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Abstract

A common problem in signal processing is estimating an object from noise corrupted
data which gives an incomplete representation of the unknown. These problems are
known as inverse problems and are found in many different applications such as geo-
physical prospecting, satellite and medical imaging, image reconstruction and target
and anomaly detection. Because the data is limited and often of low quality, it
is impossible to exactly reconstruct the object. We must instead try to construct
algorithms for obtaining an accurate approximation of the object. Due to the pos-
sible ill-conditioning of the operator matrix, traditional solutions are often unstable.
Therefore it 1s necessary to add a regularizing constraint to the solution.

In this thesis we will pursue a statistical approach to choosing a regularizer. We
will assume that the object and noise can be described by stochastic models, specifi-
cally that they are zero mean Gaussian random vectors with certain covariance matri-
ces. Since we often will not know the best model to use, it is necessary to estimate the
model from statistics of the data. To perform this, we restrict ourselves to a paramet-
ric model where we can estimate the parameters of the model from the data. In this
thesis we will be examining the 1/f fractal model defined in the wavelet transform
domain.

This work specifically explores two issues with the use of the 1/f models: model
mismatch and parameter estimation. We show that the performance is robust to fairly

large mismatches between the model and the true process statistics. We also identify

111



conditions where the sensitivity with respect to a mismatched model is of concern.
Finally, the parameter estimation is performed using the Expectation Maximization
(EM) algorithm. In this thesis, we present a novel algorithm which takes advantage

of the simplicity of the model to greatly reduce the computational burden.
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Chapter 1

Introduction

A common problem in signal processing is estimating an object from noise corrupted
data which gives an incomplete representation of the unknown. These problems are
often known as inverse problems and are found in many different applications such
as geophysical prospecting, satellite and medical imaging, image reconstruction and
target and anomaly detection [1, 2, 3, 4]. Finding the input to a filter given the output,
the structure of a radiating source given the fields, the original image given a blurred
image and the internal structure given projections such as the Radon Transform are
all examples of inverse problems. In these problems, we wish to reconstruct the object
of interest from the information contained in the data, but the data elements form a
relatively small set, usually one blurred and corrupted image of the object. Because
the data is limited and often of low quality, it 1s impossible to exactly reconstruct
the object. We must instead try to synthesize algorithms for obtaining an accurate
approximation of the object.

When constructing an inverse solution, we often encounter problems with whether
a solution exists and if the solution is unique. Due to noise in the data, it is often the
case that no configuration of the object can exactly reproduce the data. Likewise if

the distortion operator blocks aspects of the object from appearing in the data (the
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operator has a null space), then the solution may not be unique since many objects
can produce identical data. A third difficulty, and the one of primary interest in this
work, is the stability of the solution to perturbations in the data. Traditional meth-
ods for guaranteeing existence and uniqueness, such as the pseudo-inverse solution,
are not robust with respect to noise; small perturbations in the data can produce
radically different solutions, usually with large high frequency oscillations. We desire
our solutions to be stable with respect to small perturbations in the data such as the
additive noise, but we often find that the inverse solution changes radically with mi-
nor amounts of noise. Therefore methods of regularizing, or stabilizing, the solution
have been developed.

Regularization methods impose constraints upon the solution in order to guarantee
existence, uniqueness and stability [5, 6, 7]. These constraints are usually in the
form of a priori assumptions about the structure of the object. Common constraints
are a small solution norm, a small derivative of some order, or a combination of
several of these. A small solution norm bounds the total energy in the solution
while derivatives impose smoothness constraints upon the solution. Since a smoother
solution will contain less high frequency components, the constraints impose a lowpass
filtering of the solution. The difficulty with using these regularization techniques is
construction of the constraint, whether smoothness or some other constraint, and
determining how strongly the constraint is applied, the level of regularization. The
type of constraint is important in that it determines the type of object that the
solution will reconstruct, i.e. whether it will be smooth, step-like, or some other
shape. The level of regularization balances the solution between fidelity to the data
and satisfying the constraint imposed. This not a trivial issue.

In this thesis we will pursue a statistical approach to choosing a regularizer. We
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will assume that the object and noise can be described by stochastic models; specifi-
cally that they are zero mean Gaussian random vectors with certain covariance ma-
trices. Instead of using an arbitrary a prior: constraint in order to regularize the
solutions, we will use the stochastic model as the regularizer. We will show in Chap-
ter 2 that the use of the stochastic model in a linear least squares estimator (LLSE) is
equivalent to commonly used Tikhonov regularization, and in addition provides the
mean square optimal linear estimator if the model accurately describes the object.

In many cases we may not know the proper model. It is therefore necessary to
estimate the model from statistics of the data. To perform this, we restrict ourselves
to a parametric model where we can estimate the parameters of the model from
statistics of the data. In this thesis we will be examining a particular two-parameter
family of models which are defined in the wavelet transform domain.

There is much literature exploring certain advantages of operating in the wavelet
domain, see [8, 9, 10, 11, 12, 13]. Wavelets are defined as an orthogonal or biorthogonal
set of bases which are created by dilation and translation of a single function. This
creates a basis which has properties of both scale and spatial localization. The basis
set now allows a perspective on a signal where multi-resolution analysis can be used
effectively. The wavelet transform has also been shown to sparsify many operator
matrices leading to more efficient implementations. In our problem, the wavelet
transform will allow us to specify the two parameter model which we will use, and
in addition the properties of the wavelet transform will allow us to produce a fast
algorithm for finding the parameters of the model.

The models which we will be using are the 1/ f fractal family of statistical processes
which have been developed in [1]. The 1/f fractal process displays characteristics
of many real low pass processes. They have been used in ocean surface modeling
[1] and modeling of Brownian motion. Further, it is shown in Wornell [14] that

these processes can be defined extremely simply in the wavelet domain by a diagonal
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covariance matrix, with only two parameters controlling the values of the non-zero
elements. The use of these models in estimation has been explored for the problem of
corrupted data, but not yet examined for more complex systems where the object has
undergone a linear transformation. In this thesis, we will explore how these models
perform under these more general conditions. We will show that the models perform

well under a wide range of noise levels and under differing operators.

1.1 Contributions

As we discussed earlier, the 1/f models will be used in situations where the actual
covariance matrix is unknown or where we choose not to use it. Thus it is necessary
to understand how the models perform when the model is not matched to the true
covariance. In Chapter 3, we explore the estimation performance in the case of model
mismatch. We show that the performance is robust to fairly large mismatches between
the model and the true process statistics. We also identify particular conditions
under which performance is sensitive to model mismatch. When we examine the
estimation of the models, it 1s shown that the model estimation performs well in the
same situation when performance is most severely degraded by a mismatched model.
Conversely, it is shown that in situations where model estimation is poor, model
mismatch does not degrade the object estimation performance.

The second contribution of this thesis is a joint estimation algorithm which pro-
duces both the model parameters and an estimate of the object. This is performed
using the Expectation Maximization (EM) algorithm. The EM algorithm is a two
step iterative algorithm for estimation of the model parameters. A byproduct of
the Expectation step is a current estimate of the object from the current parame-
ter estimates. The object estimate will continue to improve at each iteration of the

algorithm as the parameter estimates converge to the maximum likelihood values.
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In this thesis, we will explore a formulation of the EM algorithm which allows for
a particularly efficient implementation. By exploiting the properties of the model,
it becomes possible to reduce the Maximization step from maximizing over a 2 di-
mensional function to finding a unique zero of a polynomial. Thus we are able to
present a regularization scheme which produces as its output both the model and the
reconstructed object, which is stable with respect to model mismatch and which can

be efficiently implemented.

1.2 Organization

This thesis is organized into five chapters; the main body of the thesis is Chapters
2, 3 and 4. Chapter 2 is a discussion of the relevant background of inverse problems,
regularization, wavelets and the 1/f models. Chapter 3 examines the issue of model
mismatch. Chapter 4 presents the development of the EM algorithm and the perfor-
mance bounds upon it, along with a discussion of the algorithm performance. Finally,
the conclusions of this work are presented in Chapter 5.

The discussion in Chapter 2 is a brief presentation of the inverse problems and the
difficulties encountered when solving them. A discussion of Tikhonov regularization
is also presented with a discussion of how it effects the estimation. Next, we briefly
discuss the necessary background of wavelets so that we can present the 1/f model,
which is the last topic of the chapter.

Chapter 3 examines the model mismatch situation. In this chapter we present
expressions for calculating the expected error encountered when the model does not
match the true statistics of the object process. These expressions are then used
to examine the sensitivity issues with respect to model mismatch. We explore the
sensitivity across many levels of noise power and blurring function, and determine

that the models are fairly robust. We specifically present those situations where
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sensitivity may be an issue.

Chapter 4 examines the actual estimation of the model parameters. It begins
with an examination of likelihood estimation and presents the necessary likelihood
functions for maximum likelihood estimation. Next the Expectation Maximization
algorithm is presented since this is the primary way in which the actual estimation
is performed. We will present the derivation of the EM algorithm that simplifies
the maximization step. In addition we will examine the theoretical bounds upon
the estimator performance. Finally, we discuss how the estimation bounds relate
to the models mismatch situation. Specifically we found that in situations where
model mismatch is a concern, the model parameters can be estimated accurately, and
conversely in situations where the model parameters cannot be estimated well, model
mismatch is of little concern.

Lastly Chapter 5 will discuss the conclusions of this thesis and some possible ideas

for continuation of the work.



Chapter 2

Regularization of Linear Inverse

Problems

We are investigating the general linear inverse problem with stochastic models which
describe both the object and the additive noise. In this chapter we will briefly exam-
ine continuous linear inverse problems and a discretization technique for creating a
discrete problem, the solution of which will approximate the continuous solution. We
will then examine difficulties associated with solving the discrete problem by using
the singular value decomposition of the matrix. After examining these difficulties we
will show how several classical regularization techniques can be used to overcome the
difficulties. We will also show that the optimal regularizer for linear least squares
estimation (LLSE) is to use the covariance matrix of the process as a model term
in the LLSE cost function. For a more complete discussion of inverse problems, we
direct the reader to [7, 5, 6].

Once we have established the usefulness of an accurate model for the covariance
matrix in estimating the object, we will examine a class of statistical models which 1s
defined in the wavelet domain and has been shown to be useful in estimation of many

processes. The discussion here will give a brief introduction to the wavelet transform
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and will focus on the aspects which make wavelets useful for the basis of the models.
The models themselves are 1/ f type fractal models. As mentioned they are defined
in the wavelet transform domain since this allows for a diagonal covariance matrix

and a natural scale-space interpretation of the model.

2.1 The Linear Inverse Problem

The general form of the forward problems of interest in this thesis is

flz) = /bT(:x,s)g(s)ds, c<x<d. (2.1)
Here we are given a function ¢(s) and asked to find the solution f(x). Examples of
common forward problems are evaluating a voltage due to a charge distribution, a
field due to a radiating source, and a filter response due to an input. The solutions
to these problems can be accomplished by solving the integral analytically or by
numerous numerical techniques to approximate the integration, such as Riemman
summation. Numerical techniques would be necessary if our data were composed of
discrete values, that is {g(s,)} where s, are a collection of points in the interval from
a to b, or if the integral was not solvable in closed form due to either the kernel T'(z, s)
or to the form of g(s).

More difficult to solve is the inverse problem. Here we are given the data as f(z),
and we wish to estimate g(s). Analogous problems to those given above are solving
for the charge distribution given measurements of the voltage, the source distribution
given a field, or the excitation of a filter given a response. This problem may be
complicated by the geometry of the problem, or by the sparsity of samples of the
data function. We will see that when we have a finite number of samples we must
constrain our solution to at most that many degrees of freedom. Thus it will be
necessary to solve for a discrete representation of the object, either a sampled object

or a projection of the object upon a finite number of basis functions.
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2.1.1 Discretization: The Moment Method

Techniques for discretizing a continuous problem have been developed in order to
simplify calculation and allow for numerical solutions which can be performed on
a computer. An important advantage of the discretized problem is that numerical
solutions are often possible in situations where the integral equation is not solvable
in closed form. Further, since the measurement of the data in most problems is done
discretely, by sampling either in time or space or both, a continuous representation of
f(z) is not available except by approximate methods. The approximation technique
which we will explore here is the Moment Method (MM) [15, 16].

If we wish to discretize the integral equation in (2.1), we must first observe that we
will no longer be working with continuous g(z) and f(z), and must in some way create
discrete representations of these. We will first create a discrete ¢g(z) by expanding
it as the sum of a finite family of basis functions {p,(x)} with coefficients g¢,. This

forms an approximation of g(z) with the relation

Z_:lgnpn(l’) ~ g(z), (2.2)

with equality only if the basis functions span the space of g(z).

The set of basis functions can take many forms. There are two major classes,
sub-domain bases and entire-domain bases [15]. Sub-domain bases are those which
are non-zero over only a small section of the interval of interest. Examples of these
are the set of rectangular pulses, triangular functions, and truncated sinusoids. These
bases can always be used without prior knowledge of ¢g(z). Entire domain functions
cover the whole segment as the name implies. The Fourier Series, the moments of
the object, or a set of orthogonal polynomials are examples of entire domain bases.
To properly employ these bases, some knowledge of g(z) may be necessary. For the

Fourier Series it may require an unacceptably large number of terms in order to find
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a good approximation if g(x) has sharp edges, thus making the Fourier Series im-
practical. The choice of basis functions is important in describing g(x) as completely
as possible, but it can also lead to simpler computation of the integral as we will see
shortly [15].

Assuming that the basis can describe g(x) accurately, we will dispense with the
approximation for convenience. Inserting our representation of g(x) into the integral

equation, we have
N

1) = [ T(,5) 3 gupals)is (2.3

n=1

Exchanging the summation and integral gives

o)=Y T, 5)pa(s)ds. (2.4)

We now have, for a fixed z, a projection of T'(x,s) upon the basis functions. Given
that f(x)is still continuous we still do not have a discrete problem. We must discretize
f(z). In general, we can project f(z) upon a basis of linearly independent functions,
{wm(z)} as was done with g(s). In this case {w,,(z)} are the weighting functions.
For problems with discrete observations, the weighting functions become w,,(z) =
6(z—x.,) where x,, is the m-th point of observation. The weighting functions {w,,(z)}

are taken in an inner product with f(z) to form the discrete coefficients f,, as

= @) wn(e)) = [ S@on(z)da (25)

The coefficients f,, are thus weighted averages of f(z). In some situations weighting
functions other than impulses may be practical and necessary. With impulse weight-
ing functions, the behavior of the solution between sample points may be highly
ill-behaved. To alleviate this, other weighting functions can be used which constrain
the forward behavior to be better.

Now taking the inner product of both sides of (2.4), we have

fm = égn /cd /ab T(x,8)pu(s)wn(z)dsdx. (2.6)
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We can see that the weighting functions have complicated the problem by introducing
another integration. For this reason, it may be warranted to eliminate the second
integral by evaluating only at specific z,,, that is choose w,,(z) = é(z — x,,).

We have a representation of T'(x, s) which is discrete in both dimensions given as

Ty = /cd /:T(:v,s)pn(s)wm(x)dsdx. (2.7)

The discrete equation now takes the form

N
Jn = Trnnn- (2.8)
n=1

For a number of observations, 1 < m < M, this equation becomes the matrix equation

[=Tg (2.9)

where f and ¢ are now vectors of coefficients and 7' is the matrix which is a discrete
approximation to T'(z, s).

We are now ready to evaluate the integrals. If T'(z, s) is such that a certain choice
of basis functions, {p,(z)}, allows for a closed form solution, then the integral can be
evaluated exactly. Commonly, the integral is approximated. If the set of rectangular
pulses was chosen for both the basis and the weights, then the approximation may
take the form of the well known Riemmen summation by evaluating 7'(x,s) at the
midpoint of the pulse. Let us apply this discretization technique to the example which
is commonly used throughout this thesis.

The problem which is used extensively in this thesis is convolution with a Gaussian

kernel. In this case, the kernel of the integral equation is

T(z,s) = 102 exp ((x — 3)2) . (2.10)

27 20?

We will discretize this function using delta functions for the weights upon f(z) and

rectangular blocks upon g¢(s) with the support of p,(s) being s,_1 to s, where a =
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Sp < 81 < -+ <8, =b. The matrix T is now

1 $n (2 — 8)?
van = \/WL . exXp (T) dS, (211)

which is the common error function and can be evaluated explicitly.

2.1.2 1Ill-Conditioning

The discrete linear equation corresponding to (2.1), is given in (2.9). In this section,
we will be examining how the geometry of the matrix 7" affects the solution to the
problem. In an ideal situation with an invertible matrix 7" and noise free observations,
the solution to the discrete inverse problem would be exact regardless of the matrix 7.
As noise is unavoidable, we will introduce another term into the equation to represent
the noise in the data. The vector n will represent additive noise in the data so the

observations take the form,

f=Tg+n. (2.12)

The problem is to estimate the underlying object g given the data, f. For this we
need some way in which to invert the matrix, 7'. The estimate of g will be signified
as §. The simplest way to estimate ¢ is to use the inverse matrix of T, but this
is not possible if T' is not square or is less than full rank. In these situations, the
pseudoinverse can be defined. In order to introduce the pseudoinverse, we shall define

the singular values decomposition (SVD) of the matrix.

The SVD of the matrix 7' is [17]

S0
T=USV' where X = | (2.13)

0 0

Here the matrices U and V are the singular vectors and form orthonormal bases for

the row and column spaces respectively. The matrix ¥; is a diagonal matrix of the
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singular values. The matrix ¥ is filled with zeros so that its dimensions match those
of the original matrix.

Using the SVD, we can regard the operation of the matrix as an orthonormal pro-
jection of the vector onto a generalized Fourier space, a filtering operation performed
by the ¥ matrix and a projection into the data space. To construct the inverse, our
projections will remain and the filtering operation will be inverted. Further, to avoid
complications created by the null space of T'" we only invert ¥;. Thus we can define

the pseudoinverse using the SVD as

S0
Tt = Vel where ©f=] 7' . (2.14)
0 0

It is now seen that the singular values of the new matrix are the inverse of the singular
values of T', except that any values which were zero will remain zero.

The pseudoinverse solves any problems related to existence or uniqueness of the
solution, but if we examine the singular values we shall see that stability is still in
question. The norm of a matrix bounds the amplification that it can have upon any
vector. It is therefore equal to the largest singular value. We now define the condition
number as the ratio of the relative change in the object given a relative change in the
data. We use éf as a perturbation in f and 6¢ as a perturbation in the solution g,

and derive

i 16911/ l9]]
K(T) = it | EA A1 2.15
) = e s a1 .
16g11/1l9]]
= max g 2.16
185 | Tégll/|| T 210
log]l 11Tl
— max (217)
158 |Tég] gl
_ i Omax (2.18)
1T omin

Thus the conditioning is the ratio of the largest singular value to the smallest. It

can now be seen that a small condition number relates to a stable problem, since
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small perturbations in the data result in only small changes in the solution. A high
condition number will instead result in large changes to the solution.

We now apply the pseudoinverse to the problem at hand and expand f, as T'g+n.

T f (2.19)

N9
Il

= T'Tg+ T (2.20)

Next, we expand ¢ into g, and g,, where g, lies in the range space of the operator

T and g, lies in the null space of T'. Therefore,

g = T'Tg, +T'Tg, 4+ T'n (2.21)
= T'Tg. 4+ T (2.22)
= g, +T™n (2.23)

Thus pseudoinverse matrix recovers the component of the object which lies in the
range space of T" and it leaves as 0 that which lies in the null space of T'. But the
perturbations which were in the data, n, have also been affected by the pseudoinverse
matrix. Given the condition number, we can calculate the upper bound upon the
change in the estimate given a perturbation in the data and we will see that the
maximum change in ¢ can be very large given a relatively small perturbation in f.

The change i1s bounded by the condition number as

lésll _ oy IS0
lol <O

If we consider the perturbation upon f as noise in the data then if the condition

S

(2.24)

number of the matrix T' is large so is the upper bound on the noise amplification.

If we now consider the vector spaces associated with the large noise amplification,
we see that they are associated with the small singular values in 7. Thus we are
unlikely to have much object information in these spaces in our data since it would

be attenuated in the forward problem. If we consider a low pass filter problem, we see
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that the small singular values would be associated with the high frequency singular
vectors. Thus in the forward solution a low pass or broadband object would produce
data which is primarily low pass. Only in the case of a high pass object would this
not be the case. If we add noise to our low pass data, then we will have broadband
data. When we produce the solution using the pseudoinverse the high frequencies in
the noise will be amplified creating a solution which is primarily composed of high
frequency noise. This solution will obviously be worthless and we must therefore seek
methods to suppress this behavior of the pseudoinverse. Tikhonov regularization is
one such method and will be the method of choice in this thesis since it will be shown

to be equivalent to the Linear Least Squares Estimator (LLSE).

2.2 Tikhonov Regularization

Tikhonov regularization [5] uses a cost function which balances fidelity to the data
with some norm that imposes an a priori constraint upon the solution such as small
total energy or smoothness. The constraint also serves to eliminate the instability in
the solution by lowering the condition number of the operator. The cost function for

this estimation can be written as
g = argmin(|[Tg — [|I* + \*|[ Lg||*) (2.25)

Here we have the least squares estimator with a cost term added which will serve
as the regularizer. The cost term has two factors, a regularization matrix, L, which
imposes a constraint upon ¢, and the regularization factor, A, which determines the
level of influence the two terms have upon the minimization. Usual choices for L are
the identity matrix, which constrains total energy, or a derivative operator, which

imposes smoothness. Combining the two terms and solving the normal equations
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produces a closed form solution as

. . I e
g = argmin | 9= I

AL
G=(T'T+NL'L)'T'f=Mf (2.27)

We can now see the effect of regularization on the condition number by examining
the singular values of the estimation matrix M. We will use a regularization matrix
L = I and the properties of the SVD that U'U = I, VV' =1, U ' =U", V™! = V"

If we expand T" with the SVD given in the previous section, we obtain

M = (VIU'USV' + X 1)V’ (2.28)
= (V*V'+ 2vv) vy’ (2.29)
= V(Z*+XDH)'Vvey (2.30)
= V((E2+ 207U (2.31)

Thus the SVD of the matrix M, is now in the same form as that of 7T, except that
the singular values of M are given by

0y

m7 (2.32)

pi =

whereas the singular values of 7'f were given by g% It can now be seen that if a singular
value was large in the matrix T', then in both the pseudoinverse and the regularized
inverse the corresponding singular value will be small. But if the singular value
was very small, in the pseudoinverse it would have been very large, whereas in the
regularized inverse the regularization parameter will constrain it. In the regularized
inverse the largest possible singular value occurs when o; = A and therefore the

singular values will be bounded by

1
< — 2.33
Hi < 53 (2.33)
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Other cases of the regularization matrix produce similar results, but the singular
vector spaces U and V' are not identical between both the pseudoinverse and regular-
ized inverse and consequently do not lead to simple expressions. They will, however,
produce a regularization provided that 7" and L do not have a common null space.

There are difficulties with implementing this technique. First, a regularization
matrix must be chosen which will adequately handle the condition of the problem.
Second, the level of regularization must be set so as to apply the proper amount of
regularization to stabilize the estimation without over-regularizing and producing a
trivial estimation.

The regularization matrix must be chosen so as to constrain those aspects of the
estimation which are unwanted and primarily due to the effects of the high condition
number. A common choice is to use the identity matrix, which will apply an equal
amount of constraint across all singular values. This will lower the condition number
effectively, but will also suppress aspects of the signal which should desirably be
allowed. Another choice is a discrete derivative operator. This will also lower the

condition number while penalizing against high frequencies in the solution.

2.3 The Optimal Linear Estimator

In this thesis we are concerned with the estimation of an object which can be modeled
as a Gaussian random process in additive Gaussian noise. In this section we will
show that there is a mean square optimal linear estimator provided that the first and
second order statistics of the process are known, and that this estimator is a Tikhonov
regularization with the regularization provided by a stochastic model composed of
these statistics. This will motivate the subsequent chapters’ estimation techniques
which attempt to match a model matrix as closely as possible to the true covariance

matrix and to use this matrix as the regularization term. Therefore, let us define ¢
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as a Gaussian random process with zero mean and covariance matrix Fy, or

g~ N(0,F), (2.34)
and the noise statistics as

n~ N(0,R). (2.35)

Also, let us use some linear estimator for g, § = My = MT ¢+ Mn, and compute

the mean square error of this estimator as

¢ = E{lg—3)(g—3) (2.36)
= E{tr{lg—§)g -9} (2.37)
= o {B{(g— )9 -9} (2.38)
= tr{E{gg' — g9’ — 99’ + 33'}} (2.39)

Now we will expand our estimator ¢ and then take the expectation. The expec-

tations are F{g¢'} = Py, E{nn'} = R, and E{gn'} = 0.

¢ = tr{B{gg'} —2E{g(MTg+ Mn)'} (2.40)
+E{(MTg+ Mn)(MTg+ Mn)'}} (2.41)

— {E{gg} — 28{ggYT'M' + ME{gn') (2.42)
FMTE{gg YT'M' + 2MTE{gn'} + ME{nn'} M"} (2.43)

= te{Po+ MTPT'M' + MRM' — 2P, T"M'} (2.44)

— te{Py+ M'M(TRT' + R) — 2M'P,T"} (2.45)

We now wish to minimize this across the estimator M. This is a parabolic func-
tion in M, and we can find the minimum by finding the zero of the first derivative.

Therefore the “optimal” estimator, M, is

M = arg min(tr{Po + (T AT+ R)M'M — 2P T"M'}) (2.46)
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0e?

amm

= tr{

(Po+ (TP + RYM'M — 2P, T'M’)} (2.47)

amm

= tr{

0
F, TPT + R M'M —2PT'
amm‘ 0 + ( 0 + )amm’ 0 amm'

M’} (2.48)

We define A;; to be the derivative of M with respect to the element m; ;. This
is a matrix of zero with one in the ith row, jth column. The relation A}, = A;; is
easily verifiable. If we continue with the derivation we have

0e?

8mm

= t{(TPT' + R)(ALM + M'A,; ;) — 2P, T'AL 1} (2.49)
= tr{(TPOT’ + R)(A]JM + M/Ai,j) — QPOT/A]'J'} (250)
= te{(M(TPT" + R) — 2P T")A;;} + tr{(T PyT" + R)YM'A;;} (2.51)

The matrix A;; extracts only the ¢th column of the matrix being multiplied and
leaves it in the jth column of an otherwise all zero matrix. The trace then sums the
diagonal of the matrix. The result from these two operations is that the equation

becomes a sum of individual elements of the matrices as

9e?

anj S = [M(TFPT" + R) = 2R T"; ; + (T FoT" + R)YM'];, (2.52)
27]

= [M(TPRT'+ R) —2PT";; + [M(TP,T' + R)]; ; (2.53)

(2.54)

Now setting this equal to zero we can solve for all ¢, 7 by using the matrix equation

M(TPT'+ R) = 2P, 7"+ M(T'"PR,T+ R) = 0 (2.55)
M(TRT' +R) = PRT' (2.56)

M = PT(TRT + R)™" (2.57)

This can be rearranged by using the following result of the partitioned matrix lemma

[18]
(A-BD7'C)"'B=-A""B(D-CA'B)™'D, (2.58)
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with the matrices defined as follow:

A = P! (2.59)
B = T'R™! (2.60)
C = R'T (2.61)
D = —R. (2.62)
Substituting, we obtain
M= (T'"R'T+ Py 'T'R7Y, (2.63)

which when compared to Tikhonov regularization shows that the optimal linear reg-

ularizer is the inverse of the covariance matrix of g.

2.4 The Wavelet Transform

The wavelet transform has received much attention in the last few years for its ap-
plication to digital signal processing problems. The wavelet transform is particularly
useful since it retains temporal or spatial information while at the same time provid-
ing a division of the frequency content. It is able to do this by employing compactly
supported basis functions instead of the infinite sinusoidal functions of traditional
Fourier analysis. The basis functions for the wavelet transform are also not con-
strained to have the same length, as they are with the windowed bases of the Short
Time Fourier Transform. For fine scale detail, the functions are narrow, giving ex-
cellent resolution of short transients in the signal, while for coarse scale structure,
they are much longer but have more localized frequency characteristics. Viewed as a
division of the frequency domain they are a constant-Q filter bank [19].

The ability of the wavelet transform to localize transient information and resolve
frequency content has made it quite useful in the fields of signal and image compres-

sion, transient detection, signal smoothing, and numerical signal processing. Indeed,
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in many applications of image compression, the wavelet transform performs signifi-
cantly better than the discrete cosine transform [20]. Its natural tree structure enables
transient detection algorithms to use multi-scale search techniques which lower com-
putational cost. In numerical processing, it has been shown [9] that many matrices
are naturally sparsified in the wavelet domain and matrix multiplication and inversion
can be performed at a much reduced computational cost.

It is helpful to compare how the time frequency plane is divided by the wavelet
transform, the Fourier Transform (FT') and the short time Fourier Transform (STFT).
Figure 2.1 shows this division for a signal and the three transforms. The first plot
(a) is the time representation of a signal, giving complete time resolution, but no
frequency resolution. The Fourier Transform which is given by

)= | e (2.64)
is a projection of the signal upon the family of complex sinusoids. It is evident that
the complex sinusoids basis is infinite in time, but of a single frequency. Therefore the
FT gives exact frequency resolution, but no time resolution. The plot in (b) shows
this. Third we have the Short Time Fourier Transform given by

Flw,7) = /+°° Fw(t = 7)ed1. (2.65)
Here a windowing function w(¢—7) upon the Fourier basis functions limits the support
to a finite time, allowing for some time resolution controlled by a shift parameter 7.
Of course multiplying in the time domain creates a convolution in the frequency
domain, blurring the frequency resolution. The limit upon resolution of the time and
frequency bins is given by

1

where At and Aw are the size of the time-frequency bin [21]. However, it is evident

that the frequency bins are of equal support across the entire frequency axis, and
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likewise for the time axis. It is however logical that one would want better time
resolution with respect to fast changing i.e. high frequency, components of the signal
and better frequency resolution with low frequency components. The wavelet trans-
form achieves this by dividing the plane into different sized bins. This gives better
resolution in time for high frequency components, and better frequency resolution for

low frequency components.

=) =)
< o
= =
g g
°C (i
Time Time
(& Time Domian (b) Fourier Transform
=) =
3 o
8— =
s =
L
Time Time
(c) Short Time Fourier (d) Wavelet Transform

Transform

Figure 2.1: The division of the time and frequency domains for several transforms.
(a) Time Domain (i.e. no transform) (b) Fourier Transform (c) Short Time Fourier

Transform (d) Wavelet Transform.

To develop the wavelet transform, we begin with the complete signal space V4.
We will create a smoother space V] which is an approximation to the complete signal
space. Signals in the space V] are approximations of those in Vj, lacking the fine scale
structure which we have removed, therefore we will call these spaces approximation

spaces. Continuing this iteration upon each V;, we have a set of nested approximation
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spaces to Vo with the relationship
V;C---CVi C W (2.67)

Figure 2.2 shows how the approximation spaces are related.

Figure 2.2: The approximation spaces V;. Each is an embedded subspace of the space
above. The detail space W; is the orthogonal compliment of W, in V;_;.

Given that each of the V; are a subspace of the space above, we can now con-
struct a space for the detail which was removed as the orthogonal compliment to the

approximation space. We can divide each V; into the sum of two spaces as
Vi=Visa @ Wi (2.68)

Where the operation & denotes direct addition, and thus the space W;;; is the
compliment space to Vj;; in the space V;. It is obvious that each new space W;

is orthogonal to Vj, and since each W; exists in a different V,_;, all the W; are
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orthogonal. Therefore, if we take the set of spaces W; and the coarsest approximation

space V7, we will have a set of orthogonal spaces which sum to the space V4, as in
VieW;s---o W, e W= W. (2.69)

The implementation of this breakdown for a discrete signal can be easily seen as a

Input H i 2 Fine Scale
Coarser Scale
L 12 H 12
Coarsest Scale
L 12

Figure 2.3: Filter bank implementation of the wavelet transform.

filter bank such as Figure 2.3. Here we have two stages of a wavelet decomposition;
more levels can be taken by decomposing the coarsest scale at each stage. Thus the
fine scale coefficients correspond to the Wy, the next coarser to W; and the coarsest
to V1. If more stages are added, this corresponds to the division of the V; space into
a corresponding W; and V4.

Each stage of the filter is performed by specifying a pair of FIR filters, one high
pass and one low pass. For an orthogonal wavelet decomposition these filters form a
power symmetric pair [12]. Let us specify the filter coefficients at each stage by h(k)
for the low pass and g(k) for the highpass. Then we have the relationship

glk) = (=1)Fh(K — k). (2.70)

This forms a perfect reconstruction pair, and we can down sample the outputs by 2

without any loss of information. Thus the output of the filter banks has an equal
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number of elements as the input. And if we stack the elements into a new vector
of the wavelet coefficients, we can represent the action of the filters by a matrix
multiplication. If we use W, as the wavelet decomposition of the data vector, then

the vector of wavelet coefficients 5 is
n=Wyy. (2.71)

Since we are using orthogonal perfect reconstruction filter banks, the transpose
matrix applied to the wavelet coefficients will reconstruct the original vector. Thus
the matrix W, is orthonormal and WyT = Wy_l.

We will also introduce the matrix W, which is the corresponding wavelet transform
for the object space. The transformation of the problem in (2.12) to the wavelet

domain can be viewed as the operation

Wy = (W,TWW,g+ Wyn (2.72)

n = Oy+uw. (2.73)

We now have each of the vectors represented by a vector of its wavelet coefficients.
We will use the corresponding Greek characters n, ©, and v to represent the wavelet

transforms of y,7" and n. The transforms of the covariance matrices are

P, = W,P,W/ (2.74)
R, = W,R,W/. (2.75)

Thus we have the problem of estimating the wavelet coefficients ~ from the wavelet
coefficients of the data 1. Using the results of the previous section, the optimal linear
estimator would be the LLSE using as a model matrix the covariance matrix of v, P,.
Since in this thesis we are assuming that we do not know this matrix, we will instead
in the next section present a useful model which is specified in the wavelet transform

domain and has been shown in [1] to accurately describe many real world processes.
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2.5 The 1/f Model

The 1/ f model defined in the wavelet domain will be a model for the process covari-
ance. As shown earlier, the optimal linear estimator is the LLSE estimator with the
covariance matrix as the regularization term. Since we will often not have the actual
covariance or it may be too complicated to use, it is important to have a simple model
which in practice will adequately approximate the actual covariance, thereby leading
to a low MSE in the solution. In keeping with this idea, we adopt a simple model

with only two parameters, defined as

K272 1=
[P = o (2.76)

0 i1 #£ g
Where s is a non-negative integer representing the level of the wavelet coefficient,
the coarsest level being zero and the finest being S — 1, S being the number of levels.
The coarsest level is the approximation space, which for our purposes is assigned a

covariance value of k.

The parameter « is the fractal parameter and controls how quickly the spectrum
drops off. A low « is a wide-band process, with zero being white noise, and a high

« is a very highly correlated process. For many formulae in this section, we use only

the normalized matrix designated as

[F(a)]ij = - (2.77)
0 1 # ]
The parameter k determines the overall energy of the process and is equivalent to
the A? of the classic regularizers while F'(a) is equivalent to L'L.
It will be useful in our estimations to constrain the model so that the overall energy
remains constant while the model changes. Therefore we often wish to use the process
energy e, instead of k. In addition to allowing us to use constant energy models, it

will be easier to estimate the energy than the regularization parameter. Finally, given
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an energy, it is possible to bound k above and below to simplify the estimation of the
model. In other words, with the energy, we can preset the regularization level while
we search for a good a.

Given that the energy of the noise is known, it can be shown that the maximum

likelihood estimate for the energy of the process is

e = |0l (2.78)
= [|©y+v|? (2.79)
— r{OR0O + R) (2.80)
= tr{OF()0'} + tr{R} (2.81)
= tr{OF(0)0'} +e, (2.82)
Solving this for & gives
En _ v (2.83)

" oo

This can be shown to be a bounded monotonically increasing function in a. The
asymptotic lower and upper bounds can be determined by calculating x(a) at o =0
and as & — oo. For this, we use the relations F(0) = [ and lim,—o F/(a) = I., where
1. is a zero matrix except the upper left hand corner is identity only for the coarsest

scale coeflicients. The bounds then are

€y — €y

min  — {00/ (2.84)

€y — €y

Kmax = {0107} (2.85)

The function of k versus « is shown in Figure 2.4. The dotted lines show the upper

and lower bounds upon this function.
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Figure 2.4: The k-Function versus a for a fixed energy with upper and lower bounds.



Chapter 3

Model Mismatch

Since it is often the case that we do not have the true covariance matrix, we often will
be estimating it based upon a parametric model such as the 1/f model presented in
the previous chapter. Since the estimate will always have a certain amount of error, an
important subject to examine regarding our models is model mismatch. Here we are
concerned with the performance of the LLSE estimator when the parameters of the
model do not match those of the true 4. It will be seen that the models perform well
within a wide range of operator specifications and noise conditions. In the most severe
case of model mismatch, we will also examine the estimator performance when the
actual 4 is not a 1/f process, but a first order Gauss Markov (FOGM) process which
possesses an entirely different covariance matrix than our model. Specifically, whereas
in the wavelet domain the models are diagonal matrices, the covariance matrix of the
FOGM process is not diagonal, but possesses strong off diagonal elements. We will
show that the models still perform well and even when highly mismatched they still

act as a classical regularizer to produce a smooth and stable solution.

29
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3.1 MSE Performance

To measure the performance we will use the mean square error in the solution as a

function of the true covariance Fy and the model P,

MSE(Py; Py) = E{

=l =t {E{(H -G -} (3.1)

This is a function of the object and model covariance matrices, Fy and P, respectively,

the noise covariance matrix R and the matrix 0, as

MSE(Py; o) = tr {(0'RT'O + P71 ) ™ (O'RT'O + P R PT)(O'RTO + P77
(3.2)
Since it is desirable to describe how the models perform with respect to the opti-
mal mean square error, we define MSE,,; as the optimal performance which can be

achieved with a linear estimator. As was shown in section 2.5, this is achieved with

a LLSE where P, = F;. The optimal MSE therefore is given by
MSE,,: = MSE(Py; Py) = tr{(OR™'O + P; 1)~ '}. (3.3)

We define the normalized mean square error (NMSE) to be the ratio

MSE(P,; Py)

NMSE(Py; Po) =~
op

(3.4)

The optimal NMSE is therefore equal to 1, and degradation of performance occurs for
values above 1. For example a NMSE of 1.1 is a 10% degradation below the optimal
performance of the estimator.

In the following examples, we will examine the performance degradation of the
model in the mean square error with respect to model mismatch, under different
situations. We will show that the performance is relatively insensitive to mismatch in
the model under a wide range of operator specifications and noise conditions. For the

first several experiments, we will be using a covariance matrix for the object which
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is 1/f. For these, the optimal performance is achieved when the parameters of the
model equal the parameters of the covariance matrix of the object. For the remainder
of the examples, we will be estimating a first order Gauss Markov (FOGM) process,
for which any 1/f model could only be an approximation, and therefore optimal
performance will not be achievable, but we will show that even in this severe case of
model mismatch, the models still perform well in their estimates. In all cases SNR 1is

measured as the ratio of clean data power ||©~| to noise power ||v||.

0.14

0.12 b

0.08 J

0.06 - b

0.04F b

0.02 b

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Index

Figure 3.1: The Gaussian kernel with o = 3.

For the examples, the matrix © is constructed as the wavelet transform of a
discrete convolution of a Gaussian kernel, as was shown in section 2.1.1, with delta
basis functions for both the data and the object. To aid in the wavlet transform, T
is a circulant matrix; that is we assume periodicity of the data. Figure 3.1 shows a
kernel for ¢ = 3. The vector sizes are 128 elements. An important consideration for

the regularization is the condition number of the operator. The condition number for



CHAPTER 3. Model Mismatch 32

the Gaussian operator for o between .25 to 5, which are the values of interest for the

examples at hand, ranges from 10'® to 10%!.

3.2 Estimation of 1/f Processes

We will first examine the estimation of 1/f processes. In these cases, the model can
be matched perfectly to the true covariance if the parameters are correct, thus the
estimator performance will achieve the optimal MSE. If the model is not matched
perfectly, then the estimation will be degraded, however as is shown in the following

examples, such losses are minimal.

alpha 0 o

sigma

Figure 3.2: The normalized MSE performance of the estimator versus the model
parameter and the operator parameter. The process has @ = 1.5 and the SNR 1is

20dB.

Figure 3.2 shows the NMSE resulting from estimating a 1/ f process with a = 1.5

with a mismatched model versus o, the parameter which controls the amount of
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blurring. The signal to noise ratio for this example is 20 dB. In this plot, it can be
seen that when the model is matched, i.e. a of the model equals 1.5, the optimal
NMSE of 1 is achieved. At low values of o, the degradation is much more severe for
the mismatched model than at higher values. At higher values the blurring function
essentially eliminates the fine scale detail and little information remains. For low o, a
substantial amount of blurring still occurs, and the condition number of the operator is
still very large, but a fairly closely matched model will achieve very acceptable results.
Indeed in most cases of model mismatch, the estimator still performs better than
regularizing with identity (equivalent to @ = 0 with our estimator). Particular care
must be taken to avoid values of a which are too large, as this can cause overly smooth
solutions and a performance which is worse than that of standard regularization.

Figure 3.3 shows the worst case performance across all o for the mismatched
model. At a noise level of 20 dB, a performance within 10% of the optimal can always
be achieved with an a which varies from 1.1 to 1.8, more than a 20% deviation above
or below the true value of a.

This example demonstrates the robustness of the model with respect to a Gaus-
sian convolution across many degrees of blurring. Of particular interest is the high
sensitivity of the model within a certain range of o, 0.4 to 1.0 for the example shown.
This range i1s dependent upon the signal to noise ratio, and can be seen to move to
higher o as the SNR increases. This sensitivity also increases as the SNR increases
as will be seen in the next example. It can also be seen from Figure 3.3 that a model
« which is larger than the true « can degrade performance much more than a lower
a.

The next example, shown in Figure 3.4 with slices at 4 SNRs shown in Figure 3.5,
demonstrates the performance of the mismatched model over a wide range of signal
to noise ratios. At very high signal to noise ratios, much of the signal is retained

and the degradation from using a mismatched model is shown by the sharp increase
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Figure 3.3: Worst case model mismatch performance across all values of o for SNR=20
dB. The performance is within 10% of optimal over a wide range of a.

in MSE for both high and low values of a. Conversely, as the SNR becomes worse,
the acceptable range of a increases, showing that the estimation is less sensitive to
model mismatch. At all levels of SNR the matched or closely matched models perform
significantly better than the standard identity regularization. It can be seen that at
SNR= 0 dB, the range of a within 10% of the optimal is quite large.

3.3 Estimation of FOGM Processes

We will now examine the estimation of first order Gauss Markov (FOGM) processes
using 1/f models. In this case, the models do not match the true covariance, thus the
performance under model mismatch is important in that it is an example of severe

model mismatch. The sample path of a FOGM process is described by a covariance
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Figure 3.4: The normalized MSE performance of the estimator versus the model
parameter and the signal to noise ratio. The process has a = 1.5 and ¢ = 1.0.

matrix with the following element values
[P)ig =" (3.5)

where p is the correlation value, and may vary from 0 to 1. At low values the samples
are relatively uncorrelated and the process becomes white. At values near 1, the
samples are highly correlated and the process becomes increasingly low pass. Viewed
in this way, it can be seen that low values of a should correspond to low values of
p and vice versa. This will be seen in Figure 3.6 where the « of best performance,
defined by lowest NMSE, will increase with the value of p. The example in Figure 3.8
shows the NMSE performance for a range of o and . Here it can be seen that at low
values of ¢ when little blurring occurs, the best performance possible with the models
does not meet the optimal. At best it is 20% above optimal. The models however still

perform better than identity regularizers (a = 0). A similar structure to that found
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Figure 3.5: The normalized MSE performance for four signal to noise ratios, demon-
strating the robustness with respect to model mismatch at low SNRs.

in the estimation of the 1/f processes also occurs in this plot. At values of o in the
range of .4 to 1.0, the MSE is more sensitive to a than at other ranges. Likewise, this
region of sensitivity can be seen to move to higher values when the SNR increases.
Lastly, in Figure 3.9 and Figure 3.10 we examine the performance for two different
correlation values, .25 and .75, versus SNR. We see that as in the 1/f case, the
highest region of sensitivity occurs at high values of SNR. As the SNR decreases, the
degradation due to model mismatch is much less, essentially all estimates degrade
at the low SNR values. A contrast between the two plots shows that the more
uncorrelated process, p = .25, is very resilient to model mismatch, but as was seen
in the 1/f plots, when the model parameter « is large, performance does degrade
quickly. Tt is useful to keep this in mind when working with the estimators for the

parameters as we will in the next chapter.
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Figure 3.6: Normalized MSE for « versus p. The a of best performance can be seen
to increase with p. The SNR is 20dB and ¢ = 1.0.

In this chapter we examined how the 1/ f type models performed when estimating
1/ f type processes and also FOGM processes. We saw that the model is fairly robust
to model mismatch in both situations. Specifically we noted that the regions of highest
sensitivity to model mismatch were in the cases of high SNR, narrow operator, and
fairly correlated, i.e. low pass processes. Thus in these cases we should demand a
more accurate estimation of the model parameters. The next chapter examines how

to estimate the model parameters.
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Figure 3.7: The Normalized MSE performance for 4 values of p. The value of « for
best performance can be seen to increase with p. The SNR is 20dB and ¢ = 1.0.
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Figure 3.8: Normalized MSE for « versus o. The SNR is 20dB and p = .75
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Figure 3.10: Normalized MSE versus SNR for p = .75.



Chapter 4

Parameter Estimation

In the last chapter we introduced the stochastic models and demonstrated their use
in the LLSE estimator as a regularization term. These models were shown to per-
form well even when mismatched with the process, although of course the optimal
performance is achieved when the models match the process. In this chapter we will
explore techniques for estimating the parameters of the model accurately so as to
minimize the performance degradation due to model mismatch. In order to do this
we will employ a maximum likelihood (ML) estimation framework. We will examine
the Cramer-Rao bounds upon the estimation as this will show the optimal possi-
ble performance. In addition we will look at the Expectation Maximization (EM)

algorithm as the primary tool for implementing the ML estimation.

4.1 Likelihood

For the estimation of the object v, we have been using linear least squares estimation,
which requires only knowledge of the mean and variance of the object in order to
obtain the estimate [22]. In the absence of this knowledge, it is essential that a good

estimate of the mean and variance is made. Estimation of the entire covariance matrix

40
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is not possible with a single realization of the data, but it is possible to fit the two
parameter 1/ f model to the data and achieve an approximate covariance matrix.

In Chapter 3, it was shown that the 1/f models are fairly robust to model mis-
match even in the estimation of processes other than 1/f, performing as a standard
regularizer in the highly mismatched cases. However in order to produce estimates
which approach the optimal MSE we must have a model matrix which closely approx-
imates the actual covariance. We will use maximum likelihood estimation in order to
fit the model to the data. Likelihood will allow us to estimate the model parameters
accurately and thereby approach the optimal MSE estimation of ~.

The likelihood function is constructed from the probability density function p(x;1t),
where x is a realization of a random vector and ¢ is a vector of parameters which de-
scribes the probability density function, such as the mean and variance of a Gaussian
random process. This function is typically regarded as having fixed ¢ and the inde-
pendent variable is x. In the likelihood function the variable of interest is now the

vector of parameters ¢ for a fixed realization of x as in
L(t;z) = p(;t). (4.1)

With this likelihood function, we may now question which parameters are the most
likely parameters for the family of densities which we have chosen to use, given the

data z. Therefore the maximum likelihood estimation of the parameters { is given as
i =arg mtaXL(t;;z:). (4.2)

Of course the success of the parameter estimation is greatly dependent on the family

of densities, or models, which are being used.
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4.2 Maximum Likelihood Estimation with ~

In our problem, we are using the family of Gaussian densities for v with zero mean and
a variance specified by P,. The probability function for this multivariate Gaussian is

therefore

1 _
p(’% P’Y) = (QW)N/2|P |1/2 exp <_7/P’y 17/2) : (43)
vy

Where N is the dimension of 4. The parameter of interest for the likelihood function
will be the model covariance matrix P,. Fixing a realization for v and taking the ele-
ments of the matrix P, as the independent variables, we form the likelihood function

as

1 _
v

The likelihood expression will be simpler to use without the exponential. The log-
arithm being a monotonic transform will eliminate the exponential operation while
preserving the maximum. We will also discard the constant terms since they will have
no impact upon the evaluation of the maximum. Thus the log-likelihood function for

our problem is

1, 1
U(Pyiv) = =57 By = 5 log [Py, (4.5)

A typical likelihood function is shown in Figure 4.1. Recall that the matrix P, can
be written as

1
P, = kF(a) and the inverse Pw_l = —F(a), (4.6)

Tk
where F(a) is a diagonal matrix.

Using the model, (4.5) can be rewritten as

1 _ 1
layr;7) = —5=9"F 7 (a)y = 5 log |k F(a)l (4.7)
I N 1
= —QK’yF (a)y — 5 log k — 2log|F(oz)|. (4.8)

To solve for the maximum of these equations, we will take the first derivative with

respect to each parameter, and setting them equal to zero solve for the ML estimates
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Figure 4.1: The likelihood function of « for a specific 7. The true value for « is 1.5.

of a and k. For this, it will be useful to have the relationship for the derivative of
F. For neater notation, the dependence of F' upon a will be assumed but no longer
written. Further, the matrix S will be introduced as a diagonal matrix, which has
along the diagonal the scale index corresponding to the respective wavelet coefficient.

Using this, the derivative of F' with respect to « 1s

. OF . d
F= 2= = 27— (27) = ~(log2)SF. (4.9)

Taking the derivatives of (4.7) with respect to k and « gives

o 1 , ., N

— = ——~FT - — 4.10
0k 2/4;2’y 7 2K ( )
ol 1, 1 .
— = —~NFYFF Yy - —te{ PR
Jo 2/<;’y i 2 r{ }
log 2 log 2
N (- L Y (4.11)

2K 2
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Setting Equation (4.10) to zero, we can be solve for & giving

1 2 -1
Ko = N’y’F_lfy = ||’y£|\1; (4.12)
The solution of (4.11) for « is not as obvious.

o dog2 , log 2
0 = 9 Y ET Sy — 5 tr{S} (4.13)
= tr{yy' F7'S} — ktr{S} (4.14)

t

= tr{yy' F7'S} —tr{yy F'} 115} (4.15)

N

- {W'F—l(s _ “jvs}z)} (4.16)

Now since F,S, and [ are diagonal matrices, this equation can be rewritten as a

summation of the diagonal elements as

0= Y 2wt - T _ p) (1.17)

k3

where the values of s; are the scale numbers of the wavelet coeflicients. Since these
form the exponents of 2%, this can be regarded as a polynomial in 2¢. Since the values
of the F matrix are covariances, they must be real and positive, therefore the solution
for 2% must be the real positive root of this polynomial. Since the first two factors
of the summation are positive, the sign of each coefficient is determined by the third
factor. Since this value is the scale number minus the mean of the scale numbers, and
the scale numbers are non-decreasing across z, this number will start negative then
become positive. The polynomial has only one sign change, and therefore only one
real positive zero. The proof of this is in Appendix A. The ML estimate for « is then

computed as the zero of this polynomial, as in
ap = arg,(P(2%) = 0). (4.18)

The likelihood function has a unique maximum on the values of interest. The whole

solution would thus take the form of solving the polynomial for the unique positive
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root which gives ag and then solve (4.12) for kg. The pair (ap,k0) are the parameters
of the model with the maximum likelihood.

We can now solve for the variance of the estimation using the Fisher information
matrix, which is the inverse of the covariance matrix of the estimations. The Fisher
Information matrix is composed of the expected values of the second derivatives of
the likelihood function [23, 22] evaluated at the true parameters. Taking the second

derivatives of the likelihood function gives

0%l 1
AN N A (119)
0?1 log 2 3
52 = on Y(SPF )y (4.20)
0%l log 2 _
dadk  2x? VSFTy (4:21)

The expectation of these with respect to all v can be calculated by applying the
relation K{vy'} = kF. The expectations are

91 N
Blga) = 5 (4.22)
2
{az - 10g 2 ({52} (4.23)
2
Ll loth (s} (4.24)
OkOa

The Fisher information matrix .J is given as the negative of the expectations of the

second derivatives,

.y 321 iy 92
J: { 5 {852 } (425)
—Elpm) Bl

The variances of the estimators can now be calculated by one element of J and the
determinant of J. The determinant of this matrix is

Nlog22
I = tr{S*} -

4K2

log 2

tr{S}r{S} (4.26)

_ igﬁ 2 (Ntr {52}—tr2{5}) (4.27)
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which now allows us to calculate the variance of each of our estimators as

g 2k241{ 5%}
var(ko) = 75T = 28] = N {57)) (4.28)
var(ag) = Ji1 _ 2N (4.29)

] log?2(tr?{S} — Ntr{S?})
It can be seen that the variance of k is a function of the signal power and the scale

numbers while the variance of « is simply a function of the scale numbers. With more

scales the performance of the estimators improves.

4.3 Estimation in the Presence of Blurring and

Noise

In the problem at hand, we do not have v, instead we must use a likelihood function
with respect to 5. In this case we now wish also to estimate the unknown object 7,

thus the likelihood function becomes

(7,00 5) = =57/ (6F (@)™ = 5@y — ) B (@ — 1) — 3 log |sF(a)|. (430

Now taking our first derivatives, which above allowed for a closed form solution, we

see

I
g_ = S1(xOFO' + R)OFO(xOFO + B) ™y
K

1
—?ﬁr{(ﬁ;@F@l + R)T'OFO} (4.31)

1
= tr {(kOFO' + R)T'OFO((kOFO + R) 'y’ — 1)} (4.32)

[ .
g_ = S0/(sOFO'+ R)OFO (xOF O + R) ™y
(8%

—gtr{(l-@(ﬂF@’ +R)'OFO') (4.33)
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log 2
- _F ‘;g 7 (kOFO + R)'OSFO(kOFO + R)™ 'y

log 2
B8 1 {(kOFO' + R)"'OSFO') (4.34)

_ ’”‘;thr {(kOFO' + R)TTOSFO'(I — (kOFO + R) ™)} (4.35)

There 1s no simple way in which to solve these two functions for zero. Therefore,
when solving for the maximum likelihood, we will use the Expectation Maximization
algorithm discussed in the next section.

We will calculate the second derivatives in order to find the Cramer-Rao lower
bounds upon the variances of the estimates. As in the previous case, we will first take

the second derivatives.

2
I
% = ' (kOFO' + R)T'OFO(kOFO + R)'OFO(kOFO + R) 'y
—I—%tr{(fc@F@' + R)'OFO(kOFO + R)"'OFO}. (4.36)
il 2log? 27/ (kO FO' + R)'OSFO'(kOFO + R)'OSFO (kOFO + R)™
Saz = log" (s + R) ( + R) ( +R)"
log® 2
1508 2 kOFO + R)T'OSTFO(kOFO + RNy
K 10g22 ' -1 ' ' -1 '
+ tr{(kOFO' + R)"'OSFO'(kOFO + R)'OSFO'}
log® 2
_F °2g tr{(kOFO' + R)'052FO'} (4.37)
0%l log 2 ' -1 ' ' -1
o =~y r{(kOFO' + R) T OSFO(sOFO' + R) ™y — 1))
+rlog 260{(kOF O + R)'OFO(xOFO' + R)“'OSFO((rOFO' + R)yn’ — %1)}

These functions simplify greatly under the expectation across 5. The relation in

this case is

E{nn'} = kOFO' + R.
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2] 1
E{% = —?r{(&@F@' + R)T'OFO (kOFO" + R)T'OFO’} (4.38)
K
2 ?log?2
E{% — —%u«{(ﬁ@m' +R)'OSFO(kOFO + R)'OSFO'}  (4.39)
a
0%l Kk log 2 , 1 , , _1 p
E{a 5 }=— 5 tr{(kOFO + R)TOFO'(kOFO"+ R)"TOSFO'}  (4.40)
adk
And as before, the determinant of .J is
K? 10g2 2 / -1 ' ' -1 /
= (tr{(sOFO' + R)T'OFO'(xOF O + R)'OFO'}

4r{(kOFO' + R)'OSFO'(kOFO + R)'OSFO')
—tr*{(kOFO' + R)'OF O (kOFO + R)'OSFO'}) (4.41)

The calculations of the variances can now be performed.

J

var(ag) = ﬁ (4.42)
J

var(kg) = ﬁ (4.43)

4.4 The Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm is a two step iterative algorithm found
in a wide variety of signal processing applications [24, 25]. We will be using it as a
tool to jointly estimate the object as well as the model parameters. First the model
parameters are fixed at some initial guess. The Expectation step is performed by
taking the expectation of the object given the data for the fixed model parameters;
this is an MAP estimate of the object with the current model. In the Maximization
step, the current estimate of the object is used to computed the likelihood, then we
maximize over the likelihood function to compute an update of the model parameters.

Since the likelihood function being maximized over is that of the object, it i1s a much
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simpler calculation than maximizing over the likelihood function of the data. In addi-
tion, an estimate of the object is produced at each iteration, progressively improving
as the model parameters converge. At each step of the algorithm, the likelihood value
increases, therefore the solution is guaranteed to converge to some maximum of the
likelihood function, but a global maximum is not guaranteed. If local maxima exist
on the likelihood function, then the location of the initial guess of the parameters
will dictate to which solution the algorithm will converge. This is not a concern for
our problem since, as was shown, the likelihood function in our case has a unique

maximum.

4.4.1 The Expectation Step

The data which we have available, 5, is the incomplete data . The vector [n'+']
is the complete data , which is not observed directly but will be estimated. The
algorithm is initialized with a guess at the parameter values k and «. In subsequent
iterations, the values of the parameters will be supplied by the maximization step. In
the expectation step, we will compute an estimate of the object as the expectation of

~ given the data n as
M= B{ylp, ol k0 (4.44)
= /va(vln, o=t k) dy (4.45)
Which is the mean of the conditional probability density function (pdf) of v given .
This can be calculated as the LLSE of « using the model with the current estimates

of a and « as

A = clle'R1y (4.46)
Where the matrix C is an estimate of the covariance between the object and data

and 1s given as

O = (O'R10 + —— F~1(ali-11))1. (4.47)

li—1]
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This is a regularized estimate of v with the model term as a regularizer, avoiding any
problems of stability in the estimation. As was shown in chapter 3, the performance
of this estimate will improve as the model parameters more closely match the true

parameters.

4.4.2 The Maximization Step

In the maximization step, we will use the 4! and Cl1 which were estimated in the

expectation step as if they were the true v and ', and we can now maximize the

likelihood function [25] to produce xlit!l and ol The maximization step then
becomes
ol . ' | '
| e <_E(V[Z])'F(Q)_I(V[Z])— S tr{F(a)7 )
N 1
~ Slogr - log |F(a)|) . (4.48)

If we combine the first two terms by changing the inner product to a trace we obtain
1 . .
= arg max (—Q—tr{F(a)_l (44T 4 Olihy}
.k K

- glog . %log |F(a)|) . (4.49)

If we observe that the matrix F' is diagonal, then the trace operation will be only
using diagonal elements of the argument. In other words, the elements of (yy7 + (')
are scaled independently by the elements of /' and then summed up. Therefore we

can combine the estimation of the object and covariance into a single statistic vector
t]‘ = ’}/]2 —|— C]'. (450)

With this vector we can reformulate our maximization as the same equations for

the unblurred exact data case. Thus we can now use the simpler equations without
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blurring and noise. The maximum of this function can then be produced using the
steps shown in section 4.2. This is a very interesting result, since it allows us to
completely eliminate the computationally burdensome step of maximizing across a

two dimensional function and instead find the unique positive root of a polynomial.

4.4.3 EM Iteration and Examples

The two steps above can now be performed iteratively by taking a LLSE estimate of
the object then performance a maximum likelihood estimation of the parameters using
the procedure from section 4.2. Therefore we can now write the complete algorithm

in the following equations:

E-Step:
. 1 .
O = (0RO + k(o) ™) (4.51)
KU~
W =cle'r ™y (4.52)
[ _ (L [ -
l; —(’yj )2—|—Cj7j for y=1...N (4.53)
M-Step:
o sl tr{S}
P(2%) =32 il (s — ) (4.54)
J
oll = arg(P(2%) = 0). (4.55)
. 1 . .
wll = WIIF(GM)‘WIM (4.56)

Figure 4.2 shows the performance of the algorithm in a situation with 20dB SNR
and an operator with ¢ = 1. As can be seen from the plot the algorithm converges in
20 steps to an accurate estimate of the parameters. Here the estimate for « is 1.529
for a true a of 1.5. The value of k¥ converged to 9.358 for a true k of 10. The estimate
of the object using these parameters is shown in Figure 4.3. It can be seen that the

estimate is an accurate representation of the original.
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Figure 4.2: The expectation maximization algorithm’s convergence for « for 20 iter-
ations. The true a = 1.5.

The next plot shows the estimation of a FOGM process using the same algorithm.
In this case, the model does not accurately represent the true covariance matrix, but
the estimation will produce a decent regularization term for the estimate of v. Here
we have a ¢ = 1 and 20dB SNR, with a correlation parameter p = 0.8. In this case,
the algorithm converges in 22 steps to a value of 1.46 for a. The estimation of + from

this is shown in Figure 4.4.

4.5 Variance of the Estimations

In this section, we will examine the performance of the EM algorithm across a variety
of situations. We will examine the estimation variances with respect to the Cramer-
Rao bounds while varying the noise level, the blurring operator, the length of the

estimation vector, and the number of wavelet levels.
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Figure 4.3: The estimate of 4 produced with the estimated model parameters. Though
the estimate (dotted) is a fairly good representation of the true gamma (solid).

Figure 4.5 shows the variance of the estimate of « using the EM algorithm de-
scribed in the last section. The circles represent Monte Carlo simulations of the
variance in order to confirm that the estimator does achieve the variances given by
(4.42) and (4.43). There is quite a large error bound on the Monte Carlo simulation
for the wide operator and low SNR case. Longer simulation should result in the cir-
cle moving to a location above the bounds. Likewise due to the large error bounds
upon the variance estimate of x, an inordinate number of simulations would have
been necessary to confirm the bounds. As can be seen in the plot, the estimation
performs very well over a wide range of SNR, with performance not breaking down
significantly until the SNR falls below 5 dB. This plot was generated with a blurring
kernel of o = 0.5. The effect of changing the blurring kernel can be seen as shifting

the plot to higher variance as ¢ increases. The breakdown in estimation variance as
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Figure 4.4: The estimate of v produced with the estimated model parameters for a

FOGM process with p = 0.8.

the SNR becomes worse does not translate into a serious degradation in the estima-
tion of 4 as can be seen from the results of Chapter 3. As the SNR decreases, the
sensitivity to model mismatch decreases. Thus the estimation performs best, in the
higher SNR cases, where the better estimates are needed.

Figure 4.6 shows the variance bounds with respect to the width of the blurring
parameter. These variances were generated for a SNR of 20 dB. Similar curves develop
for other SNR, with lower SNR shifting the curve to higher variances as was seen in
Figure 4.5. It can be seen that at a low o, i.e. a narrow blurring kernel, the variance
levels off. There is little difference between estimation with a kernel of ¢ = 0.5
and no blurring at all. This is significant since it allows fairly accurate estimation
of the model parameters and thus the object in the range of non-trivial blurring

functions. However, as the blurring kernel becomes wider the performance degrades.
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Figure 4.5: The variance of the EM estimate of a versus SNR. Th circles represent
the variance from 100 Monte Carlo simulations of estimation.

For blurring operators of o > 2, the performance has degraded to a point where
the variance is 5 times that of the unblurred case. However, the degradation in
estimation of the object is not as severe. The results of chapter 3 showed that as the
blurring operator becomes wider, the reconstruction becomes much less sensitive to
model mismatch. This means that in the case of a wide operator the reconstruction
methods demonstrated will still perform well since the model mismatch from the EM
algorithm will have little effect on the reconstruction. Conversely, in the case were
the reconstruction is sensitive to model mismatch, that of a narrow kernel, the EM
estimation performs very well.

Figure 4.7 shows the effect of the number of samples upon the estimates of the
parameters. As expected, the variance decreases as the number of samples increases.
This plot is for a constant SNR of 20 dB and a ¢ = 0.5. The speed of the decrease is

fast, at 1/N. Thus more samples will quickly achieve a higher degree of accuracy in



CHAPTER 4. Parameter Estimation 56

Standard deviations in estimation of alpha
T T T T T

0.3 B
0.25F B
%
& oz2r .
T 0.15F
n
0.1r B
0.05 B
O Il Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
sigma

Standard deviations in estimation of kappa
4.5 T T T T T

Std. Dev.

3 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

sigma

Figure 4.6: The variance of the EM estimates of a and & versus the blurring parameter
o.

the parameter estimation for a constant SNR and blurring function. Lastly, Figure 4.8
shows the effect of the number of wavelet levels upon the variance of . Since the
estimate of « is an estimate of the sample variances of the data at each scale, it is
logical that as the number of scales available for comparison increases, the variance
will decrease. The plot shows that the variance decreases sharply as the number of
scales increases from 4 to 6. Thus increases estimation accuracy can also be achieved
with the use of more wavelet scales, if this is reasonable. Due to the length of the
object vector in this problem, N = 128, more than 6 scales would not be practical.
We have seen that through the use of the EM algorithm, the model parameters can
be estimated with acceptable accuracy in most cases. Where the estimation begins
to break down, either through a large blurring operator or a low SNR, the need for
high accuracy in the model parameters is alleviated by the relative insensitivity of

the object estimation to the mismatch in the models as was shown in chapter 3. The
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Figure 4.7: The variance of the EM estimates of a and k versus the number of samples

N.

the EM algorithm gives us an estimator which performs well over the class of cases

where the higher performance is needed more.
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Figure 4.8: The variance of the EM estimates of « and & versus the number of wavelet
levels S for a fixed number of samples.



Chapter 5

Conclusions and Future Work

This thesis examined the use of 1/f type fractal prior models for the estimation of
a stochastic object in a linear inverse problem. The performance of the 1/f models
was shown to be insensitive to model mismatch under a range of operators and SNRs.
This insensitivity is important since we wish to use the models in situations where
we do not know the true statistics of the unknown object and will instead estimate
them. Particular conditions were identified where the model does have a higher
sensitivity to model mismatch. These conditions (narrow blurring kernel and high
SNR) were the same conditions where it was shown that the estimation of the models
is most accurate. We also examined a particular formulation of the Expectation
Maximization algorithm where exploiting the model parameters allows a more efficient
implementation.

Chapter 2 introduced the problem of recovering a degraded signal from a limited
number of noise corrupted samples. Problems of this type are often ill-conditioned and
proper solution requires the introduction of some prior constraints. The 1/f model
has been shown to perform well in this role as a regularization term. The flexibility
of the model allows differing levels of smoothness to be imposed while retaining the

simplicity of only two parameters. A further simplification can be imposed upon the

59
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model by eliminating the parameter k. This is made possible by estimating the energy
in the process and then conditioning x upon « and the energy. This simplification
reduces the model to a single parameter constraining smoothness.

In Chapter 3 the issue of model mismatch was examined under the estimation of
a 1/f fractal signal and a non-1/f signal (specifically FOGM). These were chosen
to show the sensitivity with respect to a mismatched model when a matched model
achieves optimal performance, and where the 1/f model cannot match the true co-
variance matrix. The model was shown to be robust. Across a range of SNR, the
performance is rather insensitive to model mismatch. The sensitivity increases as
the SNR increases. Thus, it is the conditions of high SNR where accurate parameter
estimation is necessary. Likewise, across a range of blurring kernels, the sensitiv-
ity increases as the kernel becomes narrower. With narrow kernels, the parameter
estimation must perform more accurately.

With the specific needs of model mismatch in mind, Chapter 4 examined the esti-
mation of the model parameters. The Expectation Maximization algorithm was used.
The EM algorithm solved the maximum likelihood function iteratively to achieve the
maximum. In this way, it avoids seeking a closed form solution for the ML estimate
where none exists. By first exploring the EM algorithm under the assumption of no
blurring and no noise, a more efficient implementation of the algorithm was arrived
at which eliminates the maximization step and replaces it with solving for the root
of a polynomial. By exploiting the model in the more complex case of blurring and
noise, the same maximization step from the simple case can be implemented. This
vastly increases the speed of implementation, leading to the ability to solve problems

with much larger vectors in less time.
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5.1 Future Work

Overall, this thesis has shown that the 1/f models are a useful tool for solving a
specific class of inverse problems. They are robust to model mismatch, perform a
similar function to classical regularizers, and are completely defined by two param-
eters. In addition, it is possible to eliminate the power parameter by bounding it
with an estimate of the energy, further simplifying the model. The estimation of the
parameters has been examined and it is shown that it can be performed accurately
at a greatly reduced computational burden. There are still however many aspects to

explore.

1. The model mismatch issue has not been completely covered. This work exam-
ined mismatch under the conditions of a Gaussian blurring function across a
range of widths and SNRs. The theoretical work is general enough to incorpo-
rate all linear operators and therefore a further exploration could be done with
many common operators seen in signal and image processing. More significant,
this work did not explore the performance degradation when the object dis-
tribution was other than Gaussian. When the Gaussian restriction is relaxed
to more general distributions, the performance will most certainly decay and

should be understood.

2. Though the work of chapter 4 lead to a more efficient implementation of the EM
algorithm for these problems by eliminating the maximization step, the speed
can still be increased. The expectation step requires solving for the information
matrix and using this to solve for the LLSE of the object. Work has been done in
[26] which leads to a fast approximation of the information matrix by operating
in the wavelet domain. Inclusion of this in the expectation step would lead to
a further reduction in computation and allow for larger signals. Additionally

properties of the model might also lead to reduction of this step.
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3. This thesis explored the use of the 1/f models for one dimensional signals. A
natural extension of this is two dimensional images. Some work has been done
on this problem. Further work conducted here would certainly benefit from the
previous recommendation, since a major constraint upon this work is the size

of the images which can be examined reasonably.

4. In this thesis, the model parameters are used globally across the whole signal.
In extending this work to images, especially large images, a spatially adaptive
implementation may be preferable. This would require fitting the model to the
local statistics; possibly by iterating from the top of the wavelet tree to the finer

scales. This would lead to much better performance on non-stationary images.

5. Finally, this work did not implement these models in actual problems. An
obvious extension to this work is applying the results and the algorithm to a

real problem.



Appendix A

Proof of Unique Root

Theorem A polynomial with only one sign change in the coefficients has one positive

real root.
Proof.
Let P(z) be a polynomial with

P(6) = o+ x4 e e — ™ — e — ey
where the coefficients ¢; > 0 for all ¢.

Then PU™)(z), the mth derivative of P(z), is

(m+1)! n! S

T Cm41T — " — —————— T

P™(z) = —mle, —

PU(z) < 0 for all 2 > 0. The function P™=Y is the (m — 1)th derivative of P(z),
and has PU™)(z) as its first derivative.

! 1! n!
M=) = (m— e = Mo g mAD - p
P () = (m — 1)l TR ST Cmd ) )

PU=1(0) > 0, and lim,_., P (z) = —oco. By the Intermediate Value Theorem,
PU"=1)(z) has at least one point where P™=V(z) = 0. Also, since PU")(z) < 0 for
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all values of z > 0, P~ (z) is monotonically decreasing for = > 0, therefore by the
Mean Value Theorem the point where P(™~1(z) = 0 is unique. Let this point be .

Now,

. m! m+ 1)! n!
P( 2)(1’) = (m—Q)!cm_g—l-(m—l)!cm_lzL‘—icma/‘?—%cm_}_lm?’—- . —m

gt
PU"=2(0) > 0 and is monotonically increasing over the interval 0 < z < z¢, there-
fore there is no point in this interval where P"=2)(z) = 0. P"=2(z4) > 0 and
lim,_o, PU"~2(z) = —oo, thus by the same reasoning as above, there is one point
x > xo for which PU"=2)(z) = 0. Let this point be z;, and repeat the proceedure until
P(z) is reached at which point there is a unique point z > 0 for which P(z) = 0.

QED.
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