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Abstract

A two-step shape reconstruction method for electromagnetic (EM) tomog-

raphy is presented which uses adjoint �elds and level sets. The inhomogeneous

background permittivity distribution and the values of the permittivities in

some penetrable obstacles are assumed to be known, and the number, sizes,

shapes, and locations of these obstacles have to be reconstructed given noisy

limited-view EM data. The main application we address in the paper is the

imaging and monitoring of pollutant plumes in environmental cleanup sites

based on cross-borehole EM data. The �rst step of the reconstruction scheme

makes use of an inverse scattering solver which �rst recovers equivalent scat-

tering sources for a number of experiments, and then calculates from these an

approximation for the permittivity distribution in the medium. The second step

uses this result as an initial guess for solving the shape reconstruction problem.

A key point in this second step is the fusion of the 'level set technique' for

representing the shapes of the reconstructed obstacles, and an 'adjoint �eld

technique' for solving the nonlinear inverse problem. In each step, a forward

and an adjoint Helmholtz problem are solved based on the permittivity distri-

bution which corresponds to the latest best guess for the representing level set

function. A correction for this level set function is then calculated directly by

combining the results of these two runs. Numerical experiments are presented

which show that the derived method is able to recover one or more objects with

nontrivial shapes given noisy cross-borehole EM data.
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1 Introduction

In this paper, we investigate the retrieval of an unknown number of penetrable

objects (inclusions) imbedded in an inhomogeneous background medium based on

observations of electromagnetic (EM) �elds. The electromagnetic characteristics

(permittivity and conductivity) of the background medium as well as of the ma-

terial forming the inclusions are assumed to be known, but the main topological

information concerning the number, sizes, shapes, and locations of the inclusions is

missing and has to be reconstructed from the EM data.

One possible technique for using EM �elds in cross-borehole tomography is Elec-

troMagnetic Induction Tomography (EMIT) [3, 18, 44, 49, 50, 51] which typically

operates at frequencies between 1 to 20 kHz. In this frequency band, electromagnetic

�elds tend to di�use rather than propagate as waves through the Earth. Penetration

depths of 100 m or more are possible at these low frequencies, but the di�usional

behavior of the �elds makes the inverse problem severely ill-posed.

However, if the typical distances in the area of interest are not much larger than

10-20 m, we can use EM �elds in the higher frequency band of 5 to 30 MHz instead.

The wavelengths of these �elds are typically between 2-15 m in moist soil, where

the relative dielectric constant is typically around 20 [48]. Therefore, we can make

use of wave propagation phenomena in the inversion process. In the present paper,

we address this situation. The main application we have in mind is the imaging and

monitoring of pollutant plumes at environmental cleanup sites given cross-borehole

EM data, where the distances of the boreholes are not much larger than 10-20 m.

We assume that the known conductivity distribution is positive but small every-

where, and that the permittivity distribution in the medium has to be recovered.

Inside the pollutant plumes, the permittivity is assumed to be constant with a known

value, and the background permittivity is arbitrary but also known. Therefore, the

task is to �nd the number, shapes, sizes and locations of the pollutant plumes from

cross-borehole data gathered for a small number (less than 10) of frequencies. No
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topological constraints are made on the shapes of these plumes. For example, they

are allowed to be multiply connected, and to enclose 'cavities' or 'holes' �lled with

background material.

The main di�culties which arise in this situation are 1.) We want to allow for

an (arbitrary) inhomogeneous background permittivity distribution in the inversion;

2.) The inverse problem is usually strongly nonlinear because of the high contrast

of the permittivity values inside the plumes to the background medium; 3.) The

data in our application are typically noisy and have only limited view; and 4.) The

number of the plumes is typically unknown, and their shapes can have a complicated

geometry.

In this paper, we propose a new shape reconstruction method which works in a

two-step fashion in order to overcome these di�culties.

The �rst step of this combined inversion scheme plays the role of an initializing

procedure for the second step, and employs a 'source-type' inversion method (which

is described in more details in section 5) to deal with the high nonlinearity in the

problem due to the presence of strong scatterers.

Then, the second step directly starts with the outcome of this initializing pro-

cedure, and continues by using a combination of the 'adjoint �eld technique' and a

level set representation of the shapes until the inversion task is completed. Using

a level set representation in this second step enables us to easily describe and keep

track of complicated geometries which arise during the inversion process.

Both steps use an 'adjoint �eld technique' for the inversion which has the very

useful property that the inverse problem can be solved approximately by making

two uses of the same forward modelling code. Using a somewhat oversimpli�ed de-

scription of our technique, the updates to the level set function are obtained by �rst

making one pass through the code using the permittivity distribution corresponding

to the latest best guess of the level set function, and then another pass with the

adjoint operator applied to the di�erences in computed and measured data. Then

the results of these two calculations are combined to determine updates to the level

set function. The resulting procedure is iterative, and can be applied successively

to parts of the data, e.g., data associated with one transmitter location and one

frequency can be used to update the model before other transmitter locations and

other frequencies are considered. This general procedure has several of the same ad-

vantages as wave equation migration in re
ection seismology [10] and is also related

to recent methods in EM migration introduced in Zhdanov et al. [51]. A similar

technique has been successfully applied recently as part of an iterative nonlinear

inversion scheme in [17, 18, 33].

The level set method was originally developed by Osher and Sethian for describ-
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ing the motion of curves and surfaces [35, 41]. Since then, it has found applications

in a variety of quite di�erent situations. Examples are image enhancement, com-

puter vision, interface problems, crystal growth, or etching and deposition in the

microchip fabrication. For an overview we refer to [42].

The idea of using a level set representation as part of a solution scheme for

inverse problems involving obstacles was �rst suggested by Santosa in [40]. More

recently, a similar method was applied to a nonlinear inverse scattering problem by

Litman et al. in [28]. In that work, an inverse transmission problem in free space is

solved by a controlled evolution of a level set function. This evolution is governed

by a Hamilton-Jacobi type equation, whose velocity function has to be determined

properly in order to minimize a given cost functional.

The approach developed here does not lead to a Hamilton-Jacobi type equation.

We follow an optimization approach, and employ a very speci�c inversion routine (an

adjoint �eld technique) for solving it. This has the advantage that we do not have to

propagate the level set function explicitly by computing a numerical Hamiltonian.

Instead, our inversion routine provides us in each step with an update that has to

be applied directly to the most recent level set function. Doing so, we automatically

'propagate' the level set function until the method converges.

This gain in simplicity, however, has its price. In order to arrive at an e�cient

scheme which is practically useful as well as easy to implement, we will apply some

suitable approximations when deriving the algorithm. We will point out and discuss

these approximations in those sections of the paper where they are applied.

For interesting approaches to solving shape recovery problems in various applica-

tions we refer to [23, 24, 26] and to the references therein. For alternative approaches

to the shape reconstruction method in geophysical applications see [30, 39, 43] and

the references therein. The treatment of more general inverse scattering problems

is for example addressed in [4, 8, 11, 12, 15, 22, 31, 33, 38].

The paper is organized as follows. In section 2 we will present the basic equations

of 2D EMs in a form convenient for development of the shape reconstruction tech-

nique. In section 3 we formulate the shape reconstruction problem and introduce

the level set formulation of this problem. In section 4, we derive the basic shape

reconstruction algorithm using level sets and adjoint �elds. Section 5 describes how

to calculate a suitable initialization for the shape reconstruction algorithm. In Sec-

tion 6 numerical experiments are presented which demonstrate the performance of

the algorithm in di�erent situations. The �nal section summarizes the results of this

paper and indicates some directions for future research.
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2 The physical experiment

2.1 The Helmholtz Equation

We consider the 2D Helmholtz Equation

�u+ k2(x)u = q(x) in IR2; (1)

with complex wavenumber

k2(x) = !2�0�0

�
�(x) + i

�(x)

!�0

�
: (2)

Here, i2 = �1, ! denotes the angular frequency ! = 2�f , �0 is the magnetic

permeability in free space �0 = 4� � 10�7 Henrys per meter, �0 is the dielectric

permittivity in free space �0 = 8:854 � 10�12 Farads per meter, � is the relative

dielectric permittivity (dimensionless), and � is the electric conductivity in Siemens

per meter. The form of (2) corresponds to time-harmonic line sources ~q(x; t) which

have a time-dependence ~q(x; t) = q(x)e�i!t. For these sources we require that there

exists a radius r0 > 0 such that supp(q) �� Br0
(0), where Br(x) = fy 2 IR; jx�yj <

rg denotes the open ball centered in x with radius r > 0. For simplicity we assume

throughout the paper that we can �nd a ball BR(0) with R > r such that the

complex wavenumber k2(x) is constant with value k20 in IR2nBR(0), and that for this

k0 the �eld u generated by (1) satis�es the Sommerfeld radiation condition

lim
r!1

p
r

�
@u

@r
� ik0u

�
= 0 (3)

with r = jxj where the limit is assumed to hold uniformly in all directions x=jxj.
With this assumption, the problem (1)-(3) possesses a uniquely determined solution

u in IR2 [12].

Furthermore we will consider in this paper only the case that the conductivity

is positive everywhere, � > 0 in IR2, and that it is small in some sense which will be

speci�ed later. Typical values in our geophysical examples will be � � 10�3 � 10�4

Siemens per meter or less [48].

We want to introduce some notation here which will be useful in the following.

We denote the wavenumber k2(x) in short form by

k2(x) = �(x) = a�(x) + ib�(x); a = !2�0�0; b = !�0: (4)

We only consider positive frequencies ! > 0 such that a; b > 0.
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2.2 Formulation of the inverse problem

We assume that we are given p di�erent source distributions qj, j = 1; : : : ; p. For

each of these sources, data are gathered at the detector positions xd, d = 1; : : : ;Dj ,

for various frequencies fk, k = 1; : : : ;K. The total number of receivers Dj , as well

as their positions xd, might vary with the source qj. We assume, for simplicity in the

notation, that these positions do not depend on the frequency fk. This restriction

is, however, not necessary for the derivation of the inversion method. We require

that there exists a radius r1 > 0 such that all receiver positions are inside the ball

of radius r1, i.e. xjd 2 Br1
(0) for all d = 1; : : : ;Dj , j = 1; : : : ; p.

For a given source qj and a given frequency fk we collect a set of data ~Gjk which

is described by

~Gjk =
�
~ujk(xj1); : : : ; ~ujk(xjd); : : : ; ~ujk(xjDj

)
�
T

2 Zj (5)

with Zj = CDj being the data space corresponding to a single experiment using one

source and one frequency only. In (5), the �elds ~ujk solve (1)-(3) with the correct

permittivity distribution ~�(x), i.e.

�~ujk + [ak~�(x) + ibk�(x)] ~ujk = qj(x) in IR2 (6)

with

ak = !2
k
�0�0; bk = !k�0; !k = 2�fk: (7)

In a slightly more formal way, we de�ne for a given source qj the measurement

operator Mj acting on solutions u of (1) by

Mju =

�Z
IR2

u(x)�(x � xjd)dx

�
T

d=1;:::;Dj

: (8)

With this notation, (5) is written as

~Gjk = Mj~ujk; j = 1; : : : ; p; k = 1; : : : ;K: (9)

We gather these data sets ~Gj;k for all sources qj, j = 1; : : : ; p, and all frequencies fk,

k = 1; : : : ;K, and the aim is to recover from this collection of data sets

~G = ( ~G1;1; : : : ; ~Gp;K)
T (10)

the unknown parameter distribution ~�(x) in the domain of interest.

In the application of EM cross-borehole tomography, the sources and receivers

are typically situated in some boreholes, and the permittivity distribution � (and/or

the conductivity distribution �) between these boreholes has to be recovered from
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the gathered data. In the 2D geometry considered here, typical sources are time-

harmonic line sources which can be modelled in (1) by

qj(x) = Jj�(x� xj); j = 1; : : : ; p; (11)

where xj denotes the 2D coordinates of the j-th line source, j = 1; : : : ; p, and the

complex number Jj is the strength of the source. We will use these sources in our

numerical experiments in section 6.

3 The shape reconstruction problem

In this section we formulate the shape reconstruction problem which we want to

solve, and cast it in a form which makes use of the level set representation of the

domains.

3.1 Shape reconstruction and inverse scattering

To start with we introduce some terminology which we will use throughout the

paper.

De�nition 3.1 Let us assume that we are given a constant �̂ > 0, an open ball

Br(0) � IR2 with r > max(r0; r1) > 0, and a bounded function �b : IR
2 ! IR. We

call a pair (
; �), which consists of a compact domain 
 �� Br(0) and a bounded

function � : IR2 ! IR, admissible if we have

�j
 = �̂; �jIR2n
 = �bjIR2n
: (12)

In other words, a pair (
; �) is admissible if � is equal to a preassigned constant value

�̂ inside of 
, and equal to the preassigned background permittivity �b outside of 
.

The domain 
 is called the scattering domain.

Remark 3.1 For an admissible pair (
; �), and for given �̂, �b, the permittivity � is

uniquely determined by 
.

With this de�nition, we can now formulate the shape reconstruction problem.

Shape reconstruction problem. Let us assume that we are given a constant

�̂ > 0, a bounded function �b : IR
2 ! IR, and some data ~G as in (10). Find a domain

~
 such that the admissible pair (~
; ~�) reproduces the data, i.e. (9) holds with ~ujk

given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.
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Using the same notation and assumptions as in de�nition 3.1, we want to formu-

late another inverse problem which we will call the inverse scattering problem and

which will play an important part when solving the shape reconstruction problem.

Inverse Scattering Problem. Let us assume that we are given a bounded func-

tion �b : IR
2 ! IR, and some data ~G as in (10). Find a bounded function ~�s : IR

2 ! IR

with supp(�s) �� Br(0) such that ~� = �b + ~�s reproduces the data, i.e. (9) holds

with ~ujk given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.

The inverse scattering problem gives rise to the following decomposition of � in

IR2.

Decomposition of �(x) :

(i) � = �b + �s in IR2 (13)

(ii) supp(�s) �� Br(0): (14)

In other words, the permittivity distribution � is decomposed into the background

distribution �b and the perturbation �s which is assumed to have compact support

and which we will refer to as the scattering potential in the following.

Solving the shape reconstruction problem requires only to �nd the shape of

the domain ~
, since the function ~� is then uniquely determined by (12). Solving

the inverse scattering problem, on the other hand, amounts to �nding the entire

function ~�s from the given data, which is much harder to do. However, it will turn

out that �nding a good approximate solution of the inverse scattering problem is

much easier to achieve and will provide us with an excellent initial guess for starting

our shape reconstruction routine.

De�nition 3.1 allows us to formulate a �rst version of the strategy which we want

to use for solving the shape reconstruction problem.

Strategy for solving the shape reconstruction problem. Construct a series of

admissible pairs (
(n); �(n)), n = 0; 1; 2; : : :, such that the mis�t between the data

(10) and the calculated data corresponding to (
(n); �(n)) decreases with increasing

n, and ideally, i.e. in absence of noise, tends to zero in the limit n ! 1. Use the

approximate solution of the inverse scattering problem (i),(ii) to initialize this series

by determining a good starting element (
(0); �(0)).

3.2 The domains 
(n)

In our numerical examples, each of the domains 
(n) which we are looking for can

be given as a collection of a �nite number Ln of disjoint, compact subdomains 

(n)
l

,
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l = 1; : : : ; Ln, with


(n) =

Ln[
l=1



(n)
l
; 


(n)
l
\ 


(n)
l0

= ; for l 6= l0: (15)

The shapes of these subdomains 

(n)
l

can in principle be arbitrary. In particular,

they are allowed to be multiply connected, and to enclose some 'cavities' or 'holes'

�lled with background material. Moreover, the number Ln of these subdomains

might (and usually does) vary with the iteration number n. For the derivation of

the inversion method, we assume that the boundaries @

(n)
l

of these domains are

su�ciently smooth (e.g. C1).

It is essential for the success and the e�ciency of the reconstruction scheme to

have a good and 
exible way of keeping track of the shape evolution during the

reconstruction process. The method we have chosen in our reconstruction algorithm

is a level set representation of the shapes as it was suggested by Santosa [40]. This

representation has the advantage that the level set functions, which are in principle

only used for representing the shapes, can in a natural way be made part of the

reconstruction scheme itself. Doing so, it is not necessary anymore to refer to the

shapes of the domains until the reconstruction process is completed. The �nal shape

is then recovered from the representing level set function easily. In the following we

will discuss in a more formal way how this can be achieved.

3.3 Level set representation of the domains 
(n)

Assume that we are given a domain 
 �� Br(0). The characteristic function �
 :

IR2 ! f0; 1g is de�ned in the usual way as

�
(x) =

(
1 ; x 2 


0 ; x 2 IR2n
:
(16)

De�nition 3.2 We call a function � : IR2 ! IR a level set representation of 
 if

�
(x) = 	�(x) on IR2 (17)

where 	� : IR
2 ! f0; 1g is de�ned as

	�(x) =

(
1 ; �(x) � 0

0 ; �(x) > 0:
(18)

For each function � : IR2 ! IR there is a domain 
 associated with � by (17),(18)

which we call 
[�]. It is clear that di�erent functions �1; �2, �1 6= �2, can be asso-

ciated with the same domain 
[�1] = 
[�2], but that di�erent domains cannot have
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the same level set representation. Therefore, we can use the level set representa-

tion for unambiguously specifying a domain 
 by any one of its associated level set

functions.

The boundary � = @
[�] of a domain 
[�], represented by the level set function

�, is de�ned as

� = fx 2 IR2 : for all � > 0 we can �nd x1; x2 2 B�(x) (19)

with �(x1) > 0 and �(x2) < 0 g

De�nition 3.3 We call a triple (
; �; �), which consists of a domain 
 �� Br(0)

and bounded functions �; � : IR2 ! IR, admissible if the pair (
; �) is admissible in

the sense of de�nition 3.1, and � is a valid level set representation of 
.

Remark 3.2 For an admissible triple (
; �; �), and for given �̂, �b, the pair (
; �)

is uniquely determined by �.

We use these de�nitions to reformulate our shape reconstruction problem.

Level set formulation of the shape reconstruction problem. Given a constant

�̂ > 0, a background distribution �b, and some data ~G as in (10). Find a level

set function ~� such that the corresponding admissible triple (~
; ~�; ~�) reproduces the

data, i.e. (9) holds with ~ujk given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.

The strategy for solving this shape reconstruction problem has to be reformu-

lated, too. It reads now as follows.

Strategy for solving the reformulated shape reconstruction problem. Construct

a series of admissible triples (
(n); �(n); �(n)), n = 0; 1; 2; : : :, such that the mis�t

between the data (10) and the calculated data corresponding to (
(n); �(n); �(n))

decreases with increasing n, and ideally, i.e. in absence of noise, tends to zero in

the limit n ! 1. For �nding this series we only have to keep track of �(n) and

�(n), but not of 
(n)
. The function �(n) is needed in each step for solving a forward

problem (1), and a corresponding adjoint problem. The knowledge of �(n) is used in

each step to determine �(n). The �nal level set function �(N), which satis�es some

stopping criterion, is used to recover the �nal shape 
(N) via (17).

4 Step 2: Solving the shape reconstruction problem

In this section we derive the basic shape reconstruction method which uses adjoint

�elds and the level set representation introduced above. The initializing procedure

('Step 1') for this reconstruction routine will be discussed in section 5.
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4.1 Function spaces

We want to specify now the function spaces which we will be working with. The

main objective of this section is to introduce the inner products on these function

spaces, which will become important when de�ning the adjoint linearized operators

in sections 4.6 and 5.3.

The space of sources and scattering sources Y is de�ned as

Y =
n
q : IR2 ! C; q = 0 on IR2nBr(0);

Z
Br(0)

jqj2dx <1
o
; (20)

hq1 ; q2iY =

Z
Br(0)

q1(x)q2(x) dx; (21)

where the bar means 'complex conjugate'. The space F of scattering potentials is

de�ned as

F =
n
�s : IR

2 ! IR; �s = 0 on IR2nBr(0);

Z
Br(0)

j�sj2dx <1
o
; (22)

h�s;1 ; �s;2iF =

Z
Br(0)


 �s;1(x)�s;2(x) dx; (23)

with some positive weighting factor 
 > 0 which is introduced here for convenience.

Analogously, the space of level set functions � is de�ned as

� =
n
� : IR2 ! IR; � = 0 on IR2nBr(0);

Z
Br(0)

j�j2dx <1
o
; (24)

h�1 ; �2i� =

Z
Br(0)


 �1(x)�2(x) dx: (25)

This space for the level set functions is mainly chosen in order to have an inner

product available which is convenient for the derivation of the shape reconstruction

algorithm. We mention that the regularity of an arbitrary function in � is, strictly

speaking, not su�cient for our purposes, such that we will apply further regularity

constraints on those level set functions � 2 � which we choose for representing the

boundaries @
[�].

The data space Zj corresponding to source qj , j = 1; : : : ; p, was already intro-

duced earlier, and is given by Zj = CDj , where Dj is the total number of receivers

corresponding to source qj.

4.2 Operators

In the following, we will introduce some operators which will enable us to formu-

late the shape reconstruction problem in a way suitable for deriving the inversion

algorithm.

12



Given a constant �̂ and a bounded function �b : IR2 ! IR. Then, with each level

set function � 2 � a uniquely determined scattering potential �(�) is associated by

putting

�(�)(x) =

(
�̂� �b(x) ; �(x) � 0

0 ; �(x) > 0:
(26)

With (18) we can write this also as

�(�)(x) = 	�(x)(�̂� �b(x)) ; x 2 IR2: (27)

Notice that the operator � is chosen such that the triple (
; �; �) with � = �b+�(�)

and domain 
[�] forms an admissible triple (
; �; �) in the sense of de�nition 3.3.

Moreover, for (
; �; �) an admissible triple, we see that �(�) is just the scattering

potential �s as de�ned in (13),(14)

�(�)(x) = �s(x) = �
(x)(�̂� �b(x)) ; x 2 IR2: (28)

Let us assume now that we are given a background permittivity �b and that we have

collected some data ~Gjk which correspond to the 'true' permittivity distribution

~� = �b + ~�s; (29)

where ~�s is the 'true' scattering potential. The residual operators Rjk map for a

source position qj and a frequency fk a given scattering potential �s to the corre-

sponding mismatch in the data

Rjk : F �! Zj ; Rjk(�s) = Mjujk � ~Gjk (30)

where ujk solves

�ujk + [ak(�b + �s)(x) + ib�(x)] ujk = qj (31)

and Mj is the measurement operator de�ned in (8). From (9) we see that for the

'true' scattering potential the residuals vanish,

Rjk(~�s) = 0 for j = 1; : : : ; p; k = 1; : : : ;K; (32)

if the data are noise-free.

The forward operators Tjk which map a given level set function � 2 � into the

corresponding mismatch in the data are de�ned by

Tjk : � �! Zj ; Tjk(�) = Rjk(�(�)) (33)

for j = 1; : : : ; p, k = 1; : : : ;K. The goal is to �nd a level set function ~� 2 � such

that

Tjk(~�) = 0 for j = 1; : : : ; p; k = 1; : : : ;K: (34)

We mention that all three operators �, Rjk and Tjk are nonlinear.
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4.3 Linearized operators

For the derivation of the shape reconstruction algorithm, we will need expressions for

the linearized operators corresponding to the nonlinear operators introduced above,

and for their adjoints with respect to the given inner products. In this section,

we de�ne the linearized operators, and expressions for their adjoints are derived in

section 4.6.

In Santosa [40] it is shown that, for a homogeneous background �b, the in�nitesi-

mal response ��s(x) in the scattering potential �s(x) to an in�nitesimal change ��(x)

of the level set function �(x) has the form

��s(x) = � [�̂� �b]
��(x)

jr�(x)j

����
x2@
[�]

: (35)

The function ��s in (35) can be interpreted as a 'surface measure' on the boundary

� = @
[�]. Similar to (35), we would like to de�ne the linearized operator ~�0[�] by

�
~�0[�]��

�
(x) = � [�̂� �b(x)]

��(x)

jr�(x)j
�̂�(x) (36)

where �̂�(x) denotes the Dirac delta distribution concentrated on � = @
[�]. In

this interpretation, (36) describes an in�nitesimal 'surface load' of permittivity on

� which has to be recovered from the mismatch in the data.

However, the expression on the right hand side of (36) is not an element of F

which causes problems when we want to calculate the inner products de�ned in

section 4.1. Therefore, we will introduce an approximation to the operator (36)

which maps from � into F and which will be more convenient for the derivation of

the reconstruction method.

For a given level set function � 2 �, let � = @
[�] and B�(�) = [y2�B�(y) a

small neighborhood of � with some given constant 0 < �� 1. The (approximated)

linearized operator �0[�] is de�ned as

�0[�] : � �! F;
�
�0[�]��

�
(x) = � [�̂� �b(x)]

��(x)

jr�(x)j
C�(�)�B�(�)(x): (37)

Here, C�(�) = L(�)=Vol(B�(�)) where L(�) =
R
Br(0)

�̂�(x)dx is the length of the

boundary �, and Vol(B�(�)) =
R
Br(0)

�B�(�)(x)dx is the volume of B�(�). For a very

small � we will get a very large weight C�(�), whereas for increasing � this weight

C�(�) decreases accordingly. The operator de�ned in (37) maps now from � into F

such that we can make use of the inner products de�ned on these spaces.

We mention that the term jr�(x)j in (35), (36), as well as the derivation of

these expressions, implies some regularity constraint on �. For example, � 2 C1

would be possible. Another possibility would be to use a 'signed distance function'

14



as a standard representation of the boundary [42]. We do not want to specify the

regularity of � at this point, but assume instead that it is 'su�ciently smooth' for

our purposes.

The linearized residual operator R0

jk
[�s] is de�ned by

R0

jk
[�s] : F �! Zj ; R0

jk
[�s]��s = Mjvjk (38)

where vjk solves the linearized equation

�vjk + [ak(�b + �s)(x) + ib�(x)] vjk = � ak��s(x)ujk(x) (39)

with ujk a solution of (31). This representation can be derived by perturbing

�s ! �s + ��s ; ujk ! ujk + vjk; (40)

plugging this into (31) and neglecting terms which are of higher than linear order in

the perturbations ��s, vjk.

Notice that the right hand side of (39) can be interpreted as a 'scattering source'.

We will use this concept later for solving our inverse scattering problem approxi-

mately in order to �nd a starting guess for the shape reconstruction scheme. But

we want to mention here already that the linearization assumption built into (38),

(39), namely that vjk is small compared to ujk, will not be necessary when solving

the inverse scattering problem. That will allow us to circumvent some di�culties

which often arise in high contrast inverse problems due to the occurence of strong

nonlinearities.

As our third linearized operator, we introduce the linearized forward operator

T 0
jk
[�] by putting

T 0
jk
[�] : � �! Zj ; T 0

jk
[�]�� = R0

jk
[�(�)] �0[�]��: (41)

All three operators �0[�], R0

jk
[�s], and T 0

jk
[�] are linear.

4.4 A nonlinear Kaczmarz-type approach

The algorithm works in a 'single-step fashion' as follows. Instead of using the data

(10) for all sources and all frequencies simultaneously, we only use the data for one

source and frequency at a time while updating the linearized residual operator after

each determination of the corresponding incremental correction ��. So, in each step

we will look for a solution of the equation

T 0jk[�]��jk = �Tjk(�) (42)
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for a given source index j = 1; : : : ; p and a given frequency index k = 1; : : : ;K.

After correcting � by

� �! �+ ��jk; (43)

we use the updated residual equation (42) to compute the next correction ��j0k0 .

Doing this for one equation after the other, until each of the sources qj and each of

the frequencies fk has been considered exactly once, will yield one complete sweep of

the algorithm. This procedure is similar to the Kaczmarz method for solving linear

systems, or the algebraic reconstruction technique (ART) in x-ray tomography [32]

and the simultaneous iterative reconstruction technique (SIRT) as presented in [16].

Related approaches have also been employed in ultrasound tomography by Natterer

and W�ubbeling [33], in more general bilinear inverse problems by Natterer [34], in

optical tomography by Dorn [17], and in 3D-electromagnetic induction tomography

(EMIT) by Dorn et alii [18].

4.5 The minimization problem

Let us assume now that we are given a level set function �(n)(x) and a scattering

potential �(n)
s

(x) such that (
(n); �b+�
(n)
s
; �(n)) forms an admissible triple in the sense

of de�nition 3.3. Using a data set ~Gjk corresponding to the �xed source position

qj and the frequency fk, we want to �nd an update ��(n) to �(n) such that for the

admissible triple �

(n+1); �b + �(n+1)

s
; �(n+1)

�
:= (44)�


[�(n) + ��(n)]; �b +�(�(n) + ��(n)); �(n) + ��(n)
�

the residuals in the data corresponding to this source and this frequency vanish

Tjk(�
(n+1)) = Tjk(�

(n) + ��(n)) = 0: (45)

Applying a Newton-type approach, we get from (45) a correction ��(n) for �(n) by

solving

T 0
jk
[�(n)]��(n) = �Tjk(�

(n)) = �
�
Mjujk � ~Gjk

�
(46)

where ujk satis�es (31) with �s = �(�(n))

�ujk +
h
ak(�b +�(�(n)))(x) + ib�(x)

i
ujk = qj(x) (47)

and

�b(x) + �(�(n))(x) =

(
�̂ ; x 2 
[�(n)]

�b(x) ; x 2 IR2 n
[�(n)]:
(48)

Since we have only few data given for one source and one frequency, equation (46)

usually will have many solutions (in the absence of noise), such that we have to pick
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one according to some criterion. We choose to take that solution which minimizes

the energy norm of ��(n)

Min k��(n)k2 subject to T 0
jk
(�(n))��(n) = �

�
Mjujk � ~Gjk

�
: (49)

This solution can be formulated explicitly. It is

��
(n)
MN = �T 0

jk
[�(n)]�

�
T 0
jk
[�(n)]T 0

jk
[�(n)]�

��1 �
Mjujk � ~Gjk

�
; (50)

where T 0
jk
[�(n)]� denotes the adjoint operator to T 0

jk
[�(n)].

4.6 The adjoint linearized operators

In order to calculate the minimal norm solution (50), we will need practically useful

expressions for the adjoints of the linearized operators of section (4.3). We will

present such expressions in this section. The calculation of the actions of these

operators will typically require to solve an adjoint Helmholtz problem. This explains

the name 'adjoint �eld method' of the inversion method employed here.

To start with, a simple calculation gives us the following theorem.

Theorem 4.1 The adjoint operator �0[�]� which corresponds to the linearized op-

erator �0[�] is given by

�0[�]� : F �! � ;
�
�0[�]���s

�
(x) = � [�̂� �b(x)]

��s(x)

jr�(x)j
C�(�)�B�(�)(x): (51)

The next theorem describes the adjoint operator R0
jk
[�s]

� which corresponds to

R0
jk
[�s]. Its proof is analogous to the proof of Theorem 4.1 in the appendix, or to

the proof given in a similar situation in Dorn et al. [18], and is therefore omitted

here.

Theorem 4.2 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to qj. Then the action of the adjoint operator R0
jk
[�s]

� on �

is given by

R0

jk[�s]
�� = �

1

ak
Re (ujkzjk) �Br(0) (52)

where ujk solves

�ujk + �k(x)ujk = qj(x); (53)

and zjk solves the 'adjoint equation'

�zjk + �k(x)zjk =

DjX
d=1

��d�(x� xjd) (54)

with

�k(x) = ak[�b(x) + �s(x)] + ibk�(x) (55)

and ak, bk de�ned as in (7).
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Finally, by combining theorems 4.1 and 4.2, we get an expression for the adjoint

operator T 0
jk
[�]� which corresponds to the linearized forward operator T 0

jk
[�]. It is

described in the following theorem.

Theorem 4.3 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to qj. Then the adjoint operator T 0
jk
[�s]

� acts on � in the

following way

T 0jk[�]
�� = �0[�]�R0

jk[�(�)]
�� (56)

=
[�̂� �b(x)]

akjr�(x)j
Re (ujkzjk) C�(�)�B�(�)(x);

where ujk solves (53) and zjk solves (54) with �s replaced by �(�).

4.7 The operators T 0

jk
T
0 �

jk

Let us consider the operator

C
(n)
jk

:= T 0jk[�
(n)]T 0jk[�

(n)]� (57)

in (50) more closely. Using (41) it gets the form

C
(n)
jk

= R0

jk
[�(�(n))] �0[�(n)] �0[�(n)]�R0

jk
[�(�(n))]�: (58)

With (37), (51) we see that, due to the operator �0[�(n)] �0[�(n)]� in (58), C
(n)
jk

maps

�rst from the data space to functions in F or � which are supported on B�(�), and

then back to the data space. In a discretized setting, it might happen that for a

coarse mesh (and a small �) the number of pixels representing B�(�) becomes close

to (or even smaller than) the number of data points. This observation lets us expect

that the inversion of C
(n)
jk

in (50) will be highly ill-conditioned and unstable. This

is con�rmed by our numerical experiments so far.

Therefore, we will regularize the inversion of C
(n)
jk

and the action of its inverse

on the right hand side of (46).

4.8 Regularization of T 0

jk
T
0 �

jk

A standard way of regularization is the Tychonov-Phillips regularization scheme

which amounts to replacing the operator T 0
jk
[�(n)]T 0

jk
[�(n)]� in (50) by the operator

T 0jk[�
(n)]T 0jk[�

(n)]� + �I (59)

with some suitably chosen regularization parameter � > 0. A small � means little

regularization, whereas in the case of very noisy data we might wish to use a very
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large � such that (59) is dominated by the term �I and we can approximate it

further by a simple multiplication with the regularization parameter �.

However, motivated by the above mentioned observations, we choose a di�erent

form of regularization. First, we add a Tychonov-Phillips term to �0[�(n)] �0[�(n)]�

such that the right hand side of (58) becomes

C
(n)
jk

� R0

jk
[�(�(n))]

�
�0[�(n)] �0[�(n)]� + �I

�
R0

jk
[�(�(n))]�: (60)

Now, using a very large regularization parameter �, we approximate (60) further by

C
(n)
jk

� �R0
jk
[�(�(n))]R0

jk
[�(�(n))]�: (61)

Since calculating the operator (61) in each step of the inversion routine is still

very time-consuming, we approximate this operator further by replacing the argu-

ment �(�(n)) by the background scattering potential which is zero. Therefore, we

end up with the following approximation for C
(n)
jk

C
(n)
jk

� Ĉjk := R0

jk[0]R
0

jk[0]
� for all n = 1; 2; : : : (62)

The multiplicator � is neglected in (62) since it becomes part of the relaxation

parameter in our inversion scheme. We see that we have replaced in (62) the highly

ill-conditioned and di�cult to calculate operator C
(n)
jk

by a much better conditioned

operator Ĉjk which has to be computed only once and which can be precalculated

before starting the inversion routine.

The next theorem tells us how to practically compute the operator Ĉjk for a

given background permittivity �b.

Theorem 4.4 Let us assume that we are given a background permittivity distribu-

tion �b, a �nite set of sources qj, j = 1; : : : ; p, and for each of these sources a �nite

set of receiver positions xjd, d = 1; : : : ;Dj. We apply each of the sources with K dif-

ferent frequencies fk, k = 1; : : : ;K. The operators Ĉjk, j = 1; : : : ; p, k = 1; : : : ;K,

are then described by Dj �Dj matrices of the form

Ĉjk =

(Z
Br(0)

ujk(x)'dk(x)ujk(x)'lk(x)

)
l = 1; : : : ; Dj

d = 1; : : : ; Dj

; (63)

where '�k solves

�'�k + (ak�b + ibk�)'�k = �(x� xj�) (64)

and ujk solves

�ujk + (ak�b + ibk�)ujk = qj: (65)

The index � in (64) can stand for a receiver index d or l. In (63), the receiver index

l is the row index, and the receiver index d is the column index of Ĉjk.
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The proof of this theorem is similar to the proof of Theorem 5.2 given in the

appendix such that we omit it here.

4.9 Updating the level set function

In order to calculate a correction ��
(n)
MN by (50) we have to apply the operator

T 0
jk
[�(n)]� to the vector

� := Ĉ�1
jk

�
Mjujk � ~Gjk

�
: (66)

An explicit formula for T 0
jk
[�(n)] was already given in (56)

T 0
jk
[�(n)]�� =

[�̂� �b(x)]

akjr�(n)(x)j
Re

�
ujk(x)zjk(x)

�
C�(�)�B�(�)(x); (67)

where ujk and zjk solve (53)- (55) with �s replaced by �(�(n)).

To stabilize the reconstruction scheme, we replace the term jr�(x)j in (67) by

some constant c1. Doing so we avoid dividing by numerical derivatives which might

cause instabilities due to numerical noise and roundo� errors. This is justi�ed as

long as jr�(x)j does not vary too much along the boundary. It turns out that the

updates we apply in our numerical examples to the level set functions usually justify

this assumption. In cases with limited view and very noisy data, however, we will

apply an additional 'smoothing procedure' (which is described in section 4.10) to

the level set functions near the boundary after each update in order to guarantee

the necessary regularity for the succeeding steps.

With these modi�cations, (50) yields the following update formula for the level

set function

��̂(n)(x) = �
�̂� �b(x)

c1ak
Re

�
ujk(x)zjk(x)

�
C�(�)�B�(�)(x) (68)

where ujk and zjk solve (53)- (55) with � given by (66) and �s replaced by �(�(n)).

Notice that, although we did not explicitly impose any regularity constraints on

the updates (68), they are in the range of R0
jk
[�(�(n))]� (up to the factor �̂� �b(x))

which implicitly gives us some information about the regularity we can expect. Our

numerical experiments so far indicate that the degree of regularity which is achieved

by applying (68) is typically su�cient 'for practical purposes' in those situations

where the data are not too noisy and where we have suitably arranged receiver

positions all around the obstacles. (This is the 'full view' situation.)

However, in cases of noisy and limited-view data, the resulting boundaries look

rough and fuzzy, in particular when high-frequency data are used for the reconstruc-

tion. In these situations, we can improve the results by applying some additional

regularization on �. A possible way of doing so is to �lter the level set function after
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each update in order to smooth it locally. An example for such a procedure is 'curve

shortening by di�usion', which is brie
y described at the end of section 4.10.

We mention that an interesting (and from a mathematical point of view more

satisfactory) alternative to this procedure would be to apply some additional reg-

ularity constraints already in the derivation of (68), such that we would not have

to worry at all about the smoothness of the resulting level set functions. We will

investigate possible ways of doing so in our future research.
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4.10 Implementation: The levelART algorithm

In brief algorithmic form, the nonlinear Kaczmarz-type method for shape recon-

struction using level sets (which we call for short 'levelART' because of its above

mentioned similarity to the 'ART' algorithm in x-ray tomography) can be written

in the following way.

Preparation step.

� Calculate Ĉjk and

Djk = Ĉ�1
jk

(69)

according to (63) for each source qj, j = 1; : : : ; p, and each frequency fk,

k = 1; : : : ;K, and store in memory for later use.

� Build groups of frequencies Gm = ff1; : : : ; fKmg, m = 1; : : : ;M .

Initialization.

n = 0;

(
(0); �(0); �(0)) given from STAF.

Reconstruction loop.

FOR m = 1 : M march over frequency groups Gm

FOR i = 1 : Im perform Im sweeps for frequency group Gm

FOR k = 1 : Km march over frequencies in Gm

FOR j = 1 : p march over sources qj for each frequency

�jk = Djk(Mjujk � ~Gjk); ujk solves (53) with �(n)

��jk = � �̂��b(x)
ak

Re(ujkzjk)�B�(�); zjk solves (54) with �(n) and �jk

END

��(n)(x) =
Pp

j=1 ��jk(x);

�(n+1) = C
(n)
LS (�

(n) + �
C�(�)
c1

��(n)); update level set function

Optional step: 'curve shortening' by di�usion. See separate chart.

�(n+1) = �b +�(�(n+1)); n = n+ 1; Reinitialization n! n+ 1

END

END alternatively, some stopping criteria can be used here

END

(
(N); �(N); �(N)) = (
[�(n)]; �b +�(�(n)); �(n)); Final reconstruction.
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Here, � is a relaxation parameter for the update of the level set function which

is determined empirically. The constant C�(�) could be calculated explicitly for

the actual curve �(n), or it could be approximated by some value corresponding

to a simple geometrical object (to give an example, in case of a single circle it

would be C�(�) = (2�)�1). In our numerical experiments so far, however, it is

simply considered as part of �. The same holds true for c1. The constant � is in

our numerical experiments chosen between 30-40 cm, which corresponds to 2-3 grid

cells. The scaling factor C
(n)
LS is determined after each update to keep the global

minimum (or maximum) of the level set function at a constant value.

The following smoothing �lter on the level set function is optional. We usually

apply it when we use noisy high-frequency data for the reconstruction. Especially in

the limited-view examples presented in sections 6.3 and 6.4, the application of this

�lter improves the reconstructions signi�cantly. Smoothing the level set function

with this �lter has the e�ect of local curve shortening. Roughness and small scale

oscillations in the reconstructed boundaries are smoothed out such that the 'energy'

of the reconstructed boundaries is reduced. The �ltering step can be described as

follows.

Optional step: 'Curve shortening' by di�usion.

Introduce arti�cial time � 2 IR. @

@�
= time derivative, � = Laplace operator.

Solve initial value problem (with absorbing boundary conditions) on Br(0):

~�(x; 0) = �(n+1)(x);

@

@�

~�(x; �) = �~�(x; �); � 2 [0; T�]; x 2 Br(0).

�(n+1)(x) = ~�(x; T�),

with regularization parameter T�.

5 Step 1: A Source-Type Adjoint Field method

For starting our shape reconstruction method using level sets we will need an initial

guess (
(0); �(0); �(0)).

Although it is possible just to create an arbitrary initial guess without using any

data at all, we believe that it is important for the e�ciency and the robustness of

such a method to start it with a good initial guess. There are several reasons for

this. First, when deriving the shape reconstruction method (which we will call for

short 'levelART' in the following) we used a perturbation approach which is strictly
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justi�ed only when we already have a good �rst guess available. Moreover, we see

in our numerical experiments that starting with a good initial guess stabilizes the

shape reconstruction routine, in particular in cases where the data are incomplete

and noisy. In addition, �nding a good �rst guess reduces the amount of work which

has to be done by the levelART routine itself, such that in the end the combined

code will converge much more rapidly than levelART alone would do without a good

initialization.

In this section, we will present the second key point of our combined inversion

scheme, namely a fast, inexpensive and stable method for �nding a very good �rst

guess (
(0); �(0); �(0)) for levelART. This method is designed to share basic features

with the levelART algorithm, such that it can be implemented in addition to leve-

lART with almost no extra cost.

5.1 Source-type methods

In the framework of inverse scattering problems, the method we propose here can

be considered as a 'source-type inversion method'. Roughly speaking, the general

idea of source-type reconstruction methods in inverse scattering is to split a given

nonlinear inverse scattering problem into two subproblems. The �rst one is linear,

and tries to recover a virtual 'equivalent source' in the medium which would be able

to �t the data if applied with the known background distribution. This equivalent

source is related to the unknown scattering potential by a nonlinear 'constitutive'

relation. Therefore, in the second part of the algorithm, a nonlinear inverse problem

has to be solved to derive the scattering potential from the recovered equivalent

source distribution.

This idea is not at all new. It has been applied for example in the Source-Type

Integral Equation (STIE) method of Habashy et al [21], or in the method presented

by Chew et al. in [9]. More recently, similar ideas have been applied by Abdullah

et al. [1], Caorsi et al. [6], and van den Berg et al. [46, 47].

All of these approaches have in common that they use the source-type method as

a stand-alone inversion scheme. Such a method has the advantage that it is not as

sensitive to strong nonlinearities in the inverse problem as for example perturbation

methods or the Born or Rytov approximation are [15, 20, 27].

On the other hand, interpreting the inverse scattering problem as an inverse

source problem is not without drawbacks. For example, the existence of so-called

'non-radiating sources' or 'invisible sources' gives rise to a nonuniqueness in the in-

verse source problem, which is di�cult to deal with when solving the nonlinear part

[1, 14, 21]. Moreover, it is not clear at all how to combine properly the information

corresponding to di�erent experiments, since each experiment creates its own 'equiv-
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alent sources' and its own 'invisible sources'. For more information about possible

applications, advantages and drawbacks of the source-type scheme as a stand-alone

inversion tool we refer to [1, 5, 6, 9, 14, 21, 46, 47].

Our approach is di�erent from those mentioned above. We only want to �nd

a good approximation to the scattering potential, and a corresponding initial level

set function suitable to start the shape reconstruction routine. Moreover, we can

make use of our prior information about the permittivity distribution. This will

allow us to circumvent most of the problems of source-type schemes which have

been mentioned above.

We will now describe this method, which we will call the Source-Type Adjoint

Field (STAF) method, in more details.

5.2 Solving the inverse scattering problem

Consider the inverse scattering problem formulated in section 3.1. The decomposi-

tion (13), (14) reads

~�(x) = �b(x) + ~�s(x) (70)

with some (known) background distribution �b and the (unknown) scattering poten-

tial ~�s having compact support, supp(~�s) �� Br(0). The goal is to �nd ~�s(x) from

the data (9).

We already mentioned above that we actually will not recover the entire function

~�s(x) from the data ~Gjk in this preprocessing step. All we will �nd is 1.) A very

good �rst guess for the scattering potential �(0)
s

which will be part of the initializing

triple (
(0); �b + �(0)
s
; �(0)), and 2.) A corresponding level set function �(0). We will

freely make use of the prior information resulting from the knowledge of �̂ inside

the estimated scatterer 
(0). However, our numerical results so far indicate that the

method proposed here -if suitably adapted- can actually be used to �nd, in addition

to 
(0) and �(0), also a good �rst estimate �̂(0) for the contrast �̂. This will be used

in our future work to start a reconstruction method which tries to recover ~
 and �̂

simultaneously from the given data.

For a �xed frequency fk and a source qj, let ~ujk be the solution of

�~ujk + (ak(�b + ~�s)(x) + ib�(x)) ~ujk = qj(x); (71)

and let ujk be the solution of the 'unperturbed' equation

�ujk + (ak�b(x) + ib�(x)) ujk = qj(x): (72)

De�ne

~vjk := ujk � ~ujk: (73)
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Subtraction of (72) from (71) shows that ~vjk solves

�~vjk + (ak�b(x) + ib�(x)) ~vjk = ~Qs

jk
(x); (74)

where the 'scattering source' ~Qs

jk
(x) is de�ned as

~Qs

jk
(x) = ak~�s(x)~ujk(x): (75)

We introduce a 'source type' forward operator Ajk by putting

Ajk : Y �! Zj ; AjkQ
s

jk
= Mjvjk (76)

where Mj is the measurement operator de�ned in (8), and vjk solves

�vjk + (ak�b(x) + ib�(x)) vjk = Qs

jk(x): (77)

The operator Ajk is linear.

Let us assume now that we apply the 'correct' scattering source ~Qs

jk
(x) de�ned

by (75) as argument of Ajk. Then we know from (9), (29), (30) that

Ajk
~Qjk = Mj~vjk = Mj(ujk � ~ujk) = Mjujk � ~Gjk = Rjk(0): (78)

The vectors Rjk(0) are easily computed by solving a forward problem on the back-

ground distribution (72). Therefore, all we have to do to get back the scattering

source ~Qs

jk
from the data ~Gjk is to solve (78) for ~Qs

jk
. Doing so amounts to solving

an ill-posed but linear inverse problem.

Once we have recovered ~Qs

jk
(x), we want to get back ~�s(x) out of it by using

the constitutive relation (75). This second part of the inversion scheme can be

interpreted as solving a nonlinear inverse problem since ~ujk(x) depends on ~�s(x).

Notice that ~Qs

jk
(x) varies with di�erent sources and frequencies, but that ~�s(x)

is the same for all sources and all frequencies (if we neglect dispersion). We will

make use of this observation when we try to solve the nonlinear part (75). In the

following, we describe the method which we will use to recover the scattering source

~Qs

jk
(x) from a given data set ~Gjk for a �xed source qj and a �xed frequency fk.

5.3 Looking for a scattering source

Since for a �xed (primary) source position and a �xed frequency we have only few

data given to recover ~Qs

jk
, and since we have to take into account that also 'non-

radiating' and 'invisible' sources have been generated in the experiment, we assume

that there will be many solutions (in absence of noise) of (78). To pick one we are

looking for the solution with minimal norm

Min kQs

jk
kY subject to AjkQ

s

jk
= Rjk(0): (79)
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It is given by

Qs

jk;MN
= A�

jk

�
AjkA

�

jk

��1
Rjk(0); (80)

where A�
jk

denotes the adjoint operator to Ajk.

The following theorem, which is proven in the appendix, tells us how to calculate

the action of A�

jk
on a vector � 2 Zj in an e�cient way.

Theorem 5.1 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to the source qj. Then, A�

jk
� is given by

A�

jk
� = zjk�Br(0); (81)

where zjk solves

�zjk + (ak�b + ibk�) zjk =

DjX
d=1

�d�(x � xjd): (82)

Corollary 5.1 Let '�k solve

�'�k + (ak�b + ibk�)'�k = �(x� xj�): (83)

Then, we can write (81) in the alternative form

�
A�
jk�

�
(x) =

DjX
d=1

�d'dk(x)�Br(0)(x) =

DjX
d=1

�d'dk(x)�Br(0)(x): (84)

The next theorem, which is proven in the appendix, gives an explicit expression

for the operators AjkA
�

jk
.

Theorem 5.2 Let us assume that we are given a background permittivity distri-

bution �b and a �nite set of receiver positions xjd, d = 1; : : : ;Dj. The operators

AjkA
�
jk
, j = 1; : : : ; p, k = 1; : : : ;K, are then described by Dj �Dj matrices of the

form

AjkA
�

jk =

(Z
Br(0)

'dk(x)'lk(x)

)
l = 1; : : : ; Dj

d = 1; : : : ; Dj

; (85)

where '�k solves (83) and the index � can stand for a receiver index d or l. In (85),

the receiver index l is the row index, and the receiver index d is the column index of

Ĉjk.

Remark. Notice that (85) does not depend on the sources qj, but only on the

arrangement of the detectors and on the background permittivity distribution �b.

The operators AjkA
�

jk
can be precomputed before starting the inversion routine,
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and this has to be done only once for each frequency as long as we use the same

arrangement of detectors for all sources qj, j = 1; : : : ; p.

In the case of noisy data we will invert AjkA
�

jk
+ �I instead of AjkA

�

jk
in (80)

with a suitably chosen regularization parameter � > 0. This amounts to applying

Tychonov-Phillips regularization.

5.4 Recovery of the scattering potential

After we have found a scattering source Qs

jk
which satis�es (79), we want to use the

constitutive relation

Qs

jk
(x) = ak~�s(x)~ujk(x); (86)

which holds for the 'correct' scattering source ~Qs

jk
according to (75), to �nd an

approximation for ~�s(x).

Let ~ujk be a solution of (71) and ujk a solution of (72). We decompose Qs

jk
, ~ujk,

ujk and ~�s into amplitude and phase

Qs

jk(x) = jQs

jk(x)j e
ir(x); ~ujk = j~ujkj ei~s(x); (87)

ujk = jujkj eis(x); �s(x) = j�s(x)j eit(x); (88)

where we have omitted the subscripts jk in the argument functions r, ~s, s, and t for

simplicity in the notation. Making use of the fact that ~�s(x) 2 IR we see that

t(x) 2 f0; �g for all x 2 IR2: (89)

With (87),(88) equation (79) decomposes into two equations, one for the amplitude

and one for the phase. They are

jQs

jk
(x)j = ak j~�s(x)j j~ujkj; (90)

r(x) = ~s(x) + t(x): (91)

The observation in our numerical experiments is that, although s(x) and ~s(x) might

be quite di�erent from each other for large perturbations ~�s(x), the amplitudes

jujk(x)j and j~ujk(x)j most often do not di�er too much from each other in the

scattering region. Therefore, in our applications it is a reasonable approximation to

assume that

j~ujk(x)j � jujk(x)j in Br(0): (92)

With this approximation, (90) yields the following estimate for j~�s(x)j

j~�(jk)
s

(x)j �
jQs

jk
(x)j

akjujk(x)j
in Br(0): (93)
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We have added the indices j and k on the left hand side of (93) to indicate that

we have used only the data ~Gjk corresponding to source qj and frequency fk for its

determination.

Notice that the step (92), (93) is nonlinear since taking the amplitude of a

complex number is a nonlinear operation. Therefore, the approach presented here is

quite di�erent from the usual Born approximation which approximates ~ujk by ujk.

For the purposes of the present paper, the determination of j~�s(x)j is already
su�cient in order to get a good �rst guess for the scattering potential �(0)

s
(x) and for

the level set function �(0)(x), since we can now make use of our prior information

about the correct value of �̂ in (12).

We mention, however, that the recovery of the phase t(x) is also possible from

(86). (This will be necessary for example when we try to recover ~
 and �̂ simul-

taneously from the given set of data ~Gjk.) We can do this by using equation (91).

We already mentioned that the assumption ~s(x) � s(x) might be quite wrong for

situations with large scattering potentials ~�s(x). However, in our situation we only

have to decide whether t(x) is zero or �, which means that we have to determine

whether in (91) r(x) = ~s(x) or r(x) = ~s(x)� � is satis�ed. Therefore, a reasonable

estimate for t(x) is to put

t(jk)(x) =

(
0 ; js(x)� r(x)j < �=2;

� ; elsewhere:
(94)

Our numerical experiments so far show that a suitable combination of these estimates

resulting from many source positions gives a very good reconstruction of the phase

t(x) in Br(0) even in the situation of limited view and noisy data. We will not need

this estimate in the present paper.

5.5 Combining the results from single experiments

We can combine now the estimates j~�(jk)
s

(x)j from many source positions qj, j =

1; : : : ; p, by putting

j~�(k)
s
(x)j =

1

p

pX
j=1

j~�(jk)
s

(x)j: (95)

If we want to take into account also the information corresponding to many

frequencies we can do so by putting

j~�s(x)j �
1

pK

KX
k=1

pX
j=1

j~�(jk)
s

(x)j (96)

where the sum is over all frequencies fk, k = 1; : : : ;K, and all source positions qj ,

j = 1; : : : ; p. In (96) we have neglected dispersion.
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A similar strategy can be employed to improve the estimates for the phase

t(jk)(x).

5.6 The initial level set function

We are now ready to de�ne the initial triple (
(0); �(0); �(0)).

We assume that we are working in a high contrast situation, such that exactly

one of the following conditions is satis�ed

�̂� �b(x) � 0 for all x 2 ~
 (97)

�̂� �b(x) � 0 for all x 2 ~
: (98)

Since we know �̂ and �b(x), we know the constant

sign(~
) :=

(
1 ; if (97) holds

�1 ; if (98) holds.
(99)

Let us assume that we want to use j~�(k)
s
(x)j as de�ned in (95) for a �xed frequency

fk to specify the level set function �(0). Choose a threshold value 0 < 
LS < 1 (in

our numerical examples presented in section 6 we use 
LS = 0:7) and de�ne

�LS := 
LS max
x2Br(0)

j~�(k)
s
(x)j: (100)

For the level set zero L
(0)
0 of �(0) we require that

L
(0)
0 =

n
x 2 Br(0) : j~�(k)

s
(x)j = �LS

o
: (101)

This means that we want all points of Br(0) where the reconstruction j~�(k)s
(x)j has

exactly the value �LS to be mapped to zero by the level set function �(0)

�(0)(x) = 0 for all x 2 L
(0)
0 : (102)

The level set function is now de�ned as

�(0)(x) = C
(0)
LS sign(~
)

�
�LS � j~�(k)s

(x)j
�
; (103)

where C
(0)
LS is some suitably chosen scaling factor. Notice that (102) and (103) are

consistent.

The initial scattering domain 
(0) and the permittivity �(0) are de�ned as


(0) = 
[�(0)]; �(0) = �b +�(�(0)): (104)

Together with �(0) they form an admissible triple (
(0); �(0); �(0)).
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5.7 Implementation: The STAF algorithm

In brief algorithmic form, the Source Type Adjoint Field (STAF) scheme can be

written in the following way.

Preparation step.

� Select a group of frequencies Gs = ff1; : : : ; fKsg which are used for the STAF

reconstruction. Typically, this is just one frequency.

� Calculate AjkA
�

jk
according to (85) for each frequency f 2 Gs. The operator

AjkA
�
jk

does not depend on the index j if we use the same detector positions

for all sources.

� Calculate

Bjk =
�
AjkA

�

jk

��1
or Bjk =

�
AjkA

�

jk
+ �I

��1
(105)

for all f 2 Gs and store in memory for later use.

Reconstruction step.

FOR k = 1 : Ks

FOR j = 1 : p

Rjk(0) =Mjujk � ~Gjk, ujk solves (72)

�jk = BjkRjk(0), Bjk from (105)

Qs

jk
= A�

jk
�jk = zjk�Br(0), zjk solves (82)

j~�(jk)
s

(x)j =
jQs

jk
(x)j

akjujk(x)j

END

END

j~�s(x)j = 1
pKs

P
Ks

k=1

Pp

j=1 j~�
(jk)
s

(x)j, x 2 Br(0)

�(0)(x) = C
(0)
LS sign(~
)(�LS � j~�s(x)j) as in (103)

(
(0); �(0); �(0)) = (
[�(0)]; �b +�(�(0)); �(0)).

6 Numerical Experiments

6.1 Discretization of the computational domain.

In our numerical experiments, we use a Finite-Di�erences Frequency Domain (FDFD)

code written in MATLAB for solving (1)-(3). The code uses appropriately designed
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perfectly matched layers (PML) to avoid re
ections at the arti�cial computational

boundaries [36, 37].

The system which results after discretization is solved by a simple Gauss elimina-

tion scheme, which is re
ected in the implementation shown in sections 4.10 and 5.7.

The LR-factorization corresponding to the most recent best guess is used there to

calculate the �elds for all transmitters and all receivers simultaneously. Therefore,

the computational cost for solving all necessary forward and adjoint problems is just

one LR-factorization for STAF, and one LR-factorization per update for levelART.

If a di�erent solver is used (e.g. GMRES or QMR), then we might �nd more e�cient

strategies than those presented in sections 4.10 and 5.7. We mention also that an

iterative solver has been developed recently in [25] which is optimized to work on

several source distributions simultaneously.

The physical domain is partitioned into 100�100 elementary cells (pixels) in the

�rst numerical example, and into 180� 110 elementary cells in the second and third

example. Each of these grid cells has a physical size of about 0:14 � 0:14 m2, such

that the total computational domain in the �rst example covers an area of 14� 14

m2, and in the other two examples of 15� 25 m2. The eight layers which are closest

to the boundaries of the computational domain are used as a PML.

We will refer to the �rst numerical example as the 'full-view' situation, and to the

other two numerical examples as the 'limited-view', 'cross-borehole' or 'geophysical'

situations. This terminology is motivated by the source and receiver geometries

used, which are as follows.

In the full-view example, we have 64 sources and receivers given which surround

the domain of interest. Each source position is at the same time a receiver position

and vice versa. The distance of two adjacent sources or receivers from each other is

four pixels or about 55 cm. The area enclosed by these sources and receivers has a

size of 10 � 10 m2.

In the two limited-view examples, 74 sources and receivers are positioned equally

spaced in two boreholes. The distance of two adjacent sources or receivers from each

other is again 4 pixels or 55 cm, and the distance of the two boreholes from each

other is about 10 m.

We mention that, in all of our numerical examples, the regions beyond the source

and receiver positions are part of the inversion problem, too. This means, the area

which has to be recovered from the data is the whole area situated between the

PML boundaries. In some of our numerical experiments, artifacts can be observed

developping in the outer areas during the early stages of the reconstruction process.

We apply time-harmonic dipole sources of the form (11) with frequencies of

f = 5, 10, 15, 20, 25, or 30 MHz. In our examples, this corresponds to wavelengths
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in the background medium between 2 meters for f = 30 MHz and 13 meters for

f = 5 MHz. The size of an individual grid cell is chosen such that each of these

wavelengths is sampled by at least 16 pixels in order to avoid numerical artifacts

due to undersampling.

The data in our numerical examples are generated by running the FDFD forward

modelling code on the correct permittivity and conductivity distributions. Using the

same forward code for creating the data and for doing the reconstruction is usually

called 'inverse crime'. Therefore, to make sure that the situations we model in our

experiments are as realistic as possible, we have tested the forward modelling code

thoroughly, and add Gaussian noise with signal-to-noise ratios between 10 and 5 dB

to the real and imaginary parts of the generated data.

6.2 A full-view example

Our �rst numerical example tests whether the derived algorithm is able to recon-

struct a relatively complicated shape in the ideal situation where sources and re-

ceivers completely surround the area of interest. The geometry of this example is

shown in Figure 1. The positions of the sources and receivers are indicated by dots

in the Figure. The background medium in this example consists of a homogeneous

conductivity distribution �b = 3:0 � 10�4 Siemens/m, and a homogeneous permit-

tivity distribution �b = 20. Inside the object, the permittivity is �̂ = 15, having a

moderate contrast to the background distribution.

Notice that an interesting feature of this geometry is the 'hole' in the body of

the object which is di�cult to reconstruct. We will see that, during the evolution of

the permittivity in levelART, the boundaries of the reconstructed domain will split

and merge in the attempt to recover this geometry correctly.

First, we test the STAF algorithm in Figure 2 by reconstructing the permittivity

�(0) using only the data Gs = f30 MHzg. These data are noisy with a signal-to-noise
ratio (SNR) of 10 dB in the real and the imaginary parts. Compare the result with

the upper left image of Figure 3 where we used (noise-free) data with frequency

Gs = f5 MHzg.
A comparison of reconstructed permittivities for di�erent frequencies between 5

and 30 MHz shows that -in the ideal situation of sources and receivers completely

surrounding the area of interest- the STAF algorithm usually yields already a decent

approximation to the shape of the inclusion when applied to the data with the

highest frequencies, whereas it yields a reconstruction with decreasing resolution

when applied to data corresponding to lower frequencies.

Therefore, it seems to be most e�cient to apply the STAF algorithm directly

to the highest frequency data, such that we do not need at all any low-frequency
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information for the reconstruction. We will see in the following two geophysical

examples that this is certainly not true in applications where we have only data

with limited view available. In these cases, the use of lower frequency data stabilizes

the reconstruction process, and is necessary for preparing the �nal reconstruction

step using the higher frequency data.

We also want to demonstrate the performance of the levelART reconstruction

scheme when applied to this geometry. We start the algorithm by using as initial

permittivity �(0) the low resolution STAF reconstruction which is shown in the upper

left image of Figure 3, and the corresponding initial level set function �(0). No noise

is added to the data. Figure 3 shows di�erent stages in the reconstruction process.

We �rst apply levelART with a frequency of 10 MHz to this initial guess and run it

for 30 sweeps. Then, we run levelART with 20 MHz for 30 more sweeps, and �nally

for another 30 sweeps with 30 MHz. The �nal reconstruction �(N) is shown in the

lower right image of Figure 3. The �nal level set function �(N) corresponding to this

reconstruction is displayed in Figure 14.

We see from this example that the shape reconstruction algorithm using level

sets is able to split and merge boundaries easily in order to build up relatively com-

plicated geometries. In the present situation, splitting and merging of boundaries

was necessary for building the 'hole' in the reconstructed domain.

6.3 A cross-borehole situation with multiple objects

In our second numerical example, we consider a situation which is typical for geo-

physical applications. Comparable situations occur for example when we wish to

monitor pollutant plumes at environmental cleanup sites from cross-borehole EM

data.

We assume that we have 74 sources and receivers equidistantly distributed over

two boreholes. The distance of the boreholes from each other is 10 meters, and the

distance of two adjacent sources or receivers is 55 cm. The area between the two

boreholes has to be monitored given the gathered data. The geometry is shown in

Figure 4.

The background permittivity distribution in this example consists of four tilted

layers with values of �b = 21 in the top layer, and then continuing downwards with

20 , 19, and again 21 for the deepest layer. The conductivity distribution �b is

homogeneous with a value of �b = 3:0� 10�4 S/m everywhere.

Embedded in this background are three compact inclusions as shown in Figure

4. The permittivity inside these inclusions is �̂ = 5, having a high contrast to

the background values. The three inclusions are oriented such that there are two

'channels' of background material between them, one of them in the vertical and
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one in the horizontal direction. The di�culty in this example is to separate the

three inclusions from each other from the limited-view data. In particular, the

reconstruction of the vertical channel is critical since we expect that the resolution

in the horizontal direction will su�er from the missing data.

Again, we �rst apply the STAF reconstruction scheme to the data to get a �rst

guess of the permittivity distribution �(0). Figure 5 shows the result for Gs = f30
MHzg. Comparing this result with the reconstruction for the same frequency in

our �rst numerical example, we conclude that the performance of STAF for high-

frequency data is in the limited-view case not as good as in the case where we can use

data with full view. We observe that the vertical resolution of the reconstruction

is still good, whereas in the horizontal direction severe artifacts build up which

reduce the quality of the high-frequency STAF reconstructions as an initial guess

for levelART.

Figure 6 shows the corresponding STAF reconstruction using Gs = f5 MHzg.
We do not observe any artifacts in this reconstruction which might be caused by

the limited view in the data. Therefore, we see that the decreased resolution of

STAF using low-frequency data is in this situation compensated by a much higher

robustness with respect to missing data. Keeping this in mind, we will typically

start our reconstructions in the limited-view geometry by using the STAF result

which correspond to (one or more of) the lowest available frequencies.

Starting out from the permittivity �(0) as shown in Figure 6, and the corre-

sponding level set function �(0), we want to use the levelART algorithm in order

to calculate a series of shape deformations which transforms the initial shape into

the correct permittivity distribution. Figure 6 shows a reconstruction which uses

data where the real part and the imaginary part have been contaminated by addi-

tive Gaussian noise with a signal-to-noise ratio (SNR) of 10 dB before starting the

reconstruction process. Figure 7 shows the same reconstruction scheme, but with

an even lower SNR of now 5 dB in the data.

Di�erent strategies are possible for levelART. Which one works best, depends

on the speci�c situation, for example the number and arrangement of sources and

detectors, and on the noise level of the data. The strategy we use here (for both

SNR values) is the following: First, we apply 20 steps of levelART with a frequency

of 15 MHz to the initial guess. The result is shown in the lower left images of Figures

6 and 7. At this stage, the task of splitting the initial object into three subsets is

almost completed.

Then, we apply levelART with a combination of three frequencies, namely 20, 25,

and 30 MHz. This means that in a given sweep each of these three frequencies is used

exactly once in the prescribed order, before starting again with the lowest frequency
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(20 MHz) for the new sweep. This �nal step completes the reconstruction in just a

few (about 10) sweeps. The succeeding sweeps do not improve the reconstruction

signi�cantly. Moreover, the norms of the residuals approach a constant value as the

Figures 8 to 11 show.

Figures 8 to 11 show the evolution of the norms of the residuals during the

reconstruction process for di�erent signal-to-noise ratios in the data. The graphs

with the symbol '�' correspond to noiseless data, the graphs for a SNR of 10 dB are

indicated by '�', and those for a SNR of 5 dB by '+'.

Figure 8 shows the norms of the residuals for f = 15 MHz during the 20 steps

using the data with this frequency. The norms of the residuals decrease in all cases

continually during the reconstruction process. Figures 9 to 11 show the evolution of

the norms during the �nal 30 sweeps with the frequencies 20, 25 and 30 MHz. We see

that after 10 sweeps the residuals approach some constant value which depends on

the noise level of the data. In the lower right image of Figure 6, the reconstruction

for a signal-to-noise ratio of 10 dB after completion of these 10 sweeps is shown.

The corresponding level set function is shown in Figure 15.

Our experience is that marching over the higher frequencies in the described

fashion stabilizes the inversion procedure especially in the limited-view situation

considered here. However, so far we do not have any theoretical analysis which

supports this observation.

Notice the artifacts which appear in the case of an extremely low SNR of 5 dB in

Figure 7. These artifacts remain more or less stable when applying levelART with

a constant frequency of 15 MHz, and disappear when marching to the higher fre-

quencies in the succeeding reconstruction step. Notice that we also apply a di�usion

('curve shortening') �lter for these higher frequencies, see section 4.10.

We observe again that levelART has no problems in propagating and track-

ing these multiple artifacts, even when they �nally shrink and disappear. Notice

also that, similar to the �rst numerical example, the algorithm splits the original

boundary in order to arrive at the three separated inclusions forming the �nal re-

construction.

6.4 A cross-borehole situation with a single inclusion and variable

conductivity

In our third numerical example, we want to test a situation where the conductivity

inside the inclusions is di�erent from the given background values. Since we did not

take these conductivity changes into account when deriving the reconstruction algo-

rithm, the question arises how much the performance of the reconstruction method

will be e�ected by such changes in the conductivity distribution.
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We assume therefore that we know the two values �̂ and �̂ of the permittivity

and the conductivity inside the inclusions, but both of them are di�erent from the

background values. We run the STAF routine as usual, which amounts to treating

the conductivity changes simply as an additional form of noise. When applying

levelART, we calculate the updates ��(n) for the level set function �(n) in the same

way as derived above, but when determining the corresponding updated permittivity

distribution �(n), we update at the same time the conductivity distribution �(n) such

that �(x) = �̂ where the level set function �(n) has negative values. Strictly speaking,

we still invert only for the permittivity �, but we make use of the fact that inside

the obstacles the conductivity and the permittivity are closely related to each other.

Figure 12 shows the geometry of this example, and Figure 13 shows the results

for two di�erent conductivity values �̂ = 1:0 � 10�6 S/m and �̂ = 1:0 � 10�2 S/m.

Notice that these two values di�er from each other and from the background value

�b = 3:0 � 10�4 S/m by orders of magnitude! In both cases, Gaussian noise has

been added to the real and imaginary parts of the data with a signal-to-noise ratio

of 10 dB before starting the reconstruction routine.

As before, we start the reconstruction with the STAF guess corresponding to a

frequency of 5 MHz. After only six sweeps of levelART, using the frequencies 15,

20, 25, and 30 MHz one after the other in each sweep, we arrive in both cases at

a very good reconstruction of the permittivity distribution and of the conductiv-

ity distribution. We conclude that the performance of the reconstruction method

(STAF and levelART) is not signi�cantly e�ected by the changes in the conductivity

distribution.

This robustness with respect to changes in the conductivity certainly has its

limits. However, the example presented here makes us con�dent that in practi-

cal situations, when the conductivity value �̂ inside the obstacles is approximately

known and not too large (< 1:0� 10�2 S/m), the shape reconstruction method will

perform stably and reliably and will give us a good reconstruction of the actual

permittivity distribution.

7 Summary and future directions

We have presented a stable and e�cient two-step shape reconstruction algorithm

for EM cross-borehole tomography which uses adjoint �elds and level sets. We have

shown that this method is able to recover one ore more objects with nontrivial shapes

given noisy cross-borehole EM data.

The �rst step of this combined inversion scheme plays the role of an initializing

procedure for the second step, and employs a 'source-type' inversion scheme to deal
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with the high nonlinearity in the problem due to the presence of strong scatterers.

Although we believe that the preprocessing routine we propose here will work

well in most situations, it can be replaced by any other preprocessing tool which

shares the main features of the derived algorithm.

The second step of the inversion routine starts directly with the outcome of

this initializing procedure, and continues by using a combination of an 'adjoint �eld

technique' and a level set representation of the shapes until the inversion task is

completed. We have shown that using a level set representation in this second step

enables us to easily describe and keep track of complicated geometries which arise

during the inversion process.

We mention that the FDFD routine, which has been employed in both steps to

solve the forward and the adjoint Helmholtz problems, can be replaced by any other

more e�cient Helmholtz solver which has been tested to work reliably in the given

situation.

We have shown in our numerical experiments that the proposed reconstruction

scheme performs stably with respect to changes in the conductivity distribution, al-

though these conductivity changes have not been taken into account for the deriva-

tion of the scheme. It would be desirable, however, to extend the reconstruction

scheme to work simultaneously on the permittivity and the conductivity distribu-

tion. This seems to be possible, and we will address this problem in our future

work.

We also assume that we know the permittivity values inside the obstacles, and

that we only have to recover their shapes and their locations. In our future research,

we will investigate the situation where both, the shapes and the permittivity values

inside the obstacles, have to be recovered from the given data.

Throughout the paper, we have not clearly speci�ed the degree of regularity

which we require for the level set functions � representing the domains 
. A pos-

sible choice would be � 2 C1
0 (Br(0)) (i.e. continuously di�erentiable on Br(0) and

zero on @Br(0)), which would require some additional regularization in our numerical

experiments. We also have introduced in (72) an approximated linearized operator

�0[�] motivated by our wish to use convenient inner products. Are there any function

spaces which are more useful for our purposes? Will a practically useful reconstruc-

tion scheme result if we use di�erent inner products instead of introducing �0[�]? To

answer both questions, a thorough theoretical analysis has to be done to investigate

the implications of using di�erent function spaces for the level set representation.

The main ideas of the reconstruction method presented here are not restricted

to a 2D geometry. Therefore, we believe that it is possible to extend the method

to a more realistic 3D situation. All what is needed for this is an e�cient forward
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solver for the 3D system of Maxwell's equations. A forward solver which has been

tested for such situations has been presented in [7, 18]. Moreover, applications to

situations in medical imaging [2, 11], or in the nondestructive testing of materials

[45], seem interesting and possible.
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9 Appendix

9.1 Proof of theorem 5.1

Green's formula for an in�nite domain (without boundary terms since � > 0) reads

for general v; z

Z
IR2

[�v + �kv] z dx +

Z
IR2

v(x)(

DjX
d=1

�d�(x � xjd)) dx (106)

=

Z
IR2

v [�z + �kz] dx +

DjX
d=1

(

Z
IR2

v(x)�(x � xjd)dx)�d

where we have used the notation �k = ak�b + ibk�. Let now vjk be a solution of

(77), and zjk a solution of (82). Then the �rst term on the left hand side of (106)

reads Z
IR2

Qs

jk
(x)zjk(x) dx =

D
Qs

jk
; zjk�Br(0)

E
Y

; (107)

whereas the second term on the right hand side is

hMjvjk ; �iZj =
D
AjkQ

s

jk ; �
E
Zj

: (108)

The remaining two terms cancel each other because of (82). Therefore, (106) gets

the form D
Qs

jk ; zjk�Br(0)

E
Y

=
D
AjkQ

s

jk ; �
E
Zj

; (109)

which proves the theorem.
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9.2 Proof of theorem 5.2

SinceAjkA
�
jk
is a linear operator acting on the �nite-dimensional data space, it is suf-

�cient to �nd the action ofAjkA
�
jk
on each of the basis vectors ed = (0; : : : ; 0; 1; 0; : : : ; 0)T ,

d = 1; : : : ;Dj , where the '1' is at the d-th position. From (83) we see that�
A�
jked

�
(x) = 'dk(x)�Br(0)(x): (110)

Application of Ajk yields for the l-th component (l = 1; : : : ; Dj)�
AjkA

�

jk
ed

�
l

= vjk(xjl); (111)

where vjk is given by

vjk(y) =

Z
Br(0)

Gk(y; x)'dk(x) dx (112)

and Gk(y; x) is Green's function satisfying

�Gk(y; x) + (ak�b + ibk�)Gk(y; x) = �(y � x): (113)

Reciprocity yields Gk(xjl; x) = 'lk(x). Therefore, we get from (111), (112)

�
AjkA

�

jked

�
l

=

Z
Br(0)

'lk(x)'dk(x) dx; (114)

which proves the theorem.
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Figure 1: Original object for the example with full view. The dots in the �gure

indicate the source and receiver positions. The permittivity in the background is

�b = 20, and in the object �̂ = 15.
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Figure 2: STAF reconstruction of permittivity distribution for the example with full

view using f = 30 MHz and noisy data with 10 dB SNR.
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Figure 3: Evolution of permittivity �(n). Left column from top to bottom: STAF

reconstructions of �(0) for 5 MHz (top left); This is the starting guess for the following

reconstruction using levelART. After 10 steps of levelART with 10 MHz; After 30

steps with 10 MHz; Right column from top to bottom: After 10 steps with 20 MHz;

After 30 steps with 20 MHz; Final reconstruction after 30 steps of levelART with

30 MHz (bottom right). The algorithm used noise-free data.
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Figure 4: True permittivity distribution in the cross-borehole example. The dots

in the �gure indicate the source and receiver positions. The permittivity in the

background layers is (from top to bottom) �b = 21, 20, 19, and 21. Inside the object

it is �̂ = 5.
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Figure 5: STAF reconstruction of permittivity distribution for cross-borehole exam-

ple using noisy data with 30 MHz and 10 dB SNR.
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Figure 6: Evolution of the permittivity distribution �(n) in the cross-borehole exam-

ple using noisy data with 10 dB SNR and limited view. Top left: STAF reconstruc-

tion of �(0) for 5 MHz. This is the starting guess for the following reconstruction

using the levelART algorithm. Bottom left: After 20 steps of levelART with 15

MHz; Top right: After 2 sweeps with 20, 25, and 30 MHz; Bottom right: After 10

sweeps of levelART with 20, 25, and 30 MHz.
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Figure 7: Evolution of the permittivity distribution �(n) in the cross-borehole exam-

ple using noisy data with 5 dB SNR and limited view. Top left: STAF reconstruction

of �(0) for 5 MHz. This is the starting guess for the following reconstruction using

the levelART algorithm. Bottom left: After 20 steps of levelART with 15 MHz; Top

right: After 2 sweeps with 20, 25, and 30 MHz; Bottom right: After 10 sweeps of

levelART with 20, 25, and 30 MHz.
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Figure 8: Norm of residuals for 15 MHz in cross-borehole example.
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Figure 9: Norm of residuals for 20 MHz in cross-borehole example.
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Figure 10: Norm of residuals for 25 MHz in cross-borehole example.
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Figure 11: Norm of residuals for 30 MHz in cross-borehole example.
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Figure 12: Original permittivity distribution �(n) in the cross-borehole example using

noisy data with 10 dB SNR and limited view. The permittivity �b in the background

is the same as in �gure 4, and in the inclusion it is �̂ = 5. The conductivity in the

background is �b = 3:0� 10�4 S/m, and in the inclusion it is either �̂ = 1:0 � 10�6

S/m (�rst example), or �̂ = 1:0 � 10�2 S/m (second example). The dots in the

�gure indicate the source and receiver positions.
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Figure 13: Reconstruction of permittivity and conductivity distributions after ap-

plying STAF with 5 MHz, and 6 sweeps of levelART with 15, 20, 25, and 30 MHz.

Left column: Example with �̂ = 1:0 � 10�6 S/m inside the obstacle. Shown is the

reconstructed permittivity (top) and reconstructed conductivity (bottom). Right

column: Example with �̂ = 1:0 � 10�2 S/m inside the obstacle. Reconstructed

permittivity (top) and reconstructed conductivity (bottom). The conductivity was

treated as noise in STAF, and was considered linked to the current reconstruction

of the permittivity distribution in levelART. All data were contaminated with white

Gaussian noise of 10 dB SNR before starting the reconstruction process.
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Figure 14: Final level set function ��(N) for the full-view example. Figure 3 shows

the corresponding permittivity distribution �(N).
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Figure 15: Final level set function ��(N) for the cross-borehole example using data

with 10 dB SNR. Figure 6 shows the corresponding permittivity distribution �(N).
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