling will introduce the problem of sample 

impoverishment although it can solve the degeneracy problem. This is because the 

particles with high weights are statistically selected many times, which leads to a loss of 

diversity among the particles as the resultant sample will contain many repeated points. 

Algorithms have been proposed to solve this problem [60][66]-[67]. 
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Chapter 3  NeuronIQ: a new informatics tool for automatic 

neuron dendritic spine detection and analysis 

 

3.1  Introduction 

 

Recently, several semi-automatic dendritic spine analysis approaches have been 

proposed [1-3]. Although these methods can greatly help neurobiologists with their 

work, shortcomings still exist. Some manually-determined globally-applied thresholds 

are used during segmentation. In general, the proper determination of this threshold is 

largely dependent on the experience of human operator. More importantly, the final 

results in terms of dendritic morphology are quite sensitive to the thresholds, thereby 

making the reliable extraction of information difficult. Also, unbiased and rapid analysis 

of a large set of images by other detection methods is not feasible because of the 

amount of user input required. To solve the above problems, many locally adaptive 

thresholding methods have been proposed in the literature. Some are based on the 

local variance of the image intensity. More specifically, the threshold for each pixel is 

calculated according to the local mean and variance in a window of a pre-determined 

size [4-6]. The formulation is simple and straight forward; however, the results are easily 

corrupted by the presence of spurious local intensity maxima. Other methods use 

surface-fitting procedures [7-9]. As gradient based methods, they are sensitive to 

background noise. Kriging is also widely used in the literature [2][10]. It is basically a 

two-pass algorithm using two global thresholds. All the pixels whose gray values are 

smaller than the lower threshold are segmented as the background. Those with gray 
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values greater than the higher threshold are segmented as the objects. The remaining 

undetermined pixels are left to the second pass, at which point these pixels are 

segmented by using the local covariance of the class indicators and the constrained 

linear regression technique called kriging. In this chapter, we propose a local contrast 

based segmentation algorithm. It is easily implemented for automatic and consistent 

analysis of neuron morphology.  

 

In addition to segmentation, other problems also exist for the above mentioned 

dendritic spines analysis algorithms. Koh et al. propose a morphology-based algorithm 

for automatically detecting and quantifying the structure of dendritic spines [1]. 

However, this is only a simple distance-based algorithm for detached spine head 

detection. Also, this geometric approach is sensitive to noise and cannot detect spines 

of all morphologies. To separate spines from the shafts of dendrites, Xu et al. propose a 

new attached spine component detection algorithm by using two grassfire propagations 

[3]. Although their method is more robust to the noise and the irregular, rough surface of 

dendrites, it still has a problem similar to Koh’s approach: the shape of the detected 

spine is not accurately described, i.e., the base of the spine protrudes into the dendrite, 

instead of stopping parallel to the surface of dendrite. Based on Koh’s approach, 

Weaver et al. described a package which is capable of morphometry of an entire 

neuron, by combining the spine detection algorithms with dendritic tracing algorithms 

[2]. Their algorithm, however, does not accurately represent the attached spine 

component either. In this chapter we propose a signal-to-noise ratio (SNR) -based 

detached spine component detection algorithm that we show can considerably reduce 
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the poor detection of spine components with low intensity values. Our attached spine 

components detection algorithm, which is based on the morphological analysis of the 

local dendrite, is also presented. The method we describe is more robust to noise and 

rough dendrite boundaries, while also representing the shape of spines more accurately 

than existing detection methods. 

 

3.2  Pre-processing 

 

There are two primary phenomena which cause the degradation of images obtained 

by optical microscopy. One is the shot noise introduced by the imaging mechanism of 

the photomultiplier tubes (PMT), which has been discussed in detail in Chapter 1. The 

shot noise can generally be removed by median filtering without a loss in information 

concerning the neuronal spines and dendrites. The other mechanism for image 

degradation is the diffraction of light. The value of any voxel in the image actually is the 

convolution of intensities from its neighborhood. Numerous methods have been 

proposed to solve this problem with or without knowing the Point Spread Function (PSF) 

of the system [11]. Based on our experience, deblurring algorithms can greatly enhance 

the contrast of the image, which makes it easier to detect weak spines.  Nevertheless, 

since such processing can also amplify the noise, deconvolution sometimes degrades 

the segmentation results; thereby complicating later spine detection. Since our adaptive 

thresholding method can effectively segment the weak spines, we do not apply any 

deblurring algorithms during image preprocessing. As a result, the falsely detected 

spines are largely reduced, while the number of missed spines does not increase.  
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3.3  Segmentation 

 

The next step after denoising is to distinguish the spine or dendrite pixels from the 

background. The segmentation threshold can be set manually or automatically. Since 

there are no clear criteria to guide manual selection, the results are quite operator 

dependent. Furthermore, usually the manually set threshold is a global threshold, which 

causes problem in term of finding spine components with low intensities. To address 

these issues, an automatic local contrast based segmentation method, which is suitable 

for high-content bioimage analysis, is presented here.  

 

In adaptive threshold methods, a threshold is set for each pixel. This threshold is 

then used to test against the pixel intensity value to produce binary image. The basic 

formulation of adaptive threshold for pixel p  is given by 

 )(),( pIphTTp  ,                                                      (3.1) 

where )( pI  is the gray level of point ),( yxp  in the original image, and )( ph  is a certain 

local property of this point p . For local contrast based algorithms, usually the average 

or median value of intensity is used to calculate the local threshold. White and Rohrer 

[12] compare the gray value of the pixel with the average of the gray values of 

neighboring pixels. The pixel will be recognized as the foreground pixel if its intensity is 

greater than the average intensity of all the pixels around. In the method proposed by 

Bernsen [13], the median value is selected as the threshold. Both methods work well at 

their cases. The width of the averaging window is set according to the quality of images 
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and the general size of foreground objects. Basically, a larger window size would help 

suppress the noise in the image. However, it might also cause the loss of weak signals 

that are close to other strong signals. Based on equation (3.1), the adaptive 

thresholding algorithm is expressed as follows: 

 



 


                                                     otherwise    ,0

)},(),(|),({),( if    ,1
),(

yxyxyxIavgyxI
yxs

.
         (3.2) 

 

Here, ‘1’ represents the foreground pixels, which are potentially spine or dendrite pixels 

and will be processed for later detection and analysis, ‘0’ represents the background 

pixels, and I is the intensity value. The local region around a pixel ),( yx , i.e., ),( yx  is 

defined as }2/)1(||  ,2/)1(|| ),{(),(  dyndxmnmyx . The quantity d is the 

width of the window which decides the size of local region. The value of d is selected by 

considering the width of most spines. Normally, d can be set about 1~2 times of the 

spine width value. For our test images in Section 3.7, optimal results can be obtained 

for any number between 15 and 20 pixels. Generally, the segmentation results of spines 

are not sensitive to the window size, as long as enough foreground and background 

pixels are included. However, problems may occur for those small weak spines which 

are very close to the dendrites (whose intensities are higher than those of nearby 

spines). We will propose an efficient solution to this problem in the later part of this 

section. 
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Another potential problem for the above adaptive threshold algorithm is that some 

background pixels with relatively high intensity are prone to be segmented as 

foreground pixels. More information should be applied in order to distinguish this kind of 

local maxima from the real spine pixels. Besides the intensity difference, the exact value 

of each pixel’s intensity should also be considered. Only those pixels whose intensities 

satisfy the minimal value requirement can be segmented as foreground pixels. For 

example, a pixel with intensity values as 1 should not be segmented as a foreground 

pixel if all its neighboring pixels’ intensities are 0. This idea is similar to the lower 

threshold introduced by the Kriging method [2][10]. The minimal intensity value of a 

possible foreground pixel is selected as follows: 

 lowTTmin .                                                        (3.3) 

Here, lowT is the global lowest intensity value;   is a control parameter. When  is zero, 

the segmentation results are totally decided by the local contrast. With a bigger , local 

maximal intensity pixels are less likely to be segmented as foreground pixels. Generally, 

even a very small can obviously improve the segmentation results. This is because 

the high intensity noise, which is the shot noise, has already been removed by the 

median filter in the preprocessing stage. The original images are 16-bit grey level 

image. During pre-processing, they are linearly transferred into 8-bit images. Based on 

the range of intensity of spine pixels in the transferred 2PLSM images (1~255), the 

value of the control parameter  is suggested as ]20,5[ . The validation and 

comparison results in Section 3.7 are obtained with setting =15 for all images.   
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Besides the intensity, local region information should also be considered to improve 

the segment results. For example, a pixel has a higher probability to be a foreground 

pixel if most of its neighboring pixels are foreground pixels. This is based on the 

assumption that spines are blob-like objects. A simple approach for this idea is to only 

select those pixels whose most neighbors are segmented as foreground pixels. This 

post processing can be easily realized by implementing a median filter to the originally 

segmented image ),( yxs .  

 

For neuron images, a common problem for local thresholding is that the weak 

signal might be suppressed by nearby strong signals. For example, for weak spines, low 

intensity pixels such as those at the spine neck are prone to be segmented as 

background pixels. This is because those pixels have lower intensity values compared 

with their neighboring average, which is caused by the nearby dendrite pixels with very 

high intensity. To solve this problem, the high intensity values of nearby dendrite pixels 

should be adjusted, i.e., substituting the dendrite pixels with low intensity values. This is 

realized by two-step segmentation: dendrites are found after the first adaptive 

thresholding (Figure 3.2). The dendrites are defined as those blobs whose areas are 

larger than the largest possible size of a spine; then all pixels in the dendrites are 

replaced with lower intensity values in the original image; the adaptive thresholding is 

performed the second time after the intensity substitution. Compared with single 

adaptive thresholding, the two-step adaptive thresholding method can better detect the 

low intensity pixels at spine neck. Thus, the shape of spines is better represented. 

However, the revised intensity of dendrite tissues cannot be set arbitrarily low, 
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otherwise some background pixels with relatively high intensity values will be wrongly 

segmented as foreground pixels. Therefore, the intensity adjustment should be carefully 

chosen with low bound set.  

 

The intensity adjustment can be linear or nonlinear. In our case, we apply a simple 

linear transformation, i.e. ),( yxI d = ),( yxI d . Here ),( yxI d is the original intensity of the 

pixel in dendrite, ),( yxI d is the intensity value after adjustment,  is the parameter which 

decides the suppression intensity. The upper bound for   is 1, which means no 

suppression is performed. The lower bound for  is calculated as follows: 

d

s

I

I
boundlower 

.                                               (3.4) 

Here sI is the average intensity of all pixels in spines, and dI is the average intensity of 

all pixels in dendrites.  

 

 After segmentation, basic morphological filtering (with size 3 disc as the structure 

element) is performed to remove the noise, fill the holes, and smooth the boundaries. 

Some morphological processing, such as filling holes, can distort dendrite structures. To 

prevent these from happening, local intensity information (e.g. only fill the holes in which 

the average intensity of the pixels is above a threshold so that only the holes inside the 

dendrites or spines are filled) is considered during the processing. Figure 3.1 shows the 

comparison of segment results between global thresholding and adaptive thresholding. 

The latter one is obviously better, with fewer missed spine components and better 

segmented dendrite structure.  



 65

 

(a) (b) 
 (c) 

 

Figure 3.1: results of adaptive thresholding; (a) original images; (b) segmentation result with global 

threshold; and (c) segmentation result with adaptive threshold  

  

 

Figure 3.2: procedures of the segmentation algorithm  

Initializing d  based on the width of spines

Initializing   based on the range of the intensities of spines 

Adaptive thresholding based on Eq. (3.2) and (3.3)

Removing the isolated foreground pixels with a median filter 

Finding dendrites based on the areas of blobs

Adjusting the intensities of dendrites based on Eq. (3.4) 

Adaptive thresholding based on Eq. (3.2) and (3.3) for the second time 

Morphological filtering
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3.4  Backbone extraction 

 

Dendrite structure is one of the most important geometric features in spine detection. 

Most existing spine detection algorithms are based on the successful extraction of 

backbones. There are two steps for backbone extraction: determining the medial axis by 

thinning algorithms and extracting the backbone from the medial axis by trimming 

branches. There are many thinning algorithms in the literature [14-19] to find the medial 

axis in 3D. Basically a set of deleting templates are designed, which preserve the 

topology and geometry of the object. The object voxel under consideration is checked 

against the templates and is removed if its spatial arrangement is compliant to one of 

them. The medial axis or skeleton obtained by such thinning algorithms is sensitive to 

noise. As we can observe from Figure 3.3, there are many spurs caused by noise 

(rough boundary). These spurs, in addition to the spurs caused by spines, should be 

removed to obtain a neater description of dendrite structures (backbones). The 

backbone is obtained by the trimming algorithms. In this section, we only discuss our 

trimming algorithm. 
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(a) 

 

(b) 

 

(c) 

Figure 3.3: (a) medial axis of dendrites, (b) backbone after trimming, and (c) backbone after removing 

bumps. 

 

In some ideal situations, trimming can be very easy. All we need to do is to set a 

threshold for the physical length of the spines, and remove all spines whose length does 

not satisfy the requirement. Or we can just pick up the longest pieces. This is the basic 

idea behind many of the skeleton pruning algorithms. An example of this kind of 

algorithm is proposed by Zikuan Chen et. al. [20]. They first try to find the starting point 

of the skeleton, by finding the line-end point with the maximal intensity value (or 

maximum diameter). From the starting pointing, the longest path ijP is found. ijP is then 

removed from the original skeleton image and another starting pointing is found. The 

procedures are repeated until the top N longest paths are found, which are assumed to 

be the dendrite backbone pieces. There are two potential problems for the above 

mentioned method. One concerns with the selection of the starting point. While one 

could consider all line-end points as starting points, this will however greatly increase 

the computation time. The other difficulty is how to ‘automatically’ set the value of N . As 

we can see from Figure 3.3, the medial axis of a dendrite image can be very complex. 
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This is caused by the complex structures in the big spines, or caused by the rough 

dendrite surface. If the spine density is high, the longest path based trimming algorithm 

can be very time consuming. In chapter, we introduce a recursive trimming algorithm, 

which can deal with the above problems without knowing the starting point and number 

of dendrite pieces. The algorithm is summarized as follows with the detailed listing of 

the steps provided in Table 3.1. 

 

Table 3.1:  recursive trimming algorithm 

(1) Initialize 1m  

(2) Remove all end points (who only has one neighbor) in the image; keep doing for m  times 

(3) Check the length of all the removed pieces il ; if 
mli  , restore the removed piece 

(4) Let smm  , if Mm  , go to step 1 

(5) Finish trimming 

 

The basic idea is to keep removing end pieces (curves with end points) whose 

length is less than m . The value of m  is iteratively changed in step (4). The process 

keeps repeated until the threshold m  reaches the upper bound M , which is usually the 

longest possible length of a spine. Notice this algorithm is not simply removing all end 

pieces whose length is smaller than the threshold M , a process that would not only 

remove the medial axis of spines, but also will remove the end pieces of dendrites. This 

can be a serious problem when the threshold M is big. In our approach, the dendrite 

pieces are restored at step (3). There are two situations in which the removed pieces 

cannot be restored, i.e., mli  . 1) The length of the end piece is less than the 
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temporary threshold m . In this case the short branches (medial axis of spines) are 

removed. 2) The length of the end piece is greater than the temporary threshold m . This 

happens when more than one connected branches are removed together. This is also 

the reason why the algorithm is implemented in an iterative way: if Mm  at the very 

beginning, the end pieces of dendrites won’t be restored, because there might be some 

spines attached to the end pieces of dendrites and are removed together. In such 

situation, mli   and the end pieces of dendrites cannot be restored. The trimming result 

is shown in Figure 3.3 (b).  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 3.4: (a) backbone with small branches (b) end pieces with length m  are removed (c) end pieces 

with length m  are restored (d) end pieces with length sm   are removed (e) end pieces with length 

sm   are restored 

 

Figure 3.4 illustrates the processing of removing small branch pieces with different 

length. The red line represents the removed pieces in the specific steps. 
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After trimming, some correction to the backbone is performed. As we can see in 

Figure 3.3 (b), there are many small bumps along the backbone. These bumps are 

caused by the thinning algorithm during the process of obtaining the medial axis. The 

bumps may introduce the error for dendrite length estimation. They also cause trouble 

for spine length estimation and make length based attached spine detection algorithm 

more difficult. Usually, the bumps locate at the place where there is a protrusion at the 

dendrite surface. For each protrusion, there is a piece of small branch in the medial 

axis. Based on the above facts, here we propose a bump-removing algorithm as 

follows: (1) for each piece of branch along the backbone, find the branch point which is 

defined as the backbone pixel having more than two neighboring pixels (8-neighorhood) 

in the medial axis image; (2) find local backbone piece around the branch point inside a 

55 window, where is the possible location of a bump; and (3) replacing the local 

backbone piece by a line connecting the two end points of the backbone piece. 

 

3.5  Spine Detection 

 

From Figure 3.1 we see that there are some blobs which are not in a reasonable 

distance to the dendrites, i.e., the distance is larger than the longest possible length of a 

spine. This kind of blobs should be removed as non-spine blobs. The regions around 

the backbone should be defined before the detection, which will help reduce both the 

processing time and false positives. A local-region-cutting algorithm is designed for the 

above purpose. Only blobs locate in the local regions are considered as potential spine 
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components. Those who are not in the local regions are removed before spine detection. 

Although the maximal distance idea of the off-cutting algorithm is identical to Koh’s 

method [1], it is implemented in a more computation efficient way. Instead of calculating 

the distance from every detached blobs to the nearby dendrite backbone point, we 

define a local region around the backbone, which is simply obtained by dilating the 

backbone. The advantage becomes obvious if the spine density is high. 

 

There are two different approaches for the detection of attached spine components 

and detached spine components. The two detection algorithms are discussed in the 

following sections. 

 

3.5.1 Detection of detached spines 

 

The detached spine component detection algorithm is based on the local Signal to 

Noise Ratio (SNR) analysis. The local region of each potential spine should be found 

before estimating the local SNR. Since the size of different spines may vary a lot, it is 

not feasible to choose a window with fixed size for local SNR analysis. The size of the 

window should be adjusted according to the size of each blob. The local region pR  for 

blob p is defined as follows: 

} ]y ,-y[y  ], x,-x[ x | y) (x,{ 1010  pR
.            (3.5) 

Here 0x , 1x , 0y , and 1y  are the least and largest values in x- and y- direction 

respectively for all pixels in the blob;  is the extension parameter whose value will 

decide the ratio of background and foreground pixels in the local region. To get the size 
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of the local region pR for local SNR analysis of each spine, we need to calculate the 

value of  . Suppose the area of the blobs can be estimated by a rectangle ba , with 

01 xxa   and 01 yyb   and the total area of local region is ban  , where n is a real 

number which satisfies 1n , then the ratio between the number of background pixels 

and that of the foreground pixels is )1(:1 n . The value of   can be obtained from 

nabba  )2)(2(  ,                                                             (3.6) 

4

)()1(4)( 2 banabba 


,
                                          (3.7) 

For the purpose of implementation,   can be rounded to the nearest integer. 

 

Once the local region for a spot is determined, we can then define the local SNR. In 

image processing, the local SNR for spot P  is usually estimated as [21] 

bpbpspp IISNR /)( 
.                                       (3.8) 

Here, spI
is the average intensity of the detected signals, bpI

is the average intensity of 

the background pixels, bp
 is the standard deviation of the background intensity of the 

local region. The local SNR analysis is applied to all detached blobs in the maximal 

intensity projection (MIP) image of a neuron image for spine detection. If the SNR is 

higher than a threshold, the certain blob is recognized as a detached spine. The 

threshold can be obtained by common clustering method such as k-nearest neighbor 

algorithm.   
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In some simple cases, this SNR based algorithm can detect detached spines well. 

However, sometimes some small non-spine blobs which arise from dying or imaging 

problems cannot be removed by simply increasing the SNR threshold.  Nevertheless, 

the performance of SNR based detection algorithm will be improved if intensity 

distribution information among the neighboring slices can be used. For 3D neuron 

images, the resolution in z-direction is much lower compared with x- and y-direction. 

Most spines will only appear in 2 or 3 slices. Thus, the section area of a spine changes 

obviously in the neighboring slices. In addition, the intensity for spine voxels in the 

neighboring slices changes more obviously compared with the voxels in non-spine 

blobs. This is can be explained by the intensity difference among surface voxels and 

central voxels in a spine. Based on the above observations, a new SNR which 

considers the 3D intensity properties of a spine is proposed:  




)1(1

local

FG

bp

bpsp
normalp A

NII
fSNRSNR 




.
                       (3.9) 

Here, localA  is the area of the blobs in the MIP (maximal intensity projection) image; FGN  

is the number of foreground voxels. The foreground voxels are defined as:  

}  slicesadjacent in  differenceintensity   whosevoxels|{ 0nPPforeground  ; 0n is a threshold for 

intensity difference. If 0n = 1, then all voxels with different intensity values among the 

neighboring slices are considered as foreground voxels. For each blob, three slices 

(central slice and two neighboring slices) are considered. The central slice of a blob is 

defined as the one with the highest average intensity. According to our tests, the 

intensities of voxels in the small non-spine blobs have few changes compared with 

those spine voxels. The variable   is the weight parameter with positive value. We can 
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observe that the newly defined pSNR is equal to normalSNR  if 0 . With a higher , we 

emphasize more on the change of intensity distributions among the neighboring slices. 

In our case,  is set to 2 for all images used for validation.  The value is manually set 

according to the testing results of several images. 

 

The comparison of detection results based on normal SNR and revised SNR is 

shown in Figure 3.5.  As we can observe from the SNR distribution maps, there is no 

threshold which can totally separate the spine components and the non-spine blobs by 

using normal SNR. However, these two different classes are finely separated if 

described by the revised SNR. Nearly all non-spine blobs have obviously lower values 

compared with the spine components, e.g., the values are lower than half of the value of 

the spine with the lowest revised SNR. We also notice that there are some non-spine 

blobs introduced by a crossing axon at the middle bottom of the image. This kind of 

non-spine blobs can also be recognized and discarded by using the revised SNR.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 3.5: comparison of normal SNR and revised SNR for detached spine head detection. (a) original 

images; (b) segmented image obtained from adaptive threshold algorithm, with all detached blobs 

(possible detached spine head) marked; (c) detached spine head detected by using normal SNR; (d) 

detached spine head detected by using revised SNR; distribution of (e) SNR and (f) revised SNR for each 

detached blob. The circles represent the manually detected spine head in 3D image. 

 

From Fig. 3.5 (c) and (d) we can see that all three false positives (non-spine blobs) 

are removed. Furthermore, our SNR analysis and adaptive thresholding based 

algorithm can also detect weak detached spine components, which are possibly missed 

by global thresholding. From Figure 3.6 we can see that four spines are missed 
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because of low intensity values by using global thresholding. For these spine 

components detected by both approaches, the shape of spine components are much 

better represented by using our method, e.g., the volume of spine will not apparently 

shrink because of a relatively high global threshold, which may be introduced to 

suppress strong noise. The quantitative comparison of spine detection results between 

our method and Koh’s method [1] is presented in the next section. 

 

 

(a) (b) (c) 

 

Figure 3.6: comparison of spine detection results: (a) original images, (b) Koh’s approach, and (c) our 

method. 

 

 

3.5.2 Detection of attached spines 

 

The approach to detecting attached spine components along the dendrite is quite 

different from that to detached spine components detection. Unlike the local contrast 

and SNR-based approach, it is mainly based on the local morphological analysis.  
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In the segmented image, there are some protrusions along the dendrite structures, 

which are potentially attached spine components. To find those spine components, one 

common approach is to find the tips for each protrusion, then locate each spine by local 

shape analysis [1]. The tips are the pixels along the boundary, which have local 

maximal distance to the backbone pixels.  

 

There are several problems for this kind of detection method. The location of the tip 

is noise sensitive: with rough boundary of the dendrite, there will be too many existing 

local maximal distance pixels and it is hard to find the ‘ideal’ tip (the maximal distance 

pixel on the top of a protrusion). This problem can be partially solved by smoothing the 

dendrite with low-pass filters.  

 

Another problem is that the shape of the spines is not well represented: the base of 

the spines is described as a piece of curve, instead of a straight line parallel to the 

nearby dendrite boundary. This is because the spine pixels are defined as the pixels 

those are within a certain range to the tip point of the protrusion. The local maximal 

distance based algorithms also have difficulties to detect some very small spines or 

spines with irregular shapes. 

 

Here we propose a medial axis based attached spine detection algorithm, which 

can solve the above problems. In the medial axis image, there is a branch (small piece 

of line) at the location of each spine along the dendrite.  Thus, the attached spine 
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component can be located by referring the position of the branches. However, there are 

also many branches at the place where no spine presents. Some criteria are needed to 

locate the real spines. The algorithm is described as follows: 

(1) find all small branches according to the medial axis and backbone image, the 

small branches are found by removing backbone from the medial axis; 

(2) estimate the local thickness of the dendrite in a neighboring region around each 

small branch; 

(3) mark spine candidates based on the estimation of the local thickness and the 

distance map to backbone; all pixels in the local region that have a distance 

larger than the local thickness are marked as spine pixels;  

(4) remove false spines based on the area and edge criteria. 

 

The local thickness of the dendrite is estimated by calculating some local edge 

pixels’ distance to backbone. Suppose ip is the boundary pixel along the local region, 

and id is the distance to the nearest backbone pixel.  The local thickness of the dendrite 

is estimated by: 

 

})),,,min(|({ 21  kii dddddmedianTh  .                  (3.10) 

Here, ),,,min( 21min kdddd   means the minimal distance among all k boundary pixels; 

  is a manually set threshold which decides the range of distance to be considered. To 

be more robust, the local thickness is not set equal to the local minimal distance. 

Instead, a set of local distance values are considered and the median value is picked as 
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the estimation of local dendrite thickness. So   should be greater than zero. Compared 

with the dendrite boundary pixels, the spine boundary pixels are much farther away 

from the backbone. For the purpose of the accurate estimation of local dendrite 

thickness, spine boundary pixels should be excluded to the largest possible extent. 

Thus,   should also have a higher bound. Usually, the value of parameter   is set 

according to the quality of the segmented results. If the quality of the image is very low, 

 should be set to a larger number to lower the probability of being trapped in the local 

minimums. For images with ordinary quality, small value of   can be chosen to exclude 

more spine boundary pixels. For all the images demonstrated here 2 . The reason 

that we choose the median value of local distances is based on the observation: most of 

the local non-protrusion boundary pixels have the same distance to the backbone, 

which is a good estimation of the local thickness of a dendrite. 

 

 

Figure 3.7: estimation of the local dendrite thickness. The local dendrite thickness is set as the median 

distance from qualified edge pixels to the backbone. The qualified edge pixels are marked red. The local 

region is represented by the rectangle.  

 

As we mentioned before, not all spine candidates are actually a spine. Some 

criteria are set here to help to remove those false spines. 

mind
  
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Area criterion: 

Only those candidates whose area is larger than a threshold can be a real spine. 


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Here iC  is the spine candidate found by the above detection algorithms; 0A is the area 

threshold. This criterion is set to help remove the false positives along the rough 

dendrite boundary. Usually neurobiologists do not consider very small protrusions as 

spine components. This threshold can be manually set before the batch processing. 

Usually the value is related to the choice of different views. For example, in our 

experiments (where 0.084 micrometer/pixel), we ignore all small protrusions whose area 

is less than 5 pixels. 

 

Edge criterion: 

Only those candidates that locate outside the trunk of the dendrite can be a real spine. 
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Here 
'

iCN is the number of boundary pixels of a spine candidate, which are also the 

boundary pixels of a local dendrite; 
''

iCN is the number of boundary pixels of a spine 

candidate, which are not the boundary pixels of the local dendrite (pixels inside the 

dendrite). This criterion is introduced to remove the false detected spine components 

which protrude deep into the dendrite.  
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For the purpose of easy implementation, the algorithm for attached spine detection 

is based on the projection of backbone and the image of whole stack. However, the idea 

of estimation of the thickness of local dendrite pieces and the criteria to remove the 

false positives can also be implemented in 3D. 

 

Besides the advantage of being suitable to high-content batch process, our 

approach also has better detection results compared with the existing approaches. 

Figure 3.7 shows the comparison of spine detection results between our method and 

Koh’s method [1]. Compared with the existing spine detection algorithms, our method 

has the following advantages: 

 Better detection results for very weak spines. Either for attached spine or 

detached spine components 

 Fewer false positives caused by the broken dendrite part. This is due to our 

robust adaptive thresholding method. 

 The shape of the spines is better represented, e.g., the bottom of the attached 

spine is a line close and parallel to the edge of dendrite. For Koh’s approach, 

sometimes the position of the spine bottom cannot be found correctly, which 

means either only a part of the spine is detected or nearby dendrite tissue is 

segmented as the spine. 
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(a) 

 

(b) (c) 

Figure 3.8: Comparison of spine detection results between Koh’s approach and our approach: (a) original 

images; (b) detection results by using global thresholding and Koh’s approach; and (c) detection results of 

our fully automatic approach. 

 

 

3.6  Post-processing 

 

There are mainly two purposes for post processing. One is to adjust the numbers of 

detected spines, and the other is to provide measurements about the spines and 

dendrites. The number of blobs detected as spines is not actually the real number of 

spines. In some cases, a spine can be broken into several parts in the image. One 

reason is that the signal around the neck of some thin spines is so weak that the spine 

is broken into the detached head and attached base components after segmentation.  

 

A merging algorithm is performed to combine those detached and attached parts. 

The merging algorithm considers every attached spine or spine base, checking for 

possible merges with other detached components in the local region. It is possible that 

several detached components are recognized as the parts of a single spine. This 
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happens when the detached components are combined with the same attached spine 

base. 

 

There are two criteria for the merging algorithm: the separated components should 

be close enough, and the separated components should satisfy certain relative 

orientation requirement. It is easy to implement the first criterion. For the second 

criterion, suppose 21PP  is the cutting line of the attached spine based on the dendrite; 

21CC  is the connection line of the centers of attached component and detached 

component;   is the angle between 21PP  and 21CC . If 0  , then the separated 

components are considered to be the parts of the same spine. A suggested range for 

the threshold 0 is: ]45,30[ 00
0  . In our case, 

0
0 40 . Compared to Koh’s method 

which requires the accurate position of the tip of each protrusion, this method is more 

robust to noise and bad segmentation. 

 

During post processing, some important measurement of spines and dendrites are 

acquired. NeuronIQ provides the function to measure dendrite length, spine length, 

spine density, spine volume, spine section area, spine section perimeter, spine neck 

width, etc. For the purpose of comparison with manual results, only spine length and 

spine density are discussed here. 
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Spine length and spine density are two of the most important properties for 

neurons. The spine density is defined as: lnd / , where l  is the length of a dendrite, 

and n  is the total number of spines on that dendrite.  

 

The length of a dendrite is calculated based on the backbone image. One common 

approach for this problem is to first code the backbone by using some chain coding 

algorithms, e.g. Freeman Chain Coding [22] or Primitives Chain Coding [23].  The total 

length of the dendrites is calculated afterwards: for 2D images, when two pixels are in 4-

neighborhood to each other, the total length is increased by 1; when two pixels are in 8-

neighborhood but not in 4-neighborhood to each other, the total length is increased by 

1.414.  

 

The problem for the coding based algorithm is that the codes may become complex 

when the structure of the dendrites is complex. The coding becomes complex because 

it tries to store the exact location information for each pixel. However, we do not need to 

know the exact location of each pixel of the dendrite in order to figure out the total 

length of the dendrite. Based on this idea, we propose a fast and efficient algorithm to 

estimate the length of a dendrite: 

 

(1) get the total number of pixels 0n ;  

(2) get the total number of pixels which have one (8-4)-neighbor, say 1n ;  

(3) get the total number of pixels which have two (8-4)-neighbors, say 2n ; 
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(4) calculate the length of dendrite: 
2
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A (8-4)-neighbor is defined as a pixel which is in the 8-neighborhood, but not in the 

4-neighborhood at the same time. The number of (8-4)-neighbor for each backbone 

pixel can be easily obtained by filtering backbone image. The filtering window is defined 

as: 
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Actually, 1n  and 2n can be obtained by one time filtering. This method can be easily 

extended to 3D images. We just need to find the total number of (26-18) neighbors in 

the similar way. 

 

By applying the same method, the length of each spine is obtained by calculating 

the length of branch relative to the spine. The branch is obtained from the medial axis 

image and backbone image.  

 

3.7  Results and discussions 

 

3.7.1 Results analysis based on single image 

 

To validate our algorithms, the results obtained by NeuronIQ are compared with the 

manual results image by image.  The results for spine numbers, spine density, and 
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spine length distribution are compared in detail in this section. The manual detection is 

performed without knowing the automated detection results. An expert will observe 

several neighboring slices before marking each spine. The whole image stack is divided 

into 4 regions. The expert can zoom into each region during the observation. The 

manual detection and measurement are performed in 3D. Figure 3.8 (a) is just a 2D 

demonstration of the manual results. 

Table 3.2: comparison of manual and automatic results 

Method Num of spine detected Spine density 

(number/micron) 

False 

positive 

False 

negative 

Manual 70 70/104.675=0.669 0 4 

Automatic 73 73/ 110.8388=0.659 0 1 

 

Figure 3.6 shows the manually and automatically detected spines for one image 

sample. There are totally 69 spines detected both manually and automatically in this 

image. Compared with the manual results: there is one spine missed (spine number 

70), and there are four small spines not manually detected (spine number 73, 74, 75, 

and 76).  The detailed comparison between the automated and manual results is shown 

in Table 3.2. The reason of missing in automatic detection is mainly because the 

intensity of the spine is very low compared with the nearby dendrite. As for manual 

detection, those small size attached spine components are most likely to be ignored by 

human. 
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(a) 

 

(b) 

 

(c) 

Figure 3.9: comparison of (a) manual results (b) automated spine detection results with edges marked on 

the original image (3) automated results on the segmented image 
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(c) 

 

Figure 3.10: (a) CDF of spine length distribution for manual and automatic results; (b) empirical quantile-

quantile plot (called QQplot) for two distributions; and (c) comparison of spine lengths. 
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The reason that the manually measured dendrite length is smaller than the 

automatic result is that the manual result is only an estimation of the actual dendrite 

length: estimate curve with several connected lines. The detailed spine length 

distribution can be found in Figure 3.9. 

 

The mean square error (MSE) for the manually and automatically measured spine 

lengths is 0.0292. The length distributions for manual and automatic results are also 

tested by two-sample Kolmogorov-Smirnov test. The null hypothesis that the two 

distributions are the same is not rejected, which means that there is no obvious 

difference between the two distributions. The probability that the dendrite length 

distributions of manual and automatic results are the same is 99.13%. The biggest 

difference between these two distributions is 075.0 . 

 

3.7.2 Results analysis based on image set 

 

In addition to the single image comparisons, the manual and automatic results are 

also compared in image set.  We randomly select 16 images in our image dataset [8] for 

validation purpose. The spine densities are compared first. As we can see from the 

result shown in Figure 3.11, there is obvious linear relation between the manually and 

automatically measured spine densities. Two reasons cause the difference between 

manually measured spine density and the automatic measured results: one is the 

difference of dendrite length measured, and the other is that the very small spines are 

likely to be ignored manually.  
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Figure 3.11: comparison of manual and automatic spine density results from 16 images. 

 

    Besides comparing with the manual results, we also compare the results obtained by 

our approach with those obtained by applying Koh’s method [1]. Spine detection results 

of 5 neuron dendrite images are compared (Table 3.3). The 5 image stacks are 5 views 

from 5 different neurons. The false positives and false negatives are decided by 

comparing with the manual results. We can see clearly from the results that our method 

has less wrong detection and missing of spines compared with Koh’s method. The 

missed spines are obviously reduced by using our method. 
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Table 3.3: comparison of spine detection results 

  Our Method Koh’s Method 

Image index Manually 

detected spine 

number 

False positives 

(wrong 

detection) 

False 

negatives 

(missing) 

False positives 

(wrong 

detection) 

False 

Negatives 

(missing) 

1 70 4 1 5 8 

2 32 3 1 4 4 

3 28 3 0 2 4 

4 63 1 0 1 4 

5 36 1 3 6 2 

 

 

3.7.3 Discussion 

 

From the results shown above we can see clearly that our approach has better 

performance in spine detection compared with other existing methods. The spine length 

distribution and spine density obtained are also very similar to the manual results. 

Besides being automatic, our approach also has the following advantages: 

 

 Robust local thresholding can reduce the possibility of missing spines. Spines 

with relatively low intensity values will not be segmented as background 

according to a globally set threshold. At the same time, the false positives are 

reduced because of the control parameter  stated in Equation (3.3). 
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 The measurement of spine components is more consistent. This is a very 

important property for the neuroscientists, who are interested in comparing the 

measurement in different conditions. Nevertheless, it is not the case for the 

global threshold based algorithms [1,3]: the size of the spines are sensitive to the 

global threshold.  

 The shapes of both attached and detached spine parts are better represented. 

The base of attached spine components will not protrude into the dendrite. This 

can be observed from the comparison between our method and Koh’s method, in 

both Figure 3.5 and Figure 3.6. 

 For the detection of attached spine components, our method is more robust to 

noise and the rough dendrite boundary compared with local maximal distance 

(tips of a protrusion) based algorithms, such as Koh and Xu’s approaches [1][3]. 

This is because these kinds of methods are prone to be trapped in the local 

maximums because of the noise. On the contrary, our local dendrite thickness 

estimation method, which relies on the median values of more than ten pixels, is 

much more robust. 

 

However, there still more work can be done to improve the performance of the 

proposed algorithms. One interesting topic is how to automatically get the values of 

some manually set parameters. Table (3.4) is the list of all the manually set parameters. 

Among these parameters, some (such as M and 0A ) are the prior knowledge about the 

neuron cells, while some (such as  ,   and  ) are image dependent and need to be 
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input by the users (in a range) before the batch processing based on the quality of the 

images and different imaging conditions.  

 

Table 3.4: Summary of the manually set parameters 

Name Description Place used Values 

d  width of the window for adaptive thresholding Eq. (3.2) [15, 20]  

  control parameter to estimate the minimal intensity value of 

a possible foreground pixel 

Eq. (3.3) [5, 20]  

  ratio which decides the suppression intensity Eq. (3.4) (0, 1] 

M  the longest possible length of a spine Table (3.1) [35, 50] 

  weight parameter for SNR analysis Eq. (3.9) 2 

  
threshold for the range of distance to be considered Eq. (3.10) [0, 2] 

0A
 

the smallest possible area of a spine Eq. (3.11) 5 

 

 

For the remaining parameters, it is hard to automatically estimate the optimal value 

of  . The more feasible way is to test images acquired under different conditions and 

select a satisfying value based on the detection results. We are more interested in how 

to automatically find the optimal value of the local window size d for the adaptive 

thresholding. Although a manually set value of d  works well for images acquired with 

the same imaging conditions (e.g., same resolution), there are potential problems if the 

imaging conditions are changed. Ideally, the size of the window should be a variable 

which changes its values according to the local texture and intensity distribution, so that 
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it can be small enough to detect the detail structures while at the same time contains 

adequate background and foreground pixels. 
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Chapter 4  Orientated Markov Random Field Based Dendritic Spine 

Segmentation 

 

4.1 Introduction 

 

Manual analyses of neuronal images are extremely time-consuming and subject to 

investigator bias, i.e., results cannot be easily confirmed by other investigators. To deal 

with these problems, some automatic dendritic spines analysis algorithms have been 

provided. Koh et al. propose a geometric approach for automatically detecting and 

quantifying the structure of dendritic spines [1]. Xu et al. propose a new attached spine 

component detection algorithm by using two grassfire propagations [2]. Based on Koh’s 

approach, Weaver et al. describe a package which is capable of morphometry on an 

entire neuron, by combining the spine detection algorithms with dendritic tracing 

algorithms [3]. Bai et al. [4] used an unsharp mask filter to partly correct the 

inhomogeneity of image intensity. A global threshold due to a histogram-based strategy 

is calculated to segment the neuron structures from the background. Zhang et al. [5] 

apply a curvilinear structure detector to extract the boundaries as well as the centerlines 

for the dendritic backbones and spines. A classifier using Linear Discriminate Analysis 

(LDA) is further built to help improve the accuracy of spine detection. In Chapter 3, we 

propose an automatic spine detection pipeline based on the adaptive thresholding and 

local dendrite morphology analysis which can effectively improve the detection 

performance compared with other existing algorithms. Although above mentioned 

algorithms can greatly reduce the human labor, problems still exist. For instance, the 
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efficiency of detection will degrade for images with lower resolutions, in which the 

spines occupy relatively few pixels. Also, these algorithms somewhat distort the shape 

of the detected spines: spine pixels with low intensity values, such as the pixels in the 

spine neck regions, are prone to be segmented as background, which cause the spines 

segmented into several broken components and further degrade spine detection 

performance. To solve these problems, here we propose a novel maximum a posteriori 

- orientated Markov random field (MAP-OMRF) framework for dendritic spine 

segmentation.  

 

    As what we have discussed in Chapter 2, the Markov random field (MRF) based 

segmentation methods have been widely studied for various types of medical images 

obtained by a wide range of modalities. These include, but are not limited to, cardiac 

imaging [6]-[7], brain imaging [8]-[12],[23]-[24], digital mammography [13]-[14] acquired 

by magnetic resonance imaging (MRI), ultrasound, positron emission tomography 

(PET), and electron microscopy.  

 

    Despite the successful applications in medical image segmentation, MRF methods 

have seldom been used in dendritic spine detection, partially because of the need to 

specialize these models to address the specific problems previously discussed 

concerning spine segmentation. To deal with these issues, the OMRF algorithm is 

proposed by including local orientation information of the spine and dendrite in the prior 

model. To further reduce the computation complexity and make the algorithm more 

robust to the background noise, the region of interest (ROI) estimation algorithm, which 
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is based on iterative spline background correction, is also proposed. The knowledge-

based iterated conditional modes (KICM) algorithm is presented as well, which leads to 

an optimal solution with explicit biological meanings. The chapter is divided into the 

following parts: First, OMRF model is discussed in detail. How to obtain the orientation 

map and how to find the ROI are also included in the discussion. The optimization is 

discussed next, which includes the parameter estimation and a KICM algorithm. Last, 

the segmentation and detection results are compared with other existing methods and 

validated manually. 

 

4.2 Oriented Markov Random Field 

 

4.2.1 General Model 

 

    Being able to capture the intrinsic character of image by describing the natural spatial 

constraints in the prior model of images, MRF models are widely applied in various 

fields of image processing. Usually for MRF-based methods, segmentation is achieved 

through an optimization process. The optimization function is derived from probabilistic 

models of the data and the prior information concerning the spatial structure of the 

segments which is encoded in the MRF. Indeed, one of the most appealing aspects of 

the MRF formulation is its flexibility in mathematically capturing a wide range of 

structural prior information for a particular application. For the problem of interest here, 

the primary source of prior information concerning spines is related to the structure of 

the dendrite. Indeed knowing the location and orientation of the dendrite places 
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important geometric and morphological constraints on the associated spines.  In this 

chapter we introduce a new MRF model which considers the inherent orientation 

information in the neuron cells, viz. OMRF model.  

 

    We model the observed grey scale image as a random field y , with the intensity of a 

pixel at location i  denoted by a random variable iy . The distribution of different regions 

is denoted by a random field x , where the variable xi  1,2,...,M means that the pixel i  

belongs to one of the M region types. For the neuron images, M =3, which represents 

three types of regions of interest in this application: the dendrite, spine and background.  

 

    Given the observed data y , the problem of segmentation amounts to the 

determination of x , that is, the labels associated with each pixel.  We pose this problem 

in a statistical framework as a maximum a posteriori estimation problem where x  is 

chosen to maximize the posterior distribution of the label based on y [23].  Formally, by 

using Bayes theorem this distribution is described as: 

)()|()|( xxyyx ppp  ,                                                          (4.1) 

where )(xp is the a priori probability density of the image; )|( xyp is the conditional 

probability density of the observed image given the distribution of regions. After removal 

of the shot noise by median filter, the likelihood probability )|( xyp  for each pixel is 

assumed to be independent Gaussian [16]: 
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Here S is the collection of all pixels; i is the variance of variable iy , i  is the mean 

value of iy . The mean values and the variances are location dependent. This is based 

on the observation that the pixels of different spines, as well as different dendrite pieces, 

have different intensity distributions.  

 

    The a priori density )(xp  is described by the OMRF model. As what we mentioned in 

Chapter 2, any Markov random field can be described by a probability distribution of the 

Gibbs form:  

)(1
)( xx Ue

Z
P  ,                                                                      (4.3) 

where )(xP denotes the probability of configurations of the random field x and )(xU is 

the energy function. We notice that the neuron dendrites are orientated structures: the 

growing direction of each spine is normal to the orientation of local dendrite pieces. This 

natural orientation information can be combined into the energy function first presented 

in Section 2.1.4.1:  
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where iv


is the orientation of the dendrite in the vicinity of pixel i  and will be described in 

detail in the following section; iju


is the direction of the line connecting two neighboring 

pixels of i  and j ;   is the weight factor of the orientation information;   is a parameter 

which controls how strong the spatial regularization is; S is the collection of all pixels; 

iN is the 8-neighbor of pixel i ; ix  is the segment associated with pixel i ; jx is the 

segment of neighboring pixels of i ; ),( ji xxD  is the similarity function. If ji xx  , i.e. pixel 
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i and j are of the same type, the value of ),( ji xxD  is set as 0, otherwise the value is 

set as 1. Thus, pixel i  is intended to be in the same region as most of its neighboring 

pixels, which will reduce the energy )(xU .  Since logarithm function is monotonous, 

which does not change the position of the minima, logarithm operation is applied on 

both sides of Eq. (4.1) to simplify the computation. From Eq. (4.1) - (4.4), we have  
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4.2.2 Orientation map 

 

    The use of orientation is motivated by the intuition that the probability of being 

segmented as an spine pixel should be related to the directions of both iv


 and iju


. 

Suppose the backbone of the dendrite has already been obtained by the thinning and 

trimming algorithms described in Chapter 3. Assume kc is a backbone pixel, 

},,,,{ 2112  kkkkkc cccccR
k

is the local backbone pixels based on which its orientation is 

estimated by applying linear least square estimation method; 
kc is the slope of the line 

estimated, then the value of iv


 is defined as 

}  topixel backbonenearest   theis | slopewith vectorunit{ ic  v kci k



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(a) 

 

(b) 

 

(c) 

Figure 4.1: (a) original image; (b) initial segment result of the neuron without spine detection; the 

white curves are the extracted backbone pieces; v


and g


are the estimated local dendrite orientation 

and the growing direction of the spine respectively; (c) sampled orientation map 

 

    Fig. 4.1 demonstrates how the orientation map is obtained. The orientation of a pixel 

is defined as that of the neighboring backbone pixel with the least Euclidian distance, 

which is estimated in a local window as shown in Fig. 4.1 (b). Fig. 4.1 (c) shows the 

sampled orientation map. For spine processing, we draw our attention to a region of 

interest (ROI) surrounding the dendrites, whose estimation will be discussed in the 

following section. The orientation of pixels outside the ROI is constantly set zero. 

 

4.2.3 Region of interest 

 

    In existing spine detection algorithms, physical constraints are applied to improve the 

detection results. For example, only those detected blobs within a certain distance to 

the dendrite are considered to be spines. However, many background pixels are still 

contained in the local regions. These noisy background pixels not only increase the 



 104

processing time, but also potentially increase the risk of misdetection. To deal with this 

issue, we propose a local region estimation method based on iterative spline based 

background correction algorithm (ISBC) [18]. The ISBC algorithm is initially proposed for 

solving the problem of large scale intensity variations and shading effects in the image 

caused by uneven illumination, however, it can also be applied to acquire ROI with 

minimal modification. Here we want to point out that although local region estimation is 

quite useful for the MRF based algorithm in the sense of reducing both the processing 

time and the risk of misclassification, it is not necessary for the adaptive thresholding 

method discussed in Chapter 3, mainly because of the low computation complexity. 

 

    The background is estimated and modeled by a cubic B-spline composed by several 

patches ),( vuS , which is modeled by a tensor product of spline functions [24] 

 kl kllk cvBuBvuS )()(),( ,                                                       (4.7) 

where kB and lB are the B-spline blending polynomials and klc are the control points of 

the surface. 55 evenly spread control points are applied here. The spline surface is 

initially estimated by minimizing the distance between the spline surface and the original 

image using least squares regressions. Since the much brighter pixels in dendrites and 

spines are also possible to be included in the spline surface, the initially estimated 

background should be adjusted. This is done by iteratively masking out the foreground 

pixels and applying the spline surface fitting in refined regions. The foreground pixels 

are obtained in the background compensated image. All pixels that are brighter than a 

threshold, which is related to the standard deviations of the pixel values in the 

compensated image, are recognized as foreground pixels. The iteration will continue 
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until the average change of pixel values between two consecutively estimated 

background is small enough, e.g. less than the original quantization step of the image. 

As we can see in Fig. 4.2, the foreground pixels contain all dendrite and spine pixels as 

well as some (but not too many) neighboring background pixels. The possible neck 

regions of the dendritic spines, which are missed by the existing detection algorithms, 

are also included. 

 

    The ROI are obtained by thresholding the final background compensated image, 

which is obtained by subtracting the estimated background from the original image. 

Suppose the standard deviation of the pixel values in the compensated image is c , 

then the region of interest R  is defined by    

})(| pixel all{ cc kiIiR  ,                                               (4.8) 

where )(iI c  is the pixel value at i  in the background compensated image; k is a factor 

which is set as 10 during our validation.  

 

Fig. 4.2 shows how the image of ROI is obtained. Fig. 4.2 (b) is the obtained 

background compensation image. For the purpose of demonstration, a simple linear 

transformation is applied to transfer it into a grey-scale image with 256 intensity levels. 

Fig. 4.3 (c) shows the segmented result, i.e., ROI. The ROI is further refined after 

denoising and removing the far away isolated blobs. The denoising is performed by 

applying simply morphology operations such as opening. As we can observe from Fig. 

4.2 (d), all potential spines, i.e. protrusions along the dendrite boundary, are contained 
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in the ROI. The obtained ROI is composed of the potential spines together with their 

surroundings, without including too many background pixels.   

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.2: local regions of neuron images (a) original image; (b) background compensated image 

after linear transformation (c) local regions obtained after segmenting the background compensated 

image; (d) ROI obtained after denoising and removing spurious blobs 
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4.3 Optimizing Algorithm 

 

    In neuron images, there are three different region types, i.e. spine, dendrite and 

background. For our approach, the segmentation of neuron images is designed as a 

maximum a posteriori estimation (MAP) problem. Suppose y is the observed data, the 

optimal segment results x̂  is found by solving the following MAP estimation problem:  

)|(maxargˆ yxx
x

P .                                                                (4.9) 

To acquire the optimal solution, an extended iterated conditional modes (ICM) algorithm, 

viz. knowledge-based iterated conditional modes (KICM) algorithm is proposed in this 

chapter. The interleaved ICM and local parameters updating scheme is applied [22], i.e., 

estimation of the optimal segmentation x̂  and parameter updating are alternatively 

performed. 

 

4.3.1 Parameter estimation 

 

    Suppose 1θ̂ and 2θ̂ are the optimal parameter estimations for the prior model and the 

likelihood model respectively. Here ),(1 θ , where the meanings of  and  are 

described in Eq. (4.4); ) ...  ( 212 Nθ , where N is the number of total pixels in a 

neuron image. The parameter vector ),( 2
iii    is estimated locally for every pixel i , 

where ],...,2,1[ Ni . As mentioned in Eq. (4.2), i  and i stand for the mean value and 

variance of the intensity distribution of pixel i respectively. For the purpose of simplifying 

the computation complexity, here 1θ is set constant. For all images being tested, we 
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have 5.0  and 3.0 . Assuming the initial segmentation of different regions )0(x  

has been obtained by existing algorithms [1]-[5] or the methods described in Chapter 3, 

the estimation of parameter 2θ can be acquired based on the likelihood model described 

by Eq. (4.2): knowing the segmentation results, the intensity of each pixel is assumed to 

be described by a Gaussian distribution.  The parameters of the distributions are 

segmentation dependent, viz. the intensity distribution of spines, dendrites and the 

background are different. Moreover, they are also position dependent. This is based on 

the observation that even in the same image the intensities vary largely for spines or 

dendrite pieces at different locations. Thus, the mean and variance should be estimated 

adaptively. Suppose the intensities of the same type pixels in a local window are i.i.d. 

Gaussians, the posterior probability of )1(
i at position i  for the initial segment )0(x and 

observed data y can be described as: 


 


iSj

iijy

M
i

i ep
22 2/)(

2

)0()1(

)2(

1
),|(




 yx ,                               (4.10) 

where iS is defined as the set of same type pixels in a local 1515 window around pixel 

i . The size of the window is chosen based on the normal size of the dendritic spines in 

the image; M is the total number of pixels in the set. A necessary condition for 

maximizing ),|( )0()1( yxip  , or equivalently maximizing ),|(ln )0()1( yxip  , is 0
ln





i

p


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
. Solving this, we can find the adaptive ML estimates: 
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Since the estimation of segmentation results x  is updated iteratively, 2θ̂  is also 

iteratively estimated.  

 

4.3.2 Estimation with KICM 

 

    The optimal segment result x̂  is further estimated after the parameters 1θ̂ and 2θ̂ are 

obtained. Here an extended iterated conditional modes (ICM) algorithm, viz. knowledge-

based iterated conditional modes (KICM) algorithm, is applied to acquire the optimal 

solution. ICM [20] is based on two assumptions: 1) The observation components 

myy ,...1 are conditionally independent given x , and each iy has the same known 

conditional density function )|( ii xyp which depends only on ix , i.e., 





Si

ii xypp )|()|( xy ; 2) The labeling results satisfy the Markovianity: x depends on the 

labels in the local neighborhood.  

 

    The algorithm sequentially updates the segment result of every point in the image 

)(k
ix into )1( k

ix  by maximizing the conditional probability ),|( )(
}{

)1( k
iS

k
ixP 

 xy , which is 

performed in a raster scan:  

),|(maxarg )(
}{

)1( k
iSi

Lx

k
i xPx

i




  xy .                                                      (4.13) 

Here }3,2,1{L represents the three different region types in neuron images. The 

iteration stops when the number of pixels that change during a cycle is less than a 
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threshold. The initial estimate )0(x can be obtained by any spine detection algorithms [1]-

[5].  

 

    For real applications such as dendritic spine detection, a pure statistically optimized 

solution is not always the best choice for the purpose of image analysis. For example, 

for neuron images, an intensity distribution based model is likely to segment a dendrite 

pixel as a spine pixel because of the similar intensity values. To deal with this issue, 

more constraints with explicit biological meanings must be incorporated into the 

processing. In our case, these new constraints are not used to modify the cost function. 

Instead, they are employed to develop a new strategy of searching the ideal solutions. 

Unlike the ICM algorithm, the proposed KICM algorithm will stop at some point before 

reaching the statistically optimal solution. The ‘sub-optimized’ solution, however, is 

supposed to possess more biological meaning. For neuron image processing, the local 

morphology constraints are usually considered. For instance, spines are protrusions 

along the boundary of a dendrite. Thus, all pixels inside the dendrite should not be 

segmented as spine pixels.  

 

    To better describe the KICM algorithm, we first rewrite the normal ICM algorithm in a 

matrix form with the transition matrix A  being defined. For each pixel i , suppose that 

T)(
3

)(
2

)(
1

)( ]  [ kkkk ssss is the segment result of the k -th step. Here   ,0] 0 1[ T)( ks  ,0] 1 [0 T  or 

T1] 0 [0  means the pixel is segment as the spine, dendrite or background respectively. 

Then we have 
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Here A is the transition matrix, 
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m  and 1e , 2e , 3e represent 

the energy if the pixel is segmented as spine, dendrite or background respectively. The 

energy can be calculated by Eq. (4.5): 

)|(log1 spinexypEe iis  + )( spinexU i  ,                          (4.15) 

)|(log2 dendriteiypEe id  + )( dendritexU i  ,                  (4.16) 

)|(log3 backgroundiypEe ib  + )( backgroundxU i  ,       (4.17) 

 With some modification of the transition matrix A , the KICM algorithm is described as 
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Here the last column of the transition matrix is unchanged, which means if at the k -th 

step a pixel is segmented as background, at the next step it will be segmented only 

based on the lowest energy criterion. However, it is not the case if a pixel is formerly 

segmented as dendrite or spine.  

 

    The value of 12a , 21a , and 32a are calculated based on the prior knowledge 

(assumption) of the neuron image and the initial segmentation results:  

a. The incorrectly segmented background pixels are some ‘detached’ noise blobs, 

which have relatively high intensity values and are likely to be segmented as the 
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spine. Thus we assume in the initial segmentation results, no background pixels are 

segmented as dendrite. Based on this assumption we have 032 a , which means 

that initially segmented dendrite pixels cannot be segmented as the background 

later. 

b. The spines are the protrusions along the dendrite boundary. If we can estimate the 

width of local dendrite piece, then the regions of potential spines can be obtained:  

spine pixels can only be those pixels whose distance to the center of the dendrite 

(the backbone) is greater than half of the local dendrite width. The detailed algorithm 

to estimate the width of local dendrite piece is discussed in Chapter 3. Based on this 

assumption, the value of 12a and 21a  can be defined: 

 





 

                               otherwise  ,0

 
2

 and },min{ if  ,1 211
12

i
i

t
deeea ,                                              (4.19) 





 

                               otherwise  ,0

 
2

 and },min{ if  ,1 212
21

i
i

t
deeea .                                              (4.20) 

      Here id is the distance between pixel i and backbone, it is the estimation of the 

width of local dendrite 

 

    Let ix be the segment result for pixel i , iSx \ be the current segment result elsewhere, 

ix is the segment result for the 8-neighbor i of pixel i . For MRF models, we have 

)|(),|()|(),|()|( \\\ yxPxyxPyxPxyxPP isiiisisi yx .                  (4.21) 
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We notice that ),|( ii xyxP  never decreases: ix  is either updated when lower energy is 

found, or is unchanged when either (a) lower energy can not be found or (b) when 

T)( 0] 0 0[A  ks as described in Eq. (4.18). Besides, )|( \ yxP is  keeps constant no matter 

what value ix  is. Thus just like the traditional ICM algorithm, the KICM algorithm 

performs in a hill-climbing manner and eventual convergence is assured. 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.3: comparison between MRF-ICM and OMRF-KICM, (a) original image; (b) segment result 

with normal MRF-ICM algorithm; (c) segment result with OMRF-KICM algorithm  

     

    The KICM algorithm is actually a good complement for the MRF based algorithms, 

which are based on the spatial constraints of local neighborhood.  Normally, the bigger 

the neighborhood, the better results can be obtained with more local information 

included. However, larger neighborhood makes the model more complex and greatly 

increases the computation complex. That is the reason why 4- or 8- neighborhood is 

normally applied for MRF models in most cases. The KICM algorithm provides a novel 

perspective on how to combine more local information in a much bigger neighborhood 

without largely increasing the computation complexity. Together with the orientation 
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information included in the prior models of the neuron images, the segmentation results 

can be noticeably improved. Fig. 4.3 shows the comparison of segment results between 

normal MRF-ICM algorithm and the proposed OMRF-KICM algorithm. We can observe 

from the results that the shapes of the dendritic spines are much better represented with 

the “weak” components (spine neck) being enhanced. The wrongly detected spines are 

also obviously reduced. 

 

    As a summary, the main frame of the proposed OMRF-KICM algorithm is described 

below:  

 

1. Obtain region of interest by background compensation algorithm described in 

Section 4.2.3 

2. Obtain the orientation map described in Section 4.2.2 

3. Set the value of 1θ  

4. Compute the likelihood probability )|( ii xyp at position i  

5. Initialize the algorithm with the segment result )0(x , 0k  

6. Repeat 

7.       Estimate 2θ̂ with equation (4.11) and (4.12) 

8.  Repeat with )(kx known 

9.   For each pixel i in the image 

10.                           calculate energy 1e , 2e , 3e  using Eq. (4.15)-(4.17) 

11.           )()1( A kk ss   using Eq. (4.18) 

12.   End  
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13.   1 kk  

14.  Until the difference between )(kx  and )1( kx is below a threshold 

15. Until N  times of iteration 

16. Return )(kx as the optimal segmentation results  

 

 

4.4 Results and discussion 

 

4.4.1 Validation with existing algorithms 

 

   The proposed algorithm is first applied to the initial detection results obtained by 

existing detection algorithms based on both global thresholding [1] and adaptive 

thresholding (Chapter 3). As we can see from Fig. 4 and 5, the OMRF based method 

can efficiently improve the spine detection results for neuron images acquired at 

different resolutions. For the purpose of demonstration, we only show the maximal 

intensity projection (MIP) image of the original 3D neuron images. 
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(a) (b) 

 

(c) 

 

(d) (e) 

 

Figure 4.4: Detection results for images on with resolution of 0.08 micron/pixel. (a) MIP images; (b), 

(d) initial segment results using global thresholding based algorithms and results after applying 

OMRF model respectively; (c), (e) initial segment results using adaptive thresholding based 

algorithms and results after applying OMRF model 

 

Fig. 4.4 shows the detections results for neuron images acquired with resolution of 

0.08 m /pixel. From Fig. 4.4 (b) and (d), we can observe that the initial detection results 

obtained by global thresholding based algorithm are obviously improved: there are 
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much fewer missing spines after the processing. Also, the false positives are reduced 

by combining the broken spine components. Generally, with ‘weak’ regions such as the 

spine neck areas being enhanced, broken spine components are largely reduced, which 

will potentially increase the accuracy of spine detection and better measurement of 

spine numbers and spine density. Compared with the global thresholding based 

methods, the detection results acquired by adaptive thresholding based algorithm is 

much better with fewer missing spines. However, there are still some false positives 

caused by the local maximums. The OMRF based method can efficiently remove those 

positives as shown in Fig. 4.4 (c) and (e).  
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(a) 

 

(b) 

 

(c) 

 

(d) (e) 

 

Figure 4.5: Detection results for images with resolution of 0.125 micron/pixel. (a) original MIP 

images; (b), (d) initial segment results using global thresholding based algorithms and results after 

applying OMRF model respectively; (c), (e) initial segment results using adaptive thresholding based 

algorithms and results after applying OMRF model 

 

    For existing automatic dendritic spine detection algorithms, the accuracy of detection 

might noticeably degrade for images acquired at lower resolutions, where the size of the 

spines will become much smaller. There are mainly two considerations to improve the 

detection performance for lower resolution images. First, larger observation view can be 
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obtained for a lower resolution image. Second, there are large amounts of experimental 

data acquired at low resolution, it would be very time consuming and a waste of 

resource if all the images have to be acquired again at higher resolutions. As shown in 

Fig. 4.5, for some neuron images acquired at lower resolution, both global and adaptive 

thresholding based algorithms cannot efficiently detect the ‘weak’ spines with relative 

lower intensity. This problem can be partially solved by interpolation. However, the 

processing time will be tremendously increased with much bigger image size. The 

proposed OMRF based detection algorithm can nevertheless solve the missing problem 

well, as shown in Fig. 4.5 (d) and (e).  

 

4.4.2 Validation with manual results 

 

Automatic dendritic spine detection results, with and without OMRF processing, are 

first compared with the manual results. Initial results are acquired by both global 

thresholding and adaptive thresholding based methods. Five neuron images with 

different resolutions (0.125 micron/ pixel and 0.08 micron/pixel) are compared. As we 

can see from Table 4.1, both FP (false positives, i.e., wrong detections) and FN (false 

negatives, i.e. missings) are obviously decreased after the processing of the proposed 

method.  
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Table 4.1: comparison of spine detection results 

 Image 1 Image 2 Image 3 Image 4 Image 5 

Manually detected spine number 82 67 86 93 36 

FP (Global thresholding) 8 1 12 4 2 

FN (Global thresholding) 19 15 22 11 4 

FP (Global thresholding + OMRF) 3 0 5 3 0 

FN (Global thresholding+OMRF) 9 7 8 6 2 

FP (Adaptive thresholding) 3 2 6 5 0 

FN (Adaptive thresholding) 10 13 15 6 3 

FP (Adapt. thresholding +OMRF) 2 0 3 2 0 

FN (Adapt. thresholding +OMRF) 6 6 5 2 2 

 

    Further validation is performed by comparing the spine length distribution of the 

proposed method with the manual results. Spines in different section of the same 

neuron cell under the same condition (shLUCI in hippocampal pyramidal neurons in rat 

organotypic slice cultures) are tested. There are altogether 235 spines in three different 

images. The two distributions are tested by two-sample Kolmogorov-Smirnov test. The 

null hypothesis that the two distributions are the same is not rejected, which means that 

there is no obvious difference between the two distributions. The probability that the 

dendrite length distributions of manual and automate results are the same is 99.13%. 

The biggest difference between these two distributions is 0.075. 
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Figure 4.6: Comparison of spine length distribution of manual results and results obtained by OMRF 

method. 
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Figure 4.7: shRNA expression induces retraction of dendrites. Method 1 and 2 are manual and 

OMRF results respectively. a). Summary of data of average spine density at 4DPT for GUR and 

shLUCI neurons. b). Summary of data of average spine length at 4DPT for GUR and shLUCI 

neurons. 
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    The proposed method is also validated by the published manually obtained data. This 

recently published paper [15] examines the off-target effects of expressing short hairpin 

RNAs (shRNA) in neurons. The study shows that expression of shRNA against 

luciferase, whose coding region is not found in the rat genome, triggers dramatic loss of 

dendritic spines and simplification of dendritic arbors. Figure 4.7 shows the difference of 

average spine densities and average spine length for GUR and shLUCI neurons at 

4DPT. OMRF analysis detects a similar reduction of spine density and length by shLUCI 

as those identified by the manual analysis. These results, therefore, validate the 

proposed algorithm as a valuable tool for automatic analysis of neuronal morphology 

and the identification of biologically relevant changes in dendritic spine morphology and 

number 

 

4.4.3 Conclusion and Discussion 

 

    In this chapter we propose a novel OMRF-KICM based method which can efficiently 

improve the automatic detection results of existing algorithms. With the intensity 

distribution information of background, dendrite and spine pixels, as well as the context 

and orientation information of the neurons, OMRF-KICM method can obviously improve 

the detection performance for image acquired at different resolutions. It is shown that 

the false positives and the false natives of spine detection can be decreased by more 

than 50% after applying the proposed method.  Furthermore, it also has the promising 

potentials in the fidelity of shape representation, i.e., the shape of detected spines 
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resembles more to their real shapes. The weak parts of the spines, especially the neck 

regions which are hard to detect, can now be captured.  

 

The proposed algorithms are 2D based and all the images being tested are MIP 

images. This is based on the following considerations: 1) the resolution in z- direction is 

much lower compared with those in x- and y- directions. For spines which are big 

enough, the 3D information in neighboring slices is helpful for the detection. However, 

there are many small spines which are so small that they only appear in one slice. Not 

enough 3D information can be obtained about them. The same is true with the spine 

necks which are much thinner compared with the head components. Since the purpose 

of our algorithm is to solve the detection problem of small spines and the spine necks, 

we only propose 2D algorithms. 2) Our neurobiology collaborators are more interested 

in the comparison between the measurements under difference conditions. As long as 

the measurements can clearly state the changes, no precise measurements are needed. 
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Chapter 5 Tracking in time-lapse neuron images 

 

5.1 Introduction 

     

Dendritic spines have a specialized cytoskeleton composed of a dense network of 

actin filaments. They are highly dynamic and change their shapes constantly [1]-[3]. The 

rapid and spontaneous changes of dendritic spines have been widely observed in vivo 

and cultured neurons. Experiments have revealed that the morphologic plasticity of 

dendritic spines is correlated with synaptic activity, sensory experience, learning, 

memory, and drug addiction [4]-[10]. With the development of high-sensitivity charge-

coupled device (CCD) video cameras and automated image capture and analysis 

facilities, the scope and practicality of high-resolution time-lapse microscopy have been 

enormously extended. It has become possible to study aspects of plasticity relating to 

the growth or retraction of individual spines and the dynamics that underlie spine 

plasticity. 

 

Currently, the analysis of dendritic spines morphology in time lapse images remains 

largely manual. Parameters defining the geometry of each spine, such as the length and 

width, are manually measured with the aid of commercial or in-house developed 

software through a point-and-click interface [4]-[10]. In recent years, several approaches 

have been proposed to detect and measure dendritic spines automatically [11]-[18]. 

However, the time-lapse analysis functions are provided in only a few of these 

approaches. For example, Koh et al propose a simple spine tracing algorithm by finding 
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the least absolute image difference summation [13]; two spines scanned at different 

times are considered to be the same if they overlap sufficiently. Mosaliganti et al devise 

a more sophistic temporal matching method to track the evolution of dendritic spines 

[16].  In their method, a graph model spatially aligned with the dendrite is described, 

where the nodes represent the spine branches, and then a maximum a posteriori (MAP) 

– maximum likelihood estimator (MLE) matching framework is employed to match graph 

models from different time points.  

 

Both of the aforementioned algorithms are global matching methods based on the 

spine detection result of time-lapse images. These methods have the following 

shortcomings: first, matching results heavily depend on the quality of the images and 

the performance of the implemented detection algorithms. It is infeasible to match 

poorly segmented spines in low quality images. Second, detection and matching have 

to be performed for all spines in the whole image because of the global matching 

process. Obviously, it is not an efficient way for tracking if we are more interested in 

analyzing the morphological changes for part of the spines over time [40][41].  

 

To address the above problems, in this chapter we propose a novel tracking 

algorithm which can effectively trace the morphologic changes of specific dendritic 

spines in time lapse microscope, and is served as the supplementary function of 

NeuronIQ.  The algorithm is composed of two parts to respectively deal with two types 

of movement in time-lapse neuron images: the global displacement of the observation 

view, which is introduced during image acquisition; and the deformation of the highly 
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dynamic dendritic spines, whose changes in the size, shape, or orientation can be 

observed even between images acquired within a short time interval.  

 

    The global displacement can be adjusted by rigid registration, which is usually 

implemented by matching the dendrites. The skeleton of the dendrite, i.e., the 

backbone, has been commonly used to represent the dendrite structure [11]-[17], which 

is extracted by pruning the small branches from the medial axis of the dendrite. ICP 

(iterative closest points) algorithms have been well studied and widely applied for the 

registration of free curves. Many variables of the algorithm have been proposed since it 

was firstly introduced by Besl et al [30] and Chen [19]. A thorough review can be found 

in Rusinkiewicz and Levoy’s paper [20]. These algorithms either focus on selecting the 

sampling and matching points [21]-[24] or trying to refine the search scheme [25]-[29]. 

However, although these variables can improve the basic ICP with a faster convergence 

speed and better registration results, they all require that the motion between two 

successive frames be in some sense “small,” which is not the case for neuron images. 

Based on the prior knowledge that we are interested specifically in matching neuronal 

dendrite images, we propose a revised ICP algorithm which can effectively relax the 

small range requirement. 

 

    This chapter is divided into the following parts: First, we propose the ICP algorithm 

with feature selection for global registration. Then, the particle filter based algorithm 

which can track and measure the dendritic spines simultaneously is described in detail. 
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Last, the tracking results are demonstrated and compared with existent methods. The 

measurements of the spine morphologic changes are also manually validated.    

   

5.2   Algorithms 

 

    The ICP based algorithm can be easily trapped in local minima. Thus a small 

displacement between two images is required for the satisfying registration results. In 

Section 5.2.1, we propose a feature point sets selection algorithm specially designed for 

neuron images registration, which can efficiently relax the small displacement 

requirement. 

 

    Compared with the relatively stable dendrites, the deformation of the dendritic spines 

is much more severe. Changes in shape, size, or orientation of the spines can be 

observed in neuron images acquired in consecutive time frames. To deal with this issue, 

in Section 5.2.2 a particle filter based algorithm is proposed to track these highly 

dynamic spines after the global dendrite registration. The measurements of the spine 

shape, such as the length, width, area, and orientation, can be conveniently obtained 

from the dynamic models.   

 

5.2.1 Global registration 

 

5.2.1.1 Iterative closest point algorithm 
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The details of the basic ICP algorithm can be found in a paper by Besl et al [18]. 

Suppose the backbones in consecutively acquired images correspond to two different 

data point sets, }{ iyY


  and }{ ixX


 , to be aligned. The least squares registration can 

be found by minimizing the mean square objective function 


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In Eq. (5.1), yN is the number of points in Y and the closest points in X . The point ix


 is 

defined as the closest point to iy


if ),(min),( ij
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ii yxDyxD
j
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

 , where D represents the 

Euclidean distance between two points. Below we will briefly describe a quaternion-

based algorithm to find the rotation matrix R and the translation vector t
T qqqq ][ 654


, 

where t  is the vector transpose operator. 

 

    The 3  3 rotation matrix R can be calculated by a unit rotation quaternion 
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The unit quaternion is a vector which satisfies 00 q and 12
3

2
2

2
1

2

0
 qqqq . It can be 

obtained as the eigenvector corresponding to the largest eigenvalue of a symmetric 44 

matrix: 
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The cross-covariance matrix yxΣ of X and Y is given by 
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where X


and Y


are the centroids of the point set X and Y respectively: 
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The column vector Δ is defined as T]    [ 123123 AAAΔ  , where the matrix component is 

calculated from the cross-covariance matrix: ij
T
yxyxij )( ΣΣA  .  

 

After the rotation matrix R is obtained, the translation vector can be calculated by 

YXTq  
 R .                                                                     (5.6) 

 

5.2.1.2 Feature points selection   

 

    The ICP algorithm has been proved to be capable of converging monotonically to a 

local minimum of Eq. (5.1) [18]. One possible method for obtaining the "best" local 

minimum would be to perform ICP over a range of initial guesses for the rotation matrix 

and translation vector using some type of coarse-grid search. The best result from all 

the local minima found is then selected as the final solution. Certainly, it is not an 

efficient way to randomly search in a high dimensional space. To solve this problem, we 

redesign the sampling step of the ICP algorithm based on the prior knowledge of the 

neuron images. The sampling is based on the assumption that not all the backbone 

pixels are equally important for the registration. Thus, instead of choosing all or 
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randomly picking a subset of backbone pixels, only the feature points (to be defined 

below) are picked for use in Eq. (5.1). Properly selected feature points can greatly 

reduce the probability of being trapped in a local minimum, just like it is much easier to 

match the corner points than to match the whole surface. The feature points are chosen 

based on the following criteria. 

 

    Suppose   is the collection of all the backbone pixels in an image. An ideal feature 

point set  should satisfy the following criteria:  

1. Robust: the feature points should be robust to the noise and possible 

segmentation and detection errors.  

2. Localized: any feature points of current image should not be “too” far from the 

feature point set of the previous image. Formally, let k be the feature point set of 

image acquired at time k  and ),( jiD be the Euclidean distance between pixel 

i and j . For every pixel 1 ki  , we require 







),(min jiD
kj .

                                                     (5.7) 

The threshold   can be set as the largest possible displacement between two 

neighboring image frames. Here 20 (pixel).   

3. Evenly sampled: to well represent the location and structure of the dendrites, the 

feature points should be evenly distributed along the backbone. This is measured 

by the distance between the centroids of the feature point set  and backbone 

set . If the distance is within a threshold, we believe that the feature points are 

evenly distributed along the backbone. Thus, we have 
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),(max),(
,

jiDCCD
ji   

,
                                    (5.8) 

where C  is the centroid of the feature points, C  is the centroid of the 

backbone, and  is a ratio parameter which is set as 30%. Note that in theory 

this criterion could be satisfied if all of the feature points were selected close to 

the backbone; however, this is unlikely to happen since the (stable) spines 

usually distribute along the whole dendrite piece being observed.   

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 5.1 (a) original image, (b) results after adaptive segmentation, (c) medial axis obtained without 

filtering, and (d) medial axis obtained after low-pass filtering; extracted feature points are the highlighted 

backbone pieces. 
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    We observe that the locations where the spines attached to the dendrite are relatively 

stable regardless of dendrite deformation and morphologic changes of the spines. 

Nearby backbone pieces around the attached spines seem to be good candidates for 

the feature points. More specifically, possible location of these points can be associated 

with small branches in the medial axis of the dendrite, which can be obtained by the 

method described in Chapter 3. A sample image of acquired medial axis of the dendrite 

is shown in Fig. 5.1 (c), which is obtained from the adaptive segmentation results shown 

in Fig. 5.1 (b). The details of the segmentation method can be found in Chapter 3. As 

we can observe from Fig. 5.1 (c), many of those small branches are caused by the 

rough dendrite boundary, instead of attached spines.  A low-pass filter can be applied to 

smooth the image before the processing to help remove this kind of small branches. 

Here a 55 median filter is applied. The potential feature points are selected as the 

backbone pixels in a local 99 windows around the branch points. The branch point is 

defined as the conjunction point of the small branch and the backbone obtained from a 

medial axis computation applied to the post-filtered image data. One example of the 

extracted feature points is demonstrated in Fig. 5.1 (d). It is possible that some weak 

dendritic spines are also removed after the smoothing. Nevertheless it is not necessary 

to find all the attached spines for the purpose of feature point selection. The selected 

backbone pieces are the feature point set as long as they satisfy all the three criteria.  

 

    As the central line of the dendrites, the backbone is insensitive to the rough dendrite 

boundary caused by the noise. However, sometimes large spines can be wrongly 
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segmented as small dendrite branches, and this would cause problem during the 

dendrite registration. This problem can be solved if only the backbone pieces around an 

attached spine are selected. The pixels in the central line of the large spine, which is 

wrongly recognized as part of the dendrite backbone, will not be selected as the feature 

points since no other spines are attached to it.  

 

    To satisfy the second criterion, the selected backbone pieces around the attached 

spines are further processed. All the backbone pixels that are not within a certain 

distance from the feature points in the previous image are removed. For the first image, 

all the selected backbone pixels are assumed as the feature points. During this step, 

only the backbone pixels around the stable spines are selected as the feature points. 

For example, backbone pixels near the newly born or disappeared spines are removed.  

 

    The evenly distributed criterion can be easily satisfied during our tests because of the 

evenly distribution of spines along the dendrite. In case that the requirement cannot be 

satisfied, the size of the smoothing window can be reduced so that fewer small 

branches are removed and more backbone pixels can be potentially selected as the 

feature points.  

 

    Suppose kiyY  }{


is the data set, 1}{  kixX 
is the model set to be registered, 

and P is a subset of X , which is composed of the nearest neighbors ofY . The pixel p


is 

defined as the nearest neighbor of pixel Yy


if 

||||min),( yxypD
Xx


 
 .

                                        (5.9) 



 137

The brief structure of the ICP algorithm with feature point selection can be stated as 

follows: 

 

For all images at time Kk ,...,1  

1. Feature point selection 

a. Segmentation and acquire the medial axis of the dendrites using methods in 

Chapter 3 

b. Obtain backbone pieces in the local region of the small dendrite branches, 

which are the remaining pieces after removing the backbone from the medial 

axis, using methods in Chapter 3 

c. Refine the results by criterion 2, according to Eq. (5.7) 

d. Test the results by criterion 3, according to Eq. (5.8) 

If satisfied 

  Obtain the feature point set k  

If not 

  Reduce the size of the smooth window; go to 1(b) 

End 

2. Registration 

If ,1k no need for registration: ,1 kk go to 1(a) 

a. Initialization:  

1 kX  , kY 0 , T
0 0] 0, 0, 0, 0, 0, ,1[q


  

b. Repeat if change in mean square error falls below a preset threshold 0  

1). Compute the closest points tP  to tY  according to Eq. (5.9) 
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2). Based on tP  and tY , compute the matrix tR and the translation vector )(t
Tq


,     

according to Eq. (5.2) - (5.6) 

3). )()(
1

t
T

t
itt qyY


 R , 1 tt  

       End 

End 

 

 

(a) (b) (c) 

 

Fig. 5.2 (a) backbones of neuron images acquired at time k  (darker one) and 1k  (brighter one), (b) 

registration results by ICP without feature point set selection, and (c) registration results by ICP with 

feature point set selection.  

 

    Fig. 5.2 shows the comparison of the registration results of ICP with and without 

feature point selection. As we can see from the results, the performance of ICP 

algorithm has been obviously improved for dendrite registration with feature point 

selection. 
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5.2.2 Tracking 

 

    In this section, the tracking problem and the models being used will be discussed 

first. Then, how to apply the particle filters in tracking the deformable dendritic spines 

will be discussed in detail. 

 

5.2.2.1 General models 

  

    Dendritic spines can be roughly categorized into three major classes including 

stubby, thin, and mushroom spines [39]. Stubby spines have a constant or continually 

decreasing diameter. A thin spine has a bulbous head and a thin neck that connects the 

head of the spine to the stalk of dendrite while a mushroom spine is composed of a thin 

neck topped off by a large bulbous head. The intensity distribution of a dendritic spine 

can be roughly described by a 2D-Gaussian distribution: the pixels around the centroid 

of the spine have the highest intensity values; the intensity keeps decreasing as the 

pixel moves away from the centroid, with the pixels on the boundary having the lowest 

intensity. In addition, since the equidensity contours of a non-singular multivariate 

Gaussian distribution are ellipsoids with different sizes and orientations, we can also 

use a 2D-Gaussian distribution to simulate the shape of the dendritic spines.  
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(a) 

                    2/1l       2/2l  

                                                                                                  

                                       (b)                                                 (c) 

Figure 5.3 (a) different types of dendritic spines represented by 2D Gaussian distributions: 1. thin 2. 

stubby 3. mushroom; (b) typical shape of a dendritic spine; (c) a dendritic spine simulated by an 2D 

Gaussian distribution, with the equidensity contour being illustrated red. 

 

    From Fig. 5.3 we can observe that the shape of a dendritic spine can be well 

described by an orientated ellipse (contour of a 2D Gaussian distribution). Although the 

dendritic spine cannot exactly fit into an ellipse, the most important geometric 

information such as the spine length, width, and orientation, can be well estimated. The 

2D Gaussian model for a spine at time k can be described as: 

]
2

)()()(
exp[)()(ˆ

1 kkk
kIkI j

T
j

cj

dΣd 

 .                       (5.10) 

Here, )(kIc is the intensity of the spine centroid, )(ˆ kI j  
is the intensity value of the spine 

pixel j , and Σ  is the covariance matrix. The vector ))()(),()(()( krkrkrkrk
cjcj yyxxj d  

describes the position difference between the j -th pixel and the center of spine.  

 



 141

    The shape and orientation of the dendritic spine are specifically defined by the 

covariance matrix Σ : the directions of the principal axes are given by the eigenvectors 

of the covariance matrix. The squared relative lengths of the principal axes are given by 

the corresponding eigenvalues. The eigen decomposition of matrix Σ  is 

TT UUUU )( 2/12/1  .                                          (5.11) 
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U is the rotation 

matrix.  

 

    With the dendritic spines being described by 2D-Gaussians models, tracking a 

deforming dendritic spine amounts to estimating the parameters of a time varying 2D-

Gaussian, based on registered data from one time point to the next. The tracking is 

performed in a state space framework. Suppose x  and z  are the state vector and the 

observed data respectively, at time k , we have:  

))(),(),(),(),(( 21 klklkckck yxk x ,                                    (5.12) 

)}(|)({ kSjkI jk z
,
                                                       (5.13) 

where 21,, ll  represents the angle, the length and the width of the estimated spine blob, 

))(),(()( kckckc yx


is the location of the centroid of the spine; )(kI j  is the intensity value 

of pixel j  in a time variant local region )(kS . With kx and kz defined, the dynamic model 
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We assume that all the five states change independently under the Gaussian 

distribution, i.e. x is a diagonal matrix.  

 

    Suppose the intensity distribution of a dendritic spine can be described by a time 

variant 2D-Gaussian, the observation model )|( kkp xz  for each spine at time k can be 

defined as 
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if the noise is additive white Gaussian. Here, C  is a constant number for normalization; 

the local region kS is composed of the previously tracked spine (at time 1k ) and its 

surrounding region. Combined with Eq. (5.14), we have
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    After all the vectors and models being defined, we will present how to efficiently track 

the dynamic and deforming spines by implementing a particle filter. 

 

5.2.2.2 Tracking deforming spines by particle filter 

 

    Particle filtering is a technique for implementing a recursive Bayesian filter without 

analytically calculating the posterior density function, which is intractable for nonlinear 

non-Gaussian problems.  The posterior density function is estimated by a set of random 
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samples with associated weights. As the number of samples becomes very large, the 

Monte Carlo (MC) characterization of samples becomes an equivalent representation to 

the real posterior probability density. The posterior density function can be estimated by 

the summation of the weighted samples, as shown in Eq. (2.40). The weight for each 

particle can be sequentially estimated by different approaches such as sequential 

importance sampling (SIS) [31], which is described hereafter. 

 

Suppose )(xp is a probability density from which drawing samples is difficult, and 

)|( zxq is the importance density from which the samples can be easily generated. If the 

samples i
k:0x are drawn from an importance density )|( :1:0 kkq zx , then the weights can be 

defined as 
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Suppose the importance density can be factorized as 

)|()|()|( 1:11:0:1,1:0:1:0  kkkkkkk qqq zxzxxzx
,
                  (5.18) 

which means that one can obtain samples )|(~ :1:0:0 kk
i

k q zxx by augmenting each of the 

existing samples )|(~ 1:11:01:0  kk
i

k q zxx  with the new state ),|(~ :11:0 kkk
i
k q zxxx  . It has 

also been shown in [32] that 

)|()|()|()|( 1:11:01:1:0  kkkkkkkk pppp zxxxxzzx .           (5.19) 

 

From Eq. (5.17-5.19), we can obtain the following recursive expression of the weights 
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Furthermore, if the values of the current states are only decided by the values of the 

immediately previous states: 

),|(),|( :11:11:0 kkkkkk qq zxxzxx   ,                                      (5.21) 

then Eq. (5.20) can be simplified to 
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and the posterior filtered density )|( :1 kkp zx can be approximated as 
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    The initial values of the state ))0(),0(),0(),0(),0(( 210 llyxx can be either set 

manually, or automatically measured from the segmentation results. Here, 

location ))0(),0(( yx is set as the position of the centroid of the spine to be tracked. 

Orientation )0( is set as the angle of the line 1L  connecting the centroid and the base 

center of the spine. Semi-major axis 1l  and semi-minor axis 2l are set as the parts of 

1L and 2L inside the spine respectively. The line 2L perpendicularly intersects with 1L  at 

the centroid of the spine. To deal with the degeneracy problem of the sequential 
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importance sampling (i.e., all but one particle will have negligible weight after a few 

iterations), resampling is performed to remove particles that have small weights.  

 

The pseudo-codes for the tracking algorithms 

1. Initialization: 0k , 

For Ni ,...,1  

 Set the initial state vectors )(
0
ix with the same value 

 Let 
N

i 1)(
0   

End 

2. Tracking with updated particles 

For ,...2,1k  (different time) 

1) Sequential importance sampling: estimate the state values and relative weights; 

here we suppose the transition prior is the importance density, i.e. 
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 For Ni ,...,1  (different particles) 

 Sample )|(~ˆ )(
1

)()( i
k

i
k

i
k p xxx and set )ˆ,ˆ(ˆ )()(

1:0
)(

:0
i

k
i
k

i
k xxx   

 Evaluate the weight for each particle )|( )()(
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 Normalize the importance weights 1
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       End 

2) Resampling to reduce the effects of degeneracy 
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 Remove samples with low importance weight from the whole sample set )(ˆ i
kx  ; 

samples )(ˆ i
kx with high importance weight )(~ i

k are used to estimate the 

posterior density function )|( kkp zx , based on which N new particles are 

randomly sampled )(i
kx , representing the N updated state vectors at time k . 

 For Ni ,...,1 , let all new particles have the same weights 
N

i
k

i
k

1~ )()(    

3) State estimation 

The estimated state vector at time k , kx̂ can be calculated as the marginal 

conditional mean of k:0x , which is also the optimal MMSE estimate of the current 

state of the system 


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
N

j

i
kk N 1

)(1
ˆ xx  

    End 

 

5.3 Results 

 

5.3.1 Tracking Analysis 

 

    To validate the tracking performance, time-lapse image series are processed by both 

the particle filter based algorithm and an existing segmentation based algorithm. A time 

lapse analysis algorithm proposed by Koh et al in [13] is cited for comparison purpose 

here. In their method, two images are co-registered by comparing the detected spines in 

each image. The optimal global offset is found by minimizing the absolute value sum 
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difference between the two images. Two spines in different images are considered the 

same if at least 25% percent of the volumes are overlapped after registration.  

 

 

(a) (b) (c) 

 

(d) (e) (f) 

 

Figure 5.4: (a)-(c): tracking result of particle filter based algorithm, at time point 1, 3, 7; (d)-(f): matching 

based tracking results by Koh’s method, at time point 1, 3, 7.  

 

    From the results in Fig. 5.4 we can see that the particle filter based algorithm can 

successfully track 5 of the 6 randomly selected spines. Spine 6 is considered vanished 

or dead. A spine is defined as a vanished spine if the maximal intensity of the pixels 
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around the estimated centroid (3  3 window) is below a predefined threshold. The 

threshold is set as 50 for 8-bit grey level images during our testing. Spine 1 and 2 are 

the two spines being stimulated. Obvious size changes can be observed after the 

stimulation.  

 

    Koh’s method has difficulty in tracking the small spine (spine 5). In addition, for the 

segmentation based algorithms, the tracking performance is largely restricted by the 

efficiency of the segmentation and detection algorithms. Spine 4 cannot be tracked 

because of the poor segmentation result. Spine 2 is lost during the tracking because of 

the detection error. It is first detected as a detached spine as shown in Fig. 4 (d), (e). 

Then as shown in Fig. 4 (f), its major part is detected as a dendrite branch while only a 

small portion is detected as the spine. This causes the failure of tracking. In contrast to 

the segmentation based tracking algorithm, our algorithm is nevertheless much more 

robust to the image quality, and the performance is not restricted by the implemented 

segmentation and detection algorithms.    

 

5.3.2 Measurement Analysis 

 

To analyze how spines change in time-lapse, it is important to provide the user with a 

wide range of morphological statistics. Certain key geometric features of the spine, such 

as the spine orientation and head width, are difficult to be automatically measured by 

existing spine detection algorithms.  However, they can be easily obtained within the 

framework of particle filter based tracking. The information about spine length, width, 
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area, and orientation can be directly obtained from the values of parameters  , 1l , and 

2l . The spine orientation is described by  . The head width is described by the length of 

minor axis 2l . The spine length 0
1

2
l

l
L  , where 1l  is the length of the major axis; 0l is 

the distance between the spine centroid and the center of the base. The spine area is 

defined as 214
llS 


.  

 

 

Figure 5.5: Time series plot for the geometric features of spine 1, 2, 3, and 5 in Fig. 4: (a) spine length; (b) 

spine head width; (c) spine area; and (d) spine orientation.  
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    For all the image sequences processed here, the images are acquired every five 

minutes, with 1 or 2 spines being stimulated at time point 3. For the images 

demonstrated in Fig. 5.4, two of the spines (1, 2) are stimulated. We can clearly observe 

from the curves in Fig. 5.5 that the size of the stimulated spines turns bigger 

immediately after the stimulation and shrinks a little afterwards. However, the change of 

spine orientations is rather random. 

 

 

 

Figure 5.6: Comparison between automated and manual measurement of spines in time series: (a) 

average spine length and (b) average spine head width. 

 

    To validate the spine morphologic measurement automatically obtained during the 

tracking process, average spine length and width of 30 spines in time series are 

compared. These 30 spines are randomly selected from 6 sets of time-lapse images 
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acquired at 7 different time points. In all of the 6 sets image sequence, 1 or 2 spines are 

stimulated at time point 3. As shown in Fig. 5.6, manual and automatic results agree to 

within one standard deviation. However, obvious bias can be observed for the 

automatically obtained geometric features. The automatically obtained results are 

constantly larger than the manual results. Pearson correlation is therefore used to test 

whether the automatic and manual results are correlated at each time point. The 

correlation values r  at 7 time points range from 0:527 to 0:971, which suggest 

significant linear correlations between the automatic and the manual results in time 

series. 

 

Table 5.1: Pearson correlation for spine lengths and width in time series 

 Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 

Length 0.7734 0.875 0.907 0.851 0.527 0.792 0.637 

Width 0.827 0.785 0.971 0.703 0.782 0.675 0.573 

 

 

5.4 Discussions 

 

    In this chapter, we propose a particle filter based tracking algorithm. Compared with 

the existing algorithms, the proposed algorithm can better track the highly dynamic 

dendritic spines and is more robust to the noise and the segmentation and detection 

errors. Since the spine parameters are naturally included in the dynamic model, shape 

information of the spines can be obtained at the same time during tracking. In 
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comparison with the existing match based algorithms, more information about the spine 

morphology such as the width and orientation can be easily acquired.  

 

    In the proposed algorithm, the spines are independently tracked such that the 

tracking results for different spines will not affect each other. In some algorithms, such 

as Mosaliganti’ method [16], all the dendritic spines are tracked as a whole set. Thus, 

the tracking error of one spine may risk degrading the tracking results of other spines. 

Another advantage of separately tracking spines is that it is much more time efficient by 

only concentrating on certain interesting spines, rather than trying to detect over a 

hundred of spines in an image. The proposed algorithm is also user friendly, and, if 

necessary, human interference can be conveniently incorporated into the tracking 

framework. For instance, the particle parameters can be initialized based on the manual 

selection of the local region, if the image quality is too low to be correctly segmented by 

the existing algorithms.  
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Chapter 6       Conclusions and future work 

 

    To release the biologists from heavy manual burden for quantitative analysis of 

dendritic spines, we propose a pipeline for automatic dendritic spine detection in 

Chapter 3, which is especially suitable to batch process a large image dataset.  First, an 

adaptive thresholding method is presented. A signal to noise ratio (SNR) based 

detached spine detection algorithm is presented afterwards. An effective attached spine 

detection algorithm based on local morphological information is also discussed in detail. 

Compared with the existing algorithms, the detection performance is improved in the 

sense of both reducing the false negatives (missed spines) and false positives (wrongly 

detected results). However, besides the problem of automatic estimation of the window 

size as we mentioned in Chapter 3, other problem still exists. For example, although we 

can successfully solve the problem to combine an attached spine component with its 

detached components, in cases that there are only two or more detached spine 

components in the image and not any relative attached spine component, we cannot 

find an efficient way to combine those detached spine parts without wrongly combining 

the parts from different spines.  This problem also needs to be addressed in the future 

work. 

 

  Furthermore, as we mentioned in Chapter 4, the efficiency of detection will degrade 

for images with lower resolutions in which the spines occupy relatively few pixels. Also, 

the algorithm somewhat distorts the shape of the detected spines: spine pixels with low 

intensity values, such as the pixels in the spine neck regions, are prone to be 
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segmented as background, which cause the spines segmented into several broken 

components and further degrade spine detection performance.  

 

    To deal with these issues, in Chapter 4 we propose a novel maximum a posteriori - 

orientated Markov random field (MAP-OMRF) framework for dendritic spine 

segmentation. A knowledge guided iterative conditional modes (KICM) method is also 

proposed to find the optimal solutions. By combining the natural spatial constraints in 

the prior model of images, the proposed method can obviously improve the detection 

performance for image acquired at different resolution. With the weak parts of the 

spines, especially the neck regions being enhanced, the shape of detected spines 

resembles more to their real shapes.   

 

    Despite of the advantages of the OMRF based neuron image segmentation 

method mentioned above, more work can be done which will potentially improve the 

detection results. For example, as described in Section 4.3.1 the parameter of the prior 

model 1θ  is set constant for all testing images for the purpose of simplifying the 

computation complexity. However, intuitionally the optimal values of 1θ  should be image 

dependent. Thus, the value of 1θ  should be estimated online instead of being set 

constant.  

 

Suppose y is the observed data, 2θ̂ is the maximal likelihood estimation as described 

in Section 4.1, the optimal segment results x̂  and parameter 1θ̂  can be found by solving 

the following MAP estimation problem:  
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Assume that 1θ is uniformly distributed, using the laws of conditional probabilities, 

Equation (6.1) can be changed to  
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It can be further divided into two sub-problems which can be estimated iteratively. 
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Many algorithms have been proposed to solve this problem, such as maximum 

likelihood, coding, pseudo-likelihood, expectation-maximization, mean field 

approximations, and least squares fit etc [1]. However, how to find a computational 

efficient algorithm, which combines the prior knowledge of the neuron images, remains 

a further question to be investigated. 

 

In addition, in Chapter 4 a knowledge-based iterated conditional modes algorithm 

(KICM) is proposed to find the optimal segmentation result. The basic idea of KICM 

algorithm is to develop a new strategy of searching the ideal solutions (though 

statistically sub-optimal) by incorporating some constraints with explicit biological 

meaning. The experimental results are satisfying. However, ideally those constraints 

should be combined in the energy function so that a statistically optimal solution can by 

found by common optimization algorithms such as ICM.  For example, in Section 4.3.2 
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the distance constraint is mentioned: spine pixels can only be those pixels whose 

distance to the center of the dendrite (the backbone) is greater than half of the local 

dendrite width. Suppose the label of the dendrite and spines are “1” and “2” respectively, 

after considering the distance constraints (Eq. 4.19, 4.20), the energy function 

expressed in Eq. (4.4) can be rewritten as: 
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where 1,ix and 2,ix are Kronecker delta function, ) (H is the Heaviside step function, 

d is the weight of the distance constraint, id is the distance between pixel i and 

backbone, it is the estimation of the width of local dendrite. How to obtain the best value 

of d  and how to combine other constraints into the energy function would be an 

interesting topic for us future work. 

 

To automatically analyze the morphological changes of dendritic spines in time lapse 

images, we propose a particle filter based tracking algorithm in Chapter 5. The 

algorithm is shown to be able to efficiently track and measure the dendritic spines 

simultaneously. However, there are still some unsolved problems. For example, the 

resampling is applied to solve the degeneracy problem. However, it will also induce the 

problem of sample impoverishment because the particles with high weights are 

statistically selected many times, which leads to a loss of diversity among the particles 

as the resultant sample will contain many repeated points. In some bad cases, e.g. if 

the process noise is very small, all particles will collapse to a single point within a few 

iterations. To deal with this issue, Carpenter et al. [4] propose a method which can 
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monitor the efficiency of the particle filter by providing a simple quantitative assessment 

of sample impoverishment. A computation efficient particle filters which can prevent the 

collapse of the particle system is also presented. Zhu el al. [5] propose an improved 

particle filter by integrating support vector regression (SVR) into sequential Monte Carlo 

framework. By using an SVR based re-weighting scheme, the posterior density is re-

approximated and sample impoverishment can be effectively avoided.  

 

Another unsolved problem for the proposed particle filter based algorithm is: although 

it is easy to detect stable and vanished dendritic spines, it is much more difficult to 

detect a newly born spine. How to apply the particle filter to detect a newly born spine is 

also a potential topic for us.  

 

For Monte Carlo methods (particle filter is sequential Monte Carlo), the basic idea is 

to estimate the probability density functions (PDF) according to a set of randomly 

chosen samples with different weights. Obviously, the more samples are provided, the 

better the estimation is. However, the number of the samples cannot be arbitrarily large 

because of the computation cost. One possible solution for this problem is to compose 

the PDF in a way so that the samples are generated in a space with reduced 

dimensions.  For our proposed method, the samples space is a 5-D: orientation, 

location of the spine centroid, the length and width of the spines. An interesting future 

topic is that if it is feasible to track a spine in space(s) with smaller dimensions? For 

example, can we first track the location of the spines in a 2-D space and then adjust the 

morphology of the spines in a 3-D space? 
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Lastly, in this thesis the dendritic spine detection and tracking algorithms are based 

on the maximal intensity projection (MIP) image of the original 3D laser scanning 

microscopy (LSM) image stacks. However, to quantify 3D spine shapes with sufficient 

precision can greatly help us understand how the spine morphology controls learning 

and memory. Compared with the 2D projection based algorithms, 3D based methods 

can more accurately describe the dendritic spines and potentially more robust to track 

the morphological changes of the spines. Recently, several 3D dendritic spine 

reconstruction and detection algorithms have been proposed [2][3]. However, one major 

disadvantage of algorithms operating fully in 3D is the complex computation. How to 

model in 3D and design a computation efficient tracking algorithm is an interesting 

future topic. 
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