Statistical Methods for Object Detection in a Three

Dimensional Volume

A Thesis Presented
by

Tzipora Halevi

to

Electrical and Computer Engineering

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

in the field of

Electrical Engineering

Northeastern University

Boston, Massachusetts

January 1998

Abstract

Anomaly detection in a physical medium is a common objective in many ap-
plications, including medical imaging, geological exploration and others. The
anomaly detection problem is to identify regions of the medium which have
significantly different characteristics than the rest of the medium from a given
set of measurements.

In this work we develop and implement an algorithm for detection and
localization of anomalous objects in a three dimensional volume from noisy
data. The algorithm is based on the multi-scale hypothesis testing approach
[5]. It starts by considering the whole volume and uses detection and estima-
tion techniques to identify sub-regions where the anomalies are likely to be
found. It then continues the search recursively proceeding to finer scale local-
ization. The algorithm includes a mechanism to incorporate into the search
prior information about the anomalies (such as the number of anomalies, their
sizes and shapes) via a set of penalty functions that are used in the detection
procedures.

We also examine feedback methods to improve the outcome of the algo-
rithm: In one method we take a closer look at each anomaly which is found
by the algorithm in order to improve the accuracy of its borders, and in the
other method we subtract out the effect of the found anomalies and then run

the algorithm again in order to find more anomalies.

1

We present experimental results of computer simulations, testing the algo-
rithm on synthetically generated data. This data consisted of a few different
anomaly configurations (including between one to four anomalies) in SNR lev-
els ranging from —30 to +20dB. Our tests show that the algorithm achieves
very good probabilities of detection and false alarm in SNRs as low as —15dB.

In addition, we present a partial analysis for the complexity of the algo-
rithm. Our partial analysis suggests that the complexity of the algorithm is
logarithmic in the size of the medium. This result is also supported by our

experimental results.

111

Acknowledgments

During my master studies in Northeastern University, I have had assistance
from many people. First and foremost among them has been Prof. Eric
Miller, my thesis advisor. I wish to express my sincere gratitude to Eric for
suggesting this area of research and for providing invaluable technical guidance,
encouragement and support along the way.

[would like to thank Prof. Anthony Devaney and Prof. Carey Rapport for
serving on my thesis committee. I am thankful to many people who influenced
my studies and research. A very partial list of people with whom I had the op-
portunity to work and interact throughout my studies in Northeastern includes
Prof. David Brady, Prof. Dana Brooks, Prof. Vinay Ingle, Prof. David Kelly,
Prof. Brad Lehman, Prof. Hanoch Lev-Ari and Prof. Ram Raghavan. To
my friends and office mates Yael Ehrlich, Roger Doufor, Murat Belge, Adnan
Sahin, T wish to thank for their friendship and for many conversations. I am
also grateful to Cynthia Bates for helping me with the transfer from part-time
to full-time studies.

[would like to thank Dr. Guy Even, Ziv Helman and Dr. Yehudit Hocher-
man, for working with me in my undergraduate studies, and encouraging me to
continue to graduate school. I am happy to acknowledge the generous financial
support of the Army Research Laboratory Grant and the Bellamy Memorial
Fund, whose assistanship I had the opportunity to get in the first year of my

v

studies.

Special thanks to my mother Edith and my father Mendel, for all their love
and support over the years.

And finally, T wish to thank my husband Shai, for encouraging me to go
back to school, and for supporting me through all this. Without him, none
of this would have been possible. I would also like to thank him for working

with me on a part of the complexity analysis.

Contents

Abstract
Acknowledgments

1 Introduction
1.1 Overview e
1.2 Thesis Contributions

1.3 Organization

2 Preliminaries
2.1 Hypothesis Testing
2.1.1 Binary Hypothesis Testing
2.1.2 M-ary Hypothesis Testing
2.1.3 Hypothesis Testing with Additive Gaussian Noise . . .
2.2 Parameter Estimationo
2.2.1 Amplitude Estimation with Gaussian Noise
2.3 Problem Statement
2.3.1 Vector Notations,
2.3.2 Hypothesis Testing

3 Algorithm

vi

il

iv

ot

Nl =T =)

10
11
11
12
13
14

16

3.1 High Level Description 16
3.2 Localization Tests 19
3.3 Pruning Tests 21
3.4 Penalties 22

3.4.1 Localization Penalties 26

3.4.2 Pruning Penalties 29
3.5 Imitial Hypotheses 32
3.6 Feedback 32

3.6.1 Reexamining Found Anomalies 33

3.6.2 Subtracting Data of Found Anomalies 35
3.7 Final Processing oL 35
3.8 Generalization L oL 37

3.8.1 The Linear Case 37
Complexity Analysis 38
4.1 Hypotheses Testing Complexity 38
4.2 Complexity with no Pruning 39
4.3 Complexity with Pruning 41
4.4 Comparison with Exhaustive Search 43

4.4.1 A Numerical Example 44

4.4.2 Feedback Complexity 45
Test Results 46
5.1 A Single Anomaly Lo oL 48
5.2 Two Anomalies with the Same Size and Amplitude 51
5.3 Two Anomalies of Different Sizes 55
5.4 Two Anomalies of Different Amplitudes 57
5.5 Experiments with More Anomalies 59

vii

5.6 Complexity

6 Conclusions

6.1 Future Work
Bibliography

A Penalties are Necessary
A1 Comparing Hoand Hy
A2 Comparing Hy and Hy
A.3 More Than one Region

A4 Conclusion

B Complexity Analysis with Pruning

Vil

64
65

68

70
71
73
74
76

7

List of Figures

2.1

2.2

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

4.1

5.1
5.2
5.3
5.4

Representing a 3-dimensional array of voxels by a 1-dimensional

vector L 13
An illustration of our notations for a 2-dimensional area . .. 14
A simple example of an execution tree 18
An overview of the Algorithm 19

Localization Hypotheses. The dark regions are the ones which

are kept in each hypothesis 21
Pruning hypotheses: an example with four areas. 23
Localization penalty functions for MAS =4 26

The pruning penalty functions: (a) Hy penalty; (b) H; penalty. 30
Initial hypotheseso 31
Example of execution with feedback. The black region is the

anomaly and the gray regions are the hypotheses of the algorithm. 34

An example of an execution tree with many nodes 42
Test results for a single anomaly 49
A single anomaly: snapshots of execution 52
A single anomaly: snapshots of feedback 53
Two anomalies with the same size and amplitude 54

X

5.5 Two anomalies of different sizes 56
5.6 Two anomalies of different amplitudes 58
5.7 Example with four anomalies 60
5.8 Example with 3 anomalies 61
5.9 Hypothesis-testing complexity vs. region-size 62
A.1 Localization hypotheses Hy, Hy and Hy 72

List of Tables

Chapter 1

Introduction

1.1 Overview

The problem of anomaly detection has a wide and diverse range of manifes-
tations. A few examples include detecting the existence of tumors in medical
imaging [7], detecting oil bearing regions from electrical conductivity measure-
ments in the earth [11], detecting mines in an image obtained from a ground
penetrating radar [3], detecting “red eyes” in a family picture, and perhaps
even detecting an unusual behavior in the stock market.

In this thesis we study an algorithm for anomaly detection in a three-
dimensional physical medium from noisy data. Our goal is to identify regions
in the medium which are quite different than the rest of the medium. A little
more precisely, we assume that we have noisy measurements of some physical
quantity (e.g., electrical permitivity) in a volume, and we try to identify regions
where this quantity differs in a statistically significant manner from the rest of
the medium (below we call this physical quantity the intensity of the region).

A natural approach towards this detection problem is to use statistically

based methods. These methods provide a mathematical model in which we

CHAPTER 1. INTRODUCTION 2

can describe the medium, analyze the deterministic and stochastic properties
of the data and estimate measurement errors. Using this model provides us
with insights into the problem at hand, and allows us to use some of the
well developed techniques for detection and estimation to obtain an efficient
algorithm for solving the problem.

In the last two decades there has been a large body of work regarding the
anomaly detection problem in situations where the available data is obtained
by measurements along the exterior of the medium, and is therefore a function
(e.g., projection) of the actual intensity field of the medium.

One approach for solving this problem is to first reconstruct an image
of the intensity field from the measurement and then to process this image
in order to detect the anomalies. The problem of reconstructing the inten-
sity field from the measured data (known as the inverse problem) has been
significantly researched and several standard general purpose methods have
been developed for its solution. Among these methods are the filtered back-
projection(FBP) and convolution back-projection (CBP) algorithms for tomo-
graphic reconstruction problems [1]. These techniques, however, typically rely
on low noise data and on the availability of a full set of data. In high levels of
noise or sparse data, the problem becomes highly ill-posed, thus necessitating
the use of regularization methods. These methods, however, typically result in
a blurred reconstructed image in locations where the anomalies are supposed
to be, hence rendering the anomaly-detection methods less effective.

Another approach to detection is characterization of anomalies directly
from the measured data, without reconstruction of the full image. In [9],
Rossi and Willsky consider the problem of characterizing a set of parameters
directly from limited, noisy measured CT data. Specifically, they develop a

method for estimating the location of a single object with known shape and

CHAPTER 1. INTRODUCTION 3

density situated within a known background field, where the measured data
consists of noisy projections of the intensity.

In [5], Miller and Willsky introduce a scale recursive approach for solving
the anomaly-detection problem in a two-dimensional medium in the context
of the linearized scattering problem. They develop an algorithm for detecting
multiple anomalies of a more general class of objects than that considered by
Rossi and Willsky. In this setting, the observed data is a linear transformation
of the intensity field with additive noise. On a high level, the Miller-Willsky ap-
proach starts from coarse-scale/low-resolution localization,and gradually pro-
gresses to finer-scale/higher-resolution regions, until the actual anomalies are
found. Specifically, the algorithm repeatedly partitions the area at hand,
zooming into regions where anomalies are “more likely” to exist and proceeds
recursively to search for anomalies in these regions. In each step along the
way, methods of hypothesis testing and parameter estimation are employed to
decide on the next region to zoom in. A later work by Miller [4] extends this
approach for a non-linear scattering model. Miller also introduces a method
for inclusion of prior information to guide the search, via a set of penalty
terms that play the role of prior probabilities in the hypothesis-testing pro-
cedures. These penalty terms are used to represent prior expectations about
the number of anomalies, their sizes and shapes. In [2], Frakt considers the
use of multi-scale hypothesis testing which do not necessarily correspond to
spatial zooming, in the context of characterization of a single anomaly from
tomographic projections. He considered the cases where the background (i.e.,
normal activity of the medium) is either white or fractal, demonstrates that
spatial zooming is adequate for the case of white background but not for frac-
tal background, and examines different statistics which can be used for the

later case.

CHAPTER 1. INTRODUCTION 4

In [8], Riley and Devaney develop a method for object localization from
two dimensional image data using wavelet transform properties. It is shown
in this work that the wavelet transforms of an image naturally correspond to
multi-scale analysis of this image, and thus can be used to carry out a spatial
zooming procedure in a computationally efficient manner. They demonstrate
that this approach is more efficient than the standard energy detector, and in

fact results in a better probability of detection.

1.2 Thesis Contributions

In this work we design an algorithm which extends the approach of [5, 4] in a
few aspects, implement this algorithm and evaluate its performance. We stress
that the algorithm in this thesis was developed assuming that we already have
a full image of the medium with no distortion. That is, we assume that the
measured data on which we apply the algorithm is obtained from the intensity
field simply by adding white Gaussian noise. This simple model enables us to
analyze different aspects of the algorithm.

Since the Miller-Willsky approach is designed to also handle the case where
the fully reconstructed image is not available, our work can be thought of
as first step towards realizing an algorithm that works with or without full
reconstruction. In Section 3.8 we describe the modifications which must be
made in the algorithm in order to generalize it to the no-reconstruction case.

The main contributions of this thesis are the following:

e The algorithms in [5, 4] are developed for a two-dimensional medium. In

this work we generalize them for three-dimensional medium.

o We investigate the use of feedback techniques in order to improve the

CHAPTER 1. INTRODUCTION)

localization results. That is, after running the algorithm the results were

fed back to the algorithm in order to improve its accuracy.

Specifically we tested two feedback methods. The first method consists
of a closer inspection of each anomaly which is found by the algorithm
in order to improve the accuracy of its borders. In the second method,
we try to find anomalies that might have been missed by the algorithm
by subtracting out the effect of the found anomalies and then running

the algorithm again.

o We implemented the algorithm and tested it in several different settings

to evaluate the effect of the various parameters involved.

1.3 Organization

This thesis is organized as follows: In Chapter 2 we provide a brief review of
detection and estimation techniques and describe the formal model in which
our algorithm works. Chapter 3 describes the algorithm itself, the various
parameters involved, and our implementation. Chapter 4 contains complexity
analysis of the algorithm, Chapter 5 describes the experimental results which
we obtained, and in Chapter 6 we present our conclusions and possible future

research directions.

Chapter 2

Preliminaries

Our anomaly detection algorithm is based on statistical methods of detection
and estimation. In particular, we use techniques for M-ary hypothesis testing
and least-squared-error estimation. A comprehensive treatment of these and
other methods in the theory of detection and estimation can be found in many
text books (e.g, [12]). Below we only describe the parts of this theory that are

directly relevant for our algorithm.

2.1 Hypothesis Testing

Many signal detection problems can be cast in the framework of M-ary hy-
pothesis testing. In this framework, we have a number of possible statisti-
cal explanations (called hypotheses) for describing a given stochastic process.
Given the outcome of that process (which in our case will be a vector of real
numbers), our goal is to pick the hypothesis which is most likely to have gen-
erated that outcome. Thus we need to devise a decision rule which maps any

observed outcome to the best hypothesis describing that outcome.

CHAPTER 2. PRELIMINARIES 7

2.1.1 Binary Hypothesis Testing

For simplicity of notations, throughout this chapter we only discuss hypoth-
esis testing where the observed data is a vector of real numbers. Although
generalization to other settings is not hard, we do not use it in the thesis.

We start from the simplest case of hypothesis testing in which we have
only two hypotheses. This is called the binary hypothesis testing (BHT) prob-
lem (or the detection problem). Traditionally, the two hypotheses are denoted
by Hy and Hy, where Hy is sometime called the null hypothesis. Formally, a
BHT problem is specified by two probability density functions, P(y; Hy) and
P(y; Hy), which define two probability distributions over real vectors in RY.
The interpretation is that P(y; H;) is the distribution of the outcome if hy-
pothesis H; is true. In addition, we sometimes also have some other knowledge
about the problem, such as a-priori probabilities of the two hypotheses Hy and
Hi.

Decision Rules

A decision rule for a BHT problem is a mapping h : RY — {0,1}. The
interpretation is that for an observed data y € RY, h(y) is either Hy or H,.
Two decision rules that are often used in detection theory are the mazimum
likelihood rule (ML) and the maximum a-posteriori probability rule (MAP).
The likelihood of a hypothesis H; given the observed data y is just the
probability density of Y under H;, namely P(y; H;). The MI decision rule
tells us to simply pick the hypothesis with the maximum likelihood. That is,

we have

0 if P(y; Ho) > P(y; Hy)
b (y) =
1 otherwise

In settings where we have a-priory probabilities of Hy and H;, (which we

CHAPTER 2. PRELIMINARIES 8

denoted here by po, p1, respectively), the a-posteriori probability of hypothesis
H; with the observed data y is defined as p; - P(y; H;). The MAP decision rule
is then defined by

0 if po- P(y; Ho) > pr - P(y; Hh)

hMAP(Y) =

1 otherwise
The likelihood ratio test. We note that both ML, and MAP are in fact spe-
cial cases of the likelihood ratio test (LRT). The likelihood ratio of an observed

data y is defined as
et P(y; Hi)
Liy) ¥ =2 U
¥ By

For any positive real number ~, the LRT rule with threshold v is then defined

0 if L(y) <~
hLRT(Y): ()
>

1 if L(y)

It is easy to see that the ML rule is obtained by setting v = 1, and the MAP

rule is obtained by setting v = po/p1.

Performance Measurements

A useful way to measure the performance of a given decision rule is provided
by measuring the probability of detection P;, and the probability of false-alarm
Ps. For a given BHT problem and a given decision rule b, these are defined
by

P; = Prlh(y) =1 assuming H; is true]

P; = Prlh(y) =1 assuming H, is true]
It is clear that to get a “good decision rule” we need to maximize P; and
at the same time to minimize P;. It is just as clear, however, that these

are conflicting objectives. Thus, in some settings we have an upper bound

CHAPTER 2. PRELIMINARIES 9

a on Py, and we try to maximize F; subject to the constraint that Py < «.
The importance of the likelihood-ratio test in this context is demonstrated by
the Neyman-Pearson theorem, which asserts that for any «, the decision rule
which maximizes P; subject to the constraint Py < « is an LRT rule. More

precisely, we have

Theorem [Neyman-Pearson [6]]: Let Hy, H; be a BHT problem, and let
a be any real number o € (0,1). Then there exists a threshold v > 0, so
that the LRT rule with threshold ~ achieves the maximum F; among all the

decision rules for which Py < a.

2.1.2 M-ary Hypothesis Testing

Much of the theory of binary hypothesis testing can be extended for any num-
ber of hypotheses M > 2. An M-ary hypothesis testing (MHT) problem is
specified by M probability density functions P(y; H;) (: = 0,1,..., M — 1),
each defining a probability distribution over vectors in R™. Also, in some
settings we have the prior probabilities for the hypotheses which are de-
noted (po, p1,...,pm—1). A decision rule for an MHT problem is a mapping
h:RN —{0,1,...,.M —1}.

As for the binary case, the ML and MAP decision rules are often used in
M-ary hypothesis testing. The ML rule is defined by

harn(y) = argmax P(y; H;)
and in cases where we have priors, the MAP rule is defined by

harap(y) = argmax; p; - P(y; Hj)

CHAPTER 2. PRELIMINARIES 10

2.1.3 Hypothesis Testing with Additive Gaussian Noise

In the thesis we use the hypothesis testing techniques from above in a set-
ting where the observed data is obtained by adding a Gaussian random vector
(called the noise) to some fixed vector in RYY. More precisely, let g1, ..., gn1
be vectors in RY, and let n be an N-dimensional Gaussian vector, n ~
N(p,R) (where p is the mean vector and R is the covariance matrix). Then

we define the MHT problem as follows:

Hy : y=n
H ry=g+n(i=1....M—-1)

If we have prior probabilities pg, p1,...,pym—1 for Hq, Hy, ..., Hyr_q, respec-
tively, then the MAP rule for this problem is

1 1 _
hyap(y) = argmax; p; - o P <—§(y —g;i—n)R ' (y—g;— M))

where we define gg = 0. Since all we care about in the above expression is the

index 7 which maximizes the right-hand-side, we can get rid of the constant

\/217r—Nand take the log of the rest, to obtain

1
haap(y) = argmax; (10g p;— 5(}/ —gi—)R (y—g;— M))

Finally, if we define 7; Lf o log p;, then the above rule is equivalent to

harap(y) = argmin; (v — g; —) "R (y —g; — p) + ;)

In particular, in the thesis we use the above in the case where the noise is
white and has zero mean (namely, R = ¢?I and g = 0). In this case, the last

expression is simplified to

o2

haap(y) = argmin; ((y ~8i) (v—g) + 77]‘) (2.1)

CHAPTER 2. PRELIMINARIES 11

2.2 Parameter Estimation

An estimation problem consists of observing a stochastic process whose overall
nature is known, but for which some of the parameters are unknown, and
trying to estimate those parameters from the outcome of this process. In this
thesis, the outcome of the process is always a vector of real numbers, and the
unknown parameter is also a vector of real numbers.

Formally, such an estimation problem is specified by a family of probability
density functions {P(y;a) : a € R}, with the interpretation that P(y;a) is
the distribution over the outcome y if the unknown parameter is equal to a.
An estimator for such a problem is a function @ : RN — R, which maps each
possible outcome y € RY to an estimation a(y) for the unknown parameter
a. A very useful estimator in many cases (including the ones in this work) is

the maximum-likelihood estimator, which is defined

anr(y) & argmax, P(y; a)

2.2.1 Amplitude Estimation with Gaussian Noise

In the thesis we use maximume-likelihood estimation in order to estimate the
amplitude of the anomalies in the presence of Gaussian noise. In this setting
we have the observation

y=Ba+n

where B is a known matrix, n is a zero mean Gaussian random vector n ~
N(0,R), and a is a vector of unknown real numbers which we try to estimate.

It is easy to show that in this case, the maximum-likelihood estimation is

a(y) = argmin,[(y — Ba)"R™'(y — Ba)]

CHAPTER 2. PRELIMINARIES 12

To solve this, we differentiate with respect to a and get
(Ba))R"'B-y'"R"'B=0
Solving the last equation yields the estimate

aly)= (B'R"'B) -B'R'y (2.2)

2.3 Problem Statement

Next we describe the formal model of the anomaly detection problem which
we study in this thesis. On a high level, our goal is to detect and characterize
rectangular anomalous regions in a rectangular 3-dimensional volume. We
view the volume as an array of voxels, where each voxel represents a cubic
volume cell. We assume that voxels have a nominal value of some uniform
intensity. We represent the data by a vector of voxel intensities, which is
obtained by ordering the 3-dimensional volume into a 1-dimensional vector in
a row-column-layer order. An example of this ordering is depicted in Fig. 2.1.

We assume that the medium has some normal intensity, and that the
anomalous regions have intensities which are different than the normal one.
For simplicity the normal intensity is taken to be zero. Furthermore, the in-
tensity within each anomaly is assumed to be uniform. The measured data is
given by adding white Gaussian noise to the voxel intensities. We number the
voxels consecutively from 1 to v (the total volume), and denote the vector of
voxel intensities by g, the vector of measured intensities by y, and the noise
vector by n. In this notation, the ¢’th entry in g is the intensity of voxel ¢,
which is zero if this voxel is not contained in any anomaly, and is equal to the

intensity of the anomaly which contains voxel ¢ otherwise. Similarly, the ¢’th

CHAPTER 2. PRELIMINARIES 13

Y1

Yo

Yo4

Figure 2.1: Representing a 3-dimensional array of voxels by a 1-dimensional
vector

entries in n and y, respectively, are the noise and measured intensities for the

i’th voxel. Using this notation we can write y = g + n, where n ~ N (0, o*1).

2.3.1 Vector Notations

We denote the total number of anomalies by N, and we number them con-
secutively from 1 to N. For each anomaly 5 we define an indicator vector
b; € {0,1}", where b;[z] = 1 if voxel ¢ belongs to anomaly j and 0 otherwise.
Also, we denote the intensity of anomaly j by a;.

We now consider the v x N matrix B, whose j’th column is b;, and the
N x 1 vector a whose j’th entry is a;. Using this notation we can write the

vector of voxel intensities as g = >, a;b; = Ba. Thus we can write
y=Ba+n

Our goal, given the vector y, is to detect the number, locations and sizes of

the anomalies, and to estimate their intensities. Using the above notations,

CHAPTER 2. PRELIMINARIES 14

iintensity =2

intensity = 4T

o
1
©O OO r OO0 O R

P P OO OOoOOoOOo
Q
1
1
NI

Figure 2.2: An illustration of our notations for a 2-dimensional area

this means to find NV, and to estimate the 0-1 matrix B and the real vector a.

See Fig. 2.2 for illustration of these notations for a simple 2-dimensional case.

2.3.2 Hypothesis Testing

Using the notations above, the goal of our algorithms can be described as
estimating the matrix B and the vector a from measured vector y. This is
done via a sequence of hypothesis tests. In each step, the algorithm considers
a few hypotheses Hg, Hy,..., which are formally described using the same
notations as above. That is, each hypothesis H; is described by a matrix B;

and an estimated-vector a;, so that we have
H]‘ Zy:B]’é]'—I-I’l (23)

In each step, the algorithm computes the matrices B; from a small fixed
set of possibilities (See Section 3.2 for details), and then uses the maximum-

likelihood estimator from Eq. 2.2 to compute the vectors a;. Namely, it sets

a,= (BTR"'B;)” -B'R"'y (2.4)

CHAPTER 2. PRELIMINARIES 15

Once all the B;’s and a,’s are set, the algorithm uses MAP procedure to choose

among these hypotheses, by choosing the hypothesis H,, such that

.1 . - R
m = argmmj §(y — Bjaj)TR l(y — Bjaj) + T (25)

where 7; = —% log p;, and p; is the prior probability of hypothesis H;.

Chapter 3

Algorithm

3.1 High Level Description

In this chapter we present our algorithm for detection and characterization of
an unknown number of anomalous areas in a three-dimensional volume. This
algorithm is scale-recursive, and it is based on a sequence of MAP hypothesis
tests, of the type discussed in Section 2.3.2. Our general approach is “partition
and zoom”. That is, we start from a large area and use M-ary hypothesis
testing techniques to repeatedly “zoom in” on smaller areas which are likely to
contain anomalies. In this process we use two types of tests. One is localization
test which “zooms in” on the true anomalies, and the other is pruning test,
which is designed to eliminate falsely identified regions thereby controlling the
amount of work required to identify true anomalous structures. We repeat
this sequence of localization and pruning tests until we decide that no further
localization or pruning is necessary. At this point we conclude that we found
the true anomalies.

During the execution of the algorithm we maintain a list of current regions.

These are the regions where we expect the anomalies to exist. This list is

16

CHAPTER 3. ALGORITHM 17

initialized to have one region - the whole area under consideration. In each
stage of the algorithm we apply two transformations to the current list. First
we perform a single localization step, in which we pick one of the regions in
the list and sub-divide it according to one of the hypotheses above. Then
we perform one or more pruning tests, in which we may remove from the list
regions that are likely to be “false alarms”. This procedure is terminated when
none of these transformations changes the current list.

A useful way to think about this procedure is to consider the “execution
tree” which consists of all the regions that were on the current list at any
time during a particular execution. At the root of this tree we have the whole
volume, and we say that region A is a parent of region B in the tree if B was
placed on the current list by splitting A during one of the localization steps.
Each step in the execution can therefore be viewed as picking one of the leaves
in the tree and either splitting it or dropping it altogether. A toy example of
such an execution tree (for a 2D volume) is depicted in Fig. 3.1.

After running the localizing and pruning procedure, we add a feedback pro-
cedure to improve the accuracy of the algorithm. This procedure re-examines
each of the found anomalies separately, by re-running the algorithm only on
the close neighborhood of that anomaly. To guarantee a small false-alarm
probability, we then perform final processing in which we examine each found
anomaly and compute the probability of it being a false alarm. If this prob-
ability exceeds some specified threshold, we drop the anomaly from the final
configuration.

At this point we might conclude the search, or use a second method of
feedback, which consists of subtracting the data associated with the found
anomalies from the original data, and repeating the entire process again on

the new data. This type of feedback allows us to find additional anomalies

CHAPTER 3. ALGORITHM 18

The execution of the algorithm:

(1) split region A, keep both halves
(2) split region B, keep upper half

/ (1)\ (3) split region C, keep both halves
(4) prune away region E

(5) split region D, keep left half

Final result includesregions F and G
/ ’ / (3)\
E

®) ‘ (4)

Figure 3.1: A simple example of an execution tree

CHAPTER 3. ALGORITHM 19

1. Start with one rectangle, which corresponds to the entire volume
2. Repeat until no change occurs
2a. Apply M-ary hypothesis testing to choose from among a few
fixed ways to subdivide one of the current regions
2b. Apply M-ary hypothesis test in order to prune regions
which are not likely to contain anomalies
2c. Repeat Step 2b until no more regions are pruned
3. Apply feedback methods to improve accuracy
4. Remove regions with high probability of false-alarm

Figure 3.2: An overview of the Algorithm

that might have been missed by the algorithm. This may be useful in case
some anomalies are much smaller in magnitude then others, or in case there
are many anomalies and can not all be found at once.

The rest of this chapter is organized as follows: Sections 3.2 and 3.3 describe
in details the localization and pruning procedures, and Section 3.4 presents the
mechanism of penalty functions by which we incorporate prior expectations to
the search. Section 3.5 discusses some initialization issues, and Sections 3.6
and 3.7 describe the feedback methods and the final processing stage. Finally,

Section 3.8 discusses a few possible generalizations of this work.

3.2 Localization Tests

In the localization steps, we apply a (small) fixed set of hypothesis-tests to
each region in the current list (i.e., each column in the current B matrix), to

decide which region (if any) should be subdivided next. The hypothesis test

can indicate one of the following:

CHAPTER 3. ALGORITHM 20

e No further localization is necessary. This means that no region should
be sub-divided, and in fact means that the current configuration is con-

sidered the “real” anomaly structure.

o Further refinement is needed. In this case, exactly one of the regions in

the current structure is further subdivided.

For simplicity we restrict our algorithm to work only with rectangular areas
(though in general it is possible to choose different shapes for this algorithm).
For each region in the current list (which is associated with a column in the
current matrix B) we examine 12 hypotheses, corresponding to 12 different
sub-division configurations. These sub-divisions are depicted in Fig. 3.3. As
can be seen in the figure, hypotheses Hy—Hy4, He—Hs, and Hip—H;4 correspond
to sub-divisions which keep exactly one half (either left-half, middle-half or
right-half) of the examined region in each dimension. Since it is possible that
the current region contains multiple anomalies, then hypotheses Hy, Hs and
Hgy correspond to sub-divisions which keep both the left and the right half in
each dimension.

Formally, assume that the current list consists of M regions. Then, our
current description of the data is y = Ba + n, where B has M columns,
b1,...,bas, corresponding to the M regions on the list. In this case, we have

12M + 1 localization hypotheses to consider.
H]‘ Y = B]'f:l]' —|— n

Hypothesis Hy is the null hypothesis which corresponds to retaining the current
structure, and therefore we have Bg = B and ap = a. FEach of the other
hypotheses correspond to dividing exactly one of the M regions according to

one of the hypotheses depicted in Fig. 3.3. Specifically, if column b; in the

CHAPTER 3. ALGORITHM 21

3
O o
T &=

Figure 3.3: Localization Hypotheses. The dark regions are the ones which are

H9 H10

kept in each hypothesis

B matrix corresponds to the 2’th region on the list, then each of the matrices
B;, y =12: —11,...12¢ is obtained by replacing the column b; in B with one
or more columns corresponding to sub-divisions of the ¢’th region according to

one of the twelve hypotheses. The vector a; is then computed as in Eq. 2.4.

3.3 Pruning Tests

Pruning is designed to eliminate from consideration previously identified re-

gions which we believe are unlikely to actually contain anomalies. This way,

CHAPTER 3. ALGORITHM 22

we control the amount of work required to identify true anomalous structures
by avoiding further sub-divisions of these “unlikely regions” and reduce false
alarms. Recall that at each localization step, the algorithm sub-divides a single
region. It may be, therefore, that regions which were localized a few iterations
ago become less likely than the new acquired regions. The decision of which
regions should be eliminated is dictated by our prior assumptions concerning
the number and sizes of the anomalies.

To determine which regions should be eliminated (if any), we use a different
set of hypothesis tests. The first hypothesis Hy corresponds to keeping all
the regions, and any other hypothesis H; corresponds to removing region ¢
and keeping the rest of the regions. Formally, hypothesis Hy is described by
keeping the same B matrix, and each other hypothesis H; is described by a
matrix B; which is obtained from B by removing the :’th column. An example
of these hypotheses is depicted in Fig. 3.4.

After each localization step, we run the pruning tests repeatedly until no
regions are removed. Specifically, suppose that we have n regions after the
localization and before the pruning test. If the test shows that we should not
prune any region (namely, if we pick hypothesis Hy), then we are done with
the pruning. Else, if we remove region ¢ (namely if we pick hypothesis H;),
then we are left with n — 1 regions. We now run the pruning test sequence on
the remaining n — 1 regions. This process is repeated until no further regions

are removed.

3.4 Penalties

A common problem with search algorithms such as above, is that they tend to

over-fit the data. Namely, the algorithm tends to find many small anomalies

CHAPTER 3. ALGORITHM

HO

1

20

v
-
\ \ NN

Current configuration:

s

T
T

Figure 3.4: Pruning hypotheses: an example with four areas.

23

CHAPTER 3. ALGORITHM 24

instead of a single large one, simply because the data measured at different
parts of the anomaly varies slightly due to the noise.

We analyze this phenomena for our hypotheses in Appendix A. ;From this
analysis we can see that hypothesis H; will always be preferred over hypotheses
Hy, Hy and Hj, and the same holds for the hypotheses belonging to the other
dimensions (i.e., Hs will be preferred over Hy, Hg and H7, etc.). Therefore,
without penalties for dividing an area into multiple areas, the program would
usually tend to divide each volume to two new volumes, until each voxel is
represented separately.

To overcome this problem, we use the method developed in [4] to incorpo-
rate into the search algorithm our prior expectations regarding the number of
anomalies, their sizes and shapes. This is done by introducing a set of penalties
which are used just like a set of prior-probabilities for the different hypotheses.
More precisely, for the hypothesis testing we use a MAP procedure, which re-
quires that we have prior probabilities for the hypotheses. Recall from Eq. 2.5
that the MAP decision rule is

.1 _
m = argmmj§(y —B;a;)'R7!(y — Bja;) + 7,

We use the penalty values in the role of these 7;’s. These penalty terms are

computed in our algorithm as
T = 107 - f]‘ (31)

The term + in the above expression is a constant which is computed once at
the beginning of the algorithm, and remains fixed throughout. This constant
determines the relative magnitude of the penalty terms in the MAP decision
rule from above. Thus, if 4 is too small then the penalty terms will be negligible

and will not affect the tendency of the algorithm to over-fit the data, and if v it

CHAPTER 3. ALGORITHM 25

is too large then the contribution of the data itself will be negligible. Following

[4], we set this constant to be
1 f\Tpp—1 .
7= |logio v — 1) R (y —)| 1

where y is the observed vector, 1 is the all-one vector, and a is the ML estimate
of the amplitude for an anomaly which covers the whole volume. This setting
ensures that all the «;’s are roughly one order of magnitude smaller than the
normalized variance of the data. (We stress that this is merely a heuristic
setting which seems to work well in this algorithm.)

The term f; in Eq. 3.1 is the penalty function for hypothesis H;, and is
described next. We have four types of penalty functions: two affect localization
and two affect pruning. The general shape of these functions follows our
expectations for the characteristics of the anomaly structure, and is explained
below for each function. In particular, all these functions are monotone in their
arguments (so, for example, the penalty is either monotonically increasing
with the size of the region or monotonically decreasing with this size). The
exact shape of these functions were tuned via experiments to obtain the best
performance.

These penalty functions were tuned for the volume size which we use in
our experiments, namely 16°. Since the algorithm is scale-sequential, then we
know that these functions also work well for smaller volumes. This is since
as the algorithm advances, these smaller volumes are actually encountered.
For larger volumes, it seems reasonable to assume that these penalty func-
tions should provide similar results for similar SNR levels, since neither the
penalty functions themselves nor the hypotheses likelihoods depend on the
overall volume size. This assumption, however, may be subject to future test-

ing. It should be noted that the penalty functions could be changed according

CHAPTER 3. ALGORITHM 26

HO Localization penalty Localization penalty for Hj

l ——— Number of regions increased by 1
F ____Number of regions remains unchanged

o
3
T

o
=
T

Localization Penalty for HO
o &
T

Localization Penalty for Hj

.
0 50 100 150 200 250 0 50 100 150 200 250
Maximum Area Size Current Area Size

(b) (c)

Figure 3.5: Localization penalty functions for M AS = 4

to different scenarios in different applications, to meet different prior expecta-
tions. The main contribution of these functions is to demonstrate the ability

to introduce prior information into the algorithm to guide the search.

3.4.1 Localization Penalties

The localization penalties reflect our expectations that the anomalies are not
too small neither too large, and that we do not expect too many anomalies
in the region. We have two penalty functions in the localization step, one for
computing fo (i.e., the penalty term for keeping the whole region without fur-
ther sub-division) and the other for computing the other f;’s (i.e., the penalties

for further zooming in into a region and refining of the current structure).

Hy penalty (fy) Penalty function for choosing Hy (Halting): The function is
monotonic, and grows with the size of the largest current region. This
reflects the fact that we do not expect to have very large anomalies,
therefore we examine the current largest anomaly, and the larger it is, the

larger the penalty is. This ensures that we will not have a region which

CHAPTER 3. ALGORITHM 27

is too big. To compute this penalty, we use the following quantities.

1. MAS (Min Area Size). This is a parameter which represents the
smallest acceptable size for an anomaly. This parameter is set before
we start the search. In our tests we defined M AS = 4 (namely, we did
not allow the program to output any anomaly which is smaller than four

voxels).

2. LAS (Largest Area Size). The size of the largest area currently on
the list.

We compute the Hj localization penalty as

fo 1 —/MAS/LAS (3.2)
See Fig. 3.5 (a) for a plot of fy vs. LAS when MAS = 4.

H; penalty (f;, j = 1,...,m). Penalty function for not halting: When we
choose any hypothesis other than Hy, this hypothesis dictates that we
divide one of the current regions into one or more new regions. This
penalty function depends on the size of the new regions and how many

new regions are there.

The function f; grows as the size of the new regions in the configuration
decreases. This is done since we want to override the tendency of the
program to over-fit the data, and so we want to prevent it from finding
many small anomalies. In our implementation we set a minimum size
of an anomaly, the closer we are to this size, the larger the f; penalty
would be. The function also grows with the number of new regions in
the configuration. Since we do not want to have too many areas, we have
a larger penalty value for divisions which increase the number of regions

on the current list.

CHAPTER 3. ALGORITHM 28

There are some cases in which f; assumes the value +o00. In particular,
since we expect that the anomalies are “not too small and not too many”,
we do not allow the algorithm to keep regions which are smaller than
the Min-Area-Size parameter (i.e., four voxels) or to keep more than ten
regions on its list at the same time. Therefore, the penalty for choosing
a hypothesis which violates these constrains is defined to be infinite.
Also, we do not allow the algorithm to keep any region in which the
length in one dimension is greater then four times the length in another
dimension. Therefore, we have an infinite penalty for any division which
results in such a region. For example, if a region in the current list is
of size 16 x 8 x 4, then we associate an infinite penalty with the sub-
division which result in a region of size 16 x 8 x 2. We also limit the size
of the minimum anomaly to be 4 voxels. To compute the f; functions,

we define the following quantities:

e The minimum-area-size parameter (M AS) is defined as above.

e The size of the regions which result from choosing H; is denoted by
CAS;. (Note that in our hypotheses, all the regions have the same

size.)

e The ratio between the largest and the smallest side-length in the

regions which result from choosing H; is denoted by MaxRatio;.

e The number of regions in the current list after choosing hypothesis

H; is denoted by M;.

o We define A to be the difference between the number of regions on

the list before and after choosing H;. Namely

A; M — M,

CHAPTER 3. ALGORITHM 29

(Notice that since Hy i is the null hypothesis then Mg is indeed the

number of regions before choosing any hypothesis).

e The penalty ‘Per-Added-Region’ for hypothesis H; is defined as

PAR; ¥ 0.25+0.75- {/MAS/CAS;

and then we compute the f; localization penalty as

It CAS; < MAS
def +o0 or MaxRatio; > 4
or M; > 10

% A/ MASJ/CAS; - (1 4+ A;- PAR;) otherwise

As can be seen, if the number of regions on the list does not change when

choosing H;, then A; = 0, and thus PAR,; is never used. See Fig. 3.5 (b)

(3.3)

and (c) for plots of this penalty function vs. LAS for A € {0,1} and
MAS = 4.

3.4.2 Pruning Penalties

The pruning penalties incorporate our expectations that there are not too
many anomalies in the volume, and the fact that the algorithm is more likely
to “miss an anomaly” in large regions than in small ones. Therefore we prefer
to keep large regions for further refinement even if it currently seems that they
do not contain anomalies, rather than to prune them right away. Here too we
have two types of penalty functions - one for not pruning anything and one

for pruning something.

Hy penalty (fy) Penalty function for not pruning away any anomaly: This

is a function of the current region configuration, and grows with the

CHAPTER 3. ALGORITHM 30

Pruning penalty for HO Pruning penalty for Hj
T T T T T T T T

Penalty
o
&

.
1 2 3 4 5 6 7 8 9 10 0 50 100 150 200 250
No of regions Current Area Size

(a) (b)

Figure 3.6: The pruning penalty functions: (a) Hy penalty; (b) H; penalty.

number of regions in the configuration. We do not want to have too
many areas. Therefore, the more areas we have, the bigger the penalty
is for not pruning any of them. To compute this function we denote the

number of anomalies in the current configuration by NR and compute

a1 (NR)2 (3.4)

o= 5\90

See Fig. 3.6 (a) for a plot of this penalty function vs. the number of

areas in the current list.

H; penalty (f;, j =1,...,m) Penalty function for pruning an area: When
we choose any hypothesis other than Hy, this hypothesis dictates that
we prune one of the current regions. The penalty for this choice is a
function only of the pruned region. It grows as the size of the pruned
area increases, because the algorithm has a larger probability of missing

a small anomaly in a large region.

To compute this function we use the M AS parameter (Min-Area-Size)
and denote by C'AS; the size of the region pruned by the hypothesis H;.

CHAPTER 3. ALGORITHM 31

Figure 3.7: Initial hypotheses

Then we set

£ 0.7 <1 ~08- M) (3.5)

(We stress that the expression 3/--- was chosen via experiments. The
value of 32 simply gave the best results in our tests.) See Fig. 3.6 (b)
for a plot of this penalty function vs. C'AS.

CHAPTER 3. ALGORITHM 32

3.5 Initial Hypotheses

In our algorithm we use a different set of hypotheses for the first division of
the area. The reason is that during the initial processing stage, the chances
of missing an anomaly are relatively high since the areas involved are rather
large. In [5] it was shown that the primary difficulty associated with the general
algorithm 1s that coarse scale detection probabilities can be low. Therefore,
at this stage we keep more coarse-scale regions for further examinations. The
set of hypotheses which we use at this stage is described in Fig. 3.7. Notice
that all these hypotheses divide the area into a few regions, and we do not
drop any part of the area. The initial hypotheses are described graphically in
Fig. 3.7.

3.6 Feedback

One problem with localizing the anomalies accurately is that we have only
a few specific ways to divide the region in each step. Thus, the chances of
“cutting away” parts of the anomalies are rather high, especially at initial
stages when the size of the examined regions is large relative to the size of
the anomalies. Another problem is when the amplitude of different anomalies
are of different magnitude. In this case, an anomaly that is much larger may
“mask” the smaller anomalies.

In order to improve the accuracy of the algorithm, we therefore imple-
mented a collection of “feedback methods”. Namely, we view the results of
the first run of the algorithm as a rough estimate for the anomaly configura-
tion, and then use these results to guide us in subsequent runs. We use two

feedback methods in our algorithm.

CHAPTER 3. ALGORITHM 33

3.6.1 Reexamining Found Anomalies

After locating the anomalies, we reexamine the close neighborhoods of these
anomalies to obtain a more accurate localization. This process is illustrated
in Fig. 3.8(e)-(g). We first add a “frame” around each anomaly, which is
centered in the center of this anomaly and has width and height twice as the
anomaly itself. Inside this frame, we then run again our search algorithm
“from scratch”. We run this process separately for each anomaly. We will
refer to this feedback method as Reezamining feedback.

Notice that this feedback process may result in larger anomalies than be-
fore the feedback phase. Hence, it raises the possibility of two anomaly areas
overlapping. For simplicity, we discard any anomaly which overlaps another
previously found anomaly. For example, if after running this feedback proce-
dure on the first two regions we find that the resulting two regions overlap,
then we discard the second region from our anomaly structure.

The reason that we expect this feedback method to improve the accuracy
of the localization is as follows. At the first stages of the algorithm, the
regions examined are typically large relatively to the sizes of the anomalies.
Thus, the algorithm may “cut-off” a part of the anomaly when choosing a
hypothesis which keeps most of the anomaly. In our experiments, we found
that this method significantly improves the accuracy of the anomaly borders
and amplitudes.

This feedback method is demonstrated in Fig. 3.8. In (a)-(d) we see the
localization and pruning, and in (e)-(g) we see that a frame is added, and the

localization algorithm is being run again, resulting in a more accurate solution.

CHAPTER 3. ALGORITHM 34

(a) Initial configuration (b) First localization

(c) Second localization (d) Result before feedback

(e) Adding the frame (f) Localization step

(g) Final result
Figure 3.8: Example of execution with feedback. The black region is the
anomaly and the gray regions are the hypotheses of the algorithm.

CHAPTER 3. ALGORITHM 35

3.6.2 Subtracting Data of Found Anomalies

Experiments with our algorithm exhibits problems when the region contains
anomalies of different orders of magnitude. In this case, the small anomalies
are negligible relative to the large ones and are often ignored by the algorithm.
Our experiments show that the algorithm finds the smaller anomalies when
we subtract from the data the effects of the found anomalies and rerun the
program on the new data. Therefore, when we expect to have anomalies with
different orders of magnitude, we incorporate into the program this feedback.
We will refer to this type of feedback as Subtracting feedback.

This method is also used when the number of found anomalies is large.
The reason is that due to our penalties, the program can find only a limited
number of anomalies in each iteration. If running the program in one iteration
finds relatively many anomalies, then there might be more, which will be found
if we were to subtract the found anomalies from the data and run the program

again.

3.7 Final Processing

At the end of the program, we go over all the found regions and eliminate those
which are likely to be false alarms. To this end, we use the LRT decision rule

for binary hypothesis testing. For every region we have the two hypotheses

Hy:y'=n
H :y'=a-14+n

where y’ is the partial vector consisting only of the data in the region whose

indicator vector is B;, n ~ N (0,0?I), 1 is the all-1 vector over this region and

a is the estimated amplitude of this region, namely a & % >_;yi. Repeating

CHAPTER 3. ALGORITHM 36

the derivation from Section 2.1.3, the LRT rule for this case can be written as

0 if @Y -('-a)T(y'-al) o

202 —

iLLRT(Y) =
1 otherwise

We can re-write the expression on the right hand side of the LRT rule as

27 l(y)y' = (v —an)T(y' — a1)]

- # i lyl — (yi — a))?

= 202 (QG(E?—l yi) - N&Z)

= (24 - na — na?) = (na?)/(2¢%)

202

(where n is the size of the region at hand). Thus, the LRT rule consists of

* to the threshold 7. In our experiments

comparing the sufficient statistic 2 o
we worked with ¢ = 1 and set the threshold to 7 = 8. In the final processing,
therefore we discarded any region for which na? < 16 (where n is the size of
the region and a is the average amplitude in the region).

For this decision rule it is also easy to compute the probability of false-
alarm. Since according to Hy, we have y’ ~ N(0,0%), and since a =
¥ L SN s, then @ is a Gaussian random variable & ~ N(0 ,]5) Thus we
get

~2

P; = Pr[;a2>r|H0] = Pr[|&|>a\/§|ﬂol = Q-Q(\/Q_T)

Where the () function is defined

Qx) & ¢_/ exp(z)dt

Thus, the value of 7 = 8 corresponds to false-alarm probability Py = 2-Q(4) ~
5-107%.

CHAPTER 3. ALGORITHM 37

3.8 Generalization

In this work we consider a model in which the data consists of the intensity
field and additive white Gaussian noise. However, this algorithm can be used
for the model in which the measured data is a function of the intensity field
with additive white Gaussian noise. As described in [4], the model in this case
will be

y =f(g) +n

In this case, each hypothesis H; will be described as following:
Hj:y =1(B;a;) +n (3.6)
and the maximum-likelihood estimator of the amplitude will be:
a(y) = argmin,[(y — f(Ba))"R™'(y — f(Ba))]

The MAP procedure employed to choose from these hypotheses the hypothesis
H,, will be of the form:

m = argmin;(y — f(B;a;)) "R (y — f(B;a;)) + 7, (3.7)

Thus, we can still use our algorithm to built the B; matrices corresponding to

our hypothesis, and choose from them using the MAP procedure.

3.8.1 The Linear Case

In the case in which the function of the intensity field is a linear function
(namely, f(g) = Tg for some matrix T), the maximum-likelihood estimator

of the amplitude is given by
ay) = (B'T'R'TB) - BB"T'R 'y (3.8)
In this case, the matrix (BTTTR_ITB) is typically not a diagonal matrix, so

we will need to perform matrix inversion for each hypothesis test.

Chapter 4

Complexity Analysis

4.1 Hypotheses Testing Complexity

In this chapter we give a partial analysis for the hypothesis test complexity of
our algorithm. We start by presenting a simple upper bound on the worst-case
behavior of the main search routine of our algorithm (i.e., no feedback) without
the pruning phases. We next analyze the worst case behavior of this procedure
including the pruning. Then we discuss briefly the complexity of the feedback
mechanisms, and compare our complexity bounds with the complexity of an
exhaustive search.

It is interesting to note that this analysis yields a much better upper bound
for the case with no pruning. Moreover, our tests show that the actual behavior
of the algorithm is much closer to the bound for the case with no pruning.
Indeed, in our experiments, only a relatively small amount of pruning occurred.
We note that the number of regions is controlled not only by the pruning stages,
but also (in fact, mostly) by the localization penalties, which do not allow the
number of regions to grow beyond a specific bound. All these considerations

raise the possibility that the pruning steps may in fact be redundant. However,

38

CHAPTER 4. COMPLEXITY ANALYSIS 39

we did not test the algorithm without the pruning. This may be subject for

future work.

4.2 Complexity with no Pruning

Recall that the main search routine of the algorithm works by maintaining a
list of current regions, and at each step either splitting one of the regions in
this list (in a localization step) or dropping it altogether (in a pruning step).
In the analysis below we assume that no pruning occurs, so in every step the
algorithm simply takes one region from the list and split it in two, keeping
either one or both of the halves on the list. Below we refer to the list of
regions as the current list. During a particular execution of the algorithm, we

consider the following quantities

e The number of voxels in the whole medium is denoted by N.

e The number of localization hypotheses for each region, which in our

implementation is 12.

e The maximum number of regions that were simultaneously kept on the
current list at any point during the execution is denoted by M. Our im-
plementation prevents the algorithm from keeping more than 10 regions

at the same time, so in every execution we have M < 10.

We now proceed to bound the number of hypothesis tests in this execution
in terms of these quantities. Recall from Section 3.1 that we can view the
execution of the algorithm via the notion of an “execution tree” which consists
of all the regions that were on the current list at any time during the execution.
At the root of this tree we have a region which consists of the whole medium,

and we say that region A is a parent of region B in the tree if B was placed

CHAPTER 4. COMPLEXITY ANALYSIS 40

on the current list by splitting A during one of the localization steps. We
can view each step in this execution as picking one of the leaves in the tree
and splitting it, keeping either one or two of its children. When the algorithm

finally halts, we can make the following observations about the execution tree:

Lemma 4.1 If the algorithm does not perform pruning, then the number of

nodes in the execulion tree is at most M log, N.

Proof: Define a level in the tree to be all the nodes at a certain height above
the leaves. Namely, a node is at level 7 if the distance from this node to the
nearest leaf is ¢ (so all the leaves are at level 0, their parents are at level 1,

etc.). Then we can do the following observations:

1. Since the size of each region in the execution tree is exactly half that of
its parent, and since the size of the root is N, then the depth of the tree

is at most log, N. Hence, the tree contains at most log, N levels.

2. Denote the number of nodes in level 7 in the tree by ;. Since every node
in level ¢ > 0 in the tree has at least one child in level : — 1, then for all

1> 0 we have L; < L;_4.

3. Since we never keep more than M regions on the current list at the same
time, then in particular at the end of the execution we keep at most
M leaves. Moreover, if the algorithm does not perform pruning then
this means that the entire execution tree never contained more than M
leaves (as no leaf is never pruned, and thus every leaf in the execution
tree must be on the current list when the algorithm halts). Therefore we

have Lo < M.

Combining the last two observations we conclude that every level in the tree

consists of at most M nodes. As there are only at most log, N levels, the tree

CHAPTER 4. COMPLEXITY ANALYSIS 41

cannot contain more than M log, N nodes. Wi

Theorem 4.2 If the algorithm does notl perform pruning, then the number
of hypothesis-tests in every execulion is at most (12M + 1) - Mlog, N =
O(M?*log N).

Proof: Note that every region in the execution tree enters (and leaves) the
current list exactly once during the execution. Hence, the number of steps in
the execution is bounded by the number of nodes in the execution tree. Since
in each step during the execution we consider at most 12M + 1 hypotheses in

the localization stage, then the total number of hypotheses in this execution

is bounded by (12M + 1) - Mlog, N. N

Remark: The Size of M. In our implementation we limit M to be ten, by
not letting the program to take two halves of a region if we have already ten
regions. However, in practice, for a small number of anomalies, M does not
reach this bound, and for the case of one or two anomalies, M is usually much

smaller then ten regions.

4.3 Complexity with Pruning

If we allow the algorithm to prune leaves, then the above upper bound no
longer holds in the worst case. In particular, consider the following scenario
which is depicted in Fig. 4.1: In the first step, the algorithm splits the original
region and keeps both halves. Then, it keeps splitting the right half until it
has M — 1 regions on the right, while leaving the left half untouched. Next
the algorithm continues to split the M — 1 regions on the right, each time

leaving only one of the halves, so that the number of regions on the current

CHAPTER 4. COMPLEXITY ANALYSIS 42

height = log N

Figure 4.1: An example of an execution tree with many nodes

list never grows beyond M. This continues until all these M — 1 regions reach
the minimum size, at which point the algorithm prunes all of them. Now the

algorithm is left with a single region of size &, and it can repeat the above

29
process starting from this one region. The number of regions in the resulting

execution tree is about

#-of-nodes ~ (M — 1)log N + (M — 1)10g(%) + (M — 1)10g(%) + ...

— Y i — 1) WU

In fact, even the above example is not a worst-case behavior of the algo-
rithm. In Appendix B we prove that the worst-case complexity with pruning

is O(]\KI(M‘%\Of2 N)). In reality, however, the algorithm does very little pruning,

CHAPTER 4. COMPLEXITY ANALYSIS 43

and in Chapter 5 we show that the complexity for a typical anomaly config-
uration is indeed logarithmic in N. Therefore, for the purpose of comparison
with exhaustive search, we use the bound which we obtained for the case with

no pruning.

4.4 Comparison with Exhaustive Search

To analyze the performance of an exhausting search, we notice that a rectan-
gular volume can be specified by two of its corners. Therefore, in order to find
a single rectangular anomaly of unknown size within a medium of volume N
by an exhaustive search, we need to consider about (];) ~ N72 possibilities.

If we have some prior knowledge about the volume of this anomaly, then
this work can be reduced. For example, if we know a-priori the exact shape
of the anomaly then we only need to find one of its corners, so we have only
N possibilities to consider. If we do not know the exact shape, but we know
that it can be one of k different shapes, then the complexity is O(kN). For
example, if we know that the volume of the anomaly is at most v, then we
only need to consider those shapes with volume up to v. If we denote by k(v)
the number of different shapes (length x height x depth) with volume up to
v, then we have complexity of about N - k(v). We can approximate the value

of k(v) using the integral

vinv vinv

v v/x v/x
k(v)%/ dw/ dy/ de: —vlhnv+v—-1 =
z=1 1 z=1 2 2

(this estimate is only valid for 1 < v < N).
In any case, it is obvious that even finding a single anomaly of known size
via exhaustive search requires work which is at least linear in N, as opposed

to logarithmic in NV using our algorithm.

CHAPTER 4. COMPLEXITY ANALYSIS 44

Suppose now that we want to find M anomalies by exhaustive search.
In this case, we need to localize all the anomalies at once, and since there
are about N - k(v;) possibilities to localize the i’th anomaly (where v; is the

size of that anomaly), then the total hypotheses tests count will be about
[T (N - k(vi)).

4.4.1 A Numerical Example

Assume that we are looking for an anomaly whose volume is at most 6 voxels
within a volume of N = 16 x 16 x 16 = 4096 voxels. A simple counting
shows that k(6) = 1+3+ 346+ 3 4+ 6 = 22 (since we have one shape with
volume 1, three shapes with volume 2, etc.). Thus we need to consider about
22 x 4096 ~ 90000 possibilities.

In our algorithm, on the other hand, if we assume that M = 7 (which is a
reasonable assumption for the case of a single anomaly, according to our tests),
then the number of hypotheses which are considered during an execution is
bounded by (12 x 74 1) x 7 x log, 4096 = 7100.

We note that the above estimation is in fact quite generous. For one thing,
we assume that a good approximation for the volume of the anomaly is known
ahead of time. Moreover we assume that there is only a single anomaly to
find. In fact, our algorithm can find several anomalies in each run, whereas the
above exhaustive search routine can only find one anomaly at a time. Finally,
the hypotheses tests estimation for the performance of our algorithm is overly
pessimistic, and the actual number of hypotheses is likely to be smaller than

this bound (see the test results in Chapter 5).

CHAPTER 4. COMPLEXITY ANALYSIS 45

4.4.2 Feedback Complexity

For the first type of feedback, which consists of reexamining the close neigh-
borhood of the found anomalies, the complexity depends on the size of the
found anomalies. Since usually the found anomalies are small relative to the
size of the whole region, this type of feedback still stays in the magnitude
of O(log N). Specifically, if before the feedback we have one anomaly with
volume v, then the complexity of the feedback stage will be O(logv), and the
total complexity will be O(log N)+ O(log V') = O(log N). In our tests, the re-
examination feedback typically added 20 percent to the number of hypotheses
tests and in the worst case the complexity was increased by 50 percent.

The second type of feedback consists of re-running the program again on
a new data. When this is executed, then the number of operations needed to
execute the whole program roughly multiplies. In our implementation, this
feedback is only done if we found a large number of anomalies in the first run.
(Note that in this case, the exhaustive search complexity will also be much

larger.)

Chapter 5

Test Results

The program was tested on several instances of synthetically generated data.
The overall volume on which the program was tested was chosen to be of size
16 x 16 x 16 voxels. This volume is large enough to admit many different
types of anomaly-structures, yet small enough so that the program still runs
very fast. This enabled us to repeat the tests many times for each data point,
so we can obtain meaningful estimation of the probabilities of detection and
false-alarm.

Each data point in our tests consists of a specific anomaly-structure and
a specific SNR level. The SNR level is computed as follows: Let g = Ba =
Y_;a;b; be the anomaly structure, and let y = g + n, be the observed data,
where n is a white Gaussian noise n ~ N(0,0%I). The signal-to-noise ratio
(SNR) of y (in decibels) is

T
SNR % 1010g,, 28 dB

No?

where N is the number of entries in y. Below we refer to this number as the

total-SNR of this data point. Also, the SNR of the 7’th anomaly (which is

46

CHAPTER 5. TEST RESULTS 47

described by the vector a;b;) is

2(b7h,)
SNR; &' 101 a;(bi b:)
0810 No2

Below we refer to this number as the anomaly SNR. We can compute the

anomaly SNR as SNR; = 10log,, ((iz]]\\f;)), and since in our tests we used o = 1,
then we have SNR; = 101log,, %, where N; is the volume of the :’th anomaly.
We vary the SNR by varying the anomaly amplitudes.

In our experiments, we define a detection to be any region identified by
the algorithm for which at least 25% of its volume overlaps a true anomaly.

Anything else is considered a false alarm. For each anomaly we compute the

“empirical P;” as

_ qef Number of times anomaly was detected

j

Total number of runs
We then computed for every test the “empirical P;” as

p, det Total volume of falsely detected regions
f pu—

Total volume of the entire medium

We run one hundred tests for each data point (each time adding independently
chosen noise), and computed the P; and P; values of this data point as the
average of the empirical Py and P, values, respectively, of all these tests. In all
the tests that we performed, we set the threshold value 7 of the post-processing
stage so as to obtain P; =5-107* (See Section 3.7).

In the description below, we specify the location of an anomaly by a vector
({(z1, y1,21), (T2, Y2, 22)), of which (z1,91,2) is the front-lower-left corner of
the anomaly and (z3,ys, 22) is the back-upper-right corner. For example, a
region which is specified by ((2,4,6),(5,9,7)), is located in the z direction
between voxel 2 and 5 (including voxels 2 and 5), in the y direction between

voxels 4 and 9, and in the z direction between voxels 6 and 7.

CHAPTER 5. TEST RESULTS 48

For each test we measured the number of hypothesis tests before and after
the reexamining feedback. The P; and Py were measured at the end of the
program, after the reexamining feedback. However, the P; and Py were essen-
tially the same before the reexamining feedback. This feedback only helps to
localize more accurately the anomaly. If we changed the detection definition
so that a detection will be a region which at least 75% of its volume overlaps
a true anomaly (instead of 25%), then we would expect a change in the P
after the reexamination feedback, since in this case before the feedback some

of the regions will be considered false alarms.

5.1 A Single Anomaly

We first considered an anomaly configuration which consists of a single anomaly.
Within the total volume of 16° voxels, we placed a single anomaly of size 5°
near the middle of the region, in location ({7,7,7),(11,11,11)). The location
and size of the anomaly are demonstrated in Fig. 5.2(a). For this anomaly
configuration we tested SNRs between —30 and 20dB (since we have a single
anomaly, then the total SNR and the anomaly SNR are the same).

The calculated false alarm probabilities were between 0 and 2.5 - 1074
throughout the entire range. The resulting F; values for different SNRs are
summarized in Fig. 5.1(b). As we can see, the detection probability is very
close to 1 for SNRs as low as —17dB.

In addition to the Py and Py levels, we also measured the hypothesis testing
complexity of these experiments. The complexity is plotted in Fig. 5.1(c)
against the SNR level. To give a feeling for the cost of the feedback, we
measured the hypothesis testing complexity with and without the reexamining

feedback. As can be seen in the figure, this type of feedback increases the

CHAPTER 5. TEST RESULTS 49

16
14
12
10
~ 8
6
4
2
0
15
10 15
10
5
5
y o0 M
(a) Input configuration
20 T T T T T
T T T T T T T T T ——— With the reexamining feedback
WL 1800~ Without the reexamining feedback R R
// A
/ N N /\
1600)/ N AN
, N N
08 B a2 , N N
17 N
2 1400)/ 3
@
a ’
£
5% 1 g 1200
Q
a =
£
=
© 1000
L 4 [=}
0.4 =
800
0.2 —
600
. 20
-30 -25 -20 -15 -10 -5 0 5 10 15 20 -30 -25 -20 -15 -10 -5 0 10 15 20
Anomaly SNR Total SNR

(b) Py vs. SNR (c¢) Complexity vs. SNR

Figure 5.1: Test results for a single anomaly

CHAPTER 5. TEST RESULTS 50

hypothesis testing complexity by 20-50%. Also, the figure demonstrates that
in practice, the algorithm performs at most 16% of the number of hypothesis
tests which are predicted by the analytic upper-bound in Chapter 4. While
the numerical example in our analysis yields a bound of about 7100 hypothesis
tests (without the feedback), the actual performance was always less than 1250
hypothesis tests.

We note that although the bound from Chapter 4 is independent of the SNR
level, our experiments indicate that the SNR level influences the M parameter
in this bound (i.e., the maximum number of regions in the current-list at any
given time). Indeed, it can be seen from Fig. 5.1(c) that the hypothesis testing
complexity increases significantly for higher SNR levels. This behavior can be
explained as follows: Recall that the algorithm uses only a small number of
hypotheses in every step. This behavior limits the number of shapes that
the regions on the current-list can take. (For example, in our case the side
length of every region on the current-list must be a power of two.) In the tests
above, however, the actual anomaly was of size 5 x 5 x 5, and the algorithm
typically quickly finds a piece of it of size 4 x 4 x 4. For low levels of SNR,
the remaining pieces of the anomaly are ignored, since they are too small to
be noticed. As the SNR increases, however, these small pieces become more
and more noticeable, and so the algorithm ends up keeping all of them on
the current list, hence increasing the number of hypotheses which need to be
considered at each step.

Finally, in Figures 5.2 and 5.3 we show a few snapshots from the execu-
tion of the algorithm on this anomaly configuration with SNR of —6dB. The
shades in these figures are relative to the intensity of the anomalies: Bright
regions denote large amplitudes, while dark regions denote small amplitudes.

Fig. 5.2(a) describes the original anomaly structure. In (b) we see the first

CHAPTER 5. TEST RESULTS 51

partition, using the initial hypothesis. As we can see in (c¢), the algorithm
first zooms-in on the right anomaly. However, it keeps the other two regions
for further checking, since smaller anomalies might still exist in them. In (d)
we see the partitioning of the rest of the areas, and (e) shows the end of the
algorithm before the feedback.

In Fig. 5.3 we can see a few steps in the feedback stage. The configuration
before the Feedback is shown in (a), then in (b) we see the frame around the
large anomaly. We ran the search procedure again on this region. This process
was repeated for each of the other found anomalies. The final area found after

the feedback appears in (c).

5.2 Two Anomalies with the Same Size and

Amplitude

Next we considered an anomaly configuration consisting of two anomalies with
the same size and amplitude. Within the total volume of 16> voxels, we placed
two anomalies of size 4%, one located at ((3,3,3),(6,6,6)) and the second
located at ((10,10,10), (13,13,13)). These locations are demonstrated in
Fig. 5.4(a). For this anomaly configuration we tested total SNRs between
—30 and 20dB.!

In these experiments too, the empirical Py level was always between 0 and
2 -107*. The resulting P, values for each of the anomalies are plotted in
Fig. 5.4(b) against the anomaly SNR. As we expect, the results for the two
anomalies are rather similar, and for both of them we have P; ~ 1 for SNRs as

low as —10dB. There is a slight difference between the Py of the two anomalies

'Recall that the anomaly SNR is defined as the SNR of a configuration consisting only
of this anomaly.

CHAPTER 5. TEST RESULTS 52

(a) Input configuration

amp = -0.083965 amp = -0.083965

(b) Initial partition (c) Located one anomaly

amp = -0.12673

amp = -0.4668

(d) Pruned some of the area (e) Results before feedback

Figure 5.2: A single anomaly: snapshots of execution

CHAPTER 5. TEST RESULTS

amp = 12417

amp = -0.4668 16

[}

(a) Before adding feedback frame (b) After adding the frame

y 0 o

(c) After the feedback

Figure 5.3: A single anomaly: snapshots of feedback

53

CHAPTER 5. TEST RESULTS

16
14
12
10
~ 8
6
4
2
0
15
0 15
10
5
5
Yy o0 x
(a) Input configuration
T T T T T
T T T T T T T T T ——— With the reexamining feedback ,
\
WL 1800 Without the reexamining feedback R / \ 4
Zad ’N /
7z * // N N ’
s L s 7 4
r 1600 K N
08 ¥4 q g /
/ /
, 2 1400 ’ g
/ k2]
/ 3
061 ! R s L
= 4 g 1200
a i =3
: —-— Upper anomaly £
S 1000
04|) Lower anomaly 1 S
i
] 800
0.2 B
r 600
- L L L L L L L L 1 40 L L L I I L L L 1
-30 -25 -20 -15 -10 -5 [5 10 15 20 -30 -25 -20 -15 -10 -5 0 10 15
Anomaly SNR Total SNR

(b) P; vs. anomaly SNR

Figure 5.4: Two anomalies with the

(c) Complexity vs. total SNR

same size and amplitude

20

CHAPTER 5. TEST RESULTS 99

for the SNRs under -15 dB. This difference is due to the fact that the anomalies
are not symmetrical relatively to the hypotheses, and therefore for extremely
low SNR the second anomaly is easier to detect then the first one.

In Fig. 5.4(c) we plot the hypothesis testing complexity in this configuration
against the total SNR level. It is remarkable to note that the complexity of
finding two anomalies is essentially the same as the complexity of finding
just one anomaly. The only thing that increases slightly is the complexity
of the reexamining feedback: for two anomalies, this feedback increases the
complexity of the algorithm by up to 60% (as opposed to 50% for the case of

one anomaly).

5.3 Two Anomalies of Different Sizes

This test was designed to demonstrate the capability to detect and local-
ize two anomalies with sizes of different magnitude. The configuration con-
sists of two anomalies with equal amplitude, but where the first anomaly size
is 5% and the second one size is 3°>. Thus, we have the relation SNR; =
SNR;y + 6.6. The locations of these two anomalies are ((2,2,2),(6,6,6)) and
((10,10,10),(12,12,12)). This configuration is shown in Fig. 5.5(a).

We tested total SNR levels from —30dB to 20dB. The Py level in all these
experiments was between 0 and 3-107*. The P; values for the two anomalies
are plotted in Fig. 5.5(b) against the anomaly SNRs. We can see that for
the same levels of anomaly SNR, the P, values are fairly close. This means
that the effect of masking the small anomaly by the large one if quite small in
this case. We can see that for the large anomaly we have P; &~ 1 for SNR as
low as —15dB and for the small anomaly we have P; =~ 1 for SNR as low as

—9dB. The hypothesis testing complexity for this experiment was similar to

CHAPTER 5. TEST RESULTS

____ Without the reexamining feedback

~-= With the reexamining feedback

16
14
12
10
~ 8
6
4
2
0
15
10
5
5
y 0 o .
(a) Input configuration
2000
1800
s
1600
08F g
ﬁ 1400
0
g
oo | g 1200
& =
5
== Upper anomaly 5
) 2 1000
041 ” ___Lower anomaly B
800
02F g
600
E*" . . . , 400
-30 -25 -20 -15 Bt 5 10 15 20 -30

-5
Anomaly SNR

(b) P; vs. anomaly SNR

Figure 5.5: Two anomalies

-5
Total SNR

(c) Complexity vs. total SNR

of different sizes

CHAPTER 5. TEST RESULTS 57

the complexity of the previous two experiments at the same total SNR levels.

5.4 Two Anomalies of Different Amplitudes

This test was designed to demonstrate the ability of the program to detect
and localize two anomalies of different amplitudes. The configuration for this
test consists of two anomalies of the same size, one with amplitude ten times
larger then the other one. This produces the relation SNR; = SNRy +
20dB. The positions and sizes of the anomalies where chosen as in the case
of the two anomalies with the same size and magnitude, i.e., The locations of
these two anomalies are ((3,3,3), (6,6,6)) and ((10,10,10),(13,13,13)). This
configuration is shown in Fig. 5.6(a).

We tested total SNR levels from —5dB to 20dB. The Py level in all these
experiments was between 0 and 3-107*. The P; values for the two anomalies
are plotted in Fig. 5.6(b) against the anomaly SNRs.

Since the difference in the SNR of the anomalies is so large, we used this
experiment to test the effectiveness of the subtracting feedback to overcome
the effect of the small anomaly being masked by the large one. To this end we
tested the program with and without the subtracting feedback,and compared
the results. Since even without the feedback, the smaller anomaly was almost
always detected for SNR levels as low as —12dB, we conclude that in this case
the masking effect takes place only for very small SNRs. It can be seen from
the figure that for most SNRs, the P; values with and without the subtracting
feedback are similar. However, there is a small range of low SNRs (around
—15dB) where the performance has increased significantly.

The hypothesis test complexity of these experiments is plotted in Fig. 5.6(c)
against the total SNR. As we can see, the subtracting feedback increases the

CHAPTER 5. TEST RESULTS 58

16
14
12
10
~ 8
6
4
2
0
15
0 15
10
5
5
Yy o0 x
(a) Input configuration
T T T T T T T T T T T T T T
1+ R e 1 4 ——— Execution with subtracting feedback L
.
3000 ___ Execution without subtracting feedback e o
L
0.8} 7 T T o ’
& 25001 P - 1
a ’
B] /
o /
0.6 i a
hel £ 20001
a 5]
* Large amplitude _:&
04 o Small amplitude: with subtracting feedback B g 1500}
z
+ Small amplitude: without subtracting feedback
0.2 4 1000
500 B
.
-30 -25 -20 -15 =1 10 15 20 -10 -5 10 15 20

0 -5 0 5
Anomaly SNR Total SNR

(b) P; vs. anomaly SNR (c) Complexity vs. total SNR

Figure 5.6: Two anomalies of different amplitudes

CHAPTER 5. TEST RESULTS 59

hypothesis testing complexity by up to 50%. Therefore, if we expect to have
a small number of anomalies, the subtracting feedback is costly relative to
the improvement in the probability of detection. We can also see that the
complexity of these tests (even without the subtracting feedback) is larger
than the case of a single anomaly by up to 30%. The reason is that the small
anomaly is too large to ignore, and yet too small to be able to quickly identify.
Thus, the algorithm has to keep relatively large number of regions through

out the run.

5.5 Experiments with More Anomalies

In addition to the extensive tests above, we also did some testing to explore
the behavior of the algorithm when more anomalies exist. Below we show
examples of configurations with three and four anomalies. These examples
also demonstrate the effectiveness of the feedback mechanisms.

In the first configuration we have four anomalies, two large and two small.
This configuration is depicted in Fig. 5.7(a), in which the two small anomalies
appear in the middle and the two large ones appear above and below them.
We tested this configurations in various SNR levels and always kept the SNR
of the large anomalies 20dB above that of the small ones. The probability of
detection for the large anomalies was always 1 in the examples that we tested.
The probability of detection for the small anomalies with and without the
subtracting feedback is described in Fig. 5.7(b). It can be seen that for this
anomaly configuration the subtracting feedback is very effective. In partic-
ular, for anomaly SNRs above —5dB, the subtracting feedback increases the
probability of detection from about 0.5 to 1. The number of hypothesis tests

in this case was maximum 1500 without the subtracting feedback and 2400

CHAPTER 5. TEST RESULTS 60

15

x Small back anomaly, with feedback
amp =:7 + Small front anomaly, with feedback
o Small back anomaly, without feedback

* Small front anomaly, without feedback

L R
amp=1 UM

05

. .
0 o =25 -20 -15 -10 -5 0
Anomaly SNR

(a) Input configuration (b) P; vs. anomaly SNR

Figure 5.7: Example with four anomalies

with the reexamining feedback.

In the second example we have a configuration of three anomalies as appear
in Fig. 5.8(a). The middle anomaly has SNR of about 15dB and the other two
have SNR of about 0dB. As can be seen from the example, all the anomalies
are detected before the reexamining feedback. However, as can be seen by
comparing Fig. 5.8(b) and Fig. 5.8(c), the localization of the two small regions
is greatly improved by the reexamination feedback. We remark that in this
case the complexity of the reexamining feedback was about 20% of that of the

main algorithm.

5.6 Complexity

We examined the hypothesis-testing complexity of the algorithm as a function
of the region size. Recall from Chapter 4 that we expect the hypothesis-testing
complexity to be logarithmic in the size of the region. To test this, we ran the

algorithm on regions of sizes ranging from 4° to 16°>. More precisely, we tried

CHAPTER 5. TEST RESULTS 61

16
14

12

o N & 0 ®

15

(a) Input configuration

- amp =5.981

amp = 10.2807

amp =50.0333 amp =50.0333

(b) Results before feedback (c) Results after the feedback

Figure 5.8: Example with 3 anomalies

CHAPTER 5. TEST RESULTS

800

700

B a1 D
o o o
o o o

Number of hypothesis tests

w
o
o

200

100
6

——-hypothesis tests with reexamining feedback

___ hypothesis tests without reexamining feedback

log, (volume size)

10

11

12

Figure 5.9: Hypothesis-testing complexity vs. region-size

the following sizes:

4x4x4, 4x4x8,
8§ x 8x 16, 8x 16 x 16,

4 x 8 X8,
16 x 16 x 16

8 X 8 X 8,

62

In each of these regions we embedded a single anomaly of size 2 x 2 X 2 in

the middle of the region, and for each region size we set the amplitude of this

anomaly so as to get SNR level of 5dB. For each data point we ran one hundred

tests, and took the average of the hypothesis-testing complexity of all these

tests. The results of this experiment are summarized in Fig. 5.9. Indeed, it

can be seen in this figure that the complexity grows as a logarithmic function

of the size of the region.

It can also be seen from the figure that the overhead due to the reexamining

feedback is almost constant, regardless of the region size. This is also expected,

since the complexity of this feedback depends only on the size of the found

CHAPTER 5. TEST RESULTS 63

region before the feedback. Since we used the same anomaly size in all these
tests, then the size of the found anomaly before the feedback was more or less
the same in all of them, and hence the complexity of the feedback remains

almost constant.

Chapter 6

Conclusions

In this thesis we developed, implemented and tested an algorithm for detec-
tion and localization of anomalies in a 3D volume, in the presence of additive
Gaussian noise. This algorithm extends the scale recursive approach of Miller
and Willsky [5] to the three-dimensional case. We implemented in the algo-
rithm a mechanism due to Miller [4] to incorporate prior knowledge about
the anomalies into the search via penalty functions. We also examined a few
feedback methods to improve the performance of the algorithm.

We tested our algorithm on synthetically generated data consisting of a few
anomaly configurations in various SNR levels. We tested the cases of a single
anomaly and multiple anomalies. In all our tests, the algorithm maintained
low probabilities of false-alarm (in the order of 10™*), while achieving detection
probabilities very close to 1, for SNR levels as low as —15dB. Also, our partial
analysis and experimental data show that the complexity of the algorithm is
logarithmic in the volume of the region, and our tests show that it remains
quite low even for volumes of up to 16° voxels. We therefore conclude that
this algorithm offers an inexpensive way to detect anomalies in a noisy data

with very high accuracy.

64

CHAPTER 6. CONCLUSIONS 65

We note, however, that using this algorithm in a particular application may
require some modifications. In particular, the penalty functions which we used
in our implementation reflect the expectations that the structure contains only
a small number of anomalies, and that the size of these anomalies is relatively
small. In applications where this is not the case, these penalty functions need
to be adjusted. We also note that in some cases there is a problem with
adjusting the penalty functions for more anomalies: In particular, in cases
where the size or location of the anomaly does not match exactly any possible
hypothesis of the algorithm (e.g., when the size of the hypothesis is not a power
of two, see discussion in Section 5.1), the algorithm may identify parts of the

anomaly as different anomalies, thus skewing the count of the anomalies.

6.1 Future Work

Some future work that can be done to better understand the effectiveness of

the approach presented in this thesis include

e The algorithm should be tested with data from “real life” applications,

for more realistic problems than with generated data.

e [t should be possible to further reduce the complexity of the algorithm
by using more sophisticated data structures to hold the results of the
hypotheses tests. For example, once we determined that for a specific
region on the current list, the likelihood of horizontal splitting is higher
than that of vertical splitting, we never need to check the likelihood of

vertical splitting of this region again.

e It may be interesting to examine the cases where there is more a-priori

information about the anomalies. For example, if the exact size/shape of

CHAPTER 6. CONCLUSIONS 66

the anomaly is known, then it may be possible to tailor the hypotheses

or the penalty functions to improve the performance of the algorithm.

e The feedback mechanisms should be explored further. It is possible, for
example, to refine the reexamining feedback so that it uses a more sophis-
ticated method to compute the size of the frame around each anomaly

(rather than always make the frame twice as large as the regions before

feedback).

e Check the bound M which is the maximum number of regions the algo-
rithm can keep at the same time. The relationship between this constant,
the actual number of regions in the volume and the probability of detec-

tion for all of these regions should be explored further.

e In our tests (an also, in our complexity analysis) it was not clear what
is the effectiveness of the pruning stages. Therefore, a subject to further
research is to eliminate the pruning stages and examine the performance

of the modified algorithm.

e The algorithm can be extended to work in more general framework, as

explained in Section 3.8. Such generalizations include

1. Non-zero normal activity. If the normal activity of the medium is
not zero, but some other value ¢. If the value ¢ is known, then
it can be subtracted from the data before further processing, and
then the simple model can be used. Otherwise, further work may

be required to estimate g.

2. Different noise models. If the noise is not white, not Gaussian or a

correlated noise, the detection and estimation procedures, including

CHAPTER 6. CONCLUSIONS 67

the MAP hypothesis testing and the maximum likelihood estima-
tion of the amplitude should be changed according to the new noise

model.

3. General linear model: In this model we view the measured data as:

y = Tg+ n, where T' is a some linear transformation.

4. Non-linear model: In this model we view the measured data as: y =
T(g)+n, where T is any general non-linear physical transformation

function.

Bibliography

1]

Stanley R. Deans. The Radon Transform and some of it’s applications.
John Wiley & Sons, 1983.

Austin Frakt. Multiscale hypothesis testing with application to anomaly
characterization from tomographic projections. Master’s thesis, MIT,

May 1996.

Jeffrey J. Daniels Leon Peters Jr. and Jonathan D. Young. Ground pen-
etrating radar as a subsurface environmental sensing tool. Proc. IEKE,

82(12):1802-1822, December 1994.

Eric L. Miller. Statically based methods for anomaly characterization in
images from observations of scattered radiation. Northeastern University,

Boston MA, CDSP Center Report TR-CDSP-96-3, January 1996.

Eric L. Miller and Alan S. Willsky. Multiscale, statistical anomaly detec-
tion analysis algorithms for linearized inverse scattering problems. Mul-

tidimensional Systems and Signal Processing, 8, 1996.

J. Neyman and E. Pearson. On the problem of the most tests of sta-
tistical hypotheses. Philosophical Trans. of the Royal Society of London,
A231(9):289-337, 1933.

68

BIBLIOGRAPHY 69

7]

[10]

[11]

[12]

Richard L.. Medina Richard A. Albanese and John W. Penn. Mathematics,

medicine and microwaves. Inverse Problems, 10:995-107, 1994.

Kevin Riley and Anthony J. Devaney. Wavelet processing of images for
target detection. International Journal of Imaging Systems and Technol-

oqy, 7:404-420, 1996.

David J. Rossi and Alan S. Willsky. Reconstruction from projections
based on detection and estimation of objects - parts i and ii. IEEE Trans.
on Acoustics, Speech and Signal Processing, ASSP-32, No. 4:886-906, Au-
gust 1984.

Charles E. Leiserson Thomas H. Cormen and Ronald L. Rivest. Intro-
duction to Algorithms. The MIT Press, 1990.

Carlos Torres-Verdin and Tarek M. Habashy. Rapid 2.5-d forward mod-
eling and inversion via a new nonlinear scattering approximation. Radio

Sei., 29(4):1051-1079, July-August 1994.

H.L. van Trees. Detection Estimation and Modulation Theory. New York:
John Wiley, 1968.

Appendix A

Penalties are Necessary

Below we analyze the behavior of our hypothesis testing in the absence of
penalty values, and demonstrate the tendency of the program to over-fit the
data. Specifically, for the set of hypotheses in our algorithm, we compare the
likelihood of the hypotheses which correspond to keeping the entire current
region, taking only one of the halves of this region, or taking both halves
of this region. (Note that these indeed cover all the hypotheses which our
algorithm considers.) We show that if it weren’t for the penalty values, our
algorithm would have always preferred to take the two halves of the current
region

Recall that we use the ML estimation for the amplitude in the current

region (for the additive Gaussian noise model), namely
R -1
a(y)= (B'R™'B) B'R'y

where R is the noise covariance matrix. Below we assume that the noise is

white with uniform variance, namely R = o%/. Therefore, we get

i(y) = (B"B) BTy (A1)

70

APPENDIX A. PENALTIES ARE NECESSARY 71

Also recall that we use the MAP decision rule for the hypothesis testing.
Namely we choose the hypothesis H,, where

1 . .
m = argmmjg(y — Bjaj)T(y —B;a;) + 7 (A.2)

where Bj, a;, respectively, are the indicator matrix and estimated amplitude
vector which describe hypothesis H; (recall that hypothesis H; is described
formally by y = B;a; + n).

As we can see, if we have no penalties (i.e., if 7; = 0 for all j), then
this decision rule always chooses the hypothesis H; which minimizes (y —

~ ~ def A A
B;a;)"(y—B;a;). Below we denote s; = |ly—B;a;|* = (y—B;a;)" (y—B;a;).

Expanding this expression yields
si=(y —B;&)" (y — Bja;) = y'y — y'B;a; — (B;a;)"y + (B;3;)" (B;4;)
Substituting the value of a from Eq. A.1, we get
si = yv'y — y'Bi(B/B;)"'Bly (A.3)
T T

- y"B; ((B/B)™') Bjy + y" ((B]B))") BJB,(B/B)) By
We now note that in our hypotheses, the different anomalous regions never
overlap. This implies that B;FBj is always a diagonal matrix and therefore for

all j we have BY(B?B;)'B, = I and (B'B,)™ = ((B'B;)™")". Plugging

these two equations into Eq. A.3 we obtain

s;=y'y—y B;(B/B;)"'Bly (A.4)

A.1 Comparing H, and H,

We proceed now to compare between the likelihoods of hypotheses Hy and H;
(which are depicted in Fig. A.1). The B matrices which correspond to these

APPENDIX A. PENALTIES ARE NECESSARY 72

HO H1 H2

Figure A.1: Localization hypotheses Hy, Hy and H,

hypotheses are

T
T 10 0
B0:<1 1 ...1 1) and By =
0O ... 01 ... 1
so we can write Bo = By - [1 1]7. Using Eq. A.4, we get
o~ s0 = y'By(BIB,)Bly - y"B,(B'B) "By (A5)

Denote now the number of voxels in the whole volume by N, and also denote
the number of voxels in the two “anomalous regions” according to hypothesis
Hi by Ny, Ny respectively. Then we have Ny + Ny = N. (We remark that in
our case we actually have Ny = N; = g, but the analysis below also works

when this is not the case.) Using these notation we can write

1 < 0
(BI/Bo)™' = — and (BTB))' = | ™
N 0 1
No
and since By = By - [1 1]7, then
1l 1
Bo(BI'B,)'B! = B, JIV fj BT
N N
Let us now define the matrix Z as
def % % 1 —% 1
1€l o T -1 _ - 1
7 e {

z2|=
2|~

APPENDIX A. PENALTIES ARE NECESSARY 73

It can be easily verified that 7 is a negative-semi definite matrix. Finally, we
obtain that
s1—s0=y B ZBTy <0

Therefore, without priors, the algorithm would always prefer to divide a vol-
ume then to keep it as a whole. We note that this property holds for any
partition of the volume, even if the two parts are not of equal size. Therefore,

to keep the data from over-fitting, we need to have penalties for area division.

A.2 Comparing H; and H,

Below we compare the likelihood of the hypotheses H; and H,. The B matrices
for these hypotheses are:

T
1 ... 1.0 ... 0 T
B, = andB2=<1 ...10...0)
0O ... 001 ... 1

so we can write By = By - [1 0]7. As before, we denote the number of voxels
in the whole volume by N, the number of voxels in the upper part by N; and
the number of voxels in the lower part by N (so that N = Ny + N3). Here we

have
1 + 0
(ByB2)™" = 5 and (ByBy)™ = | ™
Since By = By - [1 0]7, we get

0
B,(BI'B,)"'BI =B, | ™ BT

If we now define the matrix

APPENDIX A. PENALTIES ARE NECESSARY 74

then again 7 is negative semi-definite, and we have

51— s =y By(BIB,) 'Bly — y"By(BTB,)'Bly = y"B,ZBly <0
(A.6)
Therefore, if we have no priors then when dividing a region, the hypothesis
which keeps both parts will always be preferred to the hypothesis which keeps
only one part. As before, we note that this analysis does not assume that the

two regions in the partition are of the same size.

A.3 More Than one Region

Below we show that the above results hold even when the current configuration
contains more than one region. Intuitively, this is true since all the regions
are disjoint and thus they do not interfere with each other. Formally, suppose

that we have k regions in the current configuration, namely
B =(b; by ... by)
In the localization step we consider the following 12k + 1 hypotheses:
e Hy (the null hypothesis): This hypothesis keeps all the regions unchanged

e H;; (j=1,...,12, ¢« = 1,...,k): Apply the partition from hypothesis
H; in Section 3.2 to the 2’th region, keeping the other regions unchanged.

As before, in our analysis we only consider the hypotheses Hy, H; ; and Hj ;. To
simplify the notation in the discussion below, we sometime write Hy,; (with ¢ =
1,2,...,k) instead of Hy. The B matrices which represent these hypotheses

are

APPENDIX A. PENALTIES ARE NECESSARY 75

Bl,i — (bl e bi—l bi71 bi72 . bk)
BQJ' — (bl e bi—l bi72 .. bk)

where b; 1, b; 2 are the indicator vectors of the two sub-regions which are ob-
tained in the partition of region .

Below we show that if we had no priors, then for every « = 1,...,k, hy-
pothesis H;; would always be preferred over hypotheses Hy,; and Hj ;. Let us

now denote for any : = 1,...,k
def ~ .
sii = |y = Bjaall* (7 =0,1,2)

as before, if we had no priors then the localization would have picked the

hypothesis which minimizes s; ;. Also, similarly to Eq. A.4 we get
sii=y'y —y Bi(B};B;i)"'Bj;y

We now note that since all the regions in the current configuration are disjoint,

then all the matrices (BfiBjﬁ-)_l are diagonal, and therefore we have

yTBO’i(BOTv’iBOvi)_lBOT,iy = y"bi(b{by)'bly
+...
+y"bi(b{by)"'bly

and similarly

Y B1i(BY;B1,)7'Bly =y'bi(bib;)"'bly
+...
+y" by (b bin) T'bihy

+y"b; 2(b],bi2) b,y

+...
+y"bi(biby) by

APPENDIX A. PENALTIES ARE NECESSARY 76

and
Y B2i(B];B2;) By =y"bi(b{bi)'bly
+...
+y bia(bl,bis) " blLy

k3

o
+y"b(bib;) 'bly

Thus, for any ¢ we have

Si1 — S0 = yTCO,i(CaiCO,i)_lcaiy - yTCM(ClT’iCLZ»)_lC{iy
and

sip — si2 =Yy Cai(CT,Cai) ' Cly —y"Cri(Cl,Cy)7 Cl Ly

where the matrices Cg 1, Cy;, Cy,; are defined
Coi1=(bi), Ci;=(b;j1biz), and Cy; = (b;s)

We now note that these expressions are essentially the same as the expressions
in Eq. A.5 and A.6, and thus the same analysis from above yields that s;; —

si0 < 0 and also s;7 — s;2 < 0.

A.4 Conclusion

As we have seen, if we had no priors then the hypothesis of keeping both
halves would be preferred over keeping the whole region, only the left half of
the region or only the right half of the region. Obviously, this is true in every
dimension. We also note that the analysis does not depend on the form of
the noise (and not even on its existence)l We conclude that our algorithm
always has a tendency to divide a volume and keep both regions if there are

no penalties.

Appendix B

Complexity Analysis with

Pruning

In this appendix we analyze the hypothesis testing complexity of the main
search routine of our algorithm. This analysis is a joint work with Shai Halevi.
Recall that the main search routine of the algorithm works by maintaining a
current list of regions, and at each step either splitting one of the regions in
this list (in a localization step) or dropping it altogether (in a pruning step).
We again consider the execution tree for a particular execution, and show a
bound on the number of regions in it. To obtain this bound we establish a
recurrence formula that describes the worst-case behavior of the algorithm,
and then show how to bound the function which is defined by this recurrence.
We refer to [10, Chapter 4] for an exposition of recurrence formulas.

For any N, M, denote the maximum number of regions in an execution
tree for initial region-size N and maximum list-size M by T'(N, M). Now fix
some N, M and consider an execution which actually achieves this maximum

number of nodes. Consider the first step in the algorithm: In this step, the

N

5 - Below we refer to these regions

root is split into two regions, each of size

77

APPENDIX B. COMPLEXITY ANALYSIS WITH PRUNING 78

as the left and right halves, and we refer to their sub-trees in the execution
tree as the left and right sub-trees, respectively.

Without loss of generality, we assume that at the end of the algorithm there
is at least one leaf which is not pruned by the algorithm. (if this is not true, we
can stop one step before the last leaf was pruned, and this does not change the
number of nodes in our tree). Assume, then, that this leaf belongs to the left
sub-tree (the case where it belongs to the right sub-tree is symmetric). This
means that throughout the algorithm, the current list contains at least one
region from the left sub-tree, and therefore it contains at most M — 1 regions
from the right sub-tree. Therefore, the number of regions in the left sub-tree
is at most T(%,M — 1). Also, the left sub-tree contains at most T(%,M)
regions, since in the worst case we pruned away at some point all the leaves
from the right sub-tree, and where left with a bound of M regions for the left

sub-tree. If we add the root to this count, we obtain the following recurrence

N N

The border conditions for this recurrence are T'(1, M) = 1 (because we cannot
split a region of size 1), and T'(N, 1) = log, N (since if we only keep one region
on the list, then we can only have one path from root to leaf in the tree).

In fact, by slightly modifying the example from Chapter 4 it is not hard
to see that a worst-case execution satisfies the above recurrence with equality:
For particular values of N, M, the execution starts by splitting the root region
and keeping both halves. Next the right sub-tree is explored according to a
worst-case execution T(%, M —1), while the left half remains untouched. Then
the right sub-tree is pruned, and the left sub-tree is explored according to a

worst-case execution T(%, M). Indeed, for this execution we have T'(N, M) def

T(EM-1)+T(5, M) +1.

DR

APPENDIX B. COMPLEXITY ANALYSIS WITH PRUNING 79

To solve this recurrence, it is easier to work with n def log, N than with N

itself. We thus define the function t(n, M) e T(2*, M), and then this function

satisfies the recurrence
ttn,M)=t(n—1,M—=1)+t(n—1,M)+1

with border conditions ¢(0, M) =1 and t(n,1) = n for every M,n. Below we

prove that for any n, M this last function satisfies

(;4) <T(n,M) < (n LM)

We prove these bounds by induction over both M,n. It can be verified that

the bounds hold for the border conditions since

(v)=0 <to,.M)=1 <(*1}) =1
and ("):n <t(n,1)=n <(nT1):n—|—1

1

For the induction step, we use the identity (Z) = (”‘;1) + (Zj) Assume that

the above bounds hold for any pair n’, M’ with either n’ < n or M’ < M, and

we prove that they also hold for the pair n, M. For the lower bound, we have

H(n, M) = t(n—1, M)+t(n—1, M—1)+1 > (nﬁ}l)+(;\7}__11)+1 = (;4)“ g (f@)

and for the upper bound we have
ttn,M) = t(n—1,M)+t(n—1,M —-1)+1
n+M-—1 n+M—2
< 1
< ("))
< n+M-—1 N n+M-—1 _ n+ M
- M M—-1 M
We thus conclude that the worst case execution tree contains between (IO%N)

(log2 N+M)
M

and regions. Since for each region in the tree we can have at most

12M + 1 localization hypotheses and M pruning hypotheses, then we get

APPENDIX B. COMPLEXITY ANALYSIS WITH PRUNING 80

Theorem B.1 The number of hypothesis-tests in every execution of the algo-
rithm is at most (13M +1) - (log2]\]\£+M), where N s the size of the input region
and M is the maximum number of regions which are kept on the current list

at the same time during this execution.

