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Preface

Two common image processing problems are determining the location of an object
using a template when the size and rotation of the true target are unknowns and
classifying an object into one of a library of objects again using a template-based
matching technique. When employing a maximum likelihood approach to these prob-
lems, complications occur due to local maxima on the likelihood surface. In this thesis,
we have demonstrated a technique for object localization that employs a library of
templates ranging from a smooth approximation template to the exact template with
varying degrees of detail. Successively estimating the geometric parameters (i.e. size
and rotation) using these templates achieves the accuracy of the exact template while
remaining within a well-behaved “bowl” in the search space which allows standard
maximization techniques to be used. Further, this technique is extensible to solve
the classification problem using a multiple template library. We introduce a steering
parameter that at every scale, allows us to compute a template as a linear combina-
tion of templates in the library. The algorithm begins the template matching using
a smooth blob which is the smooth approximation common to all templates in the
library. As the location and geometric parameter estimates are improved and detail
is added, the smooth template is “steered” towards the most likely template in the
library and thus classification is achieved. In this thesis, we have developed these al-
gorithms and demonstrated their performance against both simulated data and real

data.
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Chapter 1

Introduction

Two common image processing problems are determining the location of an object
using a template when the size and rotation of the true object are unknowns [1,5,25]
and classifying an object into one of a library using a template-based matching tech-
nique [9,28,37]. It is desirable that an algorithm for finding the solution to either
problem should be robust to noise, accurate across a wide range of object configura-
tions, and computationally efficient. Because of the added computational complex-
ity involved in the target classification problem, it is often treated separately and
employs techniques which treat the size, rotation and location as nuisance parame-
ters [9,28,37]. In this thesis, we present a unified approach to these problems and
show that the target class parameter can be treated equivalently with the geometric
parameters and that determination of all the parameters can improve performance
for both localization and classification.

For the object location problem with known geometric parameters (i.e. size and
rotation) and additive Gaussian noise, the classic solution is a whitening filter followed
by a matched filter. This solution produces the maximum output SNR, but the
resulting signal often has a broad peak reducing confidence in the location accuracy.
Further, this filter is highly energy dependent and often will produce a significant

response to areas of high amplitude clutter. Other estimators have been proposed,
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such as the phase only matched filter (POMF) and the symmetric phase only matched
filter (SPOMF') which give better location discrimination than the standard matched
filter [25]. However these filters do not use additional information regarding the
background noise which may be available or estimable. Inclusion of these statistics
can overcome problems associated with clutter or colored noise and thus provide a
more accurate location estimate. Alternatively, one may formulate the localization
problem in the framework of image reconstruction, where the image to be recovered
is a delta function at the location of the object and the blurring function is the
template [1]. This approach makes available image reconstruction methods such as the
linear least squares estimator (LLSE) and maximum likelihood estimators which can
incorporate background statistics and provide a solution which is optimal with respect
to maximizing the posterior probability density function of location conditioned on
the data.

Since they rely upon an accurate template, the localization methods mentioned
above are not sufficient when geometric parameters such as size and rotation are not
known. With unknown geometric parameters, two approaches are possible. The first
is to treat the geometric parameters as nuisance parameters and design a filter which
is invariant to these, and the second is to simultaneously estimate the geometric pa-
rameters and the location parameters. With the first approach, accurate solutions are
possible with computationally efficient estimators since we are generally only process-
ing the data once. However, the use of invariance means that significant information
related to the geometric parameters is being discarded. Further, in such applica-
tions as tracking, it is often desirable to have the geometric information to aid in
estimating the object’s motion. With the second approach, simultaneous estimation,
the geometric parameters are also provided usually at the expense of computational
efficiency and a more complex algorithm. One example of this approach is the use of
the Fourier-Mellin (FM) transform. The FM transforms the scale and rotational pa-

rameters to translational parameters, which can be estimated using one of the above
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mentioned methods [5]. The transform is invariant to the location parameters. Thus
the geometric parameters are first estimated in the FM domain, then a matched filter,
with the proper parameters, is used for the location estimate.

As an alternative approach, one could use maximum likelihood estimation of the
scale, rotation and location parameters directly. This would be highly accurate and
would have the advantage of being optimal with respect to maximizing the posterior
probability. To perform this estimation, typically, one would hope to find a closed
form solution for the maximum of the likelihood surface. In general this is not possible
so one could, alternatively, use some optimization routine to find this maximum.
However, with the problem at hand, this approach is not feasible since the likelihood
surface (as we will demonstrate) has numerous local maxima and areas of zero gradient
and is thus not amenable to a hill climbing algorithm which would likely become
trapped at a local maxima. A solution of last resort could of course be achieved by
calculating the likelihood value for a densely sampled grid of parameters. However,
this exhaustive search is generally too costly computationally. In this thesis, we
will present a method for maximizing this surface by operating upon better behaved
approximations to the surface computed using approximations to the template.

In the first part of this thesis, we demonstrate the method for searching this sur-
face using a progression of templates. The early templates are smooth monomodal
approximations of the exact template. This allows us to search a well-behaved ap-
proximation of the true likelihood surface. Here we can use a standard optimization
routine such as the Newton algorithm to find the best fit solution. Using this estimate
as the starting point of the next estimation, we add detail to our template and search
again. As we add detail, the surface becomes more ill-behaved. The local maxima
observed on the true likelihood surface begin to appear, but the previous estimates
have placed us within a better behaved “basin of attraction” of the global maximum.
By adding detail slowly, our successive estimates of the maximum will hopefully re-

main with this basin, until adding detail to the approximate template produces the
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full-detail template and the estimation settles at the maximum likelihood value of the
parameters.

To generate the templates for the search, we first must recognize the desirable
qualities for the template approximation routine: the early templates must be smooth
and monomodal, the progression must be continuous so steps can be arbitrarily small,
and all approximate templates must be continuous. We found we could achieve all
these conditions by using a diffusion-like equation which provides all the intermediate
templates between the smooth approximate template and the full-detail template.
The diffusion equation also allows fast Fourier based computations of the templates.
Coupled with the Fourier based image reconstruction method [1], this leads to a
Fourier algorithm which is not computationally burdensome.

Akin to the parameter estimation problem is the target classification problem.
With target classification, the objective is to make a determination, based upon the
data, as to which target is represented. The maximum likelihood solution to this
problem in the presence of Gaussian noise would be achieved by comparing the data
to the ideal target templates matched in size and rotation, and selecting the one
with the least squared difference. However, parameter estimation would necessarily
complicate this setup since the true parameters would likely not be available. Alter-
native solutions have been developed to overcome this difficulty. Many methods of
target classification seek to develop features which are invariant to size and rotation.
Classification is then performed in the feature space. However, by casting these pa-
rameters as nuisance parameters, information is necessarily destroyed in developing
the features.

In the second part of this thesis, we extend the template matching method to the
problem of target classification. To overcome the local minima problems associated
with the geometric parameters we introduced a smoothing operation on the template.
With properly normalized templates, this smoothing operation will result in all tem-

plate estimation in the library beginning with an identical Gaussian blob. Now, as we
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add detail, we must make a decision as to which template in the library we are evolving
towards. We could, at some point of smoothness, choose the template which achieves
the highest likelihood score. This would be a hard decision and would necessitate
discarding the other templates as we pursued the most likely choice. Alternatively,
we could make a soft decision and assign more weight to the likely template while still
carrying forward the other, less likely, candidates which may in fact have the correct
template among them. The method for treating the several templates is to compute a
meta-template which is a linear combination of the template in the library, weighted
by the posterior probability of that template given the data and the current estimate
of the geometric parameters. The vector of weights allows the meta-template to be
steered through a continuum of templates defined by the template library. As detail
is added, we can steer this template towards the most likely template in the library,
but we delay making any hard decision until the geometric parameter estimates be-
come more accurate. This is the method which we use for classification. We have
introduced a steering vector which selects from a continuum of templates. Now as we
estimate our geometric parameters, we also resolve the target classification. As detail
is added to the templates, the steering vector will move towards the template which
best approximates the data.

The remainder of the introduction is organized into three sections. In the first
we will present the problem formulation with respect to the data which we have
available, the templates, and the parameters which we will estimate. We will also
show the likelihood equations and an example of the likelihood surface which was
discussed above and which motivates the work of the thesis. The second section will
give a brief overview of the contributions of this thesis. The third section will outline

the organization of the remainder of the thesis.
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1.1 The Problem Formulation

The typical imaging system which we are examining in this thesis will produce a
pixilated image of the object of concern against a background with additive noise.
Throughout this work, we will typically use a continuous formulation of the images,
reducing to the sampled, or pixilated, images only for implementation purposes. We

should first describe the data as
g(r) = fegpo(r —1°6°) + n(r), (1.1)

where r is the two-dimensional vector of coordinates in the image space, ¢(r) is the
data, fzo(r — t°;0°) is the parameterized template and n(r) is additive noise.

The template in this equation is subscripted by F to express that it is the true
or ezact template as opposed to the approximation templates which will be used
later and by k° which is the index into the template library. The parameters of
this template describe where it is located in the image, T°, and the set of geometric

parameters 8°. The geometric parameters @ are the size and rotation respectively as
0" =[s ¢]. (1.2)

The template can be computed as a rotated and resized version of the standard

template which has only a spatial argument, fg;(r), given as

1 cos¢ —sing
fer(r;0) = fer | -M(¢)r |, where M(¢) = . (1.3)
s sing cos¢
Throughout this thesis, we will denote the true parameter values with a superscripted
zero as was done above. We will denote estimates of the parameters using the hat

symbol. Thus, 6 would be the estimate for 0, and would hopefully be close to the

true value 6°.
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1.1.1 Likelihood Equations

As discussed above, we will use the likelihood setup of the problem to define our cost
function. The maximum likelihood equation solution is predicated on maximizing
the posterior probability across all possible parameters. Therefore, the likelihood
cost function is the posterior probability with the parameters as the independent

variables as

L(fv 0,k|g(1‘)) :p(g(l‘)|f, 0, k) (14)

In the case of white Gaussian noise, the likelihood function is [11]

- 1 -
L0 H9() = Cexp (o)~ feae —TOF). (19
where the norm function || - || is the standard 2-norm as

wamz(/ﬂumﬁ%. (1.6)

It is common, and far simpler in the Gaussian case, to work with the logarithm of
the likelihood. Since this is a monotonic transformation is does not change the loca-
tion of the maximum and it eliminates the exponential. The log-likelihood expression

is
1
202

[(T, 0, klg(r)) =log C — 5 lg(r) — fex(r —T:0)[. (1.7)

The maximum of this equation is not dependent upon the first term which is a
constant. The maximum is solely dependent upon the norm expression and we can
define a simpler cost function if we focus on this term alone. Therefore, we can
maximize the likelihood by minimizing a cost function defined as

a1
202

J(x,8,klg(r)) lg(r) = fex(r —:0)]" (1.8)

Thus, the solution to the full problem is the minimization of (1.8) across all
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possible locations, sizes, rotations, and targets in the library. The expression for our

estimates of the geometric parameters, the location and the template (where, e.g. 6

is the estimate of the parameter vector 6) is
{0.%,k} = arg [nin J(F,0,k|g(r)). (1.9)

For the parameter estimation work presented in the first part of this thesis, we
assume a single template library. Since k has only a single possible value, we will

simplify the cost function in (1.9) to be
{6,8} = arg max J(F, 6 g(r)). (1.10)

This expression assumes a proper value of k is used and it is therefore dropped from
the expression. In the following subsection we will use the single template expression

for examining the difficulties associated with minimizing (1.9).

1.1.2 Complications of the Likelihood Solution

If it were possible to find a closed form solution for the minimum in (1.10), then
the problem would be trivial for both estimation and classification since we could
compute the estimate and cost value for each template in the library and select the
lowest cost solution. Alternatively, barring computing the minimum directly, we
could minimize on a cost surface generated with each template and again select the
lowest cost solution. However, as discussed earlier the surface to be minimized is
not amenable to a gradient descent minimization due to numerous local minima and
other areas of zero gradient.

An example of the cost surface generated for estimating the size and rotation of a
blocky target in noise is shown in Figure 1.1. The template shown in (a) is embedded

in noise with 20 dB SNR, a size of 1.0, and a rotation of 0.0. In (b) the cost J is
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x 10

Figure 1.1: The two-peak block template and the cost surface with respect to size
and rotation.

computed on a grid in s — ¢ space. The global minimum is correctly found to be at
a value of s = 1.0 and ¢ = 0.0. However, minimization would be complicated by the
local minima and the general spiky nature of the surface. These difficulties motivate
the search for an alternative minimization method which will be examined in more

depth in Chapter 3.

1.2 Summary of Contributions

In this thesis, we explored the problems of geometric parameter estimation and target
classification. We composed these two problems as template matching problems and
developed a common method for their solution. We showed that the problems can be
placed in a consistent setting.

In the first part of this thesis we examined the problem of target parameter es-
timation. We created an algorithm for solving for the geometric parameters of size
and rotation in addition to the location of the target. The algorithm presented is an
adaptation of template matching which incorporates template smoothing to overcome
the ill-behavior of the likelihood surface. In this thesis, we developed the specifics

of the algorithm: the template progression, the parameter optimization, and the
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scheduling of the smoothed templates. We demonstrated this algorithm versus real
and synthetic data and compared the performance to the Fourier Mellin Matched
Filter performance.

In the second part of this thesis, we extended the parameter estimation algorithm
to target classification. This was done by showing that the degenerate template for
any target can be identical. We then developed a continuous template model which
can be “steered” to any of the canonical templates in the library or any combination of
them. Then the classification algorithm is developed by creating a steerable template,
a template progression for the steerable template, and an optimization step for the
additional parameters. The parameters of the steerable template can live either on a
simplex, or on a Stiefel manifold. We showed the advantages of both and developed
optimization algorithms for both surfaces. Further, we developed a theory which
relates the final estimated values of the steerable template to the posterior probability
mass function of the templates in the template library. Lastly, we added additional

cost penalties to the surface to impose better solutions.

1.3 Organization of the Thesis

In Chapter 2 of this thesis we examine some background research and related methods
for performing template matching, target parameter estimation and target classifica-
tion. We will examine more extensively the work of Abu-Naser et. al. which we use
to decouple the estimate of location from the estimate of the geometric parameters.
In Chapter 3 we examine our method for performing the parameter estimation using
a template smoothing algorithm. We will examine the performance of this algorithm
versus real and synthetic data in Chapter 4. We continue the work on the template
smoothing algorithm by extending it to the problem of target classification in Chapter
5. In Chapter 6 we will examine the performance of a series of algorithms which were

developed. Lastly, Chapter 7 discusses some conclusions and expected future work.

10



Chapter 2

Background

The work of the thesis is divided into two fields, that of detection of a template in
an image and that of classification. The review of methods follows this division. In
the first part we discuss template matching methods of two types, those methods
which rely upon known geometric parameters and those methods which estimate the
geometric parameters. The second part discusses classification methods which all

work with unknown geometric parameters.

2.1 Template Matching Techniques

Template matching techniques at their most basic level, search an image for the best
fit of the template [1,2,5,17,34]. The fit can be scored by correlation methods or
a two-norm of the difference between the data and the estimated template, or some
other cost function. The methods proposed seek fast solutions, which are robust to
noise and clutter and produce accurate localizations of the target. In the presence of
known geometric parameters, we will see that matched filters and variations thereof
are the preferred methods, but that these techniques are not sufficient when these

parameters are unknown.

11
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2.1.1 Known Geometric Parameters

In the presence of known geometric parameters, i.e. size and rotation, the solution can
be regarded as the best correlation between the template and the data [1,12,16,17,
21,22]. One could compute a correlation for many points in space and select the point
of highest response. Indeed, it can be seen that the matched filter is this solution
and, under white Gaussian noise conditions, this produces the highest output SNR,
between the signal and the background. However, the matched filter is generally a
low-pass process and so produces a broad peak which is not suited to precise target
localization. Other solutions which produce higher resolution in the localizations have
been proposed, such as the phase only matched filter or filters constructed using image
reconstruction techniques. These filters often produce sharper location estimates or

are more robust to noise.

Matched Filter Techniques

The most common and obvious technique to perform template matching, at least
with known geometric parameters, is to use a matched filter [17]. Letting s = 1 and
¢ = 0, the matched filter is then composed simply as the reversed template with a

whitening filter, giving the transfer function [17]

~ F*(k
h(k) = (k) : (2.1)
The location is then selected as the maximum output of this filter
f = argmaxh(r) x g(r) = argmax y(r). (2.2)

which yields the largest SNR achievable with a linear filter for the output signal [17].
However, since the response of this filter is driven primarily by the local energy of the

image, it is difficult to differentiate the object from clutter. Further, the structure

12
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of y(r) in (2.2) is usually such that it has a broad maximum which is difficult to
accurately locate in the presence of noise [5]. For these reasons, it is usually preferable

to employ a more sophisticated filter.

Phase Only Matched Filtering

The advantages of phase only matched filters (POMF) over conventional matched
filters is the sharpness of the resultant peak and thus the fidelity of the position
estimation, and the fact that it is not as significantly effected by the energy of the
data [5,16,21]. The transfer function of the phase only matched filter is equal to the

phase of the template as [5]

h(k) = exp[—jyy (k)] (2:3)

where 1);(k) is the phase of the template spectrum. The application of this filter
produces much sharper location estimates than does the matched filter. Also since it
is not driven by the local energy, it offers much better discrimination with respect to
clutter than does the MF [5].

Further enhancement of the POMF can be achieved by extracting the phase of
both the data and the template and using a nonlinear filter to provide the correlation
[12]. Also, with real data additional SNR can be achieved with the symmetric phase

only matched filter, which exploits the symmetry of the Fourier spectrum [5].

Impulse Reconstruction Techniques

Another technique which produces better localization is the impulse reconstruction
technique [1,6,7,18,26]. This technique treats the image data as an impulse convolved
with the target with additive clutter and noise. The advantage of this technique is
that it applies the vast field of image reconstruction techniques to the problem of

target localization.

13
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Following Abu-Naser et. al. [1] the problem of template matching is formulated in
an image reconstruction framework, taking a delta function at the template location
as the object to be reconstructed and the target template as the blurring kernel,

which leads to the convolution equation,
g(r) = f(r;0°) * 0(r — °) + n(r). (2.4)

where the * represents two dimensional convolution. The location can now be found
by reconstructing the delta function, or inverting the convolution. One possible ap-
proach to this could be an inverse filter. However, the convolution tends to be an
ill-conditioned matrix, therefore inversion often leads to the image being overwhelmed
with high-frequency artifacts. Some type of regularization would be necessary.

In a Gaussian environment, the optimal linear filter is the linear least squares

estimate (LLSE) of the image given as [1]

fi(k;0)

3(1') =F! N 2
fo(ki )P + (22)

g(k) o, (2.5)

where o2 and o3 are the noise and signal powers respectively. We can now choose a
location estimate by selecting the point of maximum response as our position estimate,
as

£(0) = arg max o(r). (2.6)

Abu-Naser et. al. improve this estimation technique further by embedding the esti-
mation in an Expectation Maximization algorithm which allows for estimation of the

noise and clutter statistics along with the position estimate [1].

14
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2.1.2 Unknown Geometric Parameters

The preceding techniques are not sufficient when the geometric parameters are un-
known. In all cases, in order to perform the location estimation an accurate template
is needed. When we lack the geometric information about the template, it becomes
necessary to either simultaneously estimate these parameters, or construct techniques

which are invariant to them [1,2,5,23].

Fourier-Mellin Matched Filtering

The Fourier Mellin Transform is a transformation of an image such that scale and
rotation of the original are mapped into translations of the transform [5,32]. To
compute the FM transform of an image, we first take a Fourier transform, and then

remap this Fourier transform using the log-polar coordinates in the frequency domain

[5]-

Consider an image ¢(r,,7,) which is a resized rotated and translated version of
fre,ry) as [5]
g(r) = f(-M(¢)r +T) (2.7)

or
1 X 1 )
g(rg,ry) = f <;(rm cos ¢ + 1y sin ¢) + ry, ;(—rw sin ¢ + 1, cos ¢) + ry)> (2.8)
Then the Fourier transform of this becomes

G(ky, ky) = e7IVitkeky) g=ilrakatruky) 2 £ (5(F cos ¢ + ky sin @), s(—k, sin ¢ + k, cos ¢)) ‘
(2.9)
where ¢ (k,, k,) is the spectral phase of f. The phase depends upon the translation,

rotation and scaling, but we can see that the magnitude is translation invariant as [5]

|G(k, k)| = 5% | f (5(ky cos ¢ + k, sin @), s(—k, sin ¢ + ky cos ¢))| . (2.10)
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If we now convert to polar coordinates, we can decouple the scale and rotation pa-

rameters. Let us define the polar representations of |f| and |g| as [5]

Folayp) = flpeosa,psina)l gyl p) = |g(peos a, psina)|. (2.11)

This leads to the relation that [5]

Gola, p) = s*fyla = o, ps). (2.12)

If we remap the scale axis using A = log p, and define this as g,(a, A\) = g,(a, p), then

we have [5]

Gpi(a, A) = szfpl(a — ¢, A —logs). (2.13)

Rotation and scaling are now translations. We can now estimate rotation and scaling
using a matched filter or POMF in the Fourier-Mellin domain. Chen et. al. [5] found
good results using this technique. Omne of the major drawbacks of this technique

however, is that it is sensitive to clutter and to template mismatch.

Geometric Parameters as a Lie Group

An interesting approach to parameter estimation problem is to treat the parameter
vectors as elements of a Lie group [15,33]. It can be shown that the translational
and rotational parameters of a template can be treated together, along with a group
operation to form the special orthogonal group SO(n), where n is the dimension of
the space being operated in. For our problem this would be SO(2). The elements of

the group are defined as [33]

p= , (2.14)
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where M(¢) is the Given’s rotation matrix and v is an offset vector indicating position.

Then we can see that the group operation is matrix multiplication as [33]

M(p1) vy M(p2) V2 M(¢1 + ¢2) M(¢1)va +vi
pip2 = = (2.15)
o’ 1 o” 1 of 1
which is an element of the group.

The parameter estimation problem is now a problem of minimizing the cost func-
tion on the manifold which represents the Lie group. This is still not an easy problem
and retains all the difficulties of local minima and local flatness.

Miller et. al. [27] apply this setup to target tracking by using a jump diffusion
method to minimize the surface. By using tracking information, they are able to im-
pose a prior distribution on the surface for the likely minimum. They then estimate a
posterior distribution on the surface by stochastically generating samples, computing

the costs and updating the model.

2.2 Classification Techniques

Closely related to the template matching techniques are certain target classification
techniques. Here we have an image which contains one of several templates in a
possible library of templates at an unknown translation, rotation and scaling. The
optimal solution from a maximum likelihood approach would be to test all templates
in the library at all translation, rotations and scalings. This could possibly be achieved
using the previous techniques mentioned for each template, but the cost becomes

prohibitive as the size of the library increases.

Affine Transform Invariance

An alternative approach is through the use of an affine invariant transform. Here,

a metric is computed from the image which is invariant to translation, rotation and
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scaling of the object. Invariant techniques can be divided into two categories: local
invariants and global invariants. The local invariant functions compute a metric
using local features of the object, such as bright spots, lines, etc [9,28,37]. This set of
metrics is then compared to a set of metrics for each target and the most appropriate
target is selected. This method is particularly useful in the presence of clutter or
occlusion of the target. However, this method reduces the information provided by
the data significantly.

The global invariant approach attempts to compute metrics from the entire image
[3,35]. These techniques include using moments, or operating in some transform
space. The advantage of these techniques is that more information is retained from
the data, however these techniques are often not robust to clutter or occlusion. Ben-
Arie et. al. [3,36] present a technique for operating in the Fourier transform domain,
where the spectral signature of the template becomes invariant to translation, slant
and tilt (for 3D targets). They can then compare this to a library of signatures for

each target at several rotations (since the transform is not rotation invariant).

2.3 Optimization Methods

Much of the work of this thesis will focus upon optimization of a cost function. In
this section we will briefly touch upon some optimization techniques which could be
used for this problem. We will discuss in slightly more depth the Newton algorithm
since it will be an essential part of the work in the next chapter.

There are numerous methods for optimizing a function (either maximization or
minimization). These can be divided into deterministic techniques which usually rely
upon some type of ordered descent search or stochastic techniques which can search
the surface in a more haphazard way but have the advantage that they can often
escape from local minima which would trap a deterministic minimization.

Common methods in the deterministic descent type algorithms are a gradient
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descent which uses the first derivative, a Newton method which relies on the first
two derivatives, a conjugate direction method, or a combination of these such as the
Conjugate Gradient algorithm [8,13,14,31]. On the stochastic search side, the most

common method is the simulated annealing method [19].

2.3.1 Descent Methods

Perhaps the simplest of the descent methods would be the conjugate direction method
[13]. The conjugate direction method performs line searches along one variable of the
function until a minimum is found, it then switches to another variable. This method
has the advantage that it is simple, and will converge quickly for well-behaved surfaces
when the starting point is near the minimum. However, it will often take a large
number of iterations if one of these conditions is not met. Further, the method does
not use any information regarding the local gradient or curvature of the cost surface.

The gradient descent method [13] is an alternative approach to the conjugate
direction. Here, the search direction is chosen to be in the direction of greatest descent
with the assumption that this is likely to be the direction in which the minimum lies.
This method performs line searches in the direction of the gradient, then updates the
gradient and searches again. No attempt is made to account for the previous path
the search has taken, unlike the conjugate direction which is solely based upon this.

A combination of these techniques is the conjugate gradient method [8,13,14]. In
the conjugate gradient method, the new search direction is calculated as a combina-
tion of the conjugate direction and the present gradient. This has the advantage of
incorporating local gradient information, but also preserving a memory of the path
taken. By including the conjugacy condition, the search path will tend towards being
at a large angle from the previous search direction. This can greatly improve the
speed of searches, and the CG algorithm usually converges faster than either of the

previous techniques. Further discussion will be given to the CG algorithm shortly.
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The Newton Algorithm

The minimization of the geometric parameters in the next section will be done using
a Newton algorithm. The Newton algorithm uses the gradient and the Hessian of
the function it is minimizing, or the matrices of the first two derivatives. Because
the Newton algorithm uses the second derivative information, it can converge much
faster than a gradient descent algorithm. Indeed, in the case of a quadratic surface,
the Newton algorithm will reach the exact minimum in one step [13].

The Newton algorithm is based on the assumption that the surface can be locally
approximated by a quadratic, or a truncation of the Taylor series at the second order
term [13]. That is, if we wished to minimize a function f(x) for x, the we should first

write the truncated Taylor series as [13]
1

where

9(xr) = Vi®)lxx,  Gxr) = VI () lxx,- (2.17)

Now in the Newton method, the iterate x;,; is taken to be
Xpp1 = X5 + O, (2.18)
where d is the minimizer of ¢;(d), which is arrived at by
G(xp)0r = —g(xz). (2.19)

Thus the Newton iteration step can be performed by: (a) calculating g(xj) and
G(xy), (b) solving for d;, using the equation (2.19), and (c) calculating the update of
the iterate x; using (2.18). It is now evident why the Newton algorithm converges in

a single step for a quadratic surface; the approximation g (x) is exact and thus the
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Newton step minimization is the global minimum of f(x).

Numerous difficulties exist with the Newton method and many algorithms have
been implemented to overcome these. Some of the improvements are in refining the
search direction or the length of the step taken to ensure convergence or a decrease
in the cost function [13]. Other algorithms have examined reducing the Newton
algorithms reliance upon the second derivatives which may not always be available.
Algorithms such as the Quasi-Newton method and the Newton-Raphson method are

often employed instead [8,13,14].

2.4 Optimization on a Stiefel Manifold

In the classification work presented in Chapter 5 of this thesis we will use an opti-
mization routine which operates on the surface of a hyper-sphere. A hyper-sphere is
a type of Stiefel manifold which is a well understood geometry and for which opti-
mization routines have been developed. Specifically, we will use a conjugate gradient
algorithm on the Stiefel manifold as presented in Edelman et. al. [10]. The chief
impediments to adapting an optimization algorithm to a non-Euclidean surface are
that the inner product metric on the manifold is not the standard inner product and
that line searches and parallel transport must be made along the surface as opposed
to straight lines as in Euclidean space. The line searches on the Stiefel manifold will
instead be computed as searches along a geodesic. Because the tangent space changes
as a vector moves along a geodesic, the parallel transport of a vector must be treated
so as to take this into account.

The Stiefel manifold is defined as the set V,, , of all n x p orthonormal matrices,

Y, where n > p. That is the set of tall thin matrices which satisfy
Y'Y =1 (2.20)

The remainder of this section is divided into three subsections. In the first we

21



CHAPTER 2. BACKGROUND

will examine the inner product metric and the gradient on the Stiefel manifold. In
the second section we will present the geodesic equation and the parallel transport
equation for a vector along the geodesic. In the third section we will present the

conjugate gradient algorithm on the Stiefel manifold as it will be used in Chapter 5.

2.4.1 Inner Products and Gradients

The inner product between two matrices in Euclidean space is given by
(A, A,) =tr ATA,, (2.21)

where here A; are n-by-p matrices. However, the use of this inner product to define a
metric on the Stiefel manifold would be incorrect. The vectors on the Stiefel manifold
are not free in all n-by-p dimensions, but are instead constrained in the directions off
of the manifold. Consequently, the Euclidean metric would weigh these dimensions
twice what they should be weighed. The inner product should properly discount
these dimensions which are normal to the surface where the inner product is being
calculated. The inner product on the Stiefel manifold is then a function of where on

the manifold the inner product is taken and is given by
1
(A1, Ay)y = tr AT(I— 5YYT)AZ, (2.22)

where A; are n-by-p matrices and Y is the point on the Stiefel manifold at which the
inner product is taken.

The gradient in Euclidean space is taken as the matrix of derivatives with respect
to each element. For a function f(x) in Euclidean space, the elements of the gradient
are then,

0f(x)

Vi) = e, (2.23)

In Euclidean space, this matrix would be in the tangent space of the surface and
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would thus be a proper gradient. On the Stiefel manifold, this matrix could instead
be in a direction which is not in the tangent space of the manifold at that point. The
gradient must then be corrected by subtracting the element of the gradient which
lies in the normal space, this will leave a vector which lies in the tangent space. The

gradient on the Stiefel manifold must is computed as

VI(Y) = fx(Y) = Y fE(Y)Y, (2.24)

where fy is the matrix of derivatives of f with respect to the elements of Y. The
second term is the projection of fy into the tangent space. With this subtracted, the

resultant gradient V f(Y) lies in the tangent space.

2.4.2 Geodesics and Parallel Transport

It will be important to our optimization routine to perform searches along the surface.
In a flat space, we would use the equation for a line starting at point xg and proceeding
in direction H as

x(u) = xo + uH. (2.25)

On the Stiefel manifold, the line search will be replaced by a search along a geodesic.
The geodesic is the shortest path between two points on the manifold which remains
on the manifold. The equation for a geodesic starting at the point Y, and going in

direction H is given by the equation

Y (u) = YoM(u) + QN(u). (2.26)

where

QR=(I-YY)H (2.27)

23



CHAPTER 2. BACKGROUND

Figure 2.1: Parallel transport of a tangent vector. The vector H is to be transported
to 7TH by moving and rotating. The new vector 7H remains a tangent vector [10].

is the compact QR-decomposition, and M(u) and N(u) are p-by-p matrices given by
the matrix exponential

M (u) A -R7 I,
=expu , (2.28)

and A = YTH.

For the parallel transport of vectors on the Stiefel manifold, we must move the
vector to the new location of the manifold and also rotate the vector so that it
continues to point in the proper direction along the geodesic. The operation of parallel
transport is illustrated in Figure 2.1. The tangent vector H on the left is to be
transported to its new location on the right. If the vector is simply moved to the new
location, we see that it points off of the surface and is no longer a tangent vector as it
does not point along the geodesic any longer. To accomplish the transport and have
the result be a tangent vector, it must be rotated as it moves such that it continues
remains in the tangent space. We will designate this operation by 7 and the transport
of a vector H as 7TH. This is accomplished with an equation similar to the geodesic
equation,

7H = HM(u) — YRTN(u). (2.29)
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2.4.3 Conjugate Gradient on a Stiefel Manifold

The conjugate gradient (CG) algorithm in Euclidean space seeks to minimize a func-
tion by a series of line searches. A CG step can be describes as follows: with the
starting point x;_; find the minimum along a line search in direction H;_; and label
this point x;, then compute the new search direction from the former search direction
and the new gradient.

The initial point xq of the algorithm must be chosen and the initial search direction

is set to the negative of the gradient Gy = V f(xy), as

The steps of the CG algorithm for minimizing a function f(z) then are:

Line search Umin = argmin f(xg_ 1 +uHy 1) (2.31)

Vector update X = Xp—1 + UminHp_1 (2.32)

Gradient G = Vf(xk) (2.33)
. . (G — Gj-1, Gy)

Conjugate weight = 2.34
jug g "= G G (2.34)

New search direction H, = G, +v:Hy 1 (2.35)

The new search direction is computed from the old search direction and the present
gradient. The weight is determined such as to set the new search direction conjugate

to the old search direction, through the Hessian. That is

H£71fm;Hk = 0. (236)

The CG algorithm on a Stiefel manifold will replicate these steps with the consid-
erations expressed in the proceeding subsections. Let us consider the minimization

of a function f(Y) on a Stiefel manifold. We will of course initialize our algorithm as
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was done above with a starting point Yy and compute the initial search direction as
the negative of the gradient Hy = —V f(Yy), but here the gradient must be computed
using the gradient equation (2.24)

We next consider the line search in (2.31). This must become a search along a
geodesic using (2.26). After computing u,;, we again use the geodesic equation to
compute the update vector in (2.32). The gradient in (2.33) is computed again by
(2.24). For the last two equations in the algorithm, the conjugate weight and the
new search direction, we must consider the parallel transport of the vectors when we
make these computations. In computing the conjugate weight, we cannot perform the
subtraction in the numerator of (2.34) without first transporting the old gradient to
the new Y since the new gradient is taken at this point. The parallel transport of Gj_1
or TGy is given by (2.29). Likewise in (2.35) we cannot add the old search direction
H;_; to the new gradient without transporting it in the same manner to produce
THj_;. The conjugate gradient algorithm on the surface of the Stiefel manifold is

now given as:

Umin = argminf (Y (u)) where

Y(u) =Y, 1M(u)+ QN(u)

Geodesic search QR = (I-YYT)H,_, (2.37)
M (u) A —RT 1,
=expu
N (u) R 0 0
Vector update Y =Y (tpin) (2.38)
Gradient Gk = Vf(Yk) = fY - kang (239)

TGk_l = Gk—l or 0
Conjugate weight (G — 7Gg_1, Gk>Yk (2.40)
T T TG 1, G 1)y,

THy 1 =H;_ 1 M(upin) — Y1 RTN(wmin
New search direction o kot M (tnin) o (tmin) (2.41)

H, =Gy +vmHi
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2.5 Summary

In this chapter we conducted a review of the relevant literature for this thesis. The
problems being investigated in this thesis are estimation of the geometric parameters
of a target and the classification of the target. In the first part of this chapter,
we reviewed several methods for performing these tasks and discussed the strengths
and weaknesses. The methods important for the remainder of this thesis are the
Fourier Mellin Matched Filter method, the Template Matching method for parameter
estimation.

In the second part of this chapter, we reviewed the necessary techniques which
will be employed in the remainder of the thesis to solve these problems. We discussed
optimization methods which will be necessary for minimization of the cost function
discussed in Chapter 1. We put additional emphasis on two algorithms, the Newton
Method and the Conjugate Gradient Method. The Newton Method will be used in
the parameter estimation work, and the Conjugate Gradient algorithm on a Stiefel

manifold which will be used in the classification work.
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Parameter Estimation

In this chapter we will present the multiscale template matching parameter estima-
tion technique. As was discussed in Chapter 1, the problem which we are attempting
to solve is the maximum likelihood solution of the template matching problem where
size, rotation and location are all unknown. The solution to this problem is com-
plicated by the ill-behavior of the likelihood surface. As was shown in Chapter 1,
optimization methods are not sufficient to find the maximum likelihood solution due
to the numerous local minima of the cost surface. We will present here an algorithm
which attempts to overcome the problems associated with optimizing the likelihood
surface by minimizing on an approximate surface generated from an approximate
template. By smoothing the true template with a diffusion-like equation, we will
develop an iterative template matching algorithm which achieves this optimization.
We will first simplify the problem of likelihood maximization by decoupling the
estimation of the location parameters from the estimation of the geometric parame-
ters. This decoupling will be done by applying a heuristic approach to the solution
of the location parameters. The advantage here is that the location parameters can
be solved in closed form for a given set of geometric parameters by using a Linear
Least Squares Estimator (LLSE) [1]. Solving for two of the parameters in closed form

greatly reduces the complexity of the problem. Further, by removing consideration
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of the location parameters from the problem, we can focus exclusively on the prob-
lems caused by the geometric parameters when we examine the multiscale template
technique. The approach taken for finding the location parameters is a Linear Least
Squares Estimator of a delta function [1]. While this is not the maximum likelihood
estimator, it has been shown to work well and requires considerably less computation
than the ML estimate. After decoupling, the likelihood surface is solely a function of
the two geometric parameters, size and rotation. It is with respect to these parame-
ters that we demonstrated the ill-behavior in the likelihood surface with Figure 1.1.
This ill-behavior of the likelihood surface will be dealt with by a multiscale approach.
We will avoid the ill-behaved optimization problem and will instead estimate on a
well-behaved approximation to the likelihood surface by using a smooth template
where we have removed those qualities which generate the ill-behavior.

The remainder of this chapter is organized as follows. First, Section 3.1 will
demonstrate how the location parameters are decoupled from the geometric parameter
estimation using a heuristic approach that is not maximum likelihood but has been
shown to work well in practice. In Section 3.2, we will present the work of Abu-Naser
et. al. which is used for the estimation of the location parameters. Section 3.3 will
examine the conditions upon the smooth approximate templates and will develop
a diffusion-like equation for generating a progression of templates which is solvable
in the Fourier domain. In Section 3.4 we will bring these two estimations together
and present the iterative steps of the overall algorithm. Section 3.5 presents the
Newton algorithm for minimizing the approximate cost surfaces. Section 3.6 discusses
the ideas behind t—schedule selection. Finally Section 3.7 presents the Cramer-Rao
bounds upon the estimation of the geometric parameters and the performance criteria

which will be used for evaluation.
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3.1 Decoupling the Location Estimation

In this section we will demonstrate that the estimation of the location parameters
can be decoupled from the estimation of the geometric parameters while the solution
remains an ML estimation. As was presented in Chapter 1, we will consider our data

as a parameterized template in additive noise as
g(r) = fu(r —;6°) + n(r), (3.1)

where the true, unknown parameters of interest are ¥ and 6°.
The cost function associated with the maximum likelihood solution of both the ge-
ometric parameters and the location parameters is derived from the Gaussian density.

As shown in Chapter 1, it is
J(¥,0l9) = 55l fp(r —7:0) = g(x)ll3. (3.2)

The maximum likelihood solution for the full parameter set {T, 8} in Gaussian noise
is equivalent to the minimization of the cost function J. So if we define the maximum

likelihood estimates as  and é, the solution can be expressed as
{£,6} = arg win J(, 0]g). (3.3)

Let us consider only a solution for the geometric parameters. This is done by
breaking the minimization into two minimizations. The estimate of the geometric

parameters as

0 = arg {21_1; J(T,0|g) = arg min (mfm J(T, 0|g)) . (3.4)

)

If we now define a solution for minimizing the cost function, J, across T in (3.4) for
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a fixed set of geometric parameters as

£(0) = arg mfin J(%,0|9), (3.5)
then the substitution of (3.5) into (3.4) yields

6 = arg mgn J(£(0),80]g). (3.6)

Thus, if we now have a solution to (3.5) then we can embed this solution into (3.6)
and still achieve a maximum likelihood solution to the full problem. We instead
use an approximation of this solution by using a delta reconstruction method. The
delta reconstruction method has been shown in practice to work will and can be
evaluated in closed form so is more computationally efficient. In the next section we
will present the object localization method of Abu-Naser et. al., which we will embed
in our maximum likelihood approach to the estimation of the geometric parameters.
This approach allows a closed form solution for the location parameters in a two
step algorithm for the solution to the joint estimation problem of the location and

geometric parameters.

3.2 MAP Estimation of Location

For the location estimation, or the solution to (3.5), we follow the impulse recon-
struction technique of Abu-Naser et. al. [1]. In this work, the authors demonstrated
template matching with known geometric parameters using an image reconstruction
algorithm. The approach in this work, is to take the original image as a delta function

at the true target location, as the convolutional equation

g(r) = fu(r;0°) x 6(r — ) + n(r), (3.7)
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where x represents linear convolution of the two functions and is defined as

F(x) * g(r) = / F(x') = gl — r')dr. (3.8)

The data is then considered to be the delta function blurred by a convolutional
filter which is the target template with additive noise. Instead of directly estimating
the location parameters T, we estimate the § function as if it were the desired image [1].
Proper image reconstruction should produce a distinct peak at the location of the
delta function in (3.7). This location is the estimate of T which is the target location.
This approach allows greater accuracy with respect to localization and can incorporate
background statistics. The incorporation of background statistics produces a solution
which is more robust in the presence of noise than the matched filter techniques
described earlier.

Many algorithms have been developed for recovering the original image in the
presence of blurring and noise. The most straight forward solution is of course the
inverse filter of the convolution given above. In most practical situations the inverse
filter is high pass and therefore produces noisy reconstructions which are not useful.
To counteract the high pass nature of these filters, regularization techniques have
been developed to temper the large response in the higher frequencies. As has been
shown, the statistically optimal solution is the Wiener inverse filter which regularizes
with the statistics of the noise and the object to be reconstructed. In the work of
Abu-Naser et. al. they use this regularized inversion filter. Under the assumption
of Gaussian noise, the regularized inversion filter is equivalent to the Maximum a
posterior (MAP) estimation of the object.

For this section we will be assuming that the geometric parameters are fixed and
known. With a given set of geometric parameters 8, we can construct an estimate of
position following Abu-Naser [1] by first making a MAP estimate of the delta function

[1]. Though we desire a sharp delta function, we do not enforce this constraint, and it
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should be noted that the “delta-reconstruction” is free in all N? pixels in the image.
To avoid this solution, let us consider that we are estimating a function, d(r), which
should, approximately, be a delta-function.

The MAP estimation is then achieved with the filter equation shown here in the

Fourier domain as

f5(k; 6)

ci(r) =F! -
Fe(k; 0)2 + (22)

z9(k) ¢, (3.9)

where the regularization is imposed by the second term in the denominator which is
a ratio of the noise power o2 to the signal power o2. In [1], these statistics are un-
known, and the estimation is achieved using an expectation maximization algorithm
to estimate the signal and noise statistics alongside the delta reconstruction. In this
work we have assumed the noise statistics are known and we thus bypass the EM
algorithm by using the single closed form solution given above.

The estimate for the target location T, or #(8) is obtained by selecting the point
of maximum response of a?(r) as our position estimate, as

£(0) = arg max d(r). (3.10)

r

Substituting (3.10) into (3.6) and expanding J accordingly, we have the maximum

likelihood estimator, 0 as

6 = argrrgniz||fE(r —£(0);0) — g(v)||3 = argmein J(0; 1), (3.11)
o

n

where we have eliminated the T dependence. The relation (3.11) is now dependent
solely upon the geometric parameters é, but still produces an ill-behaved surface.
We will now replaced the exact template definition fr with an approximate template

which will induce better behavior in the likelihood surface. In the next section we

33



CHAPTER 3. PARAMETER ESTIMATION

will examine the smoothed approximate templates.

3.3 Template Progression

To produce a surface which is easily optimizable, we require a model template which
has certain properties. Since multimodal templates produce multiple minima on the
cost surface, we desire an initial template which is monomodal. Also, discontinuities
on the template produce discontinuities on the cost surface, so we also desire that
the template be continuous. The first condition will be addressed by having all
the templates degrade to a monomodal blob at the lowest resolution. The second
condition is addressed by the choice of the equation for the template progression.

Let us generate a library of templates, indexed by ¢ as f;, ranging from a smooth
monomodal template fy to the full-detail template f,, = lim;_ f;. The full-detail
template is here designated as f., and not as fg since we cannot assume that the tem-
plate in the library exactly matches the true template. In most practical applications
differences will exist and these must be considered as model mismatch. Further, in
the classification section the full-detail template will be composed as a combination
of templates in a template library and not as a single exact template, and thus we
will have deliberately introduced model mismatch into the template. The template
designation f; now refers to a template at a certain smoothness scale designated by
the index .

A relatively simple choice for the smoothest template, and the one which will be
used throughout this work, is a Gaussian blob matched (in the two-norm sense) in

size and amplitude to the full-detail template given as

fo(r) = Aexp (—W> : (3.12)

2uw?

The smoothest template will generate a well-behaved surface which is easily op-

timizable. As detail is added, however, the surface will become less well behaved.
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While successive estimation will hopefully locate us inside a “well of attraction” of
the global minimum where we will avoid local minima, discontinuities in any template
can produce discontinuities anywhere on our surface. We therefore choose a method
for generating templates which in the continuous domain produces continuous tem-
plates. We choose a diffusion like process which guarantees that for any finite value
of t the template will be continuous. We specify the multiscale template f; in the

Fourier domain as

k) = (et = £ s (L) 4 fa (313

where k is the spatial frequancy variable.

A progression through the template library for the two peaked template is shown
in Figure 3.1(a). At small values of ¢, the template is a smooth approximation of
the true template; it is essentially a Gaussian blob at the lowest value of t. As ¢
is increased, the template begins to sharpen, until as ¢ approaches infinity the true
template emerges. Associated with this are the likelihood surfaces which are related
the template at each value of t. Here we see that at smaller values of £, the surface is
very smooth, has no rotational localization, and has a very broad scale localization. It
is obvious that the rotational estimation has little value and the scale estimation only
marginal value since the minimum of this surface is so broad. However, minimization
of this surface is simple, and the resultant minimization is generally in the area of the
global minimum of the surface produced using the full-detail template.

As t increases, the ill-behavior which was seen in the exact likelihood surface
returns, but previous estimates have placed us within the area of the global minimum.
We can then add detail to the template and initiate a minimization where the last
minimization settled, which is hopefully within a well-behaved “well” on the likelihood
surface. This estimate will then become more accurate than the last. We can continue

this procedure as we continue to add detail to the template. The final solution for the
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Figure 3.1: In (a) we see four templates computed using the diffusion-like equation
(3.13) for four different values of ¢. In (b) we see contour plots of the likelihood
surfaces associated with each template. We see that the surface becomes more ill-
behaved as we add detail to the template, but the minimum of each surface from
an optimization routine (noted by the x) becomes progressively closer to the global
minimum (noted by o). By starting the new minimization by the previous estimate,
we remain within a well-behaved basin around the global minimum.
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parameters will of course be a local minimum, but may not necessarily be the global
minimum. We will see later that the rate at which the templates evolve influences
whether the final solution will be the global minimum with slower ¢-schedules leading

to more accurate estimates.

3.4 Algorithm Description

The procedure which the estimation algorithm will follow was outlined in the previ-
ous section. In this section, we will detail the individual steps of the algorithm as
they will be implemented throughout this work. As was outlined above, the algo-
rithm will produce an approximate template from the diffusion-like equation. Then
estimates will be produced successively for the location parameter and the geometric
parameters. Detail will then be added to the template and the procedure continued.

The specific steps of the algorithm are:

1. Begin at t = 0. This starts with the smoothest template and best behaved
likelihood surface. The initial template is given by the best match (in the

2-norm) Gaussian function, given by (3.12).
2. Construct f; for the current value of ¢ with (3.13).

3. Compute the ML estimate via the equations

(@) = arg max Fi fi (1 6)

SG(k) 3. (3.14)
“ F )2+ () '

6, = argmgn %Hft(r; 0) * 6(r — £,(0)) — g(r)|l5- (3.15)

The minimization in 3.15 is performed via a Newton algorithm given in Sec-

tion 3.5.
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4. Raise t and proceed to step 2. The t-schedule should be chosen to take small
steps at low values of ¢ for which the information in the estimate is changing
quickly and then larger steps for higher values. This agrees with the method
for graduated non-convexity [30]. Our method is to choose a small value for the
first t and to double it for each subsequent ¢. If a longer schedule is desired, a
smaller multiplier is used. The t-schedule can be terminated when the informa-
tion content of the template is essentially maximized, or the template contains

sufficient detail.

3.5 Newton Step Description

The minimization mentioned which was mentioned in the previous section is done
using a Newton algorithm [31]. In this section we will develop the necessary pieces of
the Newton iteration. The Newton optimization algorithm implemented here seeks
to minimize the squared error between the image produced from the template at the
estimated target location and geometric parameters and the data. The error can be

calculated as

6, = arg mgn J(0; fi) = arg mein/ef(r; @) dr (3.16)
where e; is the error image given as

ei(r;0) = fi(r;0) x 6(r — 4(0)) — g(r). (3.17)

The procedure which the Newton iteration follows is to produce updates of the pa-

rameter set vector as [31]

(U,(09) +8,(00)p? = — / 3,(r:00)e, (r; 0 dr (3.18)

6" = 9% 4 pl). (3.19)
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Here, p(® is the update vector for the parameter set, J; is the Jacobian vector of the
error image e;, and U; and S; are functions of the Jacobian and Hessian as described
below.

The Jacobian vector is calculated as the vector of first derivative functions of the
of the error image as
Jei(r;0)  Oey(r; 0) T

0s 0¢
= Vo fi(r;0) xd(r — £4(0)) + fi(r;0) * Vod(r — £+(0)) (3.20)

Ji(r;0) = Ve (r;0) =

= Vo fi(lr —£(6):0) — Voi(0) V. fi(r — £(6);6). (3.21)

3.5.1 Approximation of the Jacobian and the Hessian

The first term of (3.21) is easily computable from the template function, however the
second term is troublesome. The gradient Vgf(0) is not guaranteed to exist every-
where, and even if it does exist, it cannot be calculated in closed form since #(0)
involves a maximization and also the function £(0) is not actually ever a continuous
function in implementation since it exists on the pixilated image. Numerical esti-
mation of the gradient Vgt(0) is complicated by the large granularity of the image
pixels with respect to the usual size of Vo#(0). By this, we mean that if we were to
attempt to approximate the value of an element of Vof(0) (for example ‘%g—gw) by

the approximate derivative relation

ds As ’ (322)

we find that the numerator is either zero (if the two estimates of position are coincident
on the same pixel), or one or more pixels in distance, thus making the ratio in (3.22)
arbitrarily large (if they are different pixels) because As can be made arbitrarily small.
We can instead attempt an alternative method to get a more accurate approximation

of the elements of Vg (0). First we raise s, from zero, incrementally until 7, (s, @)
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P or P or
Vof(r;0)] o = it 7
mean mean std mean std mean std mean std
1.3534 0.0090 0.0334 0.0090 0.0334 0.0087 0.0406 0.0087 0.0406

Table 3.1: Values of elements of Vo#(0) for 1095 iterations. It is seen that the values
of Vi (0) are small relative to |V f(r;8)]|.

produces at least a one pixel difference and let this point be s;. We then find a similar
point by lowering s and designating this point to be s;. We can then calculate the

gradient element approximation as

OF (s, @) ~ Ty (82, ) — fx(slvqb)‘

0s S9 — 81

(3.23)

The disadvantage with this method is that it is computationally intensive since we
must calculate #(0) at many values of s to get an accurate solution to (3.23). However,
by using this method on representative data and templates, we find that the elements
of the gradient matrix of the location estimation V(@) are typically two to three
orders of magnitude below the gradient matrix of the template Vg fi(r — £(0); 8), i.e.
the other term of (3.21). A sample of the values for these matrices are shown in
Table 3.1.

Therefore, it will not significantly decrease the accuracy of the Jacobian J;(r; 0)
if we disregard this term. By eliminating the second term, we can then compute an

approximation for the Jacobian as
J.(r;0) =~ Vofi(r — £(6); 0). (3.24)

The second term which is also important for the calculation of the Newton step

is the Hessian of the error image, or the matrix of second derivatives. The Hessian of
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the error image is given as

Ti(r;0) = Vei(r; 0) = [V fi(r;0) — Vai(0) V., fi(r; 0) (3.25)
—2Vot(0) Ve V. fi(r; 0) + (Voi(0))*V} fi(r;0)] * o(r — £(0)) |

Similar to the problems associated with calculation of the Jacobian, the terms of the

Hessian which have the gradients of £(€) can be computationally troublesome. With

a similar procedure as that shown for the Jacobian we can demonstrate that these

terms are usually not significant, so we will disregard these terms in the calculation

of the approximate Hessian. This leaves, as an approximate Hessian, the expression

T,(r;0) =~ Vi fi(r — £(0);0). (3.26)

3.5.2 Calculation of the Newton Step

The two matrices on the left hand side of (3.18) are computed from the Jacobian and
Hessian. We will actually use the approximate relations which were presented in the
previous section. The first matrix of (3.18) is the inner product of the Jacobian with
itself, and the second matrix of (3.18) is the integral of the Hessian components with

the error image. Thus, we will calculate the Jacobian inner product as
U,(0) = / J.(r;0)J (r; 0) dr. (3.27)

For the second matrix, we need to integrate the Hessian components with the error
image. Specifying the elements of S;(@), by s;;(0) and the elements of Ty(r; @) by

t; j(r;0), we calculate the matrix as

5:.4(0) = / bi5(r: 0)e(r: 0) dr. (3.28)

The Newton algorithm iteration is then done by calculating (3.18) and (3.19).
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These equations are iterated until the value of the likelihood as evaluated in (3.15)
ceases to change significantly. Expressed in algorithmic terms, the iteration continues
until,

J(Ok; fr) — J(Or-1; f1) <T (3.29)

for some small value of 7 which is the termination criteria.

3.6 Computing the t-Schedule

The last item of significance which we need before implementation of the algorithm is
to define how the t-schedule is determined. The t-schedule determines the values of ¢
for which the Newton iteration algorithm is run. As explained earlier, the values of ¢
must be chosen to induce better behavior in the likelihood surface for the minimization
by the Newton algorithm. The selection of the appropriate values of ¢ has a direct
affect upon the amount of computation and whether the algorithm will converge to a
local minimum or the global minimum. The better behavior is induced by smoothing,
or flattening, the surface about the global minimum. It seems appropriate then that
we wish to base the values of ¢ upon the expected value of the local curvature of the
likelihood surface around the global minimum.

The expected local curvature of the likelihood surface at the true parameters for
any value of t can be calculated by the expected values of the elements of the Hessian
matrix [20]. The elements of the Hessian matrix, with respect to the parameters, is

given as

o2, 2 Pfi(r;0) 2 /8ft(r;0)8ft(r;0)r.

E _ 2 .9) — fo(r)) 0 (x:0) |
20,00, _ o / ele:0) = o) g 56" 52 | a6, a8, (3:30)

n

In Figure 3.2 we plot the value of the local curvature with respect to ¢ for the two-
peaked target examined earlier. We see that the value of the curvature is small for

small value of ¢ when the template is a smooth approximate template. The curvature
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Figure 3.2: The expected local curvature around the global minimum of the cost
surface for the two-peaked template example for (a) the scale parameter and (b) the
rotation parameter.

quickly increases as t is raised until it asymptotically approaches the curvature of the
exact template. For efficient and accurate estimation, it is important that we step
through t quickly, however, if ¢ increases too rapidly then we are likely to end up in a
local minimum. At ¢t = 0, the template is smoothest and the surface is the most well
behaved and has the broadest well around the global minimum. The template must
evolve in such a way that the estimate remains within the well. Using the curvature
as a gauge of this well, we see that initially small changes in ¢ are necessary so as
not to too drastically change the surface. However as t increases larger steps can be
taken since the surface evolves slower with respect to . In this thesis, we will use a
geometric progression for the values of £. That is, we will begin at some value and raise
this value by a multiplicative amount repeatedly until the algorithms finishes. This
type of schedule is similar to that used in the Graduated Non-Convexity approach
in [4,29,30].
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3.7 Performance and Bounds

Closely related to the curvature of the surface is the Cramer-Rao bound on the vari-
ance of the parameter estimation. The CRB for the estimates is arrived at by inverting
the Fisher information matrix, which is computed by evaluating the Hessian for the
exact template at the true geometric and location parameters. The CRB establishes
the lower limit on the variance of the estimates for an unbiased estimator. The CRB
is only achievable for an unbiased estimator for a parameter for which a sufficient
statistic exists. If such a statistic is not available, then the CRB cannot be achieved.
Nonetheless, it is still useful to examine the lower limit to the variance of the esti-
mates as it is often possible to approach the performance limit of the CRB even if it
is unachievable..

As was mentioned above, the CRB is calculated from the inverse of the Fisher
information matrix. The Fisher information matrix can be calculated from the second

derivatives of the log-likelihood equations as

B() Ei BL B
. E% E (%) Eaf);f«m Eagg«y _ (3.31)
2 2 2 2
L afaf«z K 83‘95‘1 L (gré ) E BT(Z gry
| BSL BEL BE B (%) )

Then from the elements of the inverse of the information matrix we can compute the

lower bounds upon the variance of the parameter estimations, as

vars > [I7Y4 (3.32)
var ¢ >[I 'y (3.33)
varr > [T s34+ [T s (3.34)

In Figure 3.3 we have computed the CRB of the parameters estimations versus
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Figure 3.3: The Cramer-Rao bounds for estimation of the parameters versus SNR. In
(a) the scale parameter, (b) the rotation parameter and (c) the location parameter.

noise. These behave as expected with exact estimation possible in the no noise case
and estimation performance degrading as noise increases.

The other importance of the Cramer-Rao bounds for this work is that we will use
the bounds to define a good and a bad estimation. We consider that the true global
minimum of the cost surface can vary from the expected position. The amount of
this variation is determined by the Cramer-Rao bound equations shown above. We
therefore can assume that the final estimation of the parameters was close to the
global minimum of the cost surface if the estimated parameters are within an ellipse
computed as a small multiple of the Cramer-Rao bound from the true parameters.
The axes of the ellipse are computed from (3.32) and (3.33). Any final estimation
which falls within the ellipse can be designated a “hit”. Estimations outside the
ellipse are assumed invalid and designated “misses”. The multiple of the CRB which

we will use is 3 times the Cramer-Rao bound.

3.8 Summary

In this chapter, we have developed an algorithm for estimation of the geometric pa-
rameters of a target given a functional template. The primary focus of the estimation

technique presented is to overcome the ill-behavior of the likelihood surface which is
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due to the complexity of the template. The method to alleviate the ill-behavior is to
use an approximate template which was presented in Section 3.3. The approximate
template is computed using a diffusion-like equation to compute a cross between the
exact template and an ideal approximate template. In Section 3.4, we presented the
steps of the algorithm which will use this template in an iterative estimation rou-
tine where detail is slowly added to the templates and the estimation is progressively
refined until the full detail template is reached and the most accurate estimation is
achieved. We continued this investigation in Section 3.5 by calculating the steps of
the Newton algorithm which is used for the minimization of the likelihood equation at
each iteration. Section 3.6 presented the method for computing the ¢-schedule, or the
progression of templates to be used in the minimization. Lastly Section 3.7 presented
the performance criteria which will be used to define a successful or unsuccessful
estimation.

In the next Chapter, we will examine the performance of this algorithm for several

examples and for Monte Carlo simulations.
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Parameter Estimation Results

In the last chapter we presented an estimation algorithm for simultaneously estimating
the location parameters of a target along with the geometric parameters using a
multiscale template. In this chapter we will present results of running the algorithm
against synthetic data and against infrared and optical examples. The performance
metric which we will use is whether the final estimate is sufficiently close to the values
of the true parameters. We will define a “hit” as a final estimation which is within
an ellipse with axes which are calculated as 3 times the Cramer-Rao bound around
the true parameters. A “miss” is any estimation which falls outside this range. The
ellipse is defined to approximate the area within which we would expect the global
minimum to fall. We will show examples which demonstrate that the algorithm is
able to compute the true parameters for a variety of templates. Additionally, through
Monte Carlo simulation we will show that the algorithm performs well at a wide range
of SNR and geometric parameters.

The remainder of this chapter is organized as follow. In Section 4.1, we will present
Monte Carlo results of running the algorithm versus synthetic data for several levels
of SNR and for two ¢-schedules. We will demonstrate here that the number of hits can
be increased by a slower ¢-schedule which reduces the frequency of getting caught in

local minima. In section 4.2, we will present examples of the algorithm’s performance
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versus infrared and optical data and we will compare the results to the performance of
the FMMF. These data are representative of real estimation problems with non-white
Gaussian noise and background clutter. Last in section 4.3 we examine the range of
parameters over which the algorithm correctly converges to the true parameters. Here
we show that the algorithm is fairly robust to the starting conditions and accurately

converges over a wide range of true parameter values for both size and rotation.

4.1 Monte Carlo Performance

In order to demonstrate the performance of the algorithm we will perform Monte Carlo
simulations versus a set of simulated data. We will generate synthetic scenes with
the two-peaked template shown earlier and additive Gaussian noise at various levels
and run the algorithm with the two-peaked template. The output of the algorithm
is the geometric parameters along with the location parameters. We will display the
results as both an accumulation of “hits” and “misses” and by showing scatter plots
which demonstrate the width of the scattering of the estimation results.

When we plot the final estimated geometric parameters on a scatter plot, we see
that the majority of the estimates are clustered around the true parameters while
some of the estimates land in other positions. As was explained earlier, to quantify
this result, we generate an ellipse defined by the Cramer-Rao bound. The global
minimum will vary from the true parameters by some amount on each simulation.
While stochastic, the location of this minimum will, with high probability, be within
three times the CRB of the true parameters. We can confidently call successful those
estimates which lie within this ellipse. Final estimates which land within the ellipse
are designated “hits”, while those outside the ellipse are designated “misses”.

In Figure 4.1, we show scatter plots of estimates from 400 simulations of the two-
peak example at varying signal to noise ratios. The true parameters for the target in

the Monte Carlo simulations are a relative size of 0.5 and a rotation of 0.25 radians.
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Also shown are the CRB ellipses which define accurate estimates. First, it should
be noted that the size of the ellipses decreases as SNR increases. This is a result of
the lowering of the CRB as SNR increases. With the scatter plots, we observe that
in 4.1(a—c), the number of estimates which are outside the ellipse, and are therefore
considered misses, decreases as SNR increases. This shows improved performance as
SNR increases. However, the number of misses increases for the highest value of SNR,
due to a bias which appears in the size estimates. This bias when combined with the
increased tightness of the CRB causes more misses to be registered at higher values
of SNR than may be warranted by the fact that these estimates are close to the true
parameters. Further study into the bias phenomenon may be needed to decrease this
effect.

Table 4.1 summarizes the Monte Carlo runs of the example just presented and
for an additional ¢-schedule. The additional ¢-schedule will be used to demonstrate
the effect of a slower progression upon the success of the estimations. Each line of
the table shows the result of 400 simulations of running the algorithm to estimate
the template parameters for a specific level of noise and the indicated t-schedule.
The two t-schedules are differentiated by the number of stops employed. The long
t-schedule has 8 stops, and the short t-schedule has 4 stops. We should expect the
longer schedule to perform better since there will be less chance of getting caught in
a local minima due a template progression which is too fast.

The error in the estimates is composed of two components, one caused by the
variance of the local minimum around the true parameters, and the second caused by
the algorithm becoming trapped in a local minimum which is far from the true param-
eters. The first type of error is bounded below by the CRB, and in practice is usually
so small as to effect the target location estimation by less than one pixel. The second
type of error constitutes a catastrophic miss by the algorithm. This error is demon-
strated in Figure 4.2 with a pair of Monte Carlo runs at two different ¢-schedules.

From the first scatter plot, we see that the majority of estimates are grouped around
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Figure 4.1: Scatter plots of estimations from 400 simulations of the two-peak example.
The ellipse is drawn at 3 times the CRB around the exact parameters, and is used to
define “good” estimations.
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Size Rotation T 7y
SNR (dB) Schedule Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
-7.4595 short 0.50538 0.020603 0.42739 0.57641 64.8575 3.4557 65.0825 2.5947
-1.4389 short 0.50357 0.013774 0.33951 0.42302 64.9575 2.2921 65.0325 1.5756
12.5405 short 0.50105 0.0025995 0.25451 0.10889 65.025 0.5 64.9825 0.35
18.5611 short 0.50097  0.00095061  0.24918 0.0034543 65 0 65 0
32.5405 short 0.50104  0.00013374  0.24942  0.00046999 65 0 65 0
38.5611 short 0.50105 0.0002985 0.24943 0.0010505 65 0 65 0
-7.4595 long 0.5013 0.024512 0.38909 0.4705 64.785 2.5238 64.905 1.6379
-1.4389 long 0.50221 0.015672 0.32243 0.34788 64.895 1.9425 65.0325 1.1245
12.5405 long 0.50084 0.0014079 0.25412 0.10135 65.03 0.6 64.985 0.3
18.5611 long 0.50085  0.00096719  0.24918 0.0035128 65 0 65 0
32.5405 long 0.50093  0.00043025  0.24944 0.0015144 65 0 65 0
38.5611 long 0.50092  0.00030425  0.24944 0.0010707 65 0 65 0

Table 4.1: Estimation errors for size, rotation and location.

the true parameters, but 35 out of 400 of the estimates missed dramatically. These
are instances where the algorithm became caught in a local minimum which was not
the global minimum, and thus resulted in an enormous error. The second scatter
plot shows the same Monte Carlo runs with a t-schedule which has twice as many
stops and thus has twice the computational burden. Here, the number of misses was
reduced from 35 to 18. By progressing through the t-schedule at a slower rate, we
can reduce the chances of become trapped in a local minimum at the expense of more

computations.

4.2 Estimations with Real Data

Figure 4.3 shows an example of running the algorithm to estimate the size, rotation
and location of a vehicle in an IR image. Shown first in (a) is the target template
which is being used as the functional template. Shown in (b) is the data image. This
is an example of a low contrast target in a non-Gaussian cluttered background. Below
this, in (¢) and (d), are the estimated values for size and rotation parameters for each
iteration of the algorithm. The iterations are divided into several sections by vertical
dotted lines denoting the respective value of ¢ for each stage of the algorithm. Each
stage is denoted by the value of ¢, which represents a progressively more detailed

template being used. We can see that the algorithm converges in 60 iterations to
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Short Schedule Estimations Long Schedule Estimations
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Figure 4.2: Scatter plots of estimations from 400 simulations of the two-peak example
for two schedules. Longer schedules result in less misses.

values which appear to match the template to the data appropriately. Also shown in
(b) is the final position estimate of the target which also appears to be in the correct
vicinity to the center of the target.

The next example, in Figure 4.4, shows an estimation of the geometric parameters
for a real optical image using the algorithm. In this case, the template is generated
from an image of a cup. The first image in (a) shows the data scene which is being
used. The scene is a moderately difficult image since the clutter is of a similar magni-
tude to the target. The image in (b) shows the template placed at the final estimated
position from the algorithm with the appropriate size and rotation as estimated. In
(c) and (d), the size and rotation estimates at each iteration are shown. We can see
from these plots that the algorithm settled into the final estimates after 42 iterations

and that it is an accurate estimate.

4.2.1 Results of the FMMF

In this section, we will make some comparisons between the performance of the current
algorithm and the Fourier Mellin Matched Filter (FMMF) [5]. We will present a

qualitative example which is the identical data to that presented in the previous
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Template Image Data

() (b)

Size Estimate Rotation Estimate
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SOA
Iteration
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Figure 4.3: Infrared target example. (a) The template (b) the data with estimated
center location (c¢) the estimated size at each iteration (d) the estimated rotation at
each iteration.

section of the cup in a cluttered scene and then some Monte Carlo runs to compare
the variance of the two estimators.

Figure 4.5 shows FMMF run against the cluttered optical image scene in the
previous section in Figure 4.4. In Figure 4.5, we show the output of the Fourier-
Mellin matched filter which fails to isolate the true size and rotation for this image.
The performance of the FMMF is degraded by the clutter in the scene. A possible
source of this degradation is that the FMMF does not operate locally, but across the
entire scene. The template matching on the other hand is isolated to the support of
the template. If the template were to be located badly then the performance would
degrade. This is also a possible rationale for increasing the ability of the algorithm
to operate over multiple target scenes.

In Figure 4.6 the performance for the Monte Carlo runs is compared with that of
the Fourier Mellin Matched Filter [5]. The plot shows the standard deviation of the

error in the location estimate versus SNR. We see that at high SNR, both methods
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Data Image Located Template
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Figure 4.4: Optical example of a cup in a cluttered scene. (a) The data (b) the tem-
plate at estimated size, rotation and location (c) the estimated size at each iteration
(d) the estimated rotation at each iteration.
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Template
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Figure 4.5: The FMMEF of the cup in a cluttered scene. The FMMF fails to accurately
estimate the parameters.
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perform well, but as the SNR decreases then error in the FMMF increases at a faster

rate.

4.3 Robustness to Geometric Parameters

The last topic of consideration for the algorithm performance is to determine the
ranges of the scale and rotation parameters over which the algorithm converges to
the proper values consistently. This would be highly dependent upon the shape of the
template, the resolution to which template data is available and the ¢-schedule used.
Thus we can only demonstrate the performance for a specific example. We will show
this analysis for the two-peak example which is used throughout this thesis. We will
use the short t-schedule which was discussed earlier. Monte Carlo simulations were
again run for a variety of targets with values of the scale parameter of {.2, .4, .6, .8,1.0}
and values of the rotation parameter of {0,7/6,7/3,7/2}. The noise variance was
set, to produce a SNR of 10 dB across the support of the target. The algorithm
was initialized at a value of scale of 1.0 and a value of rotation of 0.0 radians. In
Table 4.2 we summarize the results of this experiment by itemizing the number of
misses out of 20 simulations. The table shows that the algorithm converges to the
proper parameters across a wide range of values of the rotation and scale parameters.
Specifically, the algorithm converges to the correct parameters consistently for scale
values down to .6 with zero rotation. For values of rotation higher than 7/3, the
algorithm often converged to a local minimum around 7/2. Thus for low values of
rotation the algorithm converges consistently to the correct parameter for a wide
range of scale. For correct scale, the algorithm usually converged correctly for most
rotations. When both parameters are far distant, convergence is not as consistent.
Interestingly, the performance at higher rotations improves for smaller scale ob-
jects. We believe that this is a result of the smoothing operation. Since the smoothing

is constant across template size, the relative amount of smoothing is greater for smaller
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Estimation Error vs. FMMF
0.35 T T T T

x Multiresolution Newton
FMMF

0.25 N

Std. Dev.

0.1 -

0.05 N

Figure 4.6: Estimation error for location for 400 simulations using the Fourier Mellin
Matched Filter and the current algorithm. The current algorithm performs signifi-
cantly better at low SNR values.

(]50
02 30° 60° 90°
100 0 15 13
0.8/ 0 0 156 14
s 06 2 2 4 2
0413 3 2 2
0218 8 7 6

Table 4.2: The total misses out of 20 Monte Carlo simulations of estimating several
scales and rotations. Proper estimation was usually achieved for scales down to .6,
and for rotations less than 30°.
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scale objects. This results in an effectively finer ¢-schedule for small scale parameters
than the t-schedule for larger scale objects. We believe that if the ¢t-schedule were
made sufficiently fine, performance would improve for all the values in Table 4.2.
The problem of optimal ¢-scheduling would require us to define a cost function for
determining the t-schedule which would trade the amount of computation for the
final accuracy of the estimation. It would be an interesting topic of future study to

examine the problem of optimal ¢-scheduling.

4.4 Algorithm Performance Summary

In this chapter we examined the performance of the algorithm versus both synthetic
and real data examples. For quantitative analysis of the algorithm, we examined
Monte Carlo simulations of the algorithm versus the two-peak synthetic target ex-
ample used throughout this work. We saw that the performance of the algorithm
is good versus a wide range of SNR. In addition, we examined the effects of using a
longer t-schedule. We saw that the number of misses can be reduced by increasing the
number of stops in the t-schedule and thus the amount of computation. Additional
stops in the t-schedule allows the estimation to adjust more rapidly with respect to
the change in the cost surface. This causes the algorithm to become trapped in lo-
cal minima less often. Next, we examined the performance of running against real
images. We presented two examples, one of a low contrast target in an IR image,
and another of an optical image which had significant clutter. Here the algorithm
performed well and showed more robust performance than was seen in the FMMF.
Lastly, we examined the robustness of the algorithm performance versus a range of
geometric parameters. We see that the algorithm performs well across a wide range
of geometric parameters.

In the next part of this thesis, we will extend the work on the multiscale esti-

mation algorithm to the problem of target classification. The target classification
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problem is fundamentally different than that of parameter estimation. Nonetheless,
by employing a similar method of progressively adding detail to the target template,
we can initialize the algorithm with a general template and delay the classification
decision until more information is obtained. This will be accomplished by introduc-
ing a template which can be steered between a number of templates in a template

library.
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Classification

We continue this work into the area of target classification. As discussed in Chap-
ter 2, target classification is often done by classification of points in a feature space
[3,9,28,35-37], where features are computed which are invariant to the unknown ge-
ometric parameters and classification of the resultant feature vector is thus invariant.
However, in computing features much of the target information is discarded. As an
alternative one could compute a score based upon a template match and compare this
score with that of other templates in the library. This approach is complicated by
the unknown geometric parameters which makes conducting the match difficult and
would thus affect the accuracy of the likelihood scores. Here, we present an approach
for applying the parameter estimation algorithm which was developed and analyzed
in the last two chapters to the problem of classification, essentially solving the joint
problem of target classification and parameter estimation.

Under the approach presented in the previous chapters, all targets which are prop-
erly normalized in support and amplitude degenerate to an identical Gaussian blob.
Therefore, for all these targets, the parameter estimation would begin identically. As
estimates are made regarding the scale, rotation, and location parameters, the accu-
racy of the target classification improves. If we describe the exact template for the

template progression routine as a combination of templates from a template library
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and parameterize this combination with regards to the weight given to each template,
then we need only define a “steering vector” which holds these weights. As the al-
gorithm progresses from the smooth approximation towards the exact template, the
steering vector is updated as with any of the other parameters and will hopefully
be steered towards the correct template. The final values of the steering vector can
then be interpreted as a classification with the maximum value designating the se-
lected template. An example of this algorithm is shown in Figure 5.1. The multiscale
templates are shown in (a), progressing from a smooth blob to the exact. They are
positioned, sized and rotated as estimated. In (b) and (c¢) we show the convergence
of the geometric parameters to close to the true parameters. In (d) the values of
steering vector coefficients are shown. The final values are close to being exclusively
made of the two-peaked template.

Implementation of this approach requires the development and analysis of several
new components to our existing algorithm. First, we need to create a steerable
template which is properly parameterized for the template combination. Second, we
must create a cost function which is also optimizable with respect to the steering
vector. Third, we must consider the minimization of the cost function with respect
to the steering vector and incorporate this minimization into the existing algorithm.

The remainder of this chapter is organized as follows: In Section 5.1 we will
examine the construction of the steerable template and the steering vector and embed
this into the template progression equation. We will define three domains for the
steering vector, whether it will exist on a simplex with two separate limiting methods
or on a hyper-sphere and we will discuss the relative advantages of both. In Section 5.2
the Stiefel manifold conjugate gradient algorithm as presented in Section 2.2 will be
adapted to the problem at hand for the minimization of the cost function with respect
to the steering vector. In Section 5.3 we will demonstrate how the coefficients of the
steering vector can be related to the posterior probabilities of the templates and

thus how they represent a confidence measure on the final template classification. In
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Figure 5.1: In (a) the actual target is shown. In (b) the object is shown in 0 dB
SNR noise; this is the data. In (c) and (d), the templates in the template library are
shown, there is also a null template. In (e), the estimated template is shown for 5
of the iterations of the algorithm. In (f) the scale parameter is shown with the true
parameter. In (g) the rotation parameter is shown with the true parameter. In (h)
the values of the steering vector are shown.
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Section 5.4 we will introduce two prior model penalty functions which will be used to
impose on the solution that it be one of the canonical templates in the library. And

lastly we will summarize the several methods presented in Section 5.5.

5.1 Steerable Template

To implement the algorithm for a multiple template library, we must have a method
for computing a single template from multiple source templates. The resultant tem-
plate will be a combination in some way of the several templates in the library and
then will be smoothed in the same manner that the single template is smoothed.
Therefore, for any smoothness parameter ¢, we will have a continuously indexed tem-
plate f;, which is composed from our template library f*), where k is the index of
the templates in the library. For example, our template library may consist of two

templates where f() is a square, f is a triangle and
fo(r; 0,2) = A f (r;0) + Ao fP(x; 6) (5.1)

is the full resolution steerable template with the geometric parameter vector @ and
the steering vector A = [A; Ao]¥. The steering vector designates the weight given to
each template in the combination of templates. The template fy(r;@,A) is then the
full resolution template which will be used in the diffusion-like equation as was done

in the parameter estimation algorithm.
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5.1.1 Steerable Templates on a Simplex

We can now define the how the combination of templates which constructs the “steer-
able template” is computed. An obvious choice here would be a convex linear com-

bination of templates, which would be expressed as
o(r; 0, ) ZAkf where d =1 and  0< X\ <1, (52)
k

where the weight elements \; make up the steering vector A. This leads to a search
space for the steering vector which is a simplex in K — 1 dimensions, where K is
the number of templates in the template library. In this formulation of the steerable
template, we have a boundary constraint since the values of A\, must be constrained
to be between 0 and 1. Also the sum constraint must also be imposed.

We consider two methods to impose the simplex boundary. The first is to imple-
ment a hard bound constraint and use a constrained optimization algorithm. With
this method, line searches are terminated at the boundaries. The second method is
to include a highly restrictive cost for points which exist off of the simplex. The cost

function then becomes

J(T.0,;9(r)) = ||g( ) = folr =T 0, N[ + Q(N), (5.3)

20 2

where () is the additional cost for values of A which are off of the simplex. In this

work, we define this cost term as
Q) = —aX? where  A_ =) A (5.4)

For a large value of «, this imposes a restrictive barrier on values of A which lie off of
the simplex. As the steering vector approaches the simplex from outside, the value
of Q(A) goes to zero. Squaring the value of A\_ ensures that the first derivative of the

cost function is continuous at the boundary.
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We will designate the first method (that of hard bound constraints) to be the sim-
plex with boundary conditions, and designate the second method (that of a restrictive

cost barrier) to be the simplex with barrier conditions.

5.1.2 Steerable Templates on a Hypersphere

The steerable template formulations given in the previous section have the disadvan-
tage that implementation on the simplex search space will require the implementation
of a constrained optimization algorithm to impose both the boundary constraint and
the sum constraint. The hard constraints will complicate the running of the algo-
rithm, especially at the early stages when the gradient on this surface will be very
small or zero and the constraints would be likely to be imposed often. We would pre-
fer instead that the steering vector exist on a surface which more naturally imposes

the necessary constraints. If we instead define the template combination as
fo(r;0,A) = Z)\if(k) where Z A =1 (5.5)
k k

then the steering vector exists on a K dimensional hyper-sphere. The K dimensional
hyper-sphere is a Stiefel manifold of the variety Vi ;. We now have a template domain
space which imposes the unity constraint but which does not have hard boundaries
requiring a constrained optimization or cost function imposed barrier. We must now
seek an optimization algorithm which remains on this surface. The Stiefel manifold
conjugate gradient algorithm described in Section 2.2 will be useful for this problem.

Figure 5.2 shows an example of how the Stiefel manifold would look for the simplest
case, which is a two template library. In the two template case, the steering vector
is a two element vector where the squared value of each of the elements indicates
the relative contribution of the associated library template to the complete template.
Thus if the steering vector is at [1, 0]7 or [—1, 0]¥, the complete template is equivalent

to the first template in the library f). Likewise, the complete template would be
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f,

Figure 5.2: The manifold geometry for a two template library. Template one is located
at (1,0) and (—1,0), while template 2 is located at (0,1) and (0, —1). The angle 1) is
angular rotation from the z-axis.
equivalent to the second template when the steering vector is equal to either [0, 1]¥
or [0, —1]7. Obviously, there is a non-uniqueness of the templates with respect to
points on the manifold surface which have elements which are the negative of each
other since the template is invariant to the negation of an element. However, this is
not a problem for the optimization since, through symmetry, each quadrant of the
surface is identical to all the other quadrants.

To express the steerable template more compactly, we will define a matrix F(60)

which has as its columns the different templates in the template library, as
F(0) = [ f(k)(r; 0) ] (5.6)
The steerable template can then be expressed using the template matrix as

fo(r;0,A) =F(0)(Ao ), (5.7)
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Figure 5.3: An example of a steerable template. The template is entirely composed of
the two-peak template on the left and the “eye” template on the right. In the middle,
the template is a combination of the two. The smoothing parameter ¢ increases in
the downward direction.

where o designates the Hadamard product of two vectors or the pointwise multipli-

cation of the elements. We can then insert the steerable template equation into the

smoothing equation as given in (3.13) and the full template description becomes

Fi(k) = (B (A0 X) = fuolk) ) exp (= [K) + foo (k) (5.8)

where the unparameterized F is the normalized Fourier transform of the template
library.

In Figure 5.3 we show an example of the steerable template for a two template
library. Moving across the images from left to right, the steering vector changes from
being exclusively template f(!) to being exclusively template f(*). The center column
shows a combination of the two templates and represents an intermediate value of
the steering vector. Vertically, we show how the smoothing acts upon the templates,

erasing any differences as smoothing increases.
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Figure 5.4: (a) shows the cost as a function of angular rotation while (b) shows the
gradient vectors on the manifold.

We can now express the cost function for the multiscaled steerable template as

a1
202

J(T, 0, g(r)) lg(x) = folr — 5.0, M| (5.9)

The cost function J(T, 8, X; g(r)) is now a function of the continuously valued vector
A instead of the discrete parameter k. It is also parameterized by the smoothing
parameter ¢t and the geometric parameters 0 as was the cost function in the previous
chapters.

In Figure 5.4 we show how the cost function would appear for two templates when
the geometric parameters and the location are known. The cost function is shown
as a function of the angular rotation from the positive z-axis. The template surface

is represented in Figure 5.3. The angular value of template f(!) is then at 0 and m

™

and the angle for template f® is 5 and 37” With respect to the cost function in

Figure 5.4(a), we see that the value is minimized for the correct template which is

@ at an angular rotations of 5 or 37” The cost function increases as the steering

vector moves to templates which include more of f(1).

The only difficulty remaining with the minimization of the new cost function
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is providing an algorithm which can properly remain on the Stiefel surface while
searching for the minimum of the cost function J(F, @, A; g(r)). As was mentioned
previously, we will use the Conjugate Gradient algorithm described in Section 2.2 to

minimize the cost function on the Stiefel manifold.

5.2 Conjugate Gradient for the Steering Vector

To adapt the conjugate gradient (CG) algorithm presented in Section 2.2 to our
problem, we will examine each of the steps of the algorithm individually and compose
the requisite equations. The cost function which we are minimizing is J(T, 8, A; g(r))
across the steering vector A. We will keep all other parameters fixed throughout the
minimization so for simplification of the notation we may regard the cost function
being minimized as J(A). We will initialize the algorithm with a starting point Ag
and an initial search direction, which is the negative of the gradient of J(X), Hy. We
can then proceed with the iterative algorithm.

As was presented in Section 2.2, the CG algorithm is composed of five steps. The
first step is a search along a geodesic for the minimum value of the cost function. The
geodesic is given by equations (2.37). The construction of the geodesic begins with a

QR decomposition

QR = (I-A\NH,_,; (5.10)

=H, , - A\"H,_,. (5.11)

If we recognize that the search direction H,_; is tangent to the surface and that the
vector A is normal to it, then the second term of (5.11) is zero by orthogonality and
the QR decomposition shown is simply a decomposition of the gradient H, ;. This

simplifies the QR decomposition to calculating the normalized gradient direction and
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the magnitude of the gradient as

R = [H, (5.12)
1
Q=—H, ;. (5.13)
(A

The next equation for constructing the geodesic is the computation of M(u) and
N(u), which will be scalar valued for this problem since the manifold is Vi ;. The
values of M(u) and N(u) are arrived at from the matrix exponential equation,

M (u) A —RT I,

=expu , (5.14)
N(u) R 0 0

where A = A;";_al,l, which as we saw earlier is zero since A,_; is orthogonal to

H, ;. So the resultant matrix exponential equation is

M (u) 0 -1 L
= exp u||H,_4|| (5.15)
N(u) 10 0
[ costi ) -
sin([[Hp-1/[v)

The scalar values of M(u) and N(u) reduce to sinusoids. Then, the resultant geodesic

equation is

p—1

A(u) = Xp_1 cos(||Hp_1]Ju) +
! g H |

sin (|| EL,_y||u). (5.17)

The minimization is computed along this geodesic by varying v and computing
the value of J(A(u)). The result is then designated to be uy,;,. The vector update A,
is then computed from u,;, as

A = A(Ugmin). (5.18)

Next, we compute the an update to the gradient of the cost function on the Stiefel

manifold using (2.39) which projects the Euclidean gradient of J(A) into the tangent
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space of the manifold. If we calculate the vector of derivatives for our cost function

as,

Ja=| 2L |, (5.19)

then we can use the derivative vector Jx(A) to calculate the gradient vector V.J as

Vo = Jx, — Aod3, Ao (5.20)

= (—4F(0) g + 4F(0)TF(8)(Ag 0 A)) 0 Ap. (5.21)

The successive search directions of the CG algorithm weigh the present gradient
with the previous search directions using a conjugate weight. The conjugate weight
is computed from the ratio of inner products as shown in (2.40), but we must here

use the inner product expression for the manifold given in (2.22), as

(Gp —7Gp1, Gp>>\p
<prlv prl>>\p

T = (5.22)

Last, we compute the new search direction using the gradient and the previous
search direction. However, since the old search direction may be pointing off the
manifold at the new location of A, we must use a parallel transport of the direction.

The parallel transport of the previous search direction is

TH, 1 = H, 1 cos([[Hp 1) = Ap 1 [[Hy [ sin([[H,o[Jw). (5.23)

The new search direction is calculated using (2.41).

The complete conjugate gradient algorithm for the minimization of J(A) with
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respect to the steering vector is then

Umin = argminJ(A(u)) where
Geodesic search w o
Aw) = Ap_y cos(|[Hp1[lv) + qt=y cos(|[Hp-1|w)

—1l|

(5.24)
Vector update Ap = A(Unmin) (5.25)
Gradient G, =VJ,=(—4F(0) g + 4F(0)"F(0)(A, 0 A,)) o A,

(5.26)

TGp_l = Gp—l or 0
Conjugate weight (Gp —71Gp_1, Gp>>\p (5.27)
L <prlv Gp71>>\p

THy 1 = Hy g cos(|[Hyy[[tmin) = Apa[[Hpa] sin([|Hp -1 || tmin)

New search direction
Hp = Gp + ’YpTHp—l

(5.28)

5.3 Steering Vector as Posterior Probability Mea-
sures

The property that the steering vector sums to unity for the simplex method and
the resultant weights are larger for the most probable targets leads us to question
whether the resultant vector can be interpreted as a probability mass function for the
templates. The values of X are not the posterior probabilities, but it is the case that
the steering vector can be interpreted as a measure of the posterior probabilities and
we can therefore infer a confidence in the final template from these values. In this
section, we seek to derive expressions for the posterior probability mass function in
terms of the final estimated values of the steering vector. We will demonstrate that
these relations hold some value as a confidence measure on the classification. We will

calculate the posterior probability from the prior probability mass function and the
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data probability density function assuming Gaussian noise.

5.3.1 Scalar Two Template Library

Deriving expressions for the posterior probabilities in terms of the steering vector
for the full problem is intractable. We will therefore consider a simplified version
where the salient issues are more easily and clearly recognized and addressed. In this
section, we will derive an expression for the posterior probabilities of the templates
as a function of the estimated steering vector. We will take the template library to
be two scalar values on the real line. The true target is one of these scalar values and
the data is the true target value with additive Gaussian noise. We can then express
the data as

g=f+n (5.29)

where f is the true template value and n is additive noise with a zero-mean Gaussian
distribution with variance 2. The true template f is one of either f&) or f? which
are real scalars with f1) < f(2). The problem can be visualized as shown in Figure 5.5,
where we see the two possible template values f) and f® and the data ¢ lying
somewhere between them. We limit the analysis to the internal region because points
outside the region are not specially interesting. Specifically, the values of A are
constrained to lie within a convex simplex, therefore values of \; greater than one
cannot exist. Instead, the value would settle at the vertex of the simplex. While the
posterior probability can continue to increase for this data the limits on \; would not
allow this to be reflected in the steering vector.

We define the steering vector A as a vector which combines the two templates in

our library into a steerable template, as

=220 1 A2F@ where A2 4+ X2 =1. (5.30)

Using the algorithm presented previously, we are solving for the maximum likelihood
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f, g £

Figure 5.5: Two templates f() and f® in a one dimensional space would be repre-
sented as two points on the real line. The data g would also lie on the real line.

~

estimate A, which is equivalent to the estimate
A= m}%n |fx — g|* where A} + A3 =1 and \; > 0. (5.31)
Or we can expand the value of Ay as A2 =1 — A2, and the ML estimate becomes

2= min IO L1 =A@ —g <N <1 (5.32)
1

No= 1-)\ (5.33)

The minimizations given result in the maximum likelihood estimators for A; as

(2) _

12 / g

Al = 7}0(2) — f(l) (5.34)
_

2 9 /

The posterior probability masses are the probabilities that the given template is
correct given the current realization of the data. The posterior probabilities can be
arrived at from the prior probability mass function and the data probability using

Bayes’ rule,

plglf p(f)

p(fPg) = o)

(5.36)

In the case of an equi-probable prior probability mass function on the templates, the

prior probability p(f®) = Nif or in the present case % The conditional probability
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p(g|f®) is the simply the probability that the noise is of the appropriate value to gen-
erate the realized data given that the true template is (). In the problem presented

here, this is a Gaussian with mean £ and variance o2, or

plalf®) = e (50 192). (5.7

2mo

The data probability p(g) is given as the prior probability weighted sums of the

conditional probabilities above and is

pla) = plal FOW(FD) + plal £ £ (5.3%)
o) =5 gm0 (g0 1R+ 5 e (o sR).
(5.39)

Substitution the prior probabilities given in (5.37) and (5.39) into (5.36) yields

the posterior probability mass for each template as

375 XD (=529 — fU)?)

T s (S0 1)

(5.40)

~ | T

We can simplify this expression by dividing by the numerator and combining the

arguments of the exponentials. We then arrive at posterior probability masses of

p(fPg) = ! . (5.41)
L exp (=5 ((g = F@)2 = (g — f0)2)

(fPlg) = ! . (5.42)

T e (C - 107 (g — 1)

Substituting (5.34) and (5.35) into (5.41) and (5.42) for the noise terms (g — f)
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in the exponentials yields

1
p(fPg) = — - (5.43)

202

1
p(fPlg) = — (5.44)
1 + exp (—%(A% — A‘f))

At this point we recognize that
A=A = (2 - )N+ ) = - ) (5.45)

since the second term of the product is unity by definition. Now, we have as the

expressions for the posterior probabilities

1
1
1+ exp ( M()\2 5\%))

p(fPg) = (5.46)

p(fPg) =

(5.47)

It is now recognizable that the difference between the values of i drives the posterior
probabilities. That is, the larger the difference, the higher the confidence in the chosen
template. This is quantifiable by (5.46) and (5.47).

Continuing, we can rearrange (5.46) or (5.47) to solve for the \; values as

(SO —f®)? 1—p(fMg)

o <_T(/\2 /\2)> (o) (543
(Y= F2)? 55 500) _ 2U9)

o <_T(/\% B ,\§)> (/Mg 049

since p(f®]g) =1 — p(fM|g). Further manipulation produces an expression for the
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~~~~ SNR = 10 dB
09} --- SNR=0dB
— SNR=-10dB

0 0.2

Figure 5.6: The posterior probabilities for the two-template case. The probability
increases as \; increases.

log-likelihood ratios in terms of the difference between the values of A\? as

@ fO— p@n2 .
1ogZEf(2)I§; = 72 S e, (5.50)

= SNR(X? — \2). (5.51)

The first term of the log-likelihood ratio expression is the signal to noise ratio, and the
second is the difference between estimated values of A;. Thus the difference between
\ estimates is directly proportional to the log-likelihood ratio. Indeed it is simply
scaled by the signal to noise ratio. The log-likelihood ratio is commonly used as
a decision tool in hypothesis testing [24], and thus the simple relationship between
the log-likelihood ratio and the estimated A further validates the usefulness of the A
vector as a decision tool for choosing templates.

In Figure 5.6, we show an example of the posterior probabilities versus the values
of A; for the simplified two value scalar case for three values of SNR. From the plots,

we see that the posterior probability of target f; increases as A; increases. Further,
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the value passes a probability of .5 when the value of A\; passes \/(2) At this point,
that A\; will be the greatest and also designates the most probable target from the

template library.

5.3.2 K Template Library

The case for libraries with K templates when K is greater than 2 is more complicated
and does not lead to a simple expression for the log-likelihoods, but expressions for
the posterior probabilities are still possible and are still meaningful. We must still
make some approximations by assuming known geometric and location parameters,
but the templates are now full image templates.

Again resorting to Bayes’ rule given in (5.36), we can calculate the posterior
probability masses. To implement Bayes’ rule, we must have expressions for the prior
probabilities, the data probabilities and the conditional probabilities of the data given

the true template. These are:

() = L (5.52)
PaIf) = e (5l ) (s 1) (5.59
e — 2 p(~paale - 1)), G5

The resultant posterior probability mass expression, simplified as before, then

becomes

1

. (5.55)
it K exp (54 (g — £9)7 (g — £0)) — (g — £0)T (g — £0)])

p(fVg) =

With the simplified problem above, and assuming the data is internal to the convex

region with fV) as the vertexes, we can assume the following expression

~

g=FAoA) =FA, (5.56)
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where for neatness of notation we have replaced the Hadamard product with the
result A = Ao X. Then the difference expressions in the argument of the exponential

can be expressed as

g —f =FA — £ (5.57)
=FA — fO1TA (5.58)
= XA, (5.59)
where
X0 = [f© _ 0. g®) _ 0] (5.60)

The resulting posterior probability equation is

1
K AT X (RTX (k) _X(HOTXE) }
S exp (AT XOIXO-XOIXO R )

2
207

p(f9]g) = (5.61)

where the center term of the quadratic in the exponential is reminiscent of the SNR,

in the simpler case given above. It is indeed the relative SNR between two templates.

Special Case for Orthogonal Templates

While (5.61) is the most useful expression for the general posterior probabilities, we
can achieve a further simplification of the posterior probability mass equations if the
templates in the template library are mutually orthogonal and of uniform energy such

that

szc 1=

FOTEG) — i
0 @7

(5.62)

In this case, the matrix X®)7TX®*) takes on a very simple structure (which is less than
full rank). The matrix has a constant value of UJ% at all locations except along the

diagonal which is of value 207. Finally, all values in the & row and & column are
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made zero. An example matrix with K = 4 and k = 1 would be

XWTXW = g% (5.63)

o o o O

which has a zero in the row and column of the subtracted template £ = 1.
Thus when we expand out the quadratic structure given in (5.61), the relation

results in the simplified posterior probability equation

(5.64)

Posterior Probability Surfaces for K Template Library

The posterior probability surfaces for the K-template library are similar to those in
the two dimensional case, in that we can infer a posterior probability and therefore
a confidence from the values of X and the SNR. In the K-template case, however,
the visualization is complicated by the higher dimensionality. We will attempt an
understanding here by examining the simplest higher dimensional case of K = 3.
Perhaps the simplest method to visualize the posterior probability surfaces is to
reduce them to the two dimensional case by “fixing” one of the coefficients of X and
varying the other two within the allowed domain. If we set the value of two of the

coefficients of X then the third value is of course set by the relation
N =1-X41) (5.65)

This relation is shown in Figure 5.7 in two forms. In (a) it is shown directly for the
values of \; and in (b) it is shown for the squared values of \;. We will usually use

the mapping in (b) with squared values for )\; since this leads to a linear geometry in
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Figure 5.7: The relationship of the three A; coefficients for the actual value in (a) and
the squared value in (b).

the A; space.

Using the relation outlined in the previous section, we can now construct the pos-
terior probability mass expressions for a simple three template library. In Figure 5.8,
the posterior probability values are plotted for a low SNR case and a high SNR case.
The charts are read by finding Ao along the x-axis and finding the appropriate curve
for A3 and reading the corresponding posterior probability that the template f() is
the correct template. Similar to what was seen in the previous section, the posterior
probabilities show a more robust behavior for the estimations with respect to devia-
tions in the coefficients of X for the high SNR case. This is shown by the width of the
area with a high confidence and the sharp drop-off of the probability as another value
of A\; becomes dominant. In the low SNR case, the confidence degrades immediately
as the other ); coefficients rise. Thus confidence is immediately lower for these cases.

We can expand our understanding of the surfaces by examining a surface whose
axes represent the squared values of the X coefficients of the two incorrect templates.
Using the relation in (5.65), it is seen that constant values of the third coefficient
lie along diagonal lines in the space defined by the squared coefficients as seen in

Figure 5.3. The examination here will concentrate on the region over which we can
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Figure 5.8: The posterior probabilities for two cases with the three template library.
In (a) the SNR is high and the confidence in the correct template is also high when
one value of ); is higher than the others. In (b), the posterior probabilities fall quickly
as the coefficients depart from 1.

assign a high confidence.

In Figure 5.9 we have the posterior probability surface for the high SNR case.
The axes are the squared values of the two coefficients of X for the templates which
are not the template of interest. Constant values of the coefficient of interest A? lie
along diagonal lines with the highest value A2 = 1 at the origin and the lowest A2 = 0
along a line going through the points (1,0) and (0,1). The surface plot shows that
there is a large region about the origin for which the posterior probability is close to
unity. This demonstrates a large region of confidence for deviations in the values of
the \; coefficients. In Figure 5.10 we see the same type of surface for the low SNR
case. Here, the posterior probability value is degraded to a much larger extent and
yields a much smaller region over which we would be confident in the proper choice

of template. This analysis agrees with that seen in the previous section.
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Figure 5.9: In (a) the posterior probability surface for the high SNR case and in (b)
the associated contour plot. Here there is a large region of high confidence.

0.9

0.8

I I I I I I I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

Figure 5.10: In (a) the posterior probability surface for the low SNR case and in (b)
the associated contour plot. Here there is no large region of high confidence, in fact
confidence degrades quickly as the coefficients depart from the origin.
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5.4 Prior densities on the Steering Vector

The results of the algorithm when run with the standard cost function often leave the
steering vector in an intermediate position, where the final steering vector holds values
with significant amounts of several templates. In the preceding section, we examined
how these values could translate into posterior probabilities of the templates. How-
ever, the discrepancy can cause errors in the estimation of the geometric parameters
and can confuse the classification. Here we will examine whether it would improve
classification and parameter estimation if these values were forced to finish at values
which represent a single template. Hypothetically, would the parameter estimation
improve if the template were forced to the likely true template as the algorithm enters
the final stages of estimation?

For this examination we will place a prior probability on the surface of the simplex
or of the hyper-sphere for where the steering vector X should settle. Ideally, the final
steering vector should be one of the canonical vectors. That is, the steerable template
should in the end be solely composed from a single template from the library. While
placing this prior probability on the surface, however, we do not wish to prematurely
force the steering vector to a solution before sufficient information has been obtained
to warrant this result. Premature classification would likely result in degrading overall
performance. Therefore, the prior density should, at the early stages of the algorithm,
be flat and should not greatly influence the estimation of the steering vector to a
significant degree. As the algorithm progresses and more information is obtained
regarding the geometric parameters, the density should evolve towards a set of delta
functions located at the canonical vectors.

In this section, we will adapt the previous algorithm to include a prior density
into the cost function to force the final X to be a canonical vector. We will examine
two possible prior densities, shown is Figure 5.11. The first density which we will
examine is to include a cost based on the p-norm of the vector in the cost function.

As will be shown, the p-norm for a value of p = 1 on the simplex and p = 2 on
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the Stiefel manifold, gives a uniform density on the cost surface, which is what is
required for the early stages of the algorithm. As p is raised, the penalty on a A
being a non-canonical vector increases, which forces the solution towards one of the
canonical vectors. The second density which we choose to examine is to minimize the
product of the distances from X to all the canonical vectors. Obviously, this penalty
goes to zero when A equals a canonical vector and the distance is zero and increases
for vectors away from the canonical vectors. In the case of the simplex, the Euclidean
distance metric is appropriate, but in the case of the Stiefel manifold the geodesic
distance metric must be used. This cost necessarily includes a weighting parameter.
At the early stages of the algorithm the weighting parameter is negligible and thus
the cost is flat, as the algorithm progresses, the cost becomes more significant, forcing
the solution to one of the canonical vectors.

In either case, the form of the cost function will be the original cost function
J(r,0,X; g(r)) plus the prior density penalty term as

a1
202

J(T, 0, g(r)) lg(x) = fO(r =550, X)|1” + 2, (N, (5.66)

where €2,(A) is the additional penalty term. The penalty term is parameterized with
a weighting parameter p which in the p-norm case will be the order of the norm and

in the geodesic distance case will be the weighting parameter.

5.4.1 A p-Norm Penalty

In the p-norm case, the penalty term will be the inverse of the p-norm with a varying
value of p to control the amount of penalization imposed. We define the p-norm

penalty as
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For p = 1, this cost term becomes

(A = (Zw) (5.68)

which is of course unity for a A which lies on a simplex since the sum of the \; values
is unity, and thus this is a uniform density for the simplex algorithm. For p = 2, this

cost term becomes .
3

Q(A) = (i Az) (5.69)

which is unity if A lies on the Stiefel manifold since the sum of the squared values of A
is unity. Thus, at p = 2 this is a uniform density on the Stiefel manifold. A sequence
of curves for a two-template space and varying values of p is shown in Figure 5.10(a).
We see that as p increases, the density departs from unity and puts an increasingly
large penalty on values of A which are not associated with canonical templates, i.e.
those for which a single value of \; is one and all others are zero.

The adaptation of the algorithm for the cost function is fairly simple. The only
change is in using the new cost function for the minimization along the geodesic, and
in using the gradient of the cost function for the calculation of the new gradient.
Since we have specified the cost function, we need only update the gradient to have

a functioning algorithm.

5.4.2 Distance Product Penalty

Similar to the case presented above, application of the algorithm to the distance prod-
uct cost function is accomplished by specifying the new cost function, the derivative
of the new cost function and the new gradient. The distance product penalty takes
the product of the distances from the present X to all the points on the surface which
represent canonical templates. This penalty will therefore reduce to zero at a canon-

ical template (where one distance will be zero) and increase as A moves away from
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Figure 5.11: The p-norm penalty (a) and the geodesic distance penalty (b) versus
one of the coefficients for the two-template case. The penalty forces the final solution
towards either end of the axis.

one of these points. The amount of deviation from a uniform density is controlled

through a weighting parameter p. The weighting is applied as a multiplier. We define

the distance product penalty as

K

Q,(A) = p [[ dx A)d(x —xp) (5.70)

k=1

where d(-,-) is the distance metric and Aj, are the steering vectors of the canonical
templates. In the case of the simplex this distance metric is the Euclidean distance.
In the case of the Stiefel manifold, this is the geodesic distance as shown in Chapter
2. In Figure 5.10(b) we show the distance product penalty for a series of values of p.
As was seen with the p-norm penalty, the penalty increases as p increases and forces

the choice of A toward a canonical template.

5.4.3 Setting the p-Schedule

The final difficulty with including the prior densities is varying p in such a way as to

impose the constraint at the proper time in the algorithm run. In most cases, it is
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only desirable to include a large cost penalty from the densities late in the estimation
scheme. Thus we will begin with a small value of p and raise it slowly at the proper
time. It is sensible to link the p-schedule with the t-schedule as the algorithm runs.
The value of p is then computed as a scaled (and offset in the case of the p-norm

penalty) value of t. We will show this in the next chapter with the examples.

5.5 Summary of Classification Algorithms

In this chapter, we have defined a general classification scheme which builds upon
the parameter estimation technique which we outlined in the previous chapters. The
classification algorithm simultaneously estimates the geometric parameters along with
making a decision as to which template from a template library is the correct one.
Further, we showed how the final values of the template steering vector can be used
to compute a posterior probability for the different templates and thus a confidence
bound. In the next chapter we will present results from running this algorithm.

We presented several variations on the general algorithm. We proposed that do-
main of the steering vector could be either a simplex in K — 1 dimensions, or a K
dimensional Stiefel manifold and discussed the advantages and implementation of
each. In the case of the simplex, we expressed the necessity to use constrained op-
timization or bound or barrier constraints. In the case of the Stiefel manifold these
constraints are not necessary. Lastly, we added the prior probability cost functions
to the algorithm, the p-norm penalty and the distance product penalty.

Thus, we have now three algorithm variations with respect to the surface on which

A lives, they are

1. The simplex domain algorithm with boundary constraints (constrained opti-

mization)

2. The simplex domain algorithm with barrier constraints (addition to the cost

function)
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3. The Stiefel domain algorithm

We can also add further variety by introducing a density onto the surface, resulting

in three cost variations to the original algorithm,
1. No additional penalty
2. The p-norm penalty
3. The distance product penalty.

In the next chapter, we will explore the performance of these algorithm variations.
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Classification Results

In this chapter, we demonstrate some results from the classification algorithm which
was presented in the previous chapter. The algorithm has been developed with three
different variations depending upon the domain on which the steering vector is ma-
nipulated. Specifically, we have the simplex domain algorithm where the limits of
the simplex are imposed by a hard boundary, the simplex domain algorithm with a
constrictive cost barrier, and the Stiefel domain algorithm. Further, we can impose
conditions upon the final solution by including a prior distribution on the cost surface
which forces the final solution to be one of the templates in the template library. We
examine two possible distributions, these are the p-norm and the distance product
penalties.

In this chapter, we will examine the performance of these algorithms versus syn-
thetic data. We will look specifically into the rate of correct classification, the accu-
racy of the geometric parameter estimates, the computational costs and the number
of algorithm iterations. We will first compare the three surfaces and then examine
how adding the penalty terms effects the classifications. The comparison will be done
with individual runs and with Monte Carlo simulations with simple synthetic targets.

The remainder of this chapter is organized into three sections. In Section 6.1,

we examine how the algorithm runs with the three different surfaces which were
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discussed. In this section we will discuss the dynamics of the algorithm’s selection of
the target and the final geometric parameters which are chosen. In Section 6.2, we
will examine how the imposition of the penalty functions changes the performance.
Here, we will examine the final choice of template with respect to the penalty for
the algorithm running on the Stiefel manifold. In Section 6.3 we will consider more
quantitative examinations of the performance. Here will examine the variance of the

chosen parameters, the percentage of correct “hits” and the confusion matrices.

6.1 Comparison of the Steering Vector Domains

In this section we will present examples for the algorithm running on the three steering
vector domains which were discussed in the previous chapter. The first two examples
will be of the algorithm running on the simplex domain with the two different con-
straints. The final example will be of the algorithm running on the Stiefel domain.
We will see that the final classification is similar for all examples. The advantage of
the Stiefel domain is mainly in the simplicity of the imposition of the constraints.

For these examples, we examine the same problem as examined in the parameter
estimation chapters. The two-peaked target is placed in a scene with 0 dB SNR.
However, in the classification work, we will assume that the target is unknown. We
instead only know that it is one of the templates in a template library. The algorithm
has a template library which consists of three templates: the two-peaked template, a
square template, and a null template. The third template represents the hypothesis
that there is no target present. The three templates in the library are shown in
Figure 6.1.

In Figure 6.2 we show a typical run of the algorithm for the simplex surface. The
algorithm begins at the lowest value of ¢, which corresponds to the highest amount
of smoothing or the most general template. The algorithm is initialized at an initial

steering vector A which is placed equidistant from the three canonical templates. Since
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(a) (b) (c)

Figure 6.1: The three targets in the template library. They are (a) the two-peaked
template, (b) the square template, and (c) the null template.

the initial template is a Gaussian blob and is indistinguishable across the templates
in the library, the value of the steering vector is insignificant and does not effect the
template. Further, the gradient with respect to the steering vector is zero so the
steering vector does not change for the template ¢ = 0. In the early iterations, the
location and size parameters are the first to adjust to the approximate true parameter
location. As the template sharpens, the template takes a slightly square shape, which
drives the rotation parameter to close to the true location. As the template continues
to sharpen, the A parameter moves toward the correct template. However, since the
line searches terminate at the edges of the simples, the steering vector frequently
becomes caught on the edge. In this case, the steering vector eventually overcomes
this local minima and finds the correct template. Once the correct template is chosen,
the geometric parameter estimates continue to be refined. The final iterations show
the template sharpen into the two-peaked template and the size, location and rotation
parameters settle close to the true values. The algorithm has successfully chosen the

correct template from the three and estimated its size, location and rotation correctly.
In Figure 6.3 we show the run of the algorithm for the simplex surface with the

constrictive barrier for the same data. The results of the algorithm run are similar,

but the pattern of estimations of A is different. Instead of being caught at the edge
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Figure 6.2: Example of the simplex domain with boundary algorithm finding position,
scale, rotation and template for a two-peak target in 0 dB SNR. In (a) the estimated
template is shown for 5 of the iterations. In (b) the scale parameter is shown with
the true parameter. In (c) the rotation parameter is shown with the true parameter.
In (d) the values of the steering vector are shown. The correct template finishes with
a value of 0.9257.
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of the simplex due to the hard constraint, the vector will occasionally overshoot and
escape the local minimum. The final estimations of A and the geometric parameters
0 are correct. This seems to be an improvement over the previous algorithm, but
the creation of templates off of the simplex is bothersome. These templates do not
have a logical origin. Instead of being made up of positive values (and thus positive
probabilities via the equations of section 5.3), these have negative values. The last
surface will address both of these conditions by avoiding the hard constraint but
keeping the templates within the realm of positive probabilities.

In Figure 6.4 the Stiefel manifold domain algorithm is used for the classification.
In this case, the algorithm again performs similarly and finds the true geometric
parameters and the A vector correctly identifies the true template. In this case, the
steering vector approaches the true values in smaller steps. It becomes trapped in
local minima much less frequently. This is the advantage of the Stiefel manifold
over the simplex. We are able to impose the unity constraint and the positivity
constraint naturally but without boundaries on the surface. The CG algorithm allows
minimization on the surface without being artificially constrained with bounds or
additions to the cost function. For the remainder of the examples, we will examine
the performance of the Stiefel manifold since this is has the best performance and the

most logical operation.

6.2 Comparison of Penalty Distributions

With the Stiefel manifold, we saw in the previous examples that the steering vector
often settled on values near the correct template. However, the values did not des-
ignate exclusively one of the canonical templates. Therefore, significant amounts of
another template remained in the final template. This is not always desirable, and
can have an effect upon the estimates of the geometric parameters. In this section

we will examine the methods for driving the steering vector to one of the canonical
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Figure 6.3: Example of the simplex with barrier algorithm finding position, scale,
rotation and template for a two-peak target in 0 dB SNR. In (a), the estimated
template is shown for 5 of the iterations. In (b) the scale parameter is shown with
the true parameter. In (c) the rotation parameter is shown with the true parameter.
In (d) the values of the steering vector are shown. The correct template finishes with
a value of 0.9516.
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Figure 6.4: Example of the Stiefel domain algorithm finding position, scale, rotation
and template for a two-peak target in 10 dB SNR. In (a) the estimated template
is shown for 5 of the iterations. In (b) the scale parameter is shown with the true
parameter. In (c) the rotation parameter is shown with the true parameter. In (d)

the values of the steering vector are shown. The correct template finishes with a value
of 0.9951.
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templates by imposing a prior density upon the Stiefel manifold. The two densities
investigated will be the p-norm penalty and the distance product penalty presented
in the last chapter.

The first example, presented in Figure 6.5, shows the effect of using the p-norm
density. We find that the p-norm density drives the steering vector towards one of
the canonical vectors. This can speed convergence in the late stages of the algorithm.
However, since the p-norm has a small slope in the vicinity of the canonical templates,
the penalty is only effective to an extent. It does not guarantee exclusiveness to the
chosen template in the last stages of the algorithm.

The second density which we examined was the distance product penalty. This
penalty has a much sharper well of low penalty in the vicinity of a canonical tem-
plate. This demonstrates much better performance in driving the final template to
a canonical template. An example of this function is shown in Figure 6.6. We see
that the final template in this case is almost exclusively composed of the two-peak

template.

6.3 Monte Carlo Results

In this section we will present some more quantitative analyses of the algorithms
performance using Monte Carlo simulation. We will examine the rate of correct
classification, the variance of the steering vector around the correct template, the
estimates of the geometric parameters and the variance of these estimates around the
true parameters.

The first tool in examining the performance will be the confusion matrix for
running the algorithm versus several levels of signal to noise ratio. The confusion
matrix shows the percentage of runs for which the algorithm chose each resultant

template versus the actual template which is in the data. For the Monte Carlo runs,
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Figure 6.5: Example of the algorithm finding position, scale, rotation and template
for a two-peak target in 10 dB SNR. The cost function has been augmented with
the p-norm penalty term to force the steering vector to a canonical vector. In (a),
the estimated template is shown for 5 of the iterations. In (b) the scale parameter is
shown with the true parameter. In (c) the rotation parameter is shown with the true
parameter. In (d) the values of the steering vector are shown. The correct template
finishes with a value of 0.9990.
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Figure 6.6: Example of the algorithm finding position, scale, rotation and template
for a two-peak target in 0 dB SNR. The cost function has been augmented with the
distance product penalty term to force the steering vector to a canonical vector. In
(a), the estimated template is shown for 5 of the iterations. In (b) the scale parameter
is shown with the true parameter. In (c) the rotation parameter is shown with the
true parameter. In (d) the values of the steering vector are shown. The correct
template finishes with a value of 1.000.
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SNR = 20 dB SNR=10 dB
2-peak square none 2-peak square none
2-peak | 100 0 0 2-peak | 100 0 0
square 0 100 0 square 0 100 0
none 0 0 100 none 0 0 100
SNR=0 dB
2-peak square none
2-peak 99 1 0
square 1 98 1
none 0 0 100

Table 6.1: The confusion matrices for the Stiefel algorithm versus several levels of
SNR.
the data is generated by choosing one of the templates in the library (either the two-
peak, the square or no target) and adding noise at the appropriate level. The Stiefel
manifold algorithm was then run to estimate the steering vector and the geometric
parameters. In Table 6.1 we see the confusion matrix for three levels of SNR and
100 Monte Carlo runs for each of the templates. Values on the diagonal designate
correct classification; off diagonal elements are incorrect classification. We see that
the algorithm chose the correct template 100 % of the time for the high SNR case
and for all three data scenarios. As the SNR decreases, several miss classifications
appear. At an SNR of 0 dB we have 98 % correct classification.

Correct classification is an important statistics, but we wish to also examine how
the variance of the steering vector and the geometric parameters increases for the
three SNRs. Table 6.2 summarizes the means and variances of the parameters across

the Monte Carlo runs. We see that the variance is low, but increasing for the three

cases.
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Scale Rotation
Template | 20 10 0 ‘ 20 10 0
square .0002 .0008 .0056 | .0007 .0024 .0098
2peak ‘ .0004 .0013 .0358 ‘ .0013 .0042 1251

Table 6.2: The standard deviations of the geometric parameter estimates for the
Stiefel algorithm Monte Carlos.

6.4 Summary

In this chapter we presented performance results from the classification algorithms.
In the first section we showed the effects of the various surfaces upon the classifi-
cation algorithm. The simplex algorithms were shown to work well, but with some
complications. In the first, the constrained optimization, the steering vector became
caught in minima against the bounds of the simplex. In the second, these minima
were overcome at the cost of illogical templates. Those that included a negative
amount of a template in the template library. Both these problems were overcome
by implementing the Stiefel domain algorithm. The Stiefel domain algorithm avoids
the troublesome hard boundaries, but does not introduce illogical templates.

With the Stiefel algorithm, we showed the various performances achieved by in-
cluding a prior density on the surface. This allowed the algorithm to settle at steering
vectors which were closer to the canonical template vectors. However, this destroys
the confidence information which is obtained from the value of the final steering
vector.

In the last section we presented the results of the Monte Carlo simulations. The
MC simulations were used to construct confusion matrices for the algorithm. Here we
saw good performance across a variety of SNR levels. Further, we were able to show
that the algorithm retains its performance with respect to the geometric parameter

estimations.
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Chapter 7

Conclusions

In this thesis, we have examined the problems of target parameter estimation and
target classification. We have demonstrated a unified approach to these problems
which solves both through a template matching algorithm. In this Chapter, we will
review the problems, solutions and contributions to parameter estimation and classi-
fication which were made in this thesis. This chapter will summarize the results and
contributions of the parameter estimation work and the classification work, we will

then present some ideas for future work which could be done on this topic.

7.1 Parameter Estimation

In the case of target parameter estimation, we have demonstrated a technique which
uses a multiscale template library to overcome the problems associated with local min-
ima and which is robust to noise and clutter. The method uses a template matching
technique which is embedded in a multiscale iteration. As was shown in Chapter One,
optimization of the likelihood surface for the template matching technique will often
become trapped in local minima.

In Chapter Three, we presented a method which will overcome this problem by

using a smooth approximation of the true template. The likelihood surfaces generated
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with the approximate templates are better behaved. However, the global minimum
of this surface is much broader and therefore the estimation is less accurate. It is
desirable to be able to achieve the accuracy of estimates made with the true template
with the more tractable optimization available with the well behaved surface which
is produced by the approximate template. In this thesis we presented an accurate
and tractable optimization algorithm for performing this. The algorithm is initiated
with the coarsest approximation template and thus produces the least accurate es-
timation. Then, by incrementally adding detail to our template and re-estimating
the parameters, we achieve an accurate estimation of the parameters while remain-
ing in a well-behaved “basis of attraction” around the global minimum and usually
avoid becoming trapped in a local minima. The estimate performed with this tech-
nique retains the high accuracy available from template matching while avoiding the
difficulties associated with the maximum likelihood solution.

In Chapter Four, we demonstrated the performance of this algorithm versus a
simulated target and real infrared and optical images. Qualitatively, the algorithm
was shown to quickly converge to the true parameters. We also presented Monte
Carlo simulations of the algorithm running versus the two-peaked template. We
showed that accurate estimations of the geometric parameters could be made with a
low frequency of missed estimations. The missed estimations primarily occurred due
to being trapped in a local minimum. We showed that by lengthening the ¢-schedule,
the chance of being trapped in a local minimum can be reduced and increase the

probability of correct parameter estimation.

7.2 Classification

In the second part of this thesis we examined how this multiscale approach could be
extended to treat the target classification problem. The parameter defining target

class is fundamentally different from the geometric parameters since it is a discrete

103



CHAPTER 7. CONCLUSIONS

index into the template library and not a continuous parameter. By introducing a
steering vector, we can create a parameterized continuum of targets composed as
linear combinations of the template library. This casts the classification problem
as one of estimating a continuous parameter in a manner similar to the geometric
parameters explored in the earlier chapters.

In Chapter Five, we demonstrated how the parameter estimation algorithm can
be adapted to include the steering vector parameters. We showed how the steerable
template can be smoothed in the same manner as in the parameter estimation work
and thus smooth the cost surface upon which we are attempting to minimize. Then,
proceeding as we did before, we can incrementally add detail to the templates, and
update both the steering vector and the geometric parameters. As the estimation
becomes more accurate, the steering vector will finally point to the proper template in
the template library. The domain of the steering vector is most naturally represented
as a simplex or the surface of a hypersphere in order to impose the unity constraint.
We developed algorithms using both surfaces. Further, we showed how the steering
vector can be forced to a canonical template at the conclusion of the algorithm using
prior densities on the steering vector domain.

In Chapter Six, we showed the performance of these algorithms for finding the
correct template from a library of templates. We demonstrated this using Monte
Carlo simulations of finding a target versus a library of three templates. We presented
the accuracy of the estimations and the confusion matrices which are created by the

simulation.

7.3 Future Work

There are several topics which could be addressed to further the work presented in
this thesis. The algorithm as presented can estimate the geometric parameters of

a target which undergoes planar rotation transformations. It can also discriminate
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several targets from a template library under these geometric transformations. The
following is a list of possible extensions to the work to further the usefulness of the

algorithm:

1. The most useful extension to the algorithm would be to increase the possible
geometric transformation to include three dimensional rotations. This would be
an ambitious extension since it would involve incorporating a perspective map-
ping into the forward solution. The perspective map would profoundly change
the implementation since the Fourier setting of the algorithm, which lends itself
to planar rotations well, would not be easily expanded to the realm of three
dimensional rotations. Further, the template models would necessarily become
more complex since they would have to become three dimensional models, such

as a facetted construction of the target surface.

2. As the algorithm is now constructed the background statistics are not dynami-
cally estimated. It was shown that the algorithm can robustly estimate in the
presence of background clutter, but it would be a useful extension if the clut-
ter were also estimated. The work of Abu-Naser et. al. includes estimation of
an autoregressive clutter. Other clutter models could also be formulated for
appropriate settings. This would involve increasing the parameter space to in-
clude the clutter parameters. If these are continuous, they should not pose a

significant impediment to algorithm construction.

3. Another useful extension would be the estimation and classification in the pres-
ence of multiple targets. This extension would necessitate either a priori knowl-
edge of the number of targets or incorporate an information criteria to solve for
the number of targets. Further, target location logic may become necessary to
ensure that impossible solutions do not occur, such as two targets occupying

the same space.

4. The algorithm calculates likelihood based on the accuracy of the match between
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the data and the template. In the presence of obscuration the likelihood value
would fall. However, it should be possible to estimate in the presence of ob-
scuration by allowing lower probability scores or including some estimate of the
target boundary which accounts for obscuration and appropriately credits the

madtch.

5. In this thesis we showed the relation of the length of the ¢-schedule to increasing
the fidelity of the parameter estimation. It would be an interesting and useful
enhancement to characterize this relation. Further, it could be possible to

determine an optimal ¢-schedule for certain situation.

6. Likewise to the t-schedule, the optimal p-scheduling could also be determined.
The p-schedule should be set to impose an appropriate prior model upon the
steering vector domain. This density would possibly be able to be determined

by calculating the probability of the steering vector with a mismatched model.

7.4 Final Word

In this thesis we have presented a unified approach to the problems of target parameter
estimation and target classification. This approach uses a multiscale algorithm to
successively estimate parameters while increasing the fidelity of the model to the true
template. In this way, the minimization on the likelihood surface becomes tractable
while preserving the accuracy of the template match. The major contribution is
a demonstration of minimizing the likelihood surface by smoothing it indirectly by
smoothing the template. In doing this we have shown that the geometric parameters
and the target class can be treated in common. The algorithms presented have been
shown to accurately achieve estimates of target parameters and target classifications.
Further work to increase the usefulness of this algorithm would be enhancement to

the template models to include a perspective mapping and multiple target scenes.
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Overall, we believe this is a useful approach to maximum likelihood estimation of

target parameters and classification.
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