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Abstract—A careful analysis of discretization
error in various implementations of Berenger’s PML
absorbing boundary condition for the FDFD method
applied to the Helmholtz equation is presented. An-
alytic and numerical formulations indicates the clear
superiority of specifying the material characteris-
tics in terms of the coupled Ampere’s and Fara-
day’s laws first, and then combining the first order
differential equations into a discrete Helmholtz-like
difference equation.

Index terms—FDFD, PML, Absorbing Bound-
ary Conditions

I. INTRODUCTION

The introduction of Berenger’s perfectly matched
layer (PML) absorbing boundary condition (ABC) [1]
has significantly increased the performance and popu-
larity of the finite difference methods of electromagnetic
field computation. The time domain version (FDTD)
[2-4] has seen explosive acceptance of the PML lattice
termination in the past three years, while its use in
the finite difference frequency domain (FDFD) [5,6] as
well as finite element methods [7-9] are considerably
less popular.

One reason why FDFD is avoided is the percep-
tion that it is computationally expensive, requiring so-
lutions of thousands or millions of simultaneous equa-
tions. Another flaw with this method is its reliance
on highly non-reflective ABCs in preventing reflection
from any point on the grid perimeter. In the frequency
domain, small imperfections in the ABC can lead to the
dominant field solution in the propagation domain. The
first concern is overcome by combining the complemen-
tary sampled Faraday’s and Ampere’s Laws into the
Helmholtz Equation (thus reducing the number of un-
knowns by 67% in two dimensional problems), and by
using preconditioned iterative methods [10]. The latter
issue is successfully addressed with the PML ABC, but
only with careful considerations. In particular, when
using the Helmholtz equation, it is no longer possi-
ble to assume that the PML layer conductivity pro-
file 1s piecewise constant. It is the intention of this
study to demonstrate the subtleties required in apply-
ing the FDTD PML procedure to the Helmholtz Equa-
tion while preventing significant numerical errors.
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II. FDFD PML FORMULATION

The essential aspect of the PML is the additional
loss factor S(n)—which depends on the direction n nor-
mal to a boundary. This unitless quantity alters the
wave number in the PML according to the relation:

kpmrn = k™ (n)kon (1)
kl(n) =1— jS(n)

(where n is the direction normal to the layer boundary,
knpwmr and k,q are the normal components of the PML
and propagation space wave numbers) which multiplies
the differential element of the direction normal to the
layer boundary [6]. This PML factor can be considered
a complex anisotropic mapping of the normal coordi-
nate, or a stretching of the coordinate system in the
normal direction [11,12], and follows from Maxwell’s
equations with the assignment S(n) = o(n)/weg, where
o(n) is the spatially dependent PML conductivity. With
this choice, using the inverse dependence on frequency
w, the time domain transforms have frequency indepen-
dent exponential decay with distance into the PML.
However, in most lossy layer ABCs, the conductivity
o(n) is profiled from small values closest to the propa-
gation space interface to a maximum value at the PML
termination. Both power and geometric series profiling
have been studied for optimal absorption of incident
signal [13-15].

In the frequency domain, the equations for a two-
dimensional transverse electric (relative to the longi-
tudinal direction z into the paper) PML region termi-
nating a lattice at = Zyqy (assume, without loss of
generality that z,,4; = 0) have the form:
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For the continuous case, o.(z) = on(z). Since the

PML conductivity changes with distance, so does the
loss factor S(z) and the normal wave number kpmr, o,
and therefore the propagation behavior of the wave in
the PML will not have a simple linear phase depen-
dence. For continuously varying conductivity, the nor-
mal wave number for the boundary z = 2,4, 18 given

by:
kpmr, » :/ ko o k™ (z)dx (3)



where the conductivity o(z) is labeled differently for
Ampere’s and Faraday’s laws. For the both the coupled
first-order FDFD and FDTD formulations, in which the
electric and magnetic fields are sampled on interlock-
ing grid points [16], the values of PML conductivity
can be thought of as piecewise constant, changing ev-
ery one-half grid cell: o, (2) = o4, |z — IA] < A/4
and oo(z) = o1, [ — (i + 3)A| < A/4. Although a
parabolic variation of conductivity with distance o; =
o¢(i/N)?* for an N sublayer PML gives acceptable ab-
sorption [1], it has been determined empirically that
for wide angle absorption, an excellent choice of profile
for wide-incidence angle matching to free space using
an eight grid cell PML layer in both the time and fre-
quency domains is [13, 5]:
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Using the Helmholtz equation with dependent vari-
able H,, instead of separate Ampere’s and Faraday’s
laws with additional dependent variables F,, F|, leads
to a three-fold reduction in the number of unknown
discretized field values. Even using fast solvers for the
sparse FDFD matrix equations, this reduction leads to
great improvements in computation time. It is impor-
tant to maintain the distance dependencies when com-
bining the three first order TE equations (1) into the
Helmholtz equation:
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for the continuous case. Note that if o(z) (and hence
k™!(x)) is treated as piecewise constant, an important
first derivative term would be absent.

Discretizing Equation (5) for FDFD computation
can be done in three ways:

(1.) Analytically expand the second partial deriva-
tive term to give:
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where H; ; = H,(iA, jA) and kI = 1 — jS(iA)

(2.) Expand as in (1.), but use the discretized
values of conductivity. The first term becomes:

kS =k (Higay — Hiay
2(krh)3A 2A

(7)

(3.) Discretize the first-order equations (2) on one-
half grid cell increments first, then combine them into
the discrete Helmholtz equation:
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which combines to give:
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Although each method is accurate to order (kgA)?
for function which have Taylor series representations,
the first method would appear to be the most exact,
since 1t delays the discretization step to last, requiring
the material parameters only at the central point of the
three-point stencil. However, the third method incor-
porates three material parameters instead of just two
(as with the other two methods), and will be shown to
have the greatest accuracy.

I1I. ERROR ANALYSIS FOR FDFD
DIFFERENCE EQUATIONS

To quantify the accuracy of the three discretization
methods above, assume the continuous version of the
power conductivity profile given in (4) S(z) = Spa?,
where Sy is constant. With this loss factor form, the
corresponding exact plane wave solution to Equation
(5) is readily computed using Equations (1) and (3):

. . k S 14+
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(9)
where the incident wave propagation vector is k =
koe® + koyy.

Applying this exact solution to each of the dis-
cretized Helmholtz equations (6-8) gives a measure of
the discretization error. Care must be used in deriving
the expansion of the exponential power functions for
non-integer values of p. First, it must be understood
that the small argument A << 1/kq expansion relative
to the central position (say ;) in the stencil must take
into account that the central position is itself an inte-
ger multiple of that small argument: z; = iA. Next, it
is important to expand in terms which include both A
and AP. For constant Sy and non-integer p, the result-
ing lowest order error for H(z,y) for Equations (6-8)



are respectively:
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Note that in each of these expressions the leading term
constitutes the standard FDFD error:

k%AQ(sin4 0 + cos* 0)
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(13)

for incidence angle . For subsequent terms, the error is
of higher order for p > 3. For non-integer p, no Taylor
series exists for H,(z,y) as @ — 0, so the dependence
on A can be lower order than (koA)?.

However, for predefined, frequency-independent loss
of the form of Equation (4), So = o;/(NA)Pwey =
ono/ko(NA)P, a different expansion is needed. In this
case, the dependence on A must be evaluated before the
exponential function of Equation (9) is approximated.
The first term of each error expression of Equations
(10-12) remain the same, the lowest order dependence

on A at the first layer (n = 1), for three cases now
becomes:
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with dependence only on the conductivity-grid product
oA, the number of grid points per wavelength (A/A),
number of PML sublayers N, and incidence angle 6.

Note that the error is not proportional to cos#, indi-
cating that although the error is greatest for normal in-
cidence, predicting the wide-angle absorption of a PML
with given parameters is non-trivial.

Figure 1 shows the magnitude of the error at nor-
mal incidence, for each of the three Equations (6-8), as
a function of depth into the PML region, for the power
parameter given in Equation (4), p = 3.7. The value of
Sp is chosen using oy = .02/A, as in Equation (4) to
provide a two-way absorption of 223 dB, corresponding
to an eight-layer loss of 2.67 x 107%. From Equation
(9), So = —1In(2.67 x 107%)(1 + p)/(ko(8A)!*F). In
this figure, A = A/40, implying Sy = 18511. The solid
curve represents the first discretization method, Equa-
tion (6), the dotted curve represents Equation (7), and
the dashed line corresponds to Equation (8). Clearly,
the third method is superior. It is noted that if the
conductivity variation is not included in the Helmholtz
equation, the error are more than an order of magni-
tude greater than these presented in Figure 1.

For integer power p > 2 and constant Sy, the error
for all three methods is O(A?), but depends on the
particular value of p. For the parabolic variation p = 2,
the error for each of the first two methods is given by:
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while for the third method, it is:
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Using the loss parameter for 120 dB two-way loss,
PML(p, 8, 0.0001) as in [1], with the loss dependence
specified in Equation (9): Sg = —In(1073) 3/(ko(8A)3).
When A = A/40, Sy = 412. In terms of conductivity,
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Figure 2 shows this error dependence with sublayer
number. The error for the third method is lowest for
both the p = 2 and p = 3.7 cases.

(17b)

IV. Two DIMENSIONAL SIMULATION RESULTS
FOrR PML ABCs

The results of the previous section have been tested
with a specific two dimensional FDFD scattering prob-
lem. The solution to the Helmholtz equation with a
two dimensional point source:

(V?+kg)H. = 6(x — 0,y — yo) (18)



(where § is the 2D Dirac delta function) is given by the

Hankel function HéQ)(lco\/(r —20)%4+ (y—y0)?). To
approximate the solution to Equation (18) a 3\ by 2A
space is discretized with an 121A x 81A grid. The
grid is surrounded by a PML layer of width 8A (that
is, N = 8). The origin of the point source is zy =
14A,yo = —6A, where the origin (0,0) is assumed to
be at row 21 and column 61 of the grid. The PML is
terminated with a perfect magnetic conductor.

Discretization of Equation (18) together with ei-
ther Equations (6) or (8) and lexicographical ordering
of the unknowns leads to a system of linear equations
Az = b. The resulting matrix is sparse, complex, non-
symmetric and non-hermitian. For this particular prob-
lem, A has dimension 13,192 but only 65,494 non-zero
elements and was reasonably well conditioned; thus it
was feasible to solve the system naively by Gaussian
elimination. We note that a stable and fast approach
effective at solving large systems of this type is given
in [10].

Two separate experiments were performed, one in
which we set the conductivity profile as in Equation (4)
and then calculated solutions using Equations (6) and
(8), respectively, and one in which we set the parabolic
conductivity profiles as in Equation (18). All exper-
iments were performed in Matlab in double precision
floating point arithmetic. We used the Matlab com-
mand besselh to compute the analytic solution at our
grid-points. For each of the two experiments, we com-
pare our computed solutions with the analytic in terms
of relative error at each grid-point. That is, Figures
3 and 4 show values of |H;; — Héz)(i,j)|/|Héz)(i,j)|
corresponding to the two discretizations of the PML
given in (6) and (8), respectively, where the profile is

as given in Equation [4]. Here, Héz)(i,j) is the value of
the analytical solution at (z;,y;) and H; ; is our com-
puted estimate of H, at the same point. Figures 5 and
6 show the relative errors when the profile is given by
p = 2 and equations (6) and (8) are used for the PML,
respectively.

Note that in both Figures 4 and 6 the symmetry
of the error patterns indicates almost no appreciable
reflections from any of the grid edges. In addition, the
pattern of error is consistent with the standard angle
dependent free-space FDFD sampling error, given by
Equation (13); in other words, the PML is absorbing
the wave as it should. However, the error in Figures
3 and 5 is noticeably larger and the patterns seem to
indicate reflection from the four side boundaries. These
results are consistent with the asymptotic PML error
results of the previous section.

V. CONCLUSIONS

The Perfectly Matched Layer can be efficiently im-
plemented as the absorbing boundary condition for the
Helmholtz equation FDFD method as long as the pro-
filing of PML conductivities is incorporated into the

computational stencil. A comparison of three methods
of discretizing the Helmholtz equation with non-linearly
increasing loss has shown that the numerical errors are
smallest when the loss values are discretized first, at the
first-order Maxwell’s equations level, before combina-
tion into the Helmholtz equation. The error analysis is
more difficult when the conductivity profile dependence
has non-integer powers p of distance into the PML.
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Figure 3: Relative error when FDFD computed
solution has PML discretized as in Equation (6), wide-
angle conductivity profile as in Equation (4).

Figure 4: Relative error when FDFD computed
solution has PML discretized as in Equation (8), wide-
angle conductivity profile as in Equation (4).

Figure 5: Relative error when FDFD computed
solution has PML discretized as in Equation (6) with
Berenger type parabolic conductivity profile in Equa-
tion (15).

Figure 6: Relative error when FDFD computed
solution has PML discretized as in Equation (7) with
Berenger type parabolic conductivity profile in Equa-
tion (15).



