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Abstract

Magnetic resonance imaging (MRI) is a powerful non-invasive imaging tool that has found

extensive use in medical diagnostic procedures. Dynamic MRI refers to the acquisition of multiple

images in order to observe changes in tissue structure over time. Clinical applications include the

observation of the early flow of contrast agent to detect tumors and real time monitoring of surgical

interventions and thermal treatments.

The primary goal of our research is to reduce the acquisition time of dynamic MRI sequences

through the application of signal processing concepts. These concepts include adaptive filtering

techniques, system subspace identification, and subspace tracking. Presented in this thesis are

methods to find estimates of the true sequence images from a limited amount of acquired data

using optimization of multiparameter function techniques. The methods build on the linear MRI

system response model first proposed by Panych and Zientara.

Three new methods related to dynamic MRI are presented. First, because medically significant

changes are typically limited to a small region of interest (ROI), a static ROI estimation problem

is presented along with a numerical solution algorithm. This static problem has parallels to matrix

completion problems in the field of linear algebra. Second, a general adaptive image estimation

framework for dynamic MRI is described. Analysis shows that most previous low-order methods

are special cases of this general framework. Third, two methods are presented for identifying suit-

able MR data acquisition inputs to use with the adaptive estimation framework: one relies on a

conjugate gradient algorithm constrained to the Stiefel manifold; the second relies on linear pre-

diction. The combination of the adaptive estimation framework and dynamic input identification

methods provide a mechanism to efficiently track changes in an image slice, potentially enabling

significant acquisition time savings in a clinical setting.
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Chapter 1

Introduction

Medical imaging technology has seen dramatic advances over recent years. One method that has

become a very powerful tool for imaging soft tissue is magnetic resonance imaging (MRI). MRI

has found extensive use in a variety of medical diagnostic procedures because it provides high

contrast images of internal tissue structure through non-invasive means. According to [45], MRI

has become the imaging modality of choice for diagnostic studies of the head, spine, and joints.

The term dynamic MRI refers to acquisition of a sequence of images to monitor changes in

tissue structure over time [34]. Clinical applications where dynamic MRI is of interest include the

observation of the early flow of contrast agent to detect tumors [42, 44], real time monitoring of

surgical interventions or thermal treatments [22], and cardiac imaging [46]. Because of limits in the

data acquisition rate, there is a trade-off in each of these cases between temporal resolution, spatial

resolution, volume coverage and signal-to-noise ratio. For example, the ability to image cardiac

activity in real time comes at the expense of limited volume coverage and low spatial resolution [23].

Thus, there is a need for optimized data acquisition that allows faster image sequence acquisition

with less data.

Traditional MRI acquisition techniques use a series of magnetic field gradients and radio-

frequency (rf) pulses to encode the position of different particles within a tissue volume. These
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CHAPTER 1. INTRODUCTION 2

excitation sequences are used to scan a volume in a sequence of slices, typically by direct sam-

pling of the two-dimensional spatial Fourier domain, or k -space, of the slice. An inverse Fourier

transform is then used to reconstruct images of the tissue composition within each slice. A review

of these traditional imaging techniques is provided in Chapter 2. Good reviews from a signal

processing perspective are also available in [45] and [26].

The physical dynamics of MR imaging constrain the image acquisition time. Typically, one

line in k -space is sampled for each input excitation sequence. For single k -space line sampling

techniques, the required image acquisition time is proportional to the number of lines sampled in

k -space, or equivalently, the number of excitations used. One approach to reduce the acquisition

time of a single image is to lower the number of excitations employed and obtain a low order repre-

sentation of the underlying image. Thus the problem of reducing acquisition time is equivalent to

designing both new image reconstruction models and excitation sequences to reconstruct estimates

of the images.

Multi-line sampling techniques are also available, but these typically require enhanced hardware

to implement. For example, echo-planar imaging (EPI) samples a cyclic raster line through k -

space, but requires quickly switching a strong magnetic gradient field [5, p. 152]. A second example,

SENSE [38], uses a phased array of receiver coils to rapidly sample k -space. Both of these methods

represent a hardware solution. In contrast, the low-order methods discussed is this thesis are a

software approach to image acquisition. The two approaches are complimentary [35], thus the

discussion here is limited to single k -space line sampling methods.

In this work the main approach to reducing the image acquisition time is through the application

of signal processing concepts. We approach the dynamic MRI problem from two perspectives.

One comes from the observation that in typical dynamic MRI sequences, the medically significant

changes occur in a limited region of interest (ROI). Imaging tissue outside the ROI consumes

both time and resources, and yet provides only extraneous information. If the ROI could be

adequately reconstructed using a relatively small number of excitations, then the time to acquire
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the ROI would be correspondingly reduced. Thus, the problem of identifying appropriate excitation

sequences and reconstruction vectors to represent an arbitrarily shaped region of interest in a given

image is first examined. As in previous full image approaches, we assume a known prior image

and use it to design appropriate image acquisition sequences. This static problem is quite similar

to image representation [19] and matrix completion [8] problems. Second, all of the low-order

acquisition methods previously proposed rely on the premise that future images in a sequence

are not “significantly” different from previous images. That is, they draw on knowledge of a

past history of full-order images to design low-order system excitation and image reconstruction

strategies. We refer to this as the dynamic problem. The solutions to the dynamic problem

presented later in this thesis draw from concepts such as adaptive filtering techniques [14], system

subspace identification [40], and subspace tracking [41].

Both the static and dynamic problems concern finding methods that identify low-order esti-

mates of the true sequence images. These methods strive to achieve minimal error between the true

images and the image estimates based on criteria described in Section 3.3 below. In both cases,

the identification of appropriate estimates is achieved through the optimization of multiparame-

ter functions. This optimization is approached both analytically and numerically using function

gradient and gradient descent techniques.

The significant results of this work are the following. For the static problem, a numerical

method is presented in Chapter 4 to efficiently represent an arbitrarily shaped region of interest

in a static image. This method is a significant addition to the body of matrix completion problem

solutions. For unlike traditional matrix completion problems, this new method does not impose

any presumed structure on the matrix to guide the solution method. However, as Section 4.4.2

shows, the utility of this method for acquiring MRI images is somewhat limited. The presence of

noise in the image acquisition process severely corrupts the ability of this method to provide high

quality estimates of the ROI. Possible methods to repair this shortcoming of the algorithm are

discussed in Chapter 6.
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For the dynamic problem, three significant results are presented in this thesis. As discussed in

Chapter 5, the dynamic problem can be segmented into two related problems: Image Estimation

and Input Identification. Building on the linear system response model first developed by Panych

and Zientara [36], Section 5.1 presents a general adaptive framework for dynamic image estima-

tion. Analysis of this framework shows that most of the previously proposed low-order acquisition

methods are special cases of the general adaptive framework presented here. To complement this

framework, two system input identification methods are presented in Section 5.2. One of the con-

clusions of the adaptive framework analysis is that orthonormal input vector sets are extremely

beneficial. Thus the first method presented, CG-St, seeks to find an optimal set of inputs by con-

straining a minimization problem to the parameter space of orthonormal matrices. This approach

provides new input vectors that are less biased towards previous inputs than previous methods

allowed. However, even greater performance improvement is provided by a second input identifica-

tion method, lp(·), which uses a linear predictor to determine new input vectors. Both the CG-St

and lp(·) methods outperform previously proposed low-order acquisition methods in a variety of

synthetic scenarios and, more importantly, in dynamic sequence acquisition simulations using real

MRI data.

The work presented in this thesis was directed by my thesis committee: Eric L. Miller,

Dana H. Brooks, and Hanoch Lev-Ari, and was performed in collaboration with Lawrence P. Pa-

nych of the Radiology Department, Harvard Medical School (Brigham and Women’s Hospital,

Boston). W. Clem Karl, Boston University, has also provided invaluable assistance with this

project.

The structure of the document follows a path similar to the topics discussed above. First a

review of the physics fundamental to the acquisition of magnetic resonance images is presented in

Chapter 2. A brief overview of traditional Fourier based image acquisitions is also presented. Next,

a review of the current “state of the low-order acquisition art” is given in Chapter 3. This section

reviews in detail the linear system response model on which the new imaging methods presented
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in this thesis are based. Chapter 4 presents the static problem, including both simulation and

laboratory examples. Chapter 5 presents a general adaptive framework for the estimation of

dynamic image sequences along with two input identification techniques. Chapter 6 closes the

thesis with a discussion of avenues available for future research. A brief review of background

topics needed in this thesis is included in the Appendix. This includes a review of linear algebra

nomenclature and concepts in Appendix A.1 and a discussion on finding the derivatives of complex

valued matrix functions in Appendix A.2.

Enjoy!



Chapter 2

The Fundamental Physics of MRI

Magnetic resonance imaging (MRI) was introduced to the world in 1973. With two short pages

in the journal Nature [24], P. C. Lauterbur described how to discern the location and composition

of different material through the application of electro-magnetic fields. The basic principle is to

electro-magnetically encode the spatial location and composition of material to be imaged, scan

the encoding, and reconstruct images from the recorded data. The strength of MRI is that images

of soft tissue structure can be reconstructed through non-invasive means. A second advantage is

that the imaging method is also non-destructive, since MRI relies on the ability of particles in a

magnetic field to store and release energy rather than absorbing the energy as in X-ray imaging.

This chapter seeks to describe the fundamental physical models of MRI imaging.

The MR imaging process can be modeled at a variety of levels, from low-level atomic interaction

modeling to abstract system modeling. This chapter presents a wide spectrum of these models,

provides a theoretical foundation for the imaging process, and gives some context for the advanced

low-order imaging methods described in the remainder of the thesis. The topics presented include

the quantum mechanical behavior of material (spin) that is manipulated in the imaging process,

a classical dynamics description of an aggregate collection of atoms with spin, how spin is manip-

ulated with electro-magnetic energy, and how this manipulation of spin can produce an image of

6
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tissue structure through non-invasive means.

2.1 Dynamics from a modern physics perspective

Quantum mechanics models the workings of the atomic world. One of the findings of the past

century was that the mechanical model of angular momentum from classical physics, i.e., the

“spinning-top”, leads to contradictions with experimental results at the atomic particle level. For

example, the experimentally observed magnetic moment associated with the angular momentum

of an electron turns out to be twice as large as the classical model predicts. This inconsistency

was resolved by Pauli through the introduction of spin operators [37].

Spin is the description of the intrinsic angular momentum observed in atomic particles that is

distinct from orbital angular momentum. The observed angular momentum is a combination of

the spin, a quantum physics modeling of the dynamics, and the orbital angular momentum derived

from modeling the dynamics from a classical physics description. The term spin was chosen to

emphasize the distinction. Dirac showed that the description of quantum spin is in fact a specific

form of an abstract operator. These operators allow calculation of the spin quantum values, ~I,

algebraically. The range of ~I is limited to a series of discrete values. In the presence of an external

magnetic field these values are {− 1
2 , + 1

2 } for many of the nuclei typically used for MR imaging,

such as the hydrogen atom.

From the theory of quantum mechanics, one can describe the relation between the spin angular

momentum, ~~I, and the molecular magnetic moment, ~µ, via by the following relation

~µ = γ~~I

where ~ is Planck’s constant divided by 2π, ~I is a dimension-less angular momentum vector de-

scribing the intrinsic spin state, and γ is the gyrometric ratio which depends on the sign, size, and

distribution of charge within the material. When placed in a magnetic field ~B, these magnetic
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moments will polarize with energy

E = −~µ · ~B. (2.1)

If the magnetic field is oriented along the z -axis, e.g., ~B = B0âz, then E = −µzB0. For nuclei

with potential quantum states m = {− 1
2 ,+ 1

2 }, this implies that the potential energy states are

Em = {−γ~B0/2, +γ~B0/2}. (2.2)

If a quanta of irradiated energy of magnitude γ~B0 is absorbed by the nuclei, the polarization of

a particle will change to the higher energy state.

When a collection of spins are at thermal equilibrium, the spin state population density is

dictated by Boltzmann statistics. That is, the probability of finding a particle in a specific spin

state is proportional to exp{−Em/kT}. Here, k is the Boltzmann constant, Em is the energy of

particle at state m, and T is temperature. By averaging over all possible spin states, the aggregate

magnetization is given by

M0 = ργ~
∑

me−Em/kT
∑

e−Em/kT (2.3)

where ρ is the number of nuclei per unit volume and the summation is performed over all possible

energy states. At room temperature, Em � kT and the exponential terms may be approximated by

(1−Em/kT ). In general, for nuclei with spin I, this allows the magnetization to be approximated

as

M0 ' ργ2~2
[

I(I + 1)
3kT

]

B0.

Continuing the example of one-half spin nuclei, i.e., I = 1/2 and m =
{

+ 1
2 ,− 1

2

}

, the magnetization

vector is

M0 ' ρ
γ2~2

4kT
B0. (2.4)

The significance of this relation is that the magnetization depends primarily on the quantum

spin states I, the applied magnetic field B0, the temperature T of the system, and the distribution

ρ of the spins through the volume. The remaining parameters are intrinsic constants. [1]



CHAPTER 2. THE FUNDAMENTAL PHYSICS OF MRI 9

In summary, for the remainder of this thesis one need only be concerned with the following

conclusions from the quantum mechanical description of the imaging dynamics. First, spin is

an intrinsic property of matter, observable only at the atomic level. Second, each particle has a

magnetic moment that is directly proportional to both the intrinsic spin and the composition of

the particle, described by γ. Third, an aggregate collection of spins can be approximated by a bulk

magnetization term. The magic of MRI is that through manipulation of these magnetic moments,

one can non-invasively construct an image.

While quantum physics completely describes particle dynamics in a magnetic field, it is also

cumbersome to describe a large collection of particles. Thus we move now to a classical physics

perspective and examine the effect of magnetic fields on the bulk magnetization.

2.2 Dynamics from a classical physics perspective

This section reviews the behavior of the bulk magnetization in a magnetic field. The magnetization

arises from the intrinsic angular momentum, or spin, of the atomic particles within a volume of

tissue. By looking at the aggregate collection of the spins, the magnetization motion can be

analyzed from a classical perspective.

2.2.1 Precession

As shown in Section 2.1, the motion of an ensemble of independent spin one-half nuclei in a

magnetic field may be described in terms of the spin magnetization vector, M. By definition, the

magnetization is proportional to the angular momentum L

M = γL (2.5)
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where the gyrometric ratio γ depends on the sign, size, and distribution of charge within the

material. The torque acting on the magnetization in a magnetic field B is given as

Torque =
dL
dt

= M×B. (2.6)

Combining these two equations, one obtains

dM
dt

= γM×B. (2.7)

When the magnetization is oriented parallel to B, dM/dt = 0. This is considered the equilib-

rium state. When M is not parallel to B, the solution to Equation (2.7) when B is a magnetic

field of amplitude B0 corresponds to a precession of the magnetization about the field at the rate

ω0 = γB0, the Larmor frequency. For reference, the static magnetic field, B0, is assumed to be

oriented along the positive z axis, âz, for the remainder of the discussion. Precession is so common

in MRI that it is useful to consider Equation (2.7) in a reference frame rotating about the z-axis at

an angular frequency ω. This “reference frame moment” is denoted ~ω. The velocity v of a particle

in this rotating frame can be described by

v = va + ~ω × r (2.8)

where va is the actual velocity in a fixed frame and the cross term represents the rotating frame

translation to the fixed frame. If the magnetization is directed along r, the rate of magnetization

change can be described by

dM
dt

= γ
dL
dt

+ ~ω ×M. (2.9)

Reducing Equation (2.9) to fit the form of Equation (2.7), we find

dM
dt

= γM× (B0 − ~ω/γ) . (2.10)

Note that from the rotating frame perspective, as the frame precession approaches the Larmor

frequency, ω = γB0, the magnetization appears to be stationary.
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The phenomenon of resonance occurs with the application of a transverse magnetic field, B1.

This field must oscillate at a frequency ω0 in order to tip the nulcei into a higher energy state.

Such an oscillating field can be constructed from two circularly polarized fields rotating in opposite

directions.

2B1 cos(ω0t) = B1e−ω0t + B1e+ω0t

If B1 � B0, then only the component rotating in the same sense as the magnetization needs to be

considered. This allows the transverse magnetic field to be written as

B1(t) = B1 cos(ω0t)âx −B1 sin(ω0t)ây

Rewriting Equation (2.7) with both the longitudinal, B0, and transverse, B1, magnetic fields

one finds

dMx

dt
= γ[MyB0 + MzB1 sin(ω0t)]

dMy

dt
= γ[MzB1 cos(ω0t)−MxB0]

dMz

dt
= γ[−MxB1 sin(ω0t)−MyB1 cos(ω0t)]

with the solution

Mx = M0 sin(ω1t) sin(ω0t)

My = M0 sin(ω1t) cos(ω0t)

Mz = M0 cos(ω1t)

where ω0 = γB0 and ω1 = γB1. This stationary frame solution shows that the magnetization

tends to precess about both fields at the rates ω0 and ω1 respectively. The effect of the transverse

field is more easily seen by shifting one’s perspective to the frame rotating about the z-axis at ω0.

From this vantage point, the magnetization appears to precess only about B1. Thus, the effect of

this transverse magnetic field is to rotate the net magnetization vector M away from the z-axis.

This rotation occurs in the plane orthogonal to the applied field B1. The angle of rotation θ is

controlled by the magnitude of the applied field and the length of time it is applied.
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θ

M

φ
ŷ

t

x̂

ẑ

M

Figure 2.1: Magnetization vector and transverse plane projection

Typically, the physical coils that are used to apply the transverse field B1 are the same coils used

to acquire the imaging data. Thus, the magnitude of the received/recorded signal is proportional

to the component of the magnetization that lies in the transverse plan. Applying a “90◦ pulse”

rotates the magnetization vector completely into the transverse plane, and is typically the first

step in the imaging process.

2.2.2 Relaxation

The previous section described the behavior of the bulk magnetization in the presence of magnetic

fields. This section examines the dynamics once an applied transverse magnetic field has been

removed. It takes a finite amount of time for the magnetization to return to the equilibrium state,

parallel to the static magnetic field. The process of magnetization decay is called relaxation, and

occurs primarily through two mechanisms.

The restoration of thermal equilibrium occurs primarily through a loss of energy between the

spin system and the surrounding thermal reservoir - often termed the lattice. This process is known

as spin-lattice or longitudinal relaxation. The mathematical description of the process is given by

dMz

dt
= −(Mz −M0)/T1 (2.11)
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with the solution

Mz(t) = Mz(0)e−t/T1 + M0(1− e−t/T1).

The parameter T1 is often referred to as the spin-lattice relaxation time. The time it takes for the

bulk magnetization to realign with the static field B0 after excitation from a transverse pulse is

dictated by T1.

There is a secondary relaxation phenomena that occurs when the nuclear spins decay into ther-

mal equilibrium among themselves. This occurs though state translations between quantum states

with similar energy. This process is known as spin-spin, or transverse, relaxation and is character-

ized by the time constant T2. Interactions between particles with coupled-states affect the phase

coherence of the aggregate collection of nuclear spin states. The strength of the magnetization

vector depends on this coherence and a loss of coherence puts the magnetization out of focus. For

completely incoherent spins, the net magnetization is zero. The time constant T2 is a measure

of transverse magnetization loss due to the dephasing of the nuclear spins. The value of T2 for a

given material is typically much less than T1.

Analytically, the transverse relaxation process is given by

dMx,y

dt
= −Mx,y/T2 (2.12)

with the solution

Mx,y(t) = Mx,y(0)e−t/T2 .

Dephasing through transverse relaxation can also be viewed from a classical perspective. Each

magnetic moment in the population has a magnetic field that affects the neighboring moments as

∼ µ/r3. Thus, a proportional difference in the magnetic field must be considered for each magnetic

moment in the collection. This difference causes two moments to differ in precession by δω0 and

after a time t = (δω0)−1 the moments will be one radian out of phase. This loss of phase coherence

causes the magnetization to lose focus and, subsequently, observed amplitude.
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In the nuclear magnetic resonance literature, descriptions of the dynamics of an aggregate sys-

tem of particles refer to two dephasing relaxation constants. One, T2, refers to the non-recoverable

energy lost from the system through dephasing. The other, T ∗2 , is recoverable. The two types follow

from the interpretation of the quantum physics description of spin density. Energy is recoverable

if the spin distribution moves from one quantum state to another with equal energy. However, if

there is no phase coherence between the two states, dephasing will occur although no energy is

lost. Energy is only lost when the spin distribution moves to a lower energy state in the system

distribution of spins and the dephasing in this case is non-recoverable.

2.2.3 The Bloch equations

Combining Equations (2.7), (2.11), and (2.12) in a rotating frame yields a system of equations

known as the Bloch equations. Starting from Equation (2.7), and including terms describing

relaxation effects, one can write

dM
dt

= γM×B− (Mxâx + Myây)
T2

− (Mx −Mz)âz

T1
(2.13)

The magnetic field is comprised from both static and oscillating components. In the rotating frame

of reference, this can be written as

B = B1 + B0 − ~ω/γ

This can be simplified by orienting B0 along the z-axis, and rotating the frame at the rate ω,

such that the B1 direction appears stationary along the x-direction. Under these assumptions,

equation (2.13) can then written

dM
dt

= γ
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Expanding the above component-wise one finds the Bloch Equations:

dMx

dt
= γMy(B0 − ω/γ)− Mx

T2
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dMy

dt
= γ (−Mx(B0 − ω/γ) + MzB1)−

My

T2

dMz

dt
= −γMyB1 −

(Mz −M0)
T1

This model is useful for describing the dynamics of the MRI process to the first order. Note that

as the rotating frame frequency, ω, approaches the Larmor frequency, the B0 terms disappear.

With application of the B1 field, the equations describe a rotation of the magnetization through

the plane defined by the âz and ây directions.

2.2.4 An example of spin manipulation: simple (Hahn) spin echo

The previous sections provide a basic analytical foundation for the behavior of material in a

strong magnetic field. The additional application of radio-frequency pulses and magnetic field

gradients can be used to manipulate the bulk magnetization to great effect, ultimately allowing

the construction of images via non-invasive means. This section illustrates an example of such spin

manipulation: the simple spin echo.

A simple spin echo is commonly used to overcome magnetic field inhomogeneity. Field inho-

mogeneity in the static field causes the magnetization to lose phase coherence over time. For a

change ∆B0 in the static field, the phase coherence time is inversely proportional to γ∆B0. The

central idea of the spin echo technique is to apply a 180◦ rf pulse that conjugates the orientation

of the magnetization vector in the transverse plane at some time τ after the initial 90◦ rf pulse

that rotated the magnetization vector into the transverse plane. The effect of this second pulse

is to place the magnetization vector ahead of the focusing point so that as the dephasing evolves,

the magnetization vector refocuses again at time 2τ .

The entire pulse sequence can be succinctly described via the following diagram:

Iz
−π

2 âx−→ Iy
−∆ω0τâz−→ (Iy cos φ + Ix sin φ)

−(π)ây−→ (Iy cos φ− Ix sin φ) −∆ω0τâz−→
[

Iy cos2 φ + Ix cosφ sin φ− Ix cos φ sin φ + Iy sin2 φ
]

= Iy

where the arrows designate transitions in the spin state for the given operator, and φ is the
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precessional phase shift, ∆ωτ . A description of this pulse sequence is given in Table 2.1.

Iz At t = 0, the magnetization vector is aligned with the static
field B0 in the âz direction.

−π
2 âx−→ Iy After application of a 90◦ pulse in the minus âx direction the

magnetization vector is oriented in the ây direction.
−∆ω0τâz−→ (Iy cos φ + Ix sin φ) Due to inhomogeneities in the static field, the spins begins to

lose phase coherence. The magnetization picks up both âx

and ây components.
−(π)ây−→ (Iy cos φ− Ix sin φ) After a time τ , a 180◦ pulse in the minus ây direction is

applied. This has the effect of changing the polarity of the âx

components. It has no effect on the ây components.
−∆ω0τâz−→ Iy The magnetic field inhomogeneity continues to dephase the

spin, at a rate ∆ωt. However, the spins have been placed
ahead of the refocusing point, so that a time τ from the 180◦

pulse, the magnetization lands in back into coherence.

Table 2.1: Simple spin echo sequence

The simple spin echo described above is used in a number of imaging protocols for the express

purpose of compensating for magnetic field inhomogeneity. It was presented here to provide a

short example of how the bulk magnetization may be manipulated through the application of rf

pulses.

2.2.5 Classical dynamics summary

This section sought to show that while the quantum mechanical behavior of matter is never far

below the surface, the MR imaging process can be accurately described using dynamic models

from classical physics. MRI builds upon the inherent physical property that magnetic moments of

a material will precess when placed in a magnetic field. This section provided a description of this

precession from a classical physics perspective. Furthermore, the precession phenomena allows the

aggregate collection of magnetic moments to be manipulated in space, and allows for the possibility

of overcoming the effects of relaxation and decoherence that are present in the imaging system.

All of the imaging techniques that follow rely on magnetization manipulation to some degree.
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2.3 Acquisition of an image

The previous section gave a review of both the modern and classical physics perspectives on the

nature of atomic particles in a magnetic field. This section describes how the manipulation of such

particles can generate an image. First, a description of the electro-magnetic signal measured by

the imaging system is given. From this signal an image showing the location and composition of

the particles can be reconstructed.

2.3.1 Signal detection

We first describe the data collection process. For reference, we assume that the static field, B0,

is oriented along the positive z axis. At equilibrium, the net magnetic moment is parallel to this

magnetic field.

If a coil is placed with its symmetry axis transverse to the static field B0, the precessing

magnetization will induce an oscillating electromotive force (e.m.f.) at the Larmor frequency ω0.

Only that component of the magnetization that lies in the transverse plane will induce current

in the coil, so as the magnetization relaxes, the e.m.f. signal will decay. This is known as the

free induction decay (FID). Through the Fourier transform, this signal can be represented in the

frequency domain as very narrow band signal.

The decaying magnetization can easily be represented in complex number notation as

M+(t) = M0eω0te−t/T2 (2.14)

The e.m.f. signal detected in the coil is proportional to M+. The received signal can be demodu-

lated to a lower frequency band by mixing the received signal with a reference signal oscillating at

ωr. The result of this heterodyne process is

S(t) = S0e−t/T2e∆ωt

where ∆ω = ω0 − ωr.
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2.3.2 Gradient fields, spin density, and k-space

To discern FID signals from similar media at different locations, a magnetic field gradient is

introduced. For example, if the central field of the experiment is a combination of a static field

B0 = B0âz, and gradient field oriented along the z -axis G = Grâz, Equation (2.7) then becomes

dM
dt

= γM× (B0 + G) = γM× [(B0 + Gr)âz] .

Given that the magentic field varies linearly along r, the Larmor Frequency varies with r as well,

ω(r) = γB0 + γGr.

This simple linear relation between the Larmor frequency and the nuclear spin coordinates lies

at the heart of magnetic resonance imaging. Along r, similar media precess at slightly varied

frequencies due to the gradient field G. The value of ∆ω in the received e.m.f. signal is then used

to map the inductive magnetization to a location on the r axis.

In general, the magnetization can be described as the summation of the spin density over a

small volume, ρ(r)dv. From the equation describing free induction decay (2.14), and recognizing

that the signal received is proportional to the transverse magnetization, the signal received from

the spin density region is

dS(t) = (S0et/T2)ρ(r)dV e((γB0+γG·r)t)

Neglecting for the moment the relaxation decay and demodulating at a frequency ω0 to remove

the static field contribution from the expression we find

dS(t) = ρ(r)dV e(γG·rt).

After integrating, we find that the spin density ρ(r) and the received signal are related as

S(t) =
∫

V
ρ(r)eγG·rtdr (2.15)

By defining a reciprocal spatial term k as

k =
1
2π

γGt, (2.16)
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Equation (2.15) is recognized as the Fourier Transform

S(k) =
∫∫∫

ρ(r)e2πk·rdr (2.17)

ρ(r) =
∫∫∫

S(k)e−2πk·rdk (2.18)

Thus, the spin density of the material and the received free inductive decay signal are mutually

related. Sampling occurs along each dimension of k space. Performing an inverse Fourier transform

on this sampled k -space data gives a description of the spatial composition of the space scanned

by r. From this data, images can be constructed.

2.3.3 Selective excitation

The applied transverse rf pulse, B1, oscillating at ω, affects only a specific region in the sample

due to the resonance phenomenon. The applied field can isolate either a chemical composition or a

spatial slice through the material. Spatial resolution is restricted by a time-frequency relationship,

with the bandwidth BW of the signal inversely proportional to the pulse duration T, i.e.,

∆BW ∝ 1
∆T

Functionally, there are two classes of pulses, hard and soft. Hard pulses are intense broadband

excitations, typically of very short time and consequently broad in bandwidth. Soft pulses are

weak, narrow-band signals. Three general types of modulated pulses are

the Rectangular Pulse Produces a sinc excitation profile in the frequency domain.

the Gaussian Pulse Provides a smooth envelope between off and on states. Gaussian pulses are

typically used to remove the side lobes in a frequency excitation profile.

the Sinc Pulse Produces a rectangular profile in the frequency domain with some ringing.

Selective excitation can also be achieved through a combination of hard pulses. For a given hard

pulse of width ∆t driven at ω0, those particles with a resonant frequency ω0 will tip farther into the
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transverse plane than those particles that are off-frequency. By using m successive series of pulses,

separated in time by τ , the resonant particles will be forced to a tip angle θ while the non-resonant

particles remain relatively unchanged. This idea was presented by Morris and Freeman, [30], and

is named the DANTE sequence which “alludes the repetitive circular journeys by Dante and Virgil

in Dante Alighieri’s Purgatorio, akin to the trajectories undergone by off-resonant spins.” [5].

Total Flip Angle = θ = m(γB1)∆t

This ability to approximate soft pulse profiles through a series of applied hard pulses is fun-

damental to the linear system model described in Section 3.2. This system model provides the

foundation for the low-order imaging methods presented later in this thesis.

2.3.4 2-D Fourier imaging

Traditional Fourier imaging uses the manipulation of gradient fields and the application of rf pulses

to extract a signal from a given slice within a tissue volume. Typically, an rf pulse is used to select

the slice. For each acquisition, one gradient field is used to scan one line of k -space. This gradient

is typically referred to as the read gradient. A second gradient field is used to position the line

to read. It does this by synchronizing the phase along the axis orthogonal to the read gradient.

Thus, this second field is referred to as the phase gradient.

Setting the read gradient as Gx and the phase gradient as Gy, Equation (2.18) can be repre-

sented as

S(kx, ky) =
∫ a/2

−a/2

[∫ ∞

−∞

∫ ∞

−∞
ρ(x, y, z)e2π(kxx+kyy)dx dy

]

dz (2.19)

where a is the slice thickness. The integral over the dz region represents an averaging process

over the whole slice. The term in brackets is the two dimensional Fourier transform of the spin

area density. A timing diagram showing the relative placement of the gradients and rf pulses

in time are given in Figure 2.2. As shown in the timing diagram, the 90◦x soft pulse is used to

tip the magnetization vector into the transverse plane. A 180◦y pulse is then used to refocus the
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magnetization.

The parameters kx = 1
2π γGxtx and ky = 1

2π γGyty refer to different periods in the acquisition

sequence and relate to different gradients. First the location along ky is selected by setting the

phase gradient Gy 6= 0 and Gx = 0. In this case the spins evolve along the positive y-axis in

k -space. The location along ky can be set by either a fixed gradient applied over a variable length

of time or by using an adjustable gradient magnitude for a fixed length of time. To begin the signal

acquisition, first the phase gradients is switched off, Gy = 0, and the read gradient is switched on,

Gx 6= 0. In this case the spins evolve along the positive x-axis in k -space, and the data sampling

occurs at the y-axis intercept set by ty or Gy. Figure 2.3 shows this graphically.
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Figure 2.2: 2-D Fourier Acquisition Timing Diagram (from [5])
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Figure 2.3: Using magnetic field gradients to scan k-space
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2.4 Summary

This section provided a brief description of the fundamental physical models used to understand

the magnetic resonance imaging process. The ability to image tissue non-invasively using MRI

begins with the concept of spin, an intrinsic property of all matter. While the quantum nature of

spin is the fundamental mechanism of imaging, an aggregate collection of spins can be modeled

using classical dynamics and manipulated through the application of rf frequency electro-magnetic

pulses and magnetic field gradients. Using these forms of interaction, the tissue structure and

composition can be encoded. After the excitation pulses are removed, the system of spins induces

a signal in a coil transverse to the static magnetic field as it relaxes. This signal is sampled and

produces a k -space description of the encoding. From this sampled data images of the tissue can

be formed. This section closed with a description of the traditional 2-D Fourier imaging method.

The next section details methods to acquire images with a minimum amount of sampled data using

both Fourier and non-Fourier based imaging techniques.



Chapter 3

Image acquisition via low order

encoding

The basic pretext for low-order imaging is that in dynamic MRI sequences, only a small part of the

image changes from frame to frame. The goal then is to acquire a limited amount of data at each

image sampling instant, and reconstruct an estimate of the image guided by some prior knowledge

of the image sequence. Typically, this includes using some combination of the most recently

acquired data with data from a reference image to construct the image estimate. The advantage

of low-order encoding is that for many image acquisition protocols the image acquisition time is

proportional to the number of sampled k -space lines. Thus, if one can reduce the number of lines

required to reconstruct an image, one can reduce the image acquisition time.

This chapter presents a review of three methods that are the most successful application of

this simple idea to date. Fourier Keyhole, the subject of Section 3.1.1, was proposed first and is

the most straight forward of the three methods. Reduced encoding methods such as RIGR and

singular value decomposition (SVD) techniques, the topics of § 3.1.2 and § 3.2.1 respectively, soon

followed. The new methods presented in Chapters 4 and 5 build upon the linear system model that

23
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is central to the SVD method. Thus, the section closes with a detailed discussion of this model.

3.1 Fourier based methods

The following low-order acquisition methods are derived from traditional Fourier imaging tech-

niques.

3.1.1 Fourier Keyhole

The Fourier Keyhole (FK) method was proposed by Brummer and Van Vaals, et. al. [4, 43],

and results from the following simple concept. In MRI images, a significant percentage of the

signal energy is contained in the lower frequency components of k -space. Thus, one can expect a

reasonable estimate of the image if one acquires a limited number of low-frequency k -space lines

and fills out the k -space data matrix using data from a reference image.

Analytically, this can be described as follows. Using rf input signals, a slice located at z = z0 is

selected and through the manipulation of the magnetic field gradients the received signal at time t

S(kx, ky, t)|z=z0 =
∫ ∞

−∞
ρ(x, y, t)e2π(kxx+kyy)dx dy. (3.1)

is sampled for a range of kx and ky values to construct the k -space data matrix. For the reference

image, this sampling is performed over the ranges −N/2 < ky < N/2 and −M/2 < ky ≤ M/2.

Subsequent images are then acquired by sampling only a limited range of k -space along one direc-

tion, for example −r/2 < ky ≤ r/2 with r < M , and replacing that range in the sampled k -space

matrix of the reference data.

S(kx, ky, t)|z=z0 =















∫∞
−∞ ρ(x, y, t)e2π(kxx+kyy)dx dy, for|ky| ≤ r/2

S(kx, ky, 0), for|ky| > r/2

The sampled k -space data can be represented in discretized form as a data matrix Rt. From

a linear algebra perspective, acquiring the lowest frequency components of the system response is

equivalent to selecting columns from the k -space data matrix that are associated with the lowest
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frequency components of the Fourier basis, i.e., RtIn,p where In,r are r columns from the identify

matrix of size n. This allows a linear algebra version of the algorithm to be described as

̂Rt = RtIn,pIT
n,p +R0(In − In,pIT

n,p)

The matrix algebra description of the FK image estimation algorithm is given in Table 3.1.

Fourier Keyhole Dynamic Sequence Acquisition Method

R0 = k -space data matrix of reference image
for each new acquisition

Rt = k -space data matrix of image at time t
̂Rt = RtIn,pIT

n,p +R0(In − In,pIT
n,p)

end

Table 3.1: Fourier keyhole dynamic sequence acquisition method

The FK method has been shown to be quite effective in estimating contrast change sequences

[43]. The effectiveness of the Fourier keyhole method will be analyzed in more detail in Section 5.3.

3.1.2 Reduced-encoding imaging via generalized-series reconstruction

(RIGR)

The Reduced-encoding Imaging via Generalized-series Reconstruction (RIGR) method was pro-

posed in 1994 by Liang and Lauterbur [25] and is an extension of the Fourier keyhole method

described in the previous section. The central concept of the method is to identify a linear combi-

nation of the central region k -space basis functions that most accurately reflect the phase-encoded

data in the central region of k -space. The model parameters identified in this first step are then

used to estimate the unmeasured phase-encoded data to fill-out the rest of the k -space data matrix.

For r lines of sampled central region k-space data, the estimate may be written as

ρ̂dyn(u, v) = |ρref (u, v)| ◦
r/2−1
∑

n=−r/2

cne2πn∆ku (3.2)
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where u and v are the indices of the sampled spin density matrix, cn are the RIGR model pa-

rameters, and ◦ is an element-by-element product (also known as the Hadamard product or Schur

product, [18, Chp. 5]). This estimation step is performed on a row-by-row basis to construct the

estimate of the dynamic image. The model parameters are determined via

ddyn(m, v) =
r/2−1
∑

n=−r/2

cnd̂ref (m− n, v) − r/2 ≤ m ≤ r/2− 1 (3.3)

where

d̂ref (m− n, v) =
∫ ∞

−∞
|ρref (u, v)|e−2π(m−n)∆kudu. (3.4)

This set of equations identifies the model parameters cn via a best linear fit of the reference data

to the most recently sampled data.

Note that the estimated image data in (3.2) results from a Schur product of the reference image

with a linear combination of the central-region k-space basis functions. In effect, this imposes a

spatial envelope profile over the estimated data points and is the true strength of the method.

As shown in the examples of Chapter 5 and [13], the RIGR method is very effective in imaging

contrast change sequences. However, it is limited by a bias towards the spatial composition of the

reference image, and is quite unsuitable for sequences exhibiting motion change or image sequences

displaying high intensity pixels in regions that were very low intensity in the reference image. The

effectiveness of the RIGR method will be explored in more detail in Section 5.3.

Table 3.2 gives a description of RIGR from a matrix algebra perspective.

3.2 A linear system model for non-Fourier based methods

Traditional Fourier imaging uses successive rf pulses to select slices, and then uses gradient ma-

nipulation of the spins to sample the two dimensional k -space signal from the sample, as described

in Section 2.3.4. This section describes a different technique to acquire the same k -space data.

Specifically, one may use non-Fourier encoding techniques to sample a plane in k -space at a fixed

point kz0 . The material that follows was drawn primarily from [36].
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Reduced Encoding by Generalized Series Reconstruction (RIGR) Method
Let In,r be the r columns of the identity matrix that capture the lowest frequency
components of the k -space data matrix Rt of size m × n. Let X be the sampled
versions of those same low frequency components of the Fourier basis set.

R0 = k -space data matrix of reference image
r = number of k -space data lines to acquire
ctr = m/2 + 1, a count holder for the k -space data matrix corresponding to ω = 0
d0 = R0In,r

for each new acquisition
Rt = k -space data matrix of image at time t
d = RtIn,p

for each column v in ̂Rt

H = toeplitz(d0(ctr : ctr + r − 1, v), d0(ctr : −1 : ctr − r + 1, v))
c = H−1d(:, v)
̂Rt(:, v) = R0(:, v) ◦ (X c)

end
end

Table 3.2: RIGR dynamic sequence acquisition method

As shown in Section 2.3.3, soft or hard pulses can be used to excite the magnetization. In

practice, soft pulses can be approximated by piece-wise-linear hard pulses. In the limit that these

hard pulses become infinitely narrow, but separated by a time ∆tp, they can still be used to excite

the magnetization in the same manner as a continuous soft pulse. This sequence of hard pulses

can be described by

pH(t) =
∑

n

pnδ(t− n∆tp)

where the individual pulses can be complex valued. The phase component of the pulses relates

to the relative position of the magnetization at the onset of the rf pulse. Note as well that the

following relationship holds: A narrow pulse in time gives a broad band signal in the temporal

Fourier space; this in turn translates to a wide excitation profile in the spatial domain; which in

turns translates to a narrow band in the spatial Fourier, or k -space, domain.

In the theoretical limit, such pulses can be represented by the Dirac delta function. Such

pulses impart energy that flips the spins “instantly” at time t, after which the spins undergo free
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precession in the time interval ∆tp. The total signal from all spins at time τ due to the nth hard

pulse is

S(kx, ky, kn) =
∫∫∫

ρ(x, y, z)
(

pne−knz) e−(kxx+kyy) dx dy dz. (3.5)

The spatial encoding in k -space is related to the gradients by

kn = γGzn∆tp phase encoded in kz

ky = γGyT phase encoded in ky

kx = γGxτ signal read along kx

where T is the duration of the phase encoding gradient pulse. Note that this formula is valid for

any tip angle, as long as the axial length of the sample is shorter than the spatial period in z, or

equivalently,

sample length in z <
1

γGz∆tp
.

For small flip angles, sin θ ≈ θ and the Bloch equations can be accurately approximated to

the first order. One can then apply superposition to remove the dependence on n in the received

signal.

∑

n

S(kx, ky, kn) = S(kx, ky) =
∫∫∫

ρ(x, y, z)

[

∑

n

pne−knz

]

e−(kxx+kyy) dx dy dz. (3.6)

The quantity in brackets is the magnetization profile and is equal to the Fourier transform of

the excitation series {pn}. Note that in this equation, off-resonance and T2 relaxation effects are

ignored. The superposition mechanism is thus only valid if the evolution due to these effects occurs

in a time much less than the time between rf pulses.

Superposition can also be used to build a system response model. If using only low-flip angles,

the received signal from a given pulse can be constructed from a superposition of known hard pulse

responses. The excitation rf pulse can be computed as a linear combination of pulses. Thus it

should be possible to construct the response of a system to an input p(t)

p(t) =
∑

m

gmcm(t) m = 1...M
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if the responses to the input set {cm(t)} are known. Using the set of responses and the weighting

coefficients gm, one can construct the following matrices

C =

















c1(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c2(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cM (t)

















g =

















g1

...

gM

















.

The input pulses cm can be represented by digital samples rather than continuous functions by

the following transformation.

cm(t) =
∑

n

cm,nΠn(t− n∆tp)

where Π is the rf unit-box pulse.

Πn(t) =















constant, n∆tp < t < (n + 1)∆tp

0, otherwise

The accumulated rf pulse response can then be written as a sum of these unit box functions.

p(t) =
∑

m

∑

n

gmcm,nΠn(t)

or in discrete form

pm =
∑

m

gncm,n ⇐⇒ P = Cg

Generally, any received signal sampled in time can be represented as a discrete sequence {yk}. Let

Rn(t) or Rn,k be the response from the box-pulse excitation function Πn(t). Then the mapping

between the input and response of the system is described by R

p(t)
R(t)7−→ y(t) ⇐⇒ pk

Rk7−→ yk

This mapping can be described with a matrix notation as follows

yk =
∑

n pnRn,k =
∑

n

∑

m gmcm,nRn,k

or

Y = RCg = RP.
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Note that in this context, Πn acts as a delta function, and R is the system impulse response

matrix. Also, R is not shift invariant, otherwise a single Π could be used to describe it.

From this matrix representation, a tissue sample can be imaged through non-Fourier techniques.

The ability to rotate the collection of input vectors to a new basis set, unrelated to the Fourier

basis that dominates traditional imaging, opens up a wide range of imaging modalities. The

received signal recorded during an imaging experiment will contain data from the tissue sample

that is supported by the sub-space spanned by the input basis. This allows wavelet or SVD based

techniques to be used in multiple rf scan experiments [33, 36].

3.2.1 SVD encoding method

The SVD method proposed by Panych and Zientara, et. al. [47, 34], is conceptually very simple. To

acquire a dynamic sequence, one uses rf encoding and a low magnetization tip angle which allows

one to model the image acquisition process using the linear system model described above. The full

k -space data matrix of the first image is acquired. The SVD of this data matrix is calculated (A.2),

and the dominant singular vectors are used to acquire and reconstruct the subsequent images in

the sequence. If the matrix P is composed of columns from the right singular vectors of R [47],

then an estimate of the system response matrix can be constructed via

̂R = YPH = RPPH . (3.7)

The SVD image estimation algorithm is given in Table 3.3. Variants of the SVD method are

given in Section 5.1.

3.2.2 The relationship between spatial and k-space representations of

an image

As shown in Section 3.2.1, the MRI imaging process can be described by a linear system under

certain conditions [47]. Specifically, spatial encoding by manipulation of spatially selective radio-
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Singular Value Decomposition (SVD) Dynamic Sequence Acquisition
Method

R0, the k -space data matrix of reference image
R0 = UΣVH , singular value decomposition
P = V(:, 1 : r), the input vectors for the sequence
for each new acquisition

Rt = k -space data matrix of image at time t
̂Rt = RtPPH

end

Table 3.3: SVD dynamic sequence acquisition method

frequency (rf) profiles together with small-flip-angle excitations allow one to analytically describe

the imaging process as a linear system [36]. Thus, if an input rf-encoding excitation sequence is

described by P, then the output Y of the imaging experiment can be described by

Y = RP

where R is an N ×N system matrix representation of the soft tissue response.

The linear system response model description developed by Panych, et. al., [36] spoke primarily

towards sampling k -space directly. The focus of our research is the acquisition and tracking of data

in the spatial (or image) domain. Mapping data between the two domains is easily accomplished

by defining the N ×N unitary Fourier transform matrix [19, Chp. 5]

FN =
{

(N)−1/2e−2πkn/N
}

, 0 ≤ k, n ≤ N − 1. (3.8)

This allows one to transform the sampled k -space data matrix R to the image matrix A via

A = FH
MRFN . (3.9)

The k -space sampling and output vectors can be transformed to the spatial domain in a similar

way, via X = FH
N P and Y = FH

N Y . For the problems presented below, we choose to work entirely

in the spatial image domain. The linear model used throughout the remainder of the thesis is

Y = AX (3.10)
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where X and Y may describe a single rf-encode excitation, i.e., X and Y are column vectors, or a

collection of multiple excitation experiments, i.e., X and Y are matrices whose columns are input

or output vectors respectively.

Note that the matrix transform given in (3.9) is not the traditional two-dimensional Discrete

Fourier Transform (2D-DFT), which is defined as A = FMRFN . The only significant effect of

choosing FH
M rather than FM for the left matrix operator is to reverse the order of the basis

vectors, in a sense running the frequency basis index k in the positive (+) direction rather than

the negative (−) direction. Although the transformation is similar, (3.9) was chosen because it

provides a frequency domain to spatial domain transform that is consistent for both left and right

vector multiplication. For example, the singular value decomposition of R is defined as

R = UΣVH ,

where U ,V are unitary matrices and Σ is a diagonal matrix containing the singular values, σi,

ordered in decreasing order. Transforming R to the spatial domain via (3.9), one finds

A = FH
MRFN = FH

MUΣVHFN

= (FH
MU)Σ(FH

N V)H

A = UΣV H

which gives the SVD of the spatial domain data as expected.

3.3 Useful error measures

For low-order imaging methods, such as those listed previously in this section, the decrease in

dynamic MRI sequence acquisition time is a result of estimating the image rather than acquiring

the full image data set. To measure the quality of the image estimates, we use the following error

criteria.
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3.3.1 Measuring distance between images and estimates

If Â is a given estimate of the true image A, then one typically would measure the error between

the two using the Frobenius norm of the difference matrix [18],

E = ‖A− Â‖2F =
∑

i

∑

j

(aij − âij)2, (3.11)

where aij and âij are the matrix elements at the ith row and jth column of A and Â, respectively.

An extension of this error measure is to determine the relative error of the estimate via re(Â, A) =

‖A − Â‖2F /‖A‖2F . For the region of interest (ROI) acquisition problems discussed in Chapter 4,

we define a selection matrix S with elements sij = {0, 1}. The ROI is identified by the non-zero

region of the selection matrix. The relative error measure thus becomes

re(Â, A, S) =
‖S ◦ (A− Â)‖2F
‖S ◦A‖2F

, (3.12)

where ◦ describes an element-by-element matrix product.

3.3.2 Measuring distance between subspaces

In the dynamic problems discussed in Chapter 5, the main concern is the ability to identify the var-

ious subspaces of the underlying image. Thus, we calculate the principal angles between dominant

subspaces as a second criterion to evaluate the quality of image estimates in a dynamic sequence.

The principal angles, θk ∈ [0, π/2], between two subspaces C and D are recursively defined [2] for

k = 1, 2, · · · , r by

cos θk = max
u∈C

max
v∈D

uHv = uH
k vk, ‖u‖2 = 1, ‖v‖2 = 1,

subject to the constraints

uH
j uk = 0, vH

j vk = 0, j = 1, 2, · · · , k − 1.

The vectors uj and vj need not be uniquely defined, but the principal angles always are.

There are a variety of methods to calculate principal (or canonical) angles [2, 40]. The most

convenient method is to compute the singular value decomposition of the cross-correlation matrix
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of the subspaces. For example, consider two orthonormal tall-and-thin matrices VC and VD of

size N × r with r < N . Each describes a subspace in the larger Euclidean space of all N × N

matrices. The principal angles between the two subspaces can be found through the SVD of

M = V H
C VD = UMΣMV H

M . Specifically, the principal angles are θi = cos−1(σM )i. It should be

noted that this method is fast, but not very accurate for angles close to zero, or equivalently, for

singular values of M that are close to one.

3.4 Summary

This section described in some detail the fundamental principles behind low-order acquisition of dy-

namic MRI sequences. A review of the Fourier Keyhole (FK), Reduced Encoding via Generalized-

Series Reconstruction (RIGR), and SVD methods was provided. In addition, this section provided

a complete development of the linear system model that is fundamental to the SVD method.

This linear system model forms the foundation of each of the imaging methods described in the

remainder of this thesis.



Chapter 4

Efficient region of interest

acquisition

As mentioned previously, for most dynamic MRI sequences the medically significant changes that

occur between frames are often localized to a small region of interest (ROI). Thus, this section

examines the efficient reconstruction of a pre-specified and arbitrarily shaped ROI. The problem

examined below seeks to identify the most efficient set of data acquisition and image reconstruction

vectors for a given static image and ROI. It is presumed that solutions to this static problem will

be useful in guiding solutions to dynamic ROI acquisition problems.

4.1 Problem formulation

From the foundation of the linear system response model given in Section 3.2.1 above, the problem

approached in this section is to acquire and represent only certain elements of the true image

matrix A. In particular, we adopt the outer-product machinery, XLH , suggested by the SVD

method described in Section 3.2.1, but choose X and L to reconstruct a specified but arbitrarily

shaped region of interest within the image matrix. The elements of interest are described through

35
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an M × N selection matrix matrix S, with elements sij ∈ {0, 1}1. The ROI is designated as the

region of A corresponding to the non-zero elements of S.

The set of acquisition and reconstruction vectors are identified through explicit formulation

and minimization of the cost function

J = ‖S ◦ (A−AXLH)‖2F , (4.1)

where A and S are of size M × N , and X and L are of size N × r. The ◦ operator denotes

an element-by-element (Hadamard, or Schur) product. For an arbitrary matrix B, the Frobenius

norm is defined as ‖B‖2F =
∑

i,j |bij |2. We assume that A and any principal minor of A are full

rank.

This cost function immediately suggests two problems which could be posed. On the one hand

one can set an error tolerance level and seek a minimal r such that some X and L exist which

produce a cost not in excess of that value. We term this the minimal order problem and discuss

it in Section 4.2. Alternatively, we can fix r and seek an X and L which minimize J . Section 4.3

is devoted to the analysis and solution of this minimal error formulation.

4.2 Minimal order problem

It turns out that the general case of the minimal order problem is quite intractable for mathe-

matically precise reasons. To understand why, consider the simpler problem where we ask only

for some Q ≡ XLH such that the cost is zero. We ignore for the moment the requirement that

Q be factorable into the XLH form, with X and L of column width r, and seek only the indi-

vidual elements of Q itself. This formulation belongs to a class of matrix completion problems

[8, 21, 29, 20].

The best known matrix completion problems in signal processing involve maximum entropy

1Although selection matrices with binary elements are used here, the results can be extended to weighted selection
matrices by using selection elements in the range 0 ≤ sij ≤ 1.
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extensions of autocorrelation sequences in which case the matrices possess a Toeplitz structure.

Other common problems approach the completion of partially specified Hadamard or symmetric

matrices. Solutions to these problems typically make deep use of the intended structural properties

of the completed matrix, Â. The more general problem of choosing an unstructured Q (with or

without the factorization constraint) and requiring the cost to be less than some non-zero threshold

is much more complex. Other than its known usefulness in extending autocorrelation matrices for

spectral estimation [32], no strong results for non-zero costs have been obtained to date.

Despite the difficulty in determining a solution to the general minimal order problem, we have

found that there are cases with significant structure that allow us to say a bit more. We present

two below which provide some useful insight and results which we use in our approach to the

alternate, more tractable, minimal error formulation described in Section 4.3.

4.2.1 Rectangular ROI, arbitrary error threshold

The first case of interest is when the ROI is rectangular in shape. In this case the optimal solution

to the fixed error problem can be found from the SVD of the sub-matrix chosen by S. To begin,

let us assume that S takes the form

S =









1 0

0 0









(4.2)

with 1 the matrix of all ones. If the rectangular ROI is not located in the upper left corner, row

and column permutations can be performed to arrive at the structure in (4.2). It is easily shown

that J is permutation invariant and no change in the cost results from these operations. Let A11

be the upper left block of S ◦ A and define r11 to be the number of rows in A11. With these

definitions we have

Theorem 1 For rectangular ROIs, the solution to the minimal order, fixed error problem is given

by the smallest r such that
r11
∑

i=r+1

σ2
i ≤ ε
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where ε is the error level, and σi is the ith singular value of A11 with σ1 > σ2 > . . . > σr11 .

Furthermore, the optimal X and L matrices for this solution can be obtained from the singular

vectors of A11.

Proof: Selection matrices with a rectangular ROI can always be permuted to the form of (4.2).

Such matrices can be described by an outer product of two vectors, S = s1sT
2 . If the non-zero

sub-block 1 is of size m×n, then s1 and s2 are vectors with m and n leading ones and (M−m) and

(N − n) trailing zeros, respectively. As shown by Horn and Johnson in [18, p.304], a Hadamard

product involving such a matrix can be rewritten as a conventional matrix product containing two

diagonal matrices. Thus for matrices with a rectangular ROI, the cost function can be written as

J = ‖(s1s
T
2 ) ◦ (A−AXLH)‖2F (4.3)

= ‖D1(A−AXLH)D2‖2F (4.4)

where D1 and D2 are diagonal matrices with s1 and s2 along their respective diagonals. This can

further be simplified to

J =
∥

∥D1AD2 − ZWH
∥

∥

2
F (4.5)

where Z = D1AX and W = D2L. The optimal solution for W and Z can be found through the

SVD of D1AD2 = (S ◦A). The structure of the optimal solution is

Z = D1AX =









Z1

0









(4.6)

WH = LHD2 =
[

LH
1 0

]

(4.7)

D1AD2 =









A11 0

0 0









. (4.8)

Let the singular value decomposition of the rectangular sub-matrix A11 be A11 = U1Σ1V H
1 . The

error at a given approximation r is therefore the sum of the discarded singular values, or equiva-
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lently

J =
r11
∑

i=r+1

σ2
i

For the approximation to be less than a given error threshold ε, one need only choose r such that

∑r11
i=r+1 σ2

i < ε.

Returning now to choose an optimal X and LH , one may use the SVD decomposition to find

X = (D1A)†









U1Σ1

0









=









V1

0









and LH = [ V H
1 0 ]. (4.9)

This theorem has a number of interesting consequences. First, if the ROI is rectangular, then

the SVD of the ROI (rather than the whole image) will in fact provide an optimal solution to our

problem. More importantly, if the ROI is not rectangular, then the SVD of the smallest rectangle

covering the ROI represents a sub-optimal solution and provides an upper bound on the error

of the optimal solution to the underlying, arbitrary ROI problem. We use this observation in

Section 4.3.3 to guide the determination of an appropriate order for the minimum error problem.

4.2.2 Arbitrarily specified ROI, zero error

This second case concerns arbitrary ROIs and a fixed error of zero. Here we present a sub-optimal

parameterization of (X,L) which provides the following sufficient condition for an order r solution

to satisfy the zero error requirement:

Theorem 2 For a given selection matrix S, an order r solution of the form

X =









Ir

0









, L =









Ir

QH
12









or Qr = XLH =









Ir Q12

0 0









(4.10)

will give zero error if
∑

i sij ≤ r for each column j of S such that j > r. Here Ir is the r × r

identity matrix, and Q12 is an r× (N − r) sub-matrix of free parameters. The minimum r for this

form is found by permuting S such that its columns contain a non-increasing number of non-zero

elements.
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Proof: This theorem is shown true by considering that for J = 0, the following equation must

hold,

S ◦A = S ◦ (AXLH) = S ◦ (AQr). (4.11)

From this, one can recognize that all columns in the Qr formulation may be treated independently.

The first r columns of the Qr parameterization contain the identity matrix in the upper sub-block,

and zeros elsewhere. Thus, the first r columns of the approximation (AQr) will be identical to the

first r columns of A, satisfying (4.11) for those columns.

For the remaining columns, indexed from (r + 1) to N , each of the column equations can be

rewritten as a system of equations with row size dependent on the number of non-zero elements in

the jth column of S. If one constructs the vector αj to contain the index values of the non-zero

elements in the jth column of S, then this column system may be written as

A(αj , j) = A(αj , 1 : r) qj . (4.12)

Here qj is a length r vector containing the free parameters of the jth column of Qr. The vector

A(αj , j) is composed of elements from the jth column of A as specified αj . The matrix A(αj , 1 : r)

is composed by taking certain rows as specified by αj from the first r columns of the original A

matrix.

The number of rows in each column system depends on the number of ones in the jth column

of S. If
∑

i sij is greater than r, then the system is over-determined and the system can only be

solved in an approximate sense. However, if
∑

i sij is less than or equal to r, then the system is

under- or exactly-determined, and with our previous assumptions on A, an exact solution exists.

Thus, if r is chosen such that
∑

i sij ≤ r for each of the columns {j; j > r}, then none of the

column systems will be over-determined.

Under this condition, collecting each of these column systems together, the order r solution of

the form given in (4.10) has a sufficient number of free parameters to ensure that J = 0. If we

permute S such that the columns contain a non-increasing number of non-zero elements, we will
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find the minimum value of r in the above expressions.

We note here that other zero-error solutions may exist for a given problem, possibly with order

less than the order of the Qr solution. Thus, Theorem 2 provides an upper bound on the minimum

order needed for a zero error solution. This result is used in the algorithm initialization discussion,

presented in Section 4.3.2, and verified in Section 4.4.

To summarize, we have presented two results for the minimal order problem. On the one hand,

we have a full solution to the problem for a rectangular region and arbitrary error. This result also

provides an upper bound on the smallest r required for a given error threshold and arbitrary ROI.

Second, we have a sufficient condition for a size r solution to the general ROI, zero error problem.

This latter result provides an upper bound on the minimum order required to meet a zero error

condition. Given that non-zero error solutions require fewer vectors than zero error solutions, this

latter result also provides an upper bound on the order needed to meet any error threshold.

4.3 Minimal error, fixed order problem

Given the restrictive nature of the results in the previous section, we now present an alternate

formulation to the problem of choosing X and L. Specifically, rather than fixing the error level

and minimizing r, we fix r and find some X and L that provide minimum error. Formally, with

the cost function given in (4.1) we seek a solution to

(Xopt, Lopt) = argmin
X,L

J (X, L) = argmin
X,L

∥

∥S ◦ (A−AXLH)
∥

∥

2
F (4.13)

for a given number of columns r in X and L.

We note that for any given r, the (X, L) pair that minimize J are not unique. Any solution can

be modified by an invertible matrix Z of appropriate size via XLH =
(

XZ
)

(

Z−1LH
)

= X1LH
1 .

In principle, one could think of either seeking an alternate parameterization of the problem which

yields a unique solution or of using the extra degrees of freedom in R to achieve other design

objectives for X and L. All we desire here are some X and L which minimize J .
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Because (4.13) is quartic in the elements of X and L, a minimum of J cannot in general be

determined in closed form. Thus we pursue a numerical solution to the optimization problem. To

start, we observe that all minima of J must satisfy both of the following equations: ∂J /∂X = 0,

and ∂J /∂L = 0. Computing these partial derivatives gives

∂J
∂X

= −2AH [

S ◦ S ◦ (A−AXLH)
]

L (4.14)

∂J
∂L

= −2
[

S ◦ S ◦ (A−AXLH)
]H

AX. (4.15)

To determine an X and L satisfying (4.14) and (4.15) we employ a variant of the Cyclic Coordinate

Descent (CCD) algorithm described by Luenberger in [28].

4.3.1 CCD algorithm

The CCD algorithm alternately solves each of the two gradient equations, (4.14) and (4.15), once in

each iteration. For each iteration step, first X is held fixed, and L is found such that ∂J /∂L = 0.

To complete the iteration, L is held fixed, and a corresponding X is found such that ∂J /∂X = 0.

Setting each of the gradient equations above, (4.14) and (4.15), equal to zero gives

AH (S ◦ S ◦A)L = AH [

S ◦ S ◦
(

AXLH)]

L (4.16)

[S ◦ S ◦A]H (AX) =
[

S ◦ S ◦
(

AXLH)]H
(AX). (4.17)

These equations can be manipulated to yield a system of equations with the form Ba = c

through the vec{} operator, which stacks the columns of a matrix into a column vector, and the

Kronecker product, ⊗ [18]. The vectorized versions of (4.16) and (4.17) are given in (4.18) and

(4.19).

vec{AH (S ◦ S ◦A)L} =
[

(LH ⊗AH)diag{vec{S ◦ S}}(L⊗A)
]

vec{X} (4.18)

vec{[S ◦ S ◦A]H (AX)} =
[

((AX)H ⊗ IN )diag{vec{SH ◦ SH}}((AX)⊗ IN )
]

vec{L}(4.19)
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Both of these vectorized systems contain a singular matrix of the form MHdiag{vec{S ◦S}}M .

The elements of S appear as a diagonal matrix embedded in the middle of the matrix product. For

region of interest problems, some elements of S will be zero, thereby causing the overall matrix

to be rank deficient even if A is square and full rank. We use the Moore-Penrose pseudo-inverse

(A.8) [17] to solve these systems at each iteration.

Although straightforward, a direct implementation of the coordinate descent algorithm is quite

computationally intensive. Equations (4.18) and (4.19) both contain a matrix of size (rN)× (rN)

that must be solved via a pseudo-inverse at each iteration. However, as described in Appendix A.3,

there exists a significant level of structure in these matrices that can be exploited to reduce the

computational requirements for finding the system solution.

4.3.2 CCD algorithm initialization

The CCD method described in Section 4.3.1 converges to a local minimum of the cost function.

Because many local minima may exist on the cost surface, convergence to a “good” minimum

is dependent on the initialization point of the algorithm. After experimenting with a number of

initialization heuristics, we found an approach that performed particularly well based on the X

and L parameterization given in (4.10) of Section 4.2.2.

Specifically, substituting (4.10) into (4.13) leaves a linear least squares problem for determining

Q12. To determine Q12, we solve a set of normal equations whose structure is similar to that of

(4.17) and (4.19). We then form the matrix

Qr =









Ir Q12

0 0









and compute its SVD, Qr = UΣV H . The CCD algorithm is initialized with X = UΣ and L = V .
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4.3.3 Choice of approximation order

Solution of the minimum error problem requires a prior specification of the approximation order

r, i.e., the number of vectors in X and L. Here we concentrate on selecting the order based on

upper bounds of the resulting error. Given the discussion in Section 4.2, it is not surprising that

we have two types of bounds: one error bound based on an SVD argument for the case where we

allow the cost to take on some finite, non-zero value; and one order bound based on the restricted

forms of X and L in (4.10).

For those cases where a non-zero error is acceptable, one may use an SVD of the smallest

rectangle covering the ROI to find an upper bound on the ROI reconstruction error at a given

order. As shown in Theorem 1, the SVD is optimal for reconstruction of a rectangular ROI. If the

SVD solution at a given order can provide an acceptable approximation error, we can guarantee

that the error resulting from the localized ROI (Xopt, Lopt) solution to (4.13) will be no larger.

To verify this claim, one need only consider the following. Let (X ′, L′) be (the optimal) vectors

obtained from the SVD of the smallest rectangle covering the ROI. Let (Xopt, Lopt) be the solution

to (4.13) for reconstructing the ROI. In the case that (Xopt, Lopt) = (X ′, L′), the reconstruction

error for each set will be equal as well. We have shown that in general, the (X ′, L′) solution

does not minimize J for an arbitrarily shaped ROI while (Xopt, Lopt) does minimize J . Thus,

one can generally expect the (Xopt, Lopt) solution to give an ROI reconstruction with lower error

than (X ′, L′), and certainly the error will be no larger. Of course the CCD algorithm presented

in this section to find (Xopt, Lopt) can only converge to a local minimum, depending on the given

initialization point. However, as illustrated in the examples below, our experience has been that

the CCD solution provides significantly less reconstruction error than the SVD solution, (X ′, L′).

For arbitrarily shaped regions of interest, Theorem 2 of Section 4.2.2 provides an upper bound

on the minimum order for zero error, which we denote as r0. According to this theorem, after

permuting S and then comparing each successive column index to the number of non-zero elements
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in that column, the upper bound, ru, is the smallest r that satisfies the inequality
∑

i sij ≤ r for

all j > r.

4.4 Examples

This section presents results from the application of the CCD method to a few simulated examples

and experimental lab results. For the images in this section, the region of interest is shown with a

standard intensity map, while the region outside the ROI is shown with an inverse intensity map.

That is, outside the ROI, pixels of high intensity are shown darker than pixels of low intensity.

4.4.1 Simulation results

This simulation example illustrates a comparison between the Cyclic Coordinate Descent (CCD)

method and two other low order approximation techniques currently used in MR imaging: Singular

Value Decomposition (SVD) and Low-order Fourier (LoF). For the LoF reconstructions, only the r

lowest spatial frequency components of the smallest sub-matrix of A containing the ROI were used

in the reconstruction. For the SVD reconstruction, only the right singular vectors of the smallest

sub-matrix of A containing the ROI corresponding to the r largest singular values were used. The

CCD reconstruction vectors were found as described in Section 4.3.1.

Figure 4.1 shows an MRI scan of a human head along the sagittal plane. The ROI selection

matrix is contained within a 94 × 54 pixel rectangle. Thus to achieve zero error using either the

SVD or LoF techniques, 54 input vectors would be needed. Given the sparseness of the ROI, we

expect the order of the zero error CCD solution, r0, to be much lower than this. The permuted

selection matrix used to determine the upper bound ru is shown in the right panel of Figure 4.2.

The non-zero element count for each column and a marker for the upper bound ru is shown in the

right panel. The upper bound on r0 is determined as per Section 4.3.3 and is found to be ru = 43.

We note that if the upper bound is tight, using 43 input vectors to re-scan the ROI will still give
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Arc S in 94 x 54 rectangle
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Figure 4.1: Original MR Image and ROI for static simulation example. The region outside the
ROI is indicated with an inverse intensity map.
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Figure 4.2: Permuted selection matrix for Figure 4.1 and geometric determination of ru.
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Figure 4.3: Relative error comparison of SVD, Low-order Fourier, and Cyclic Coordinate Descent
solutions for Figure 4.1 ROI. Right panel shows logarithmic scale for better detail near zero error
per pixel.

a decrease in the acquisition time of about 20% compared to the SVD and LoF techniques, with

zero error in the ROI.

Figure 4.3 compares the relative error (A.7) for the three different methods of low order ap-

proximation over a range of solution orders. The right panel shows the upper range of orders with

the average error per pixel value plotted on a log scale to show greater detail near zero error.

The figure shows that at a given order, the CCD solution provides lower reconstruction error than

either the LoF or the SVD method. Furthermore, Figure 4.3 shows that for a given error tolerance,

a CCD reconstruction of the ROI is available at a much lower order than either the SVD or Fourier

approximation methods provide. For instance, if the number of input vectors is fixed at 10, the

CCD solution has an average pixel error that is one half that given by the SVD. Conversely, for

a given error per pixel of 10, the ROI can be acquired in less than half the time using the CCD

method. We found similar results for the many image examples we examined with a general ROI

specified.
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Figure 4.4: Comparison of order r = 10 ROI reconstructions for (a) Cyclic Coordinate Descent
[ÂCCD], (b) SVD [ÂSV D], and (c) Low-order Fourier [ÂLoF ] methods

Comparison of the three ROI reconstruction methods, (SVD, LoF, and CCD), are given below

for two specific orders, r = 10 and r = 25.

Figure 4.4 shows the order 10 ROI reconstructions. The absolute difference in pixel values for

the same methods and order are shown in Figure 4.5. It is clear from both figures that the solution

found by the CCD method has significantly less pixel error than either the LoF or SVD methods.

The CCD solution also shows a more even distribution of the error across the ROI, and greater

structural information in the ROI than either of the global orthogonal approximation methods.

The order 25 reconstructions are shown in Figure 4.6, with the absolute error illustrated in

Figure 4.7. While all three approximations now show structural detail in the ROI, there is still

an order of magnitude difference in the error per pixel measure. This is confirmed visually in the

absolute difference illustrations shown in Figure 4.7. Here, negligible error is shown for the CCD

solution, while significant error still occurs in the other two.

As seen in this example, the CCD solution is able to provide image acquisition and recon-

struction vectors that are tailored to represent local information in the ROI. This method needs
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Figure 4.5: Pixel value difference comparisons of order r = 10 ROI reconstructions for (a) Cyclic
Coordinate Descent |A − ÂCCD|, (b) SVD |A − ÂSV D|, and (c) Low-order Fourier |A − ÂLoF |
methods
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Figure 4.6: Comparison of order r = 25 ROI reconstructions for (a) Cyclic Coordinate Descent
[ÂCCD], (b) SVD [ÂSV D], and (c) Low-order Fourier [ÂLoF ] methods
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| S ° (A − Â
LoF

) |

10 20 30 40 50

10

20

30

40

50

60

70

80

90
0

10

20

30

40

50

60

70

80

Figure 4.7: Pixel value difference comparisons of order r = 25 ROI reconstructions for (a) Cyclic
Coordinate Descent |A − ÂCCD|, (b) SVD |A − ÂSV D|, and (c) Low-order Fourier |A − ÂLoF |
methods

significantly fewer vectors to reconstruct the ROI image with quality comparable to the SVD

method. These results suggest a significant decrease in acquisition time savings is possible for

MRI acquisitions using this method.

4.4.2 Laboratory results

While the simulation results illustrated in Section 4.4.1 above show promise, the MRI lab ex-

periments attempting to use the CCD method have been less than satisfactory. Noise in the

laboratory environment is non-negligible, and experimental results indicate that the CCD method

is very sensitive to noise.

This section shows reconstructions of a phantom slice for two ROIs: one completely covering

the phantom, and one completely in the interior of the phantom. The experiments were performed

by placing a phantom in a GE Signa MRI scanner which is rated with 1.5 Tesla coil. The image

data was acquired using a modified spin-echo sequence that allows for non-Fourier imaging via

rf-encoding. First the full k -space data for the central slice was acquired and the spatial domain
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Figure 4.8: Original phantom image for static laboratory example. (a) k -space data (b) spatial
domain image

image was formed via (3.9) using the unitary Fourier transform matrix F as given in 3.8. Figure 4.8

shows the reference data in both the k-space and spatial domain. This data was used to guide the

input/reconstruction vector choice for the ROI acquisitions that follow.

A selection matrix S, shown in Figure 4.9, was created to completely cover the phantom

in the image slice. The image and selection matrices were then passed to the CCD algorithm,

which produced a set of vectors X and L designed to efficiently acquire/reconstruct the ROI for

subsequent scans.

The first set of figures below show reconstructions for the covering ROI using three different

choices of inputs. For a given ROI acquisition/reconstruction vector set XLH , one can distribute

the power between X and L with an invertible matrix Z via XZZ−1LH . The experiments below

focus on the distribution of the singular values of XLH . Given the SVD of XLH = UΣV H , the

experiment shown below is for the three cases X = U , X = UΣ1/2, and X = UΣ.

The figures correspond to the following three cases:

Case Input ROI Reconstruction Figure

1 U Y ΣLH = (AU + N)ΣLH 4.10

2 UΣ1/2 Y Σ1/2LH = (AUΣ1/2 + N)Σ1/2LH 4.11

3 UΣ Y ΣLH = (AUΣ + N)LH 4.12
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Figure 4.9: Covering ROI for lab experiments

A second experiment was performed with the ROI covering only an interior portion of the

phantom. While the reconstructions are somewhat better, they still contain substantially more

image distortion than predicted in simulation. The interior ROI is shown in Figure 4.13. Figure

4.14 shows the expected and actual reconstructions, respectively. As seen in the right side of Figure

4.14, the image reconstructed from the experimental data shows a portion of the image accurately,

but there is still significant error close to the edges of the phantom.

For both the covering and interior ROI examples, the reconstructions are clearly not satisfac-

tory. Preliminary analysis shows this is primarily a consequence of noise in the measured data.

Approaches to address this problem are presented in more detail in Chapter 6.

4.5 Summary of the static problem

This section showed that there exists a set of acquisition/reconstruction vectors to efficiently

represent local signal information in a specified ROI of an image. This section also presented an
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ROI reconstruction with input = U
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Figure 4.10: ROI reconstruction for X = U , the right singular vectors of XLH .

ROI reconstruction with input = U Σ1/2
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Figure 4.11: ROI reconstruction for X = UΣ1/2, the scaled right singular vectors of XLH .
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ROI reconstruction with input = U Σ

20 40 60 80 100 120

20

40

60

80

100

120

0

50

100

150

200

250

300

350

400

450

500

Figure 4.12: ROI reconstruction for X = UΣ, the scaled right singular vectors of XLH .
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Figure 4.13: Interior ROI for lab result example
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Figure 4.14: Reconstruction of interior ROI images
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iterative algorithm using the Cyclic Coordinate Descent method to find such an image acquisition

vector set. This method accurately reconstructs ROIs of a given image matrix in simulation.

However, the practical use of this method in the lab is limited. We suspect other design criteria

must be included in order to compensate for the noisy nature of experimental data. A strategy to

design such criteria will be examined below in Chapter 6.



Chapter 5

Adaptive modeling of the dynamic

MRI process

The main goal of low-order dynamic MRI is to reduce the sequence acquisition time through the

application of efficient imaging methods. As shown in Chapter 3, approaching the problem from

a subspace identification perspective (vis-à-vis the SVD) and applying model based estimation

(vis-à-vis RIGR) can be advantageous. This section seeks to formalize and examine such methods,

building primarily on the linear subspace method as proposed by Panych and Zientara, et. al., in

[47, 36]. Based on this analysis, a general adaptive estimation framework and two new methods

for choosing input vectors are introduced.

The major difference between the problem studied in this section and other dynamic estimation

and tracking problems is that there is almost complete control of the system inputs to acquire and

track dynamic MRI sequences. This results in a doubly adaptive system, i.e., both the image

estimate and the input acquisition vectors must be determined at each point in the sequence. And

much like the classic “Which came first, the chicken or the egg” paradox, the resulting quality of

each half of the doubly adaptive system depends directly on the other.

57
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This section details two distinct, yet coupled, dynamic sequence acquisition sections. First,

a general adaptive framework is developed in Section 5.1. The focus there is on the traditional

adaptive filter approach of minimizing ‖Yn − ̂Yn‖2F , where Yn is the output of the system to

be identified and ̂Yn is the estimated output of the adaptive system. By analyzing the image

reconstruction and estimation process in this manner, we find that each of the low-order methods

described in Chapter 3 are closely related. In fact, a general adaptive framework is presented which

is a superset of the FK and SVD methods.

Second, methods to identify appropriate input vectors are presented in Section 5.2. While the

image estimation discussion of Section 5.1 provides a theoretically optimal set of input vectors,

finding vectors that produce high quality image estimates is in fact quite difficult. The reason is

that the image estimates themselves are closely related to the input vectors used to acquire the

data used in the image reconstruction. Thus, input vectors chosen using previous image estimates

will be closely biased to the previous input vector set. To escape this bias, some cleverness must

be introduced drawing from a clear understanding that each new input vector set must “look in

new places.” Two methods that succeed at this are presented below in Section 5.2.

Finally, this section closes with a comprehensive comparison of the low-order imaging methods

reviewed in Chapter 3 and the new methods presented in this section. The comparisons cover

sequences simulating real dynamic MRI acquisitions and synthetic sequences designed to isolate

features common to dynamic MRI. As shown in the examples of Section 5.3, the new methods

perform quite well and are in fact quite suitable for dynamic MRI sequences that exhibit dramatic

motion changes.

5.1 Construction of the image estimate

The goal of low order dynamic MRI is to estimate an image at time An using a limited number

of input scans. The data available to achieve this includes all of the previous outputs up to
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Yn = AnXn, and the corresponding input matrices, Xn. As discussed in the introductory section

above, the focus in this section is on constructing estimates using “tall-and-skinny” orthogonal

inputs Xn of size r ×N , with r < N and a single input/output pair of matrices, Yn and Xn. We

identify the image estimate through minimization of the difference between the measured output

data and the predicted output data. Analytically, this is described by finding ̂An such that the

cost function

Jn = ‖Yn − ̂Yn‖2F = ‖Yn − ̂AnXn‖2F (5.1)

is minimized. This problem is underdetermined. This is due to the choice that the number

of column vectors r in Xn and Yn is less than N . Other possibilities exist, some of which are

discussed is Chapter 6. In (5.1), the number of parameters available in the image estimate ̂An

is larger than the number of constraints given by Yn. Consequently, an infinite number of zero

error solutions exist. The treatment that follows explores a few solutions for the underdetermined

problem in (5.1). In the process, we show that the low-order reconstruction methods given in

Chapter 3 are in fact all contained within the same common framework.

First of all, one could solve Jn = 0 directly. With no structural constraints on ̂An, this leads

to the underdetermined system ̂AnXn = Yn. One solution is

̂An = YnXH
n (XnXH

n )†. (5.2)

If we constrain the columns of Xn to be orthonormal, XH
n (XnXH

n )† = XH , Equation (5.2) reduces

to the low-rank reconstruction solution:

̂An = YnXH
n = AnXnXH

n . (5.3)

This low rank estimate was used by Panych, et. al., in their paper describing the SVD encoding

method [34].

One could instead minimize (5.1) while incorporating information from a reference image.

Traditionally, this reference image is obtained at the start of the sequence [43, 47, 36], or may be
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constructed from a collection of similar images [6]. To incorporate reference image information in

the image estimate, we model the image changes as An = A0 + αn, and similarly ̂An = A0 + α̂n.

Solving Jn = 0 with this model for ̂An gives

Yn − ̂AnXn = Yn − (A0 + αn)Xn = 0

αnXn = Yn −A0Xn

αn = (Yn −A0Xn)XH
n (XnXH

n )†

Again, with the constraint that the columns of Xn are orthonormal, this leads to

̂An = A0 + YnXH
n −A0XnXH

n = YnXH
n + A0(I −XnXH

n ) (5.4)

Upon inspection, if the inputs Xn are constructed from the low frequency components of the

Fourier basis, Equation (5.4) is recognized as the keyhole reconstruction method, as first proposed

by Brummer and Van Vaals, et. al., [4, 43]. Furthermore, if A0 = 0, then this solution is identical

to the low rank reconstruction in (5.3).

A third possibility is to solve Jn = 0 while incorporating information from the most recent

estimate, ̂An = ̂An−1 + βn. This leads to

Yn − ̂AnXn = Yn − ( ̂An−1 + βn)Xn = 0

βnXn = Yn − ̂An−1Xn

βn = (Yn − ̂An−1Xn)XH
n (XnXH

n )†.

In this case, by imposing the orthogonality constraint on Xn, we find that minimizing (5.1) gives

an adaptive framework :

̂An = YnXH
n + ̂An−1(I −XnXH

n ). (5.5)

Rewriting (5.5) as ̂An = ̂An−1 + (Yn − ̂An−1Xn)XH
n , one can recognize a similarity between the

adaptive framework and the least mean square (LMS) adaptive algorithm
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Filter output: yn = ŵH
n un

Estimation error: en = dn − ŵH
n un

Tap-weight adaptation: ŵn+1 = ŵn + µune∗n

as given by Haykin [14, Chap. 9]. In the LMS algorithm, un is the tap-input vector, dn is the

desired response at time n, en is the estimation error, and µ is the step-size parameter. Comparing

the LMS algorithm with (5.5), we see the step-size parameter is µ = 1 and the error term en

corresponds to Jn. This value for the step-size parameter is not surprising. From Haykin [14,

§ 9.4], the LMS algorithm is convergent in the mean squared sense if µ satisfies the condition

0 < µ < 2/λmax where λmax is the largest eigenvalue of the input correlation matrix — a measure

of the input signal power. With Xn formed from orthonormal columns, λmax = 1, and a step-size

parameter value of µ = 1 places (5.5) squarely in the stable convergence region.

For the purpose of comparison, consider (5.5) for the limiting case of a static input vector set,

Xn = X ∀n, formed from orthonormal columns. Consider that in this case, the projection of the

low-order reconstruction terms YkXH onto the complementary subspace (I −XXH) will result in

YkXH(I −XXH) = 0. This leads to

̂An = YnXH + ̂An−1(I −XXH)

= YnXH + [Yn−1X + ̂An−2(I −XXH)](I −XXH)

= YnXH + ̂An−2(I −XXH)

...

̂An = YnXH + ̂A0(I −XXH).

Notice that the cancellation effect occurs all the way back to the original reference image A0. There

are no contributions from the intermediate images Ak in the estimate of ̂An for 0 < k < n. Thus,

with static orthogonal inputs, the adaptive framework solution for ̂An is fundamentally identical

to the keyhole method described in (5.4). Because the FK and SVD methods are special cases of

(5.5), we describe this solution as the general adaptive estimate framework.
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Note that in each of these three cases, Jn = ‖Yn − ̂Yn‖2F = 0. One can only determine which

is the best solution by comparing the actual image An to the estimated image ̂An. This is done

via the absolute error measure

En = ‖An − ̂An‖2F . (5.6)

Equation Reconstruction
Method

̂An = En = (An − ̂An) =

(5.3) Low-rank AnXnXH
n An(I −XXH)

(5.4) Keyhole AnXnXH
n + A0(I −XnXH

n ) (An −A0)(I −XXH)
(5.5) Adaptive Framework AnXnXH

n + ̂An(I −XnXH
n ) (An − ̂An−1)(I −XnXH

n )

Table 5.1: Image reconstruction method summary

The absolute estimate error in each image reconstruction method discussed above is shown in

Table 5.1. To minimize En, this table gives an indication of the best input vectors to use in each

case: the right singular vectors (rSV) of the next image for (5.3); the rSV of the difference between

the next image and the reference image for (5.4); and the rSV of the difference between the next

image and the previous estimate for (5.5). However, An is not known ahead of time. Thus, the

optimal input vector selection choice implied by Table 5.1 is a theoretical bound on the estimate

quality for a given image reconstruction method.

With a framework for constructing image estimates now established, the next section examines

the second half of the image estimation process: input vector identification.

5.2 Input vector identification

Low order MRI acquisition techniques became prominent in the mid 1990’s. Fourier based methods

include building an image estimate from a limited number of k -space lines [25, 13], and novel k -

space sampling to reconstruct regular sub-regions of the image [31]. Fourier-based input sets have

also been derived from a large aggregate set of similar images [7]. Non-Fourier methods include
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the use of wavelets [15] and identifying a set of input vectors via the SVD of a full image acquired

at the beginning of the sequence [47].

In each of these cases the input vectors used to acquire the MRI data are orthonormal. This

assumption/constraint of orthonormal input vectors is continued here for two reasons. One, imple-

mentation of the acquisition vectors in the MRI scanner is aided by this constraint. The scanner

inputs are limited to a fixed-point precision representation and are typically scaled such that the

peak absolute value of the data is “1”. The use of orthonormal inputs ensures that the dynamic

range of the input sequence is compatible with the scanner implementation. Second, from an

analytical perspective, if N orthogonal inputs are applied to a static image in succession, one can

ensure that the estimate of A of size M ×N equals the true image data. That is, if the input

vectors span the full image space, a full scan of the image can be acquired using a non-Fourier basis

set while scanning the same number of k -space lines as traditional Fourier acquisition methods.

The easiest way to ensure a full span of the image space is to use orthonormal input vectors. Third,

it greatly simplifies the analysis that follows.

In the acquisition methods cited above, one fixed set of input vectors is chosen to acquire the

entire dynamic sequence and a low-order estimate of the image is formed by applying an image

model to the output data. However, due to the dynamic nature of MRI sequences, a fixed set

of basis vectors may not be best over an entire sequence. Moreover, an input vector that works

well for one sequence may not work well for a different sequence. For this reason, methods to

dynamically select input vectors over the course of the sequence are the focus of this section.

5.2.1 The subspace trap

Table 5.1 in Section 5.1 showed that the best choice of input vectors is dependent on the image to

acquire, and is realizable only when the next true image is known. Since each image in the sequence

An is not available ahead of time, one must select the input vectors based on image estimates.

However, determining input vectors based solely on the estimate of prior images tends to bias the
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new input vectors towards the previous inputs. In fact, analysis shows that many similar methods

one could use to determine a new set of inputs result in Xn = Xn−1. We refer to this tendency as

the subspace trap and it is examined in detail below.

The clearest example of the subspace trap occurs in the following case. Consider choosing a new

set of input vectors by finding the right singular vectors of the current estimate. If the estimate

method used is the low-rank reconstruction, ̂An = YnXH
n = AnXnXH

n , then the right singular

vectors of the estimate will in fact always span the basis spanned by the input vector matrix Xn.

A similar conclusion is reached when using a keyhole style reconstruction, ̂An = AnXnXH
n +

A0(I−XnXH
n ). Let the vectors for the first acquisition X1 be chosen from the right singular vectors

of the reference image A0 at the start of the sequence. With this construction, X1 is chosen to

minimize ‖A0(I −X1XH
1 )‖2F . So, unless the magnitude of the image information captured by the

input, A1X1XH
1 , is on the order of the reference image noise, A0(I−X1XH

1 ), the subspace spanned

by X1XH
1 will tend to dominate the right singular vectors of ̂An. So although this case is not as

limiting as the previous case, using the right singular vectors of ̂An again results in a subspace

trap.

For the adaptive estimate framework given in (5.5), it was shown in Section 5.1 that the best

input vectors were in fact found from the right singular vectors of the difference between the next

true image and the estimate of the previous image. Because the true images An are unavailable,

a reasonable choice might be to substitute estimates of these images. Consider then the case of

finding the right singular vectors of the difference matrix (An − ̂An−1). At n = 1, the previous

estimate is the reference image, ̂A0 = A0, which is presumed to be known. Let a discrete change

occur in the image system, A1 = A0 + dA. The output vectors from the first acquisition are then

Y1 = A1X1 = (A0 + dA)X1,

and the adaptive framework estimate of A1 is

̂A1 = ̂A0(I −X1XH
1 ) + Y XH

1
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= ̂A0 + dAX1XH
1 .

Substituting this estimate for A1 in the difference matrix, one finds

( ̂A1 − ̂A0) = (A0 + dAX1XH
1 −A0) = dAX1XH

1

Clearly, the right singular vectors of this matrix will span the subspace described by X1, regardless

of the structure of dA. So by this method, the subspace spanned by the input vectors will stay

static throughout the dynamic sequence — another subspace trap.

Finally, consider the case of determining new inputs by finding vectors Xn+1 that minimize the

difference between the measured output and the expected output via

min
Xn+1

‖Yn − ̂AnXn+1‖2F . (5.7)

For simplicity, we again consider this cost function at time n = 1, and assume ̂A0 = A0. Under

these assumptions one finds,

‖Y1 − ̂A1X2‖2F = ‖A1X1 − (A0 + dAX1XH
1 )X2‖2F

= ‖(A0 + dA)X1 − (A0 + dAX1XH
1 )X2‖2F

= ‖A0X1 + dAX1 − (A0 + dAX1XH
1 )X2‖2F

‖Y1 − ̂A1X2‖2F = ‖A0(X1 −X2) + dA(X1 −X1XH
1 X2)‖2F .

With orthogonal inputs X2 = X1, this cost function will be zero. Similarly, if we assume instead

no prior knowledge of the previous image, i.e., ̂A0 = 0, we find

‖Y1 − ̂A1X2‖2F = ‖A1X1 − (dAX1XH
1 )X2‖2F = ‖(A0 + dA)X1 − dAX1XH

1 X2‖2F

= ‖A0X1 + dA(X1 −X1XH
1 X2)‖2F .

Again, the cost function is minimized when X2 = X1 and X2 is orthogonal. A third case is to

assume the most recent estimate is a low-rank approximation of the first image, ̂A0 = A0X1X1.

In this case we find

‖Y1 − ̂A1X2‖2F = ‖A1X1 − (A0X1XH
1 + dAX1XH

1 )X2‖2F
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= ‖A1X1 − (A1X1XH
1 )X2‖2F = ‖A1(X1 −X1XH

1 X2)‖2F .

Again, if X2 = X1 and X2 is orthogonal the cost function is minimized. This shows that for a

range of cases, from assuming complete knowledge, partial knowledge, and no knowledge of the

previous image, this minimization problem choice results in another subspace trap.

In summary, most straight-forward approaches for selecting a new input vector set from previous

output data and estimates results in the new inputs spanning the same subspace as the previous

inputs. This bias towards previous inputs is due to the fact that changes in the estimate ̂An can

only reflect the subspace supported by the output data, AnXnXH
n . The key to escaping the trap

is to choose new input vectors that “look in new places”. That is, for each new image acquisition,

Xn+1 should span some part of the previously untracked modes, (I −XnXH
n ). The following two

sections show two ways to do this. One proposes and minimizes a cost function based on finding the

right singular vectors of the true image An directly. The second introduces a temporal predictor

to estimate An+1 and uses the predicted image to determine appropriate acquisition vectors.

5.2.2 Escaping the subspace trap I: CG-St

The previous success of the SVD method [47], and the fact that the SVD is a limiting case of the

ROI solution (§ 4.2.1), suggests that one may find useful input vectors by trying to identify the

(orthogonal) right singular vectors of the image An directly. Horn and Johnson [18] show that

solving maxx ‖Ax‖ will identify the dominant right singular vector of A. Translating this problem

to solve for multiple vectors xk at once gives

max
Xn+1

‖AnXn+1‖2F ≡ min
Xn+1

∥

∥An(I −Xn+1XH
n+1)

∥

∥

2
F . (5.8)

The straight-forward approach is to substitute An with ̂An. However, as shown in Section

5.2.1, this tends to bias Xn towards the previous inputs as changes in the estimate, ̂An, can only

reflect the subspace supported by the output data, AnXnXH
n . To escape this subspace trap, we

introduce a time lag in the right hand side of (5.8), substituting the most recent measurement
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Yn = AnXn for the a-priori predicted output AnXn+1. We then substitute the image estimate ̂An

for the first term in (5.8), which results in

min
Xn+1

∥

∥

∥

̂An − YnXH
n+1

∥

∥

∥

2

F
. (5.9)

To maintain the validity of the adaptive framework estimate update equation (5.5), the inputs

Xn+1 must remain orthogonal. Described below is a minimization algorithm suitable for such a

task. The parameter space of all orthonormal matrices is known as the Stiefel manifold [11]. After

a brief review of the conjugate gradient method, the method of constraining the conjugate gradient

algorithm to the Stiefel manifold is presented.

The conjugate gradient method

According to Golub and Van Loan [12], the method of conjugate gradients to solve linear systems

was first described by Hestenes and Stiefel in 1952. It found widespread use as an iterative method

in the 1970’s due to its superior convergence properties. The derivation of the method described

by Golub and Van Loan [12, Chpt. 10] is given below.

The derivation of the method is best described by considering the minimization of the function

φ(x) =
1
2
xT Ax− xT b (5.10)

where x, b ∈ Rn and A ∈ Rn×n is assumed to be positive definite and symmetric. Minimizing φ(x)

with respect to x gives x = A−1b. Thus, solving the linear system Ax = b and minimizing φ(x)

are equivalent if A is symmetric and positive definite.

One of the simplest methods for numerically minimizing φ(x) is the method of steepest descent.

This method uses the negative gradient of the function at a current point xn to determine a step

direction, and then moves to a new point xn+1 that minimizes the function along the step direction.

Analytically, the current solution estimate is updated via

xn+1 = xn + αrn, (5.11)
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the search direction is determined via the residual

−∇φ(xn) = rn = b−Axn, (5.12)

and the step length is determined via

argmin
α

φ(xn + αrn) = argmin
α

[φ(xn)− αrT
n rn +

1
2
α2rT

n Arn]

with the solution

α = (rT
n rn)/(rT

n Arn). (5.13)

A summary of the steepest descent algorithm is given in the box below.

Steepest Descent Algorithm
To solve Ax = b, with b, x ∈ Rn and where A ∈ Rn×n is assumed to be
symmetric and positive definite

k=0; x = initial guess;
while rk 6= 0,

k = k+1;
rk = b−Axk; % compute residual
α = (rT

k rk)/(rT
k Ark) % calculate step size

xk = xk + αrk % update solution
end;

One of the consequences of this technique is that consecutive residuals are orthogonal to each

other.

rT
k rk−1 = (b−Axk)T rk−1 = (b−Axk−1 − αArk−1)T rk−1

= rT
k−1rk−1 − αrT

k−1A
T rk−1

= rT
k−1rk−1 −

rT
k−1rk−1

rT
k−1AT rk−1

rT
k−1A

T rk−1

rT
k rk−1 = rT

k−1rk−1 − rT
k−1rk−1 = 0.

This occurs because the steepest descent algorithm actually oversteps the principal axes of the

cost surface on each iteration. The result is that over the course of the algorithm the same search

directions are used repeatedly with each new search direction rk orthogonal to the last. This
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behavior leads to a convergence time that can be prohibitively slow. A slow convergence time is

especially apparent for systems with a large eigenvalue spread, i.e., λmax/λmin � 1 where λk are

the eigenvalues of A.

Ideally, there is no requirement that the search directions be mutually orthogonal and this is

the motivation for the conjugate gradient algorithm. The inefficient search behavior of the steepest

descent method can be improved by changing the method by which search directions are chosen.

In choosing these new search directions, pk, one needs to ensure that pk is not orthogonal to rk,

but rather the series {p1, p2, . . . , pk} should span the same subspace as {r1, r2, . . . , rk}.

Starting from the standard update equation,

xk = xk−1 + αkpk, (5.14)

it follows that the parameter αk that minimizes φ(xk−1 + αkpk) is

αk = (pT
k rk−1)/(pT

k Apk). (5.15)

The search direction itself is identified by considering the following: In order to construct an

iterative algorithm, one would like to separate the minimization problem into two portions, one

minimized previously up to point k − 1, and the next point to find, k. The next solution point,

xk, can be represented with such a linear combination using the initial search point x0 and all

subsequent search directions, i.e.,

xk = x0 +
k−1
∑

n=1

αnpn + αkpk = x0 + Pk−1y + αkpk

where the columns of Pk−1 are composed of the previous search directions, [ p1 p2 · · · pk−1 ], and

y contains the previous search step sizes, yT = [ α1 α2 · · · αk−1 ]. Examining the function φ(xk)

using this representation for xk one finds

φ(xk) =
1
2
(x0 + Pk−1y + αkpk)T A(x0 + Pk−1y + αkpk)− (x0 + Pk−1y + αkpk)T b

=
1
2
(x0 + Pk−1y)T A(x0 + Pk−1y) +

1
2
α2

kpT
k Apk
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+ αkpT
k A(x0 + Pk−1y)− (x0 + Pk−1y)T b− αkpT

k b

φ(xk) = φ(x0 + Pk−1) +
1
2
α2

kpT
k Apk + αkpT

k APk−1y − αpT
k r0.

If one requires that pT
k APk−1 = 0, then the cross-term, αkpT

k APk−1y, in the above expression

will cancel. This condition implies that each new search direction pk be orthogonal to the sub-

space spanned by {Ap0, Ap1, . . . , Apk−1}. With this condition, the minimization of φ(xk) can now

be separated into two components, one dependent on the previously determined steps, and one

dependent only on the new step.

min
αk

φ(xk) = φ(x0 + Pk−1y) + min
αk

[

1
2
α2

kpT
k Apk − αpT

k r0

]

with pk ⊥ {Ap0, Ap1, . . . , Apk−1}

The requirement

pT
k APk−1 = 0 (5.16)

is known as the conjugate gradient condition. Motivated by the fact that the search directions

{p1, . . . , pk} and the residuals {r1, . . . , rk} span the same subspace, and that the residuals can be

determined in with an iterative update equation, rk = rk−1 − αkArk−1, it follows that the new

search directions can be determined in a similar fashion, i.e.,

pk = rk−1 + βkpk−1. (5.17)

Imposing the conjugate gradient condition, pT
k−1Apk = 0, on (5.17), and solving for βk it follows

that

βk = −
pT

k−1Ark−1

pT
k−1Apk−1

. (5.18)

This leads to the standard conjugate gradient method given in the box below.

A comparison of the two algorithms is given in Figure 5.1. For this example,

A =
[

u1 u2
]

[

σ1 0
0 σ2

]

[

v1 v2
]T

=
[

1.5760 0.8653
0.8653 1.5406

]

,

b = u1σ1 =
[

1.7312
1.6962

]

, and x0 =
[

−1.3194
0.9312

]

.



CHAPTER 5. ADAPTIVE MODELING OF THE DYNAMIC MRI PROCESS 71

Standard Conjugate Gradient

x0 = initial guess
r0 = b−Ax0, p0 = 0, and k = 0
while rk 6= 0

k = k + 1
if k = 1,

βk = 0,
else

βk = −(pT
k−1Ark−1)/(pT

k−1Apk−1)
end
pk = rk−1 + βkpk−1

αk = (pT
k rk−1)/(pT

k Apk)
xk = xk−1 + αkpk

rk = b−Axk
end

The top figure shows the convergence behavior of the two algorithms. The bottom figure shows

the trajectories of each algorithm over a contour plot of the function φ(x). For the A matrix

specified, λmax/λmin = 3.4984, which implies an elliptical contour line as is seen in the contour

plot of Figure 5.1. The lower figure also shows the orthogonality of successive search directions in

the steepest descent method. The superior convergence behavior of the conjugate gradient method

is clearly demonstrated in both figures.

The conjugate gradient algorithm can be made more computationally efficient by computing

the residual recursively via rk = rk−1 − αApk and substituting

rT
k−1rk−1 = −αk−1rT

k−1Apk−1

and

rT
k−2rk−2 = αk−1pT

k−1Apk−1

into the formula for βk. This results in the conjugate gradient algorithm listed in Table 5.2, and

is the foundation for the conjugate gradient on the Stiefel manifold (CG-St) algorithm developed

by Edelman, Arás, and Smith.
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Convergence Curve (b) Path through solution space
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Efficient Conjugate Gradient Algorithm
Solves Ax = b, where x, b ∈ Rn and A ∈ Rn×n is assumed to positive definite and
symmetric.

x0 = initial guess
r0 = b−Ax0, p0 = 0, and k = 0
while rk 6= 0

k = k + 1
if k = 1,

βk = 0,
else

βk = −(pT
k−1Ark−1)/(pT

k−1Apk−1)
end
pk = rk−1 + βkpk−1

αk = (pT
k rk−1)/(pT

k Apk)
xk = xk−1 + αkpk

rk = b−Axk

end

Table 5.2: Efficient conjugate gradient algorithm

There are many approaches for adapting non-symmetric systems to the conjugate gradient

method. One possibility is to solve the system AT Ax = AT b instead of Ax = b. Another is to

construct a coupled system

AAT y = b x = AT y

and solve the “y space” problem using the conjugate gradient algorithm. A thorough review

of these methods and others, including a discussion of numerical stability for each, is given in

Chapter 10.4 of Golub and Van Loan [12].

Conjugate gradient on the Stiefel manifold

The conjugate gradient algorithm derived above is designed to solve a linear system of the form

Ax = b with the unknown parameters given in a single vector x. For the purposes of dynamic

MRI imaging, a “tall-skinny” matrix X of vectors would be more beneficial. A conjugate gradient

algorithm containing this exact extension is described by Edelman, Ariás, and Smith (EAS) in
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[11]. Specifically, they describe a conjugate gradient algorithm on the Stiefel manifold (CG-St)

that is suitable for solving systems of the type AX = B, where A is symmetric and both X and

B are tall-skinny matrices.

The Stiefel manifold, St(n, p), is defined as the parameter space consisting of n-by-p “tall-

skinny” orthonormal matrices. For a point X on the manifold, this implies XT X = Ip. The

manifold may be embedded in the np-dimensional Euclidean space of all n-by-p matrices. For a

visual reference, when p = 1, the manifold is simply a sphere. When p = n, the manifold is the

group of orthogonal matrices On that completely span the n-dimensional space.

The basic idea that leads to differential manifolds is that one would like “to select a family of

a subcollection of neighborhoods so that a change of coordinates is always given by differentiable

functions.” [3]. The beauty of operating on the Stiefel manifold is that the path given by any

movement through Euclidean space will stay on the Stiefel manifold if the movement follows the

set of differential equations describing the manifold. Drawing primarily from material presented

by Edelman, Ariás, and Smith in [11], this section explores the equations describing the Stiefel

manifold and describes the CG-St algorithm.

Tangent and normal spaces: An equation defining tangents to the Stiefel manifold at

the point X is obtained by differentiating XT X = I, which yields XT ∆ + ∆T X = 0. Here ∆

refers to a matrix (subspace) tangent to the manifold. Note that XT ∆ is skew-symmetric, i.e.,

(XT ∆−∆T X)/2 = XT ∆ . This condition imposes p(p + 1)/2 constraints on ∆. Thus, the vector

space of all tangent vectors ∆ has dimension

np− p(p + 1)
2

=
p(p− 1)

2
+ p(n− p).

The normal space at a point X on a manifold is defined to be the set of all matrices that are

orthogonal to the tangent space. If one views the Stiefel manifold as embedded in Euclidean space,

one may choose the standard inner product

ge(∆1, ∆2) = tr{∆T
1 ∆2} =

∑

i

(∆T
1 ∆2)ii (5.19)
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in np-dimensional Euclidean space (hence the subscript e) to test orthogonality. Thus, the normal

space at a point X on the manifold consists of all points N which satisfy

tr{∆T N} = 0

for all ∆ in the tangent space. It follows that the normal space is of dimension p(p + 1)/2.

To implement the conjugate gradient condition (5.16) for the CG-St algorithm, the concept of

subspace projection operators on the Stiefel manifold are defined here. If we denote sym(A) =

(A + AT )/2 and skew(A) = (A−AT )/2, then for a matrix Z of size n-by-p we may write,

πN (Z) = Xsym(XT Z) (5.20)

as the projection of Z onto the normal space at the point X on the Stiefel manifold. Similarly,

πT (Z) = Xskew(XT Z) + (I −XXT )Z (5.21)

as the projection of Z onto the tangent space at X. Equation (5.21) suggests that the matrices ∆

describing the tangential directions at X have the general form

∆ = XA + X⊥B = XA + (I −XXT )C (5.22)

where A is p-by-p symmetric, B is (n-p)-by-p, C is n-by-p, B and C are both arbitrary, and X⊥

is any n-by-(n-p) matrix such that XXT + X⊥XT
⊥ = I.

The canonical metric: The Euclidean metric given in Equation (5.19) is not necessarily

suitable for use on the Stiefel manifold because it does not weigh each parameter of ∆ equally.

This is seen by applying the metric to the general representation of the tangential vector given in

(5.22)

ge(∆, ∆) = tr{AT A}+ tr{BBT } = 2
∑

i<j

a2
ij +

∑

ij

b2
ij . (5.23)

Because A is skew-symmetric, the Euclidean metric counts the independent degrees of freedom in

A twice. EAS suggest that a more equitable metric would be gc(∆, ∆) = 1/2tr{AT A}+tr{BT B}.

Such a metric can be found by recognizing that at the point X = In,p (the first p columns of the
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n-by-n identity matrix), the Euclidean metric can be modified as tr{∆T (I−1/2In,pIT
n,p)∆} to give

the equitable calculation above. Returning to the more general form gives

gc(∆,∆) = tr{∆T (I − 1
2
XXT )∆} (5.24)

which is called the canonical metric on the Stiefel manifold.

Embedded geodesics: A geodesic is defined as the curve of shortest length between two points

on a manifold. Typically, these curves are defined analytically through the use of an acceleration

vector, and/or the calculus of variations. For example, stating that X(t) remains on the Stiefel

manifold, St(n, p), implies the condition XT X = Ip ∀t. Taking two derivatives with respect to

time, we find

XT Ẍ + 2ẊT Ẋ + ẌT X = 0. (5.25)

To be a geodesic, Ẍ(t) must be in the normal space at X(t). That is, the acceleration vector must

be normal to the geodesic surface. Pictorially, this is similar to a mass on a string being spun in a

circle. The acceleration vector is constantly pointed to the center of the circle, and the path traced

by the mass is a geodesic. From (5.20), XS is in the normal space if S is p-by-p symmetric1. Thus,

with Ẍ = XS, Equation (5.25) can be rewritten as

Ẍ + X(ẊT Ẋ) = 0 (5.26)

which is the differential equation that defines a geodesic on the Stiefel manifold.

In terms of the conjugate gradient algorithm, the geodesic description given in (5.26) is not

very useful. EAS showed that it is possible to express the geodesic X(t) in terms of the current

position X(t) = X and a direction Ẋ(t) = P . Specifically, if X and P are n-by-p matrices such

that XT X = Ip and A = XT P is skew-symmetric, then the geodesic on the Stiefel manifold

emanating from X in the direction P is given by the curve

X(t) = XM(t) + QN(t) (5.27)

1πN (XS) = Xsym(XT XS) = Xsym(S) = XS if S is symmetric
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where

QR = (I −XXT )P

is the compact QR decomposition of (I−XXT )P , i.e., Q is a tall-and-thin matrix. M(t) and N(t)

are p-by-p matrices given by the matrix exponential








M(t)

N(t)









= exp















t









A −RT

R 0































Ip

0









. (5.28)

Parallel transport equation: The conjugate gradient algorithm makes explicit use of

tangent and normal vectors through the course of finding a solution. Due to the curved nature of

manifolds, vectors that were tangential at point X(0) may not be tangential when moved along

a geodesic to the point X(t). One can however, transport tangential vectors along a geodesic by

removing the component in the normal space at each infinitesimal step. This process is known as

parallel transport, and for the Stiefel manifold, EAS describe the translation of a tangential matrix

P using the parameters of (5.27) and (5.28) via

τP (t) = PM(t)−X(t)RT N(t)

Functionally, M(t) and N(t) play a role similar to the cos(θ) and sin(θ) components of a Givens

rotation matrix and R acts as a scaling operator.

Gradient of a function: Finally, the conjugate gradient algorithm requires a computation

of the gradient of the function. This computation is directly dependent on the choice of metric for

the given parameter space. For a function F (X) on the Stiefel manifold St(n, p), the gradient of

F at X is defined to be the tangent vector ∇F such that

gc(∇F, ∆) ≡ tr{(∇F )T (I − 1
2
XXT )∆} = tr{FT

X∆} (5.29)

for all tangent vectors ∆ at the point X, where FX is the n-by-p matrix of partial derivatives of

F with respect to the elements of X, i.e.,

(FX)ij =
∂F

∂Xij
. (5.30)
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To solve (5.29), one must find ∇F such that the matrix lies in the normal space of the Stiefel

manifold at point X, i.e., XT (∇F ) is skew-symmetric. Solving (5.29) in this manner yields

∇F = FX −XFT
XX .

EAS note that this same expression may also be derived by differentiating F (X(t)), where X(t) is

the geodesic equation given in (5.27).

The CG-St algorithm: Taking each of the above equations that describe operations on the

Stiefel manifold, one can now reconstruct the conjugate gradient algorithm on the Stiefel manifold.

The mapping from the conjugate gradient algorithm of Table 5.2 to the CG-St algorithm of Table

5.3 is the following:

CG 7−→ CG-St
The solution point xk 7−→ Xk

The search direction pk 7−→ Pk

The residual (gradient) rk 7−→ Gk

The inner product 〈u, v〉 = uT v becomes tr{UT (I − 1
2XXT )V }

The direction step xk = xk−1 + αkpk becomes a minimization search along the
geodesic described by Pk

The search update
parameter

βk 7−→ βk

The CG-St algorithm is given in Table 5.3.

Finally, to implement the CG-St algorithm and numerically solve the dynamic MRI minimiza-

tion problem given in Equation (5.9), we must determine the matrix of partial derivatives, (5.30),

for the function F (X) = ‖A− Y XH‖2F . Taking the partial derivative of F (X) with respect to X

(see Appendix A.2) gives

FX = −(AT −XY T )Y .

Examples using the CG-St algorithm for estimation dynamic sequences are given in Section 5.3.
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Conjugate Gradient for Minimizing F (X) on the Stiefel Manifold

• Given X0 such that XT
0 X0 = I, compute G0 = FX0 −X0FT

X0
X0 and set P0 = −G0.

• For k = 0, 1, . . . ,

◦ Compute the compact QR decomposition QR = (I −XkXT
k )Pk.

◦ Minimize F
(

Xk(t)
)

over t where

Xk(t) = XkM(t) + QN(t),

A = XT
k Pk, M(t) and N(t) are p-by-p matrices given by the 2p-by-2p

matrix exponential given in Equation (5.28).

◦ Set tk = tmin and Xk+1 = Xk(tk).

◦ Compute Gk+1 = FXk+1 −Xk+1FT
Xk+1

Xk+1.

◦ Parallel transport the tangent vector Pk to the point Xk+1:

τPk = PkM(tk)−XkRT N(tk). (5.31)

Set τGk := Gk or 0, which is not parallel.

◦ Compute the new search direction

Pk+1 = −Gk+1 + βkτPk where βk =
〈Gk+1 − τGk, Gk+1〉

〈Gk, Gk〉

and 〈∆1, ∆2〉 = tr{∆T
1 (I − 1

2XXT )∆2}.
◦ Reset Pk+1 = −Gk+1 if k + 1 ≡ 0 mod p(n− p) + p(p− 1)/2.

Table 5.3: Conjugate gradient for minimizing F (X) on the Stiefel manifold

5.2.3 Escaping the subspace trap II: Image prediction

Section 5.2.1 described the subspace trap, and showed that methods to find new input vectors from

the estimates of prior images typically fails to provide useful new inputs. A close examination of

the image reconstruction methods in Table 5.1 of Section 5.1 shows that it may be highly beneficial

to guess at the composition of the next image and choose new input vectors based on that guess.

This implies using an image predictor in the image estimation framework, and is the subject of

the current section.

Specifically, if one constructs a predicted version, Ãn+1, of the next true image in the sequence,

An+1, the right singular vectors of the difference matrices in Table 5.1 should provide useful inputs
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Xn+1 to acquire and reconstruct an estimate, ̂An+1 of the next true image in the sequence. The

design choices for this method concern the following: the prediction mechanism itself, the inputs

into the predictor, and how to choose new vectors based on the predicted image. Each of these

design parameters are explored in more detail below.

Prediction methods

Because we are interested in predicting images, the prediction methods falls into two categories:

temporal and spatial. In both cases, the prediction method is best guided by a model of the image

dynamics. Examples include modeling the changes as an optical flow, identifying image sub-blocks

and estimating the motion of each, or simply applying a linear model to the pixel changes and

producing a temporal extrapolation using a linear fit to previous pixel estimate values. A more

complete description of potential image prediction methods is given below in Chapter 6. For now,

we will focus primarily on pixel-by-pixel extrapolation along the temporal dimension.

Let ãij,n+1 represent the pixel at row i and column j for the predicted image Ãn+1. The pixel

can be represented as a linear combination of previous pixels via

ãij,n+1 =
(t−1)
∑

k=0

ckăij,n−k. (5.32)

where ăij,n is the pixel at position (i, j) for the image matrix Ăn which is used as input to the

predictor. This model could be extended as well to include weighted contributions from neighboring

pixels via

ãij,n+1 =
i+u
∑

p=i−u

j+v
∑

q=j−v

t−1
∑

k=0

cpq,kăpq,n−k

Consider for now a limited case of (5.32). If we assume that the image sequence is uniformly

sampled in time, the extrapolation performed by the linear predictor can be written in closed form.

This allows the predetermination of the prediction coefficients ck used to generate the predicted

image.

The general format for pixel-by-pixel extrapolation using a linear model along the temporal
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domain is described via y(t) = mt + b = [ t 1 ][ m b ]T . One can generalize this expression for any

number of points, t, for which the line will be fit. Writing this equation for the each point in the

set we arrive at the system of equations for a least squares fit.

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ăij,n−t+1

























=

























t− 1 1

t− 2 1

...
...

0 1

































u

v









= Z









u

v









For each pixel position, (i, j), this same system holds. Thus, the expression for extrapolating

the entire image is

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We choose to solve this system using the pseudo-inverse of Z† = (ZT Z)−1ZT . Since Z only

depends on the number of images t used for the prediction, this can be determined ahead of time.

Furthermore, each pixel in the predicted image is determined via

vec{Ãn+1}T = [ t 1 ] W = [ t 1 ](ZT Z)−1ZT




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.

The expression [ t 1 ](ZT Z)−1ZT depends only on t. Thus, if the image sequence is uniformly

sampled in time, the equation describing the image prediction from a linear combination of prior

images can be determined a-priori. Given
∑t−1

i=0 i2 = t(t − 1)(2t − 1)/6,
∑t−1

i=0 i = t(t − 1)/2, and

denoting Ă as the predictor input, the predictor output in closed form for a given value of t is

Ãn+1

∣

∣

∣

t
=

t−1
∑

k=0

12
t2(t2 − 1)

[

t(t + 1)
2

k − t(t− 1)(t + 1)
6

]

Ăn−(k−(t−1)) =
t−1
∑

j=0

[

4
t
− j

6
t(t− 1)

]

Ăn−j .
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A few simple cases are given in Table 5.4 below.

2 points: Ãn+1 = 2Ăn − Ăn−1

3 points: Ãn+1 = 4
3 Ăn + 1

3 Ăn−1 − 2
3 Ăn−2

4 points: Ãn+1 = Ăn + 1
2 Ăn−1 − 1

2 Ăn−3

5 points: Ãn+1 = 4
5 Ăn + 1

2 Ăn−1 + 1
5 Ăn−2 − 1

10 Ăn−3 − 2
5 Ăn−4

Table 5.4: Predetermined equations for image prediction from uniformly sampled image estimates

Predictor input

In general, any reasonable representation of the image at time n can be used as input into the

predictor. This includes the full keyhole-style image estimate, ̂An = YnXH
n + ̂An−1(I−XnXH

n ), the

instantaneous image reconstruction Y XH , a low-rank approximation of the image, or a thresholded

version of any of the above.

The examples shown in Section 5.3 compare only the keyhole-style image estimate ̂An =

YnXH
n + ̂An−1(I − XnXH

n ), and the instantaneous image reconstruction Y XH as predictor in-

puts. As shown experimentally in Section 5.3, the consistently best results are obtained by using

the instantaneous image reconstruction as the predictor input. An analysis of why this is so is

provided below.

New input vector identification

Barring omnipotent knowledge of the next true image in the sequence, as is suggested by the

theoretically optimal choices in Table 5.1, the key to successful selection of new input vectors is to

consistently probe the “correct” system subspace without perpetually probing the “same” system

subspace. The “correct” inputs truly depend on the image reconstruction method used. For the

low-rank method of (5.3), the best inputs would be the right singular vectors of the next true

image An+1. For the keyhole method of (5.4), the best input vectors are the right singular vectors

of the difference matrix (An+1−A0). Similarly, for the general adaptive framework given in (5.5),



CHAPTER 5. ADAPTIVE MODELING OF THE DYNAMIC MRI PROCESS 83

the “best” vectors are the right singular vectors of (An+1 − ̂An−1).

In each of these cases, a more practical approach is to replace the true image An+1 with a

predicted image Ãn+1, before proceeding to find the new input vectors. However, care must be

taken to stay out of the subspace trap, even when using a predicted image to chose the new vectors.

For example, consider the case of predicting the next image from two previous image estimates.

With the inputs to the predictor denoted Ăn, Table 5.4 specifies

Ãn+1 = 2Ăn − Ăn−1.

For the case when the predictor input is the adaptive framework estimate, ̂An = YnXH
n +

̂An−1(I −XnXH
n ), we find

(Ãn+1 − ̂An) = (2 ̂An − ̂An−1)− ̂An = ̂An − ̂An−1

= AnXnXH
n + ̂An−1(I −XnXH

n )− ̂An−1

(Ãn+1 − ̂An) = AnXnXH
n − ̂An−1XnXH

n = (An − ̂An−1)XnXH
n (5.33)

The expression XnXH
n on the right side of the matrix product expression in (5.33) is a subspace

projection becuase Xn is orthogonal. Thus, the right singular vectors of (Ãn+1− ̂An) will span the

same subspace as Xn. This implies that choosing new input vectors from the SVD of (Ãn+1− ̂An)

will give vectors spanning the same subspace at every time n — a subspace trap.

Considering the same case, but using the instantaneous reconstruction, ̂An = YnXH
n , for the

predictor input we find

(Ãn+1 − ̂An) = (2 ̂An − ̂An−1)− ̂An

= 2YnXH
n − Yn−1XH

n−1 − ̂An

= 2AnXnXH
n −An−1Xn−1XH

n−1 − (YnXH
n − ̂An−1(I −XnXH

n )

(Ãn+1 − ̂An) = AnXnXH
n −An−1Xn−1XH

n−1 + ̂An−1(I −XnXH
n ).

This shows that the right singular vectors of (Ãn+1 − ̂An) will not necessarily be biased towards

Xn. Depending on the similarities between the dominant subspaces of An, An−1, and ̂An−1, one
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can expect that with YnXH
n as the predictor input, and selecting new input vectors from the right

singular vectors of (Ãn+1− ̂An), one will find new input vectors that lead to a high quality estimate

of the image sequence without falling into the subspace trap. This conjecture is confirmed in the

simulation experiments shown in Section 5.3.

5.3 Method comparison examples

To properly show the utility of the two new methods given in Sections 5.2.2 and 5.2.3, this section

shows a comparison between the CG-St and Linear Prediction methods and those methods pro-

posed previous by other dynamic MRI researchers, specifically the Fourier Keyhole (FK) method,

the keyhole SVD method, and the RIGR method. A brief discussion on the implementation of each

of these methods is given below. Finally, these results are compared to the theoretically optimal

solution using the adaptive framework, as given in Table 5.1 of Section 5.1.

In the Fourier Keyhole (FK) method, the full k -space data set, Aref , of the first image in the

sequence is acquired. Each additional image is reconstructed by first acquiring a limited number

lines of k -space, typically associated with the lowest frequency components. An estimate of the

k -space data matrix for the new image is constructed by combining the newly acquired data for the

low-frequency components with data from the reference image for the high-frequency components.

Analytically, this can be described via the linear system model (3.10) of Section 3.2 as

̂An = YnXXH + Aref (I −XXH) . (5.34)

The RIGR method uses the same Fourier basis vectors for the data acquisition as the FK

method. The estimate is formed by applying a spatial profile envelope from the reference image to

a linear combination of the output data. A complete description of the method is given in Section

3.1.2.

The keyhole SVD method (SVD) used for comparison in this section uses the same estimate

update equation as FK, (5.34). However, in this case, the input vectors X are chosen from the
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right singular vectors of Aref rather than the lowest frequency Fourier basis vectors.

The CG-St method uses the adaptive framework update equation

̂An = YnXnXH
n + ̂An−1(I −XnXH

n ). (5.35)

The input vectors used to acquire each new image in the sequence are identified by the minimization

of

Xn+1 = argmin
X

‖ ̂An − YnXH‖2F

using the conjugate gradient descent algorithm on the Stiefel manifold, as described by Edelman,

Ariás, and Smith in [11]. A complete description of the CG-St method is given in Section 5.2.2.

The linear prediction (lp(·)) methods use the adaptive framework update equation (5.35) as

well. For this method, the input vectors are identified by first determining a predicted estimate of

the next image in the sequence Ãn+1, and then identifying the matrix X using the dominant right

singular vectors of the difference matrix (Ãn+1− ̂An). For the results shown is these examples, the

predicted image is constructed from a linear combination of three past image estimates Ăk via

Ãn+1 =
4
3
Ăn +

1
3
Ăn−1 −

2
3
Ăn−2

A complete review of the linear predictive method is given is Section 5.2.3. For this comparison,

two different inputs are used in the linear predictor. One is the keyhole-style estimate Ăn =

YnXH
n + ̂An(I−XnXH

n ), denoted lp(Aest). The second is the instantaneous estimate Ăn = YnXH
n ,

denoted lp(Y XH).

Each of these methods are compared for a variety of dynamic sequences. These sequences

include a contrast change sequence showing a contrast agent being absorbed by a tumor, and a

motion sequence showing a “needle” being inserted into a grapefruit. For each sequence type, both

synthetic sequences and a sequence constructed from real MRI data are compared. The synthetic

sequences provide complete control over the features of the sequence, including limiting the amount

of jitter and full image intensity and contrast change between frames. This allows one to identify
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those algorithms that are best suited for a particular change. The real data sequences are provided

to test the clinical utility of the methods.

Contrast change

The first dynamic sequence used for comparison shows a contrast change. The data were originally

acquired from a clinical tumor identification experiment showing the flow of a contrast agent. In

the sequence, the tumor is visible inside the knee of the patient, just behind the kneecap. The

tumor is clearly visible in the fortieth frame of the sequence, which is shown in Figure 5.2. This

figure also illustrates the 72 × 72 pixel region of interest used in the method comparison below.

The ROI is shown with a standard intensity map. The region outside of the ROI is shown using

an inverse intensity map. The original data contained real valued intensity values for each of the

60 images in the sequence.

ROI for contrast change sequence

50 100 150 200 250

50

100

150

200

250

Figure 5.2: Contrast change example reference image showing ROI

To simulate the sequence, two frames (Image 15 and Image 34) were chosen from the original

data set. The difference matrix between the two was calculated, and a fractional portion of this
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difference matrix was added to the reference image, Image 15, to form a twenty frame image

sequence. The fractional addition followed an arctangent curve to closely simulate the smooth

transition from the “no contrast agent” state to the “full contrast agent” state shown in the

original image sequence.

In Matlab, the commands were:

>> d = Image34 - Image15;
>> t = atan( 0.5*([1:20]-10));
>> ImgSeq = Image15(:)*ones(size(t)) + d(:)* 0.5*( 1 - t./min(t) );

The number of inputs r used to acquire the sequence was determined from a partial sum of the

singular values. Specifically, the value of r was chosen such that

∑r
n=1 σn

∑N
n=1 σn

= 85% (5.36)

where σn are the singular values of the 72 × 72 square region of interest in the first image in the

sequence. With this criterion, r = 8 was selected for the knee-tumor contrast sequences. The

choice implies that if this sequence were to be acquired using a MRI scanner, one could expect the

acquisition time to be 8/72 = 11.1% the total acquisition time of the original sequence.

Figure 5.3 shows the original synthetic sequence. The time progression is shown first left-to-

right, and then top-to-bottom. Thus, the twenty images in the sequence appear in the following

order:

A0 A1 A2 A3 A4

A5 A6 A7 A8 A9

A10 A11 A12 A13 A14

A15 A16 A17 A18 A19

Figure 5.4 shows the relative error for each method over the course of the synthetic sequence.

For this example, the Fourier based methods, FK and RIGR, outperform the linear system based

methods. In fact, the performance of the Fourier based methods are remarkably similar. This is
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Figure 5.3: Original synthetic contrast change sequence

confirmed by visual inspection of the estimate sequences shown in Figures 5.6 through Figure 5.11.

The time placement of each image for these figures occurs in the same order as the original image

sequence. The reference image in each case is shown darker to differentiate it from the estimate

images, and appears at time n = 0 in the upper left corner of the image. Both the estimate ̂An

and the absolute estimate error En = |An − ̂An| are shown.

(a)

Aref ̂A1 ̂A2 ̂A3 ̂A4

̂A5 ̂A6 ̂A7 ̂A8 ̂A9

̂A10 ̂A11 ̂A12 ̂A13 ̂A14

̂A15 ̂A16 ̂A17 ̂A18 ̂A19
and (b)

0 |E1| |E2| |E3| |E4|

|E5| |E6| |E7| |E8| |E9|

|E10| |E11| |E12| |E13| |E14|

|E15| |E16| |E17| |E18| |E19|

Note that each image set is shown using the full dynamic range of the color map to show the

as much image detail as possible. This is especially apparent when comparing the absolute error

image sequences. For example, the maximum estimate error is around 5.5 for the theoretically

optimal acquisition where as the maximum keyhole SVD acquisition error is close to 40. If these
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two images were shown using the same color map, the optimal error image would be very light and

show very little detail.

Of particular interest is the theoretically optimal estimate sequence shown in Figure 5.5. The

estimate error images show few features, appearing almost spatially white noise. The magnitude

of the estimate error is also smaller than the realizable methods by nearly a factor of ten. This

indicates that low-order acquisition methods have tremendous potential in reducing the acquisition

time of dynamic MRI sequences.
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Figure 5.4: Low-order acquisition method comparison showing the relative error for the synthetic
contrast change sequence

The results for the synthetic sequence shown previously are consistent with acquisition simu-

lations using the original knee-tumor contrast sequence image data. A comparison of the relative

error is given in Figure 5.12. This shows that again the Fourier based methods outperform the

other realizable methods. Two of the new methods reposed in this thesis, CG-St and lp(Y XH),

perform better than the SVD method. The third, lp(Aest), does not due to the bias of the input

selection towards previous inputs as discussed in Section 5.2.1.
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Figure 5.5: Simulated synthetic contrast change sequence acquisition using the Optimal method:
(a) Estimated Images and (b) Absolute Estimate Error
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Figure 5.6: Simulated synthetic contrast change sequence acquisition using the Linear Predictor
[lp(Y XH)] Method: (a) Estimated Images and (b) Absolute Estimate Error
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Figure 5.7: Simulated synthetic contrast change sequence acquisition using the Linear Predictor
[lp(Aest)] Method: (a) Estimated Images and (b) Absolute Estimate Error
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Figure 5.8: Simulated synthetic contrast change sequence acquisition using the CG-St method: (a)
Estimated Images and (b) Absolute Estimate Error
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Figure 5.9: Simulated synthetic contrast change sequence acquisition using the Fourier Keyhole
method: (a) Estimated Images and (b) Absolute Estimate Error
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Figure 5.10: Simulated synthetic contrast change sequence acquisition using the keyhole SVD
method: (a) Estimated Images and (b) Absolute Estimate Error
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RIGR Estimate Sequence (r=8)
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Figure 5.11: Simulated synthetic contrast change sequence acquisition using the RIGR method:
(a) Estimated Images and (b) Absolute Estimate Error



CHAPTER 5. ADAPTIVE MODELING OF THE DYNAMIC MRI PROCESS 97

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

frame number (n)

R
el

at
iv

e 
E

rr
or

Method Comparison using Actual Contrast Change Data (r=8)

lp(YXH)
lp(Aest)
Opt
CG−St
FK
kSVD
RIGR

Figure 5.12: Low-order acquisition method comparison showing the relative error estimating actual
contrast change MRI data

Two factors dominate the ability to track the changing images. One is the number of vectors

used for each acquisition. For each of the comparisons in this section, this choice is guided by the

distribution of the singular values of the reference image. A second factor is the rate of change

in the image. In constructing the linear system based methods, there was an implicit assumption

that the image rate of change would be much slower than the data acquisition rate.

A close inspection of Figures 5.4 shows that the relative error of the CG-St and linear pre-

dictive method lp(Y XH) decreases after frame 15 while all of the non-adaptive methods show

non-decreasing error after that same frame. This implies that truly adaptive methods which

choose new inputs for each image can potentially track image changes if those changes occur at a

slower rate than in the first example. In a clinical setting, this would translate to more frequent

low-order data acquisitions.

In the first example, the decrease in the sequence acquisition time using low-order acquisitions

is nearly a factor of ten. Thus, there is certainly some flexibly to perform low-order acquisitions
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at a more frequent rate. The next figure shows an experiment using the same synthetic sequence

data, however the rate of acquisition is now three time faster than the original data set — or from

an alternative perspective, the rate of change in the image is now three times slower. This implies

that a total of 24 = 3 · 8 vectors are applied in the same time period for the rapid acquisition

sequence compared to 8 vectors in the synthetic acquisition sequence shown previously. This gives

a total sequence acquisition time that is 24/72 = 33.3% as long as traditional methods which

acquire the entire data set of each image — still a significant time savings.

In Matlab, the commands to generate this second set were:

>> d = Image34 - Image15;
>> t = atan( 0.5*([1:20]-10));
>> t_s = interp(t,3,5);
>> ImgSeq = Image15(:)*ones(size(t_s)) + d(:)* 0.5*( 1 - t./min(t_s) );

Figure 5.13 shows a comparison of each of the six methods for this more frequent acquisition

sequence. Here again, the Fourier based methods outperform the linear system based methods.

However, for lp(Y XH), which uses the general adaptive framework with a linear prediction on

Y XH to determine subsequent inputs, the image estimate does improve over time as the contrast

change slows. In fact, at the end of the sequence, the estimate error is significantly lower than

estimates provided by the Fourier based methods. This illustrates the fact that the lp(Y XH)

adaptive method is capable of tracking changes in the image sequence if the image changes occur

slowly enough.

Synthetic grapefruit sequences

To simulate the acquisition of a dynamic MRI sequence containing bulk motion, a series of images

showing a “needle” inserted into a grapefruit were acquired. The data for the 30 images in the

sequence was acquired using a modified spin echo protocol. The needle motion was simulated by

slowly advancing a chop-stick into the fruit, centering the fruit in the scanner, acquiring a single

image, and then retrieving the fruit to advance the chop-stick slightly further to prepare for the
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Figure 5.13: Low-order acquisition method comparison showing the relative error for the rapid
acquisition synthetic contrast change sequence

next frame. This process of removing and reinserting the grapefruit reset the phase orientation of

the spins in the gradient field. So while the original sequence data is complex valued, the phase

component of each pixel is far more erratic from frame to frame than would be typically observed

in a clinical experiment — one in which the subject stays in the scanner over the entire course of

the dynamic sequence acquisition. For this reason, only the absolute value of the data was used in

comparing the adaptive estimate methods. The image sequence is shown in Figure 5.19.

Close observation of the original data also revealed two secondary phenomena. First, as the

chop-stick is advanced into the grapefruit it displaces some of the fluid in the grapefruit sections,

pushing the juice towards the center. This is referred to as section expansion. The identifying

feature is that some areas of low intensity in the first image become areas of high intensity later in

the sequence. Second, because the grapefruit was handled in between each image acquisition, the

exact location of the fruit in the magnetic field tends to shift from frame to frame. This shifting is

referred to as jitter. Jitter is most easily identified by examining the difference between two image
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frames in the sequence. Such difference images show an outline of the image structure in those

image pairs where jitter occurred.

In order to isolate each of these two secondary effects, a synthetic image sequence was created.

The base image of the synthetic sequence was formed by segmenting the first image of the true

data sequence into three sections: a null signal region of low intensity, a juicy section of high

intensity, and an interface/rind section of medium intensity. A similar segmenting procedure was

applied to each of the remaining images to identify the needle motion. This needle motion data

was then used to null some pixels in the base image for each frame, thus creating the synthetic

sequence. Section expansion was simulated in the synthetic sequence by identifying participating

pixels in the original data and then interpolating those pixels in the base image to new higher

intensity values. Jitter was simulated by randomly shifting the reference points of the synthetic

data relative to the field of view.

With each of these three phenomena isolated (needle motion, section expansion, and jitter),

multiple synthetic sequences could be created. To more closely approximate the acquisition of the

real data, noise could also be added. The examples below show the relative error comparison for

the synthetic cases given in Table 5.3 for both the noise-free and additive noise cases.

Sequence Original Images Relative error comparison
Basic chopstick motion: Figure 5.14(a) Figure 5.15
Section expansion sequence: Figure 5.14(b) Figure 5.16
Sequence with jitter: - Figure 5.17
Section expansion and jitter sequence: - Figure 5.17

Table 5.5: Table of synthetic test sequences and associated figures

The basic synthetic sequence is shown in Figure 5.14(a). A comparison of the relative error for

each of the seven methods tested is given in Figure 5.15. In both the case additive noise and noise

free cases, RIGR provided the best realizable estimates. In fact, this synthetic experiment closely

mirrors the original examples given in [13], so this result is not surprising. Of greater interest

in this figure is that the relative error of the adaptive methods (CG-St, lp(Y XH), and lp(Aest))
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Figure 5.14: Original synthetic grapefruit sequences
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Figure 5.15: Relative error comparison for basic synthetic grapefruit sequence
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Figure 5.16: Relative error comparison for synthetic grapefruit sequence with section expansion
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Figure 5.17: Relative error comparison for synthetic grapefruit sequence with random jitter
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Figure 5.18: Relative error comparison for synthetic grapefruit sequence with section expansion
and random jitter
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shows wide variability over the course of the sequence. This is in contrast to the steadily increasing

error of the SVD, FK, and RIGR methods. This shows that the adaptive methods are able to

correct errors in the image estimate for motion sequences.

The synthetic section expansion sequence is shown in Figure 5.14(b). The significant feature

of this sequence is that fluid is pushed towards the center of the grapefruit as the chopstick cuts

deeper into the fruit. Thus a number of pixels show a change from low intensity to high over the

course of the sequence. A comparison of the relative error for each of the seven methods tested is

given in Figure 5.16. In this figure we note the RIGR is unable to track this type of change at all

in the noise free case. This is because the spatial envelope component of the RIGR image estimate

restricts the ability to model increasing intensity contrast changes. In the additive noise case,

the spatial envelope has more flexibility and RIGR is able to track the image changes. However,

the new lp(Y XH) method provides lower reconstruction error towards the end of the sequence.

The distribution of the other image estimation methods are consistent with the basic sequence in

Figure 5.15.

The synthetic jitter sequence is not shown here because a shift in the image by one pixel is

difficult to observe on a printed page. A comparison of the relative error for each of the seven

methods tested on the jitter sequence is given in Figure 5.16. In this figure the discontinuity

points in each relative error curve clearly identify the occurrence of jitter in the sequence. For

this sequence type, the spatial envelope that RIGR imposes prevents that method from tracking

the image shifts. From the relative error curve, we see that RIGR has an extremely difficult time

tracking jitter. The other non-adaptive methods show a relatively constant level of error between

each jitter occurrence. In sharp contrast, the new methods all correct for jitter, showing a steep

convergence curve that approaches the theoretically optimal estimate within ten jitter-free frames.

Figure 5.18 shows a relative error comparison for a sequence containing all of the independent

features simulated in this section: the basic chopstick motion, section expansion, and jitter. One

would expect that with the addition of noise this synthetic sequence would be most similar to
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clinical sequence acquisition experiments. We see again that section expansion and jitter cause

estimation failure in RIGR, which goes off the chart in the noise-free case. The SVD and FK

methods show the next level of estimate quality, providing relatively constant error performance

over the course of the sequence. However, the adaptive methods (CG-St, lp(Y XH), and lp(Aest))

show again deceasing error after each occurrence of jitter in the sequence. The jitter occurs in

this sequence with enough frequency that the adaptive method’s estimate quality never reach

the quality provided by the optimal method. The improvement over the static input methods is

substantial however.

Acquisition simulations using actual MRI data

The following figures compare each of the methods discussed above for a simulated dynamic MRI

sequence acquisition using actual MRI data. The dynamic sequence was created by acquiring

images of a chopstick as it was inserted into a grapefruit. A more complete description of the data

acquisition method is given in the first paragraph of Section 5.3 and the original data sequence is

shown in Figure 5.19. Figures 5.21 through 5.27 show image estimates constructed using each of

the six methods given in Table 5.3.

Acquisition method Acronym Estimates
Theoretically Optimal [ Opt ] Figure 5.21
Linear prediction with input Ă = Y XH [ lp(Y XH) ] Figure 5.22
Linear prediction with input Ă = Y XH + ̂An−1(I −XXH) [ lp(Aest) ] Figure 5.23
Conjugate gradient on Stiefel manifold [ CG-St ] Figure 5.24
Fourier keyhole [ FK ] Figure 5.25
Keyhole SVD [ kSVD ] Figure 5.26
RIGR [ RIGR ] Figure 5.27

Table 5.6: Methods and associated figures used in simulated acquisition using actual MRI data

Each figure shows both the image estimate and the absolute estimate error. Figure 5.20 com-

pares the relative error, re( ̂An) = ‖An − ̂An‖2F /‖An‖2F , for the seven methods.

Clearly, the adaptive methods developed in this work perform much better than the methods



CHAPTER 5. ADAPTIVE MODELING OF THE DYNAMIC MRI PROCESS 108

previously proposed. Each of the non-adaptive methods (FK, kSVD, RIGR) tend to have similar

relative performance although the apparent errors are unique to each method. From Figure 5.26,

the SVD method shows significant “blocky” artifacts that appear at the edge of the fruit. Fig-

ure 5.27 shows that RIGR is unable to properly estimate those regions that contained a low signal

level in the first image. Specifically, a significant amount of error occurs in those grapefruit sections

where the fluid has been pushed towards the center of the fruit by the chopstick. As expected,

the Fourier Keyhole method suffers from significant blurring. This is especially apparent along

the edges of the chopstick. All of these methods grow progressively worse over the course of the

sequence. This is because either the input vectors (in the case of the SVD method) or the image

estimate model (in the case of FK and RIGR) are closely biased to the original image. Thus these

three methods are unable the correct for slight shifts in the location of the fruit.

From the relative error comparison of Figure 5.20, the linear predictive and CG-St meth-

ods show significantly lower error than the other three methods. The linear prediction method,

lp(Y XH), performs better than the CG-St method, showing results consistent with the synthetic

sequences examined above. However, the vast difference between the physically realizable methods

and the theoretically optimal at this order of reconstruction show that there is significant room

for improvement in the area of low-order dynamic MRI.

5.4 Summary of the dynamic problem

This section presented new methods for estimating dynamic MRI sequences. A general adaptive

image estimation framework was developed. Analysis showed that previous low-order estimation

methods, specifically Fourier Keyhole and SVD methods, are special cases of this general frame-

work. This section also explored issues related to the dynamic determination of input vectors. This

analysis identified that methods to choose new vectors based on previous image estimates tend to

be biased towards the input vectors used to reconstruct those estimates. We denote this tendency
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Figure 5.19: Original image sequence for simulated grapefruit acquisition
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Figure 5.20: Relative error comparison for simulated grapefruit sequence acquisition



CHAPTER 5. ADAPTIVE MODELING OF THE DYNAMIC MRI PROCESS 110

Optimum Estimate Sequence (r=25)

10

20

30

40

50

60

70

80

90

100

110

(a)

Absolute Error for Optimum Estimate Sequence (r=25)

0

2

4

6

8

10

(b)

Figure 5.21: Simulated grapefruit sequence acquisition using Optimal method: (a) Estimated
Images and (b) Absolute Estimate Error
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Figure 5.22: Simulated grapefruit sequence acquisition using Linear Predictor [lp(Y XH)] Method:
(a) Estimated Images and (b) Absolute Estimate Error
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Figure 5.23: Simulated grapefruit sequence acquisition using Linear Predictor [lp(Aest)] Method:
(a) Estimated Images and (b) Absolute Estimate Error
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Figure 5.24: Simulated grapefruit sequence acquisition using CG-St method: (a) Estimated Images
and (b) Absolute Estimate Error
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Figure 5.25: Simulated grapefruit sequence acquisition using Fourier Keyhole method: (a) Esti-
mated Images and (b) Absolute Estimate Error
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Figure 5.26: Simulated grapefruit sequence acquisition using keyhole SVD method: (a) Estimated
Images and (b) Absolute Estimate Error
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Figure 5.27: Simulated grapefruit sequence acquisition using RIGR method: (a) Estimated Images
and (b) Absolute Estimate Error
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as the subspace trap. Two input identification algorithms were presented which overcome the sub-

space trap. These methods used the conjugate gradient method on the Stiefel manifold, CG-St,

and linear temporal prediction, lp(·), respectively. The linear prediction method has the added

feature of input flexibility. Specifically, predictor inputs may be different from the image sequence

estimates. Two such inputs were identified and compared in this section: the full rank estimate,

̂An, and the low-rank instantaneous estimate, Y XH . Examples in this section show that given a

sufficient number of input vectors and rapid enough data acquisition rate, these adaptive methods

provide image estimates that exhibit a significant quality improvement over previous low-order

dynamic sequence estimation methods.



Chapter 6

Conclusions and future research

This work showed that signal processing techniques can be applied to the acquisition of MRI

images to improve the efficiency of dynamic sequence acquisitions. The methods presented draw

primarily from the linear system model of Panych and Zientara, and thus are applicable with

imaging modalities for which the model holds true.

The significant results of the static problem work was the CCD algorithm, a numerical method

to efficiently represent an arbitrarily shaped region of interest in a static image. While similar

to traditional matrix completion problems, this new method provides a numerical solution that

does not impose any inherent structure on the matrix to be completed. However, as shown in

Section 4.4.2, the utility of this method for acquiring MRI images is somewhat limited. The

presence of noise in the image acquisition process severely corrupts the ability of this method to

provide high quality estimates of the ROI. A discussion of how to possibly overcome noise in the

image acquisition and reconstruction process is discussed below in Section 6.2.

The significant results of the dynamic problem were the development of a general adaptive

estimation framework and two methods to dynamically determine suitable acquisition inputs. To-

gether, these new methods address both the image estimation and input identification aspects of

the dynamic problem. Analysis of the adaptive framework shows that the Fourier Keyhole and
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SVD methods of low-order acquisition are special cases of the general method presented in Sec-

tion 5.1. With the inclusion of the input identification methods, both the conjugate gradient on the

Stiefel manifold (CG-St) method and the linear predictor methods (lp(Y XH) and lp(Aest)), this

truly adaptive estimate method outperforms previously proposed low-order acquisition methods

for a variety of dynamic MRI sequence acquisition simulations. The primary open question is:

Do other realizable methods exist that more closely approach the performance of the theoretically

optimal method? Possible answers to this question are discussed in Section 6.2.

It should be noted that the general adaptive framework presented in Chapter 5 is applicable

to any dynamic system estimation problem where one has control over the system excitation used

during data acquisition. This includes a variety of imaging modalities including sonar, radar, and

possibly X-ray / CT imaging. The work presented in this thesis also provides a framework to

determine the most appropriate set of excitation vectors to use for such imaging modalities.

6.1 Open static problem questions

The primary conclusion from the static work is that while inputs can be designed to efficiently

reconstruct an arbitrarily shaped region of interest, reconstruction quality using these vectors in

a noisy environment is limited. Thus, any future work focused on the static problem must resolve

the presence of noise in the system.

One may start by recasting the linear system model as

Y = AX +N (6.1)

where N is a noise matrix identical in size to X and Y . My examination of the experimental

output data indicates that the noise is uncorrelated and normally distributed. Thus N can be

described by a Gaussian probability distribution.

Introducing the system model with noise into the static ROI reconstruction problem of Chap-
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ter 4, the cost function becomes

J = ‖S ◦ (A− (AX +N )LH)‖2F = ‖S ◦ (A−AXLH +NLH)‖2F . (6.2)

Close examination of (6.2) identifies two conflicting design constraints. First, the norm of X (which

translates to power in the applied rf excitation signal) must be kept close to unity in order to keep

the linear system model valid. Second, the norm of L must be small in order to keep the noise

matrix from dominating the reconstruction.

However, a third constraint on the problem is introduced by the scanner hardware. Specifically,

the maximum amplitude of the input rf vectors is ’1’. If the singular value spectrum of XLH is

applied solely to X, then the combined effect of both hardware scaling and spectrum scaling is to

reduce the amplitude of a significant number of the input vectors. For the experiments shown in

Section 4.4.2, the columns of X associated with the large singular values of XLH did not generate

a strong signal. In fact, the columns of X associated with the large singular values of XLH may be

in the range space of the image slice. Thus, there is no guarantee that these vectors will produce

any measurable signal at all. In addition, if the singular value spectrum of XLH is applied to X,

the vectors of X associated with the smaller singular values may be significantly reduced and not

produce a measurable output signal either.

Thus, it appears that X and L must both be orthogonal for most practical MR image acqui-

sitions. A simple strategy is to constrain L = X and minimize (6.2) while constraining X to the

Stiefel manifold, i.e., X ∈ St(n, r). However, preliminary results show that this solution path is

not beneficial. For a random matrix A of size 15 × 15, and the diamond shaped selection matrix

S shown in Figure 6.1, we find that such a constrained problem produces a solution with signif-

icantly higher error than the original CCD algorithm provides. Table 6.1 shows the statistics of

applying both the CCD algorithm and a minimization of (6.2) with X = L and X ∈ St(n, r) to

100 random matrices A. The elements of A were Gaussian distributed with a mean value of zero

and a standard deviation of one. These results are also compared with the value of (6.2) using the
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right singular vectors of A and the right singular vectors of S ◦A, denoted rSV(A) and rSV(S ◦A)

respectively. Clearly, there is no significant advantage provided by minimizing (6.2) with X = L

and X ∈ St(n, r). The performance is nowhere near the performance of the CCD algorithm, and

is only slightly better than using the right singular vectors of S ◦A.

CCD X ∈ St(n, r) rSV(A) rSV(S ◦A)
mean 0.2996 0.4646 0.5848 0.4742
standard deviation 0.0438 0.0436 0.0445 0.0432

Table 6.1: Error comparison between CCD and X = L ∈ St(n, r) methods for 100 random matrices
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Figure 6.1: Diamond shaped region of interest

Thus, from this perspective, the best strategy may be to redesign the CCD algorithm with the

constraint that both X and L lie in the Stiefel manifold. However, while possible, I highly doubt

that this method will match the results of the unconstrained CCD algorithm.
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6.2 Open dynamic problem questions

The research on the dynamic problem provided a general estimation framework and showed two

methods for dynamically determining input vectors that provide superior MR image estimates

over the current state of the art. In sharp contrast to previous methods which focused on the

acquisition of contrast change sequences, these new methods are particularly well suited to handle

many types of image changes including bulk motion and jitter. Thus, it is expected that these

methods are quite well suited to handle clinical imaging scenarios.

However, comparing the image quality of the realizable low-order methods with the theoret-

ically optimal method, we see that there is significant room for improvement in the realizable

methods. For example, the image estimate error in theoretically optimal estimates appears to

be uncorrelated with the structure of the original image. This is not the case for the realizable

methods. Specifically, errors often appear at the edges of regions showing motion change. Thus

the open question discussed in this section is, How can one determine realizable inputs that are

close to the theoretically optimal?

The crux of this problem is somewhat obscure. The basic concept of the prior SVD methods

is to track the images and determine new inputs from the previous estimates. We showed in

Section 5.2.1 that this strategy is somewhat limited due to the bias of future inputs to previous

inputs. A second point of view is to track the dominant subspace of the underlying image system.

In general, this is very difficult to do. Consider an example given by Stewart and Sun in [40]. The

right singular vectors of the matrix

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
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This example shows that the transition of the right singular vectors of a matrix can be discontinuous

even for very small changes in the matrix itself. However, keep in mind that in the adaptive

framework the theoretically optimal method uses differences between matrices to identify suitable

input vectors. Generally speaking, there is little reason to suspect that the dominant singular

vectors of difference matrices are at all similar over the course of a dynamic MRI sequence. Thus,

we conclude that tracking singular vectors is of limited utility.

Of the methods examined thus far, the linear predictor methods have the greatest potential

for approaching the estimate quality provided by the theoretically optimal method. Two main

avenues of research are available. First, the linear predictor methods presented in this thesis used

temporal prediction on a pixel-by-pixel basis. Given the fact that bulk motion changes so strongly

affect the estimate quality, it is reasonable to expect that including spatial changes in the predictor

will provide superior performance. Second, incorporating image change models will likely improve

the image estimate quality. These models would likely need to be case specific such as a temporal

model matched to the stimulus used in functional MRI studies or a periodic bulk motion model to

predict changes introduced by breathing or cardiac activity.

There are other questions of secondary priority that remain open at this juncture. These

relate to specific design criteria in the acquisition of clinical dynamic sequences. For example,

currently there is no clear guideline for selecting the number of input vectors to use for each

image acquisition/reconstruction. The examples given in Chapter 5 used a ratio of partial sums of

singular values from the reference image. This appeared to give consistent quality for a variety of

sequences, but better selection methodologies for block acquisition size may be needed in clinical

settings. Furthermore, this number was assumed to be fixed in Chapter 5. It may in fact be

advantageous to dynamically set the number of new input vectors for each new image acquisition.

Conceivably, this selection would depend on a measured quality of output data, growing larger if

the output data is dramatically different than expected and growing smaller if the output data

closely matches the expected data. This approach is bolstered by the fact that the theoretically
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optimal method can reconstruct high quality images of the synthetic knee sequence using only one

input vector.

Other secondary issues include how often data needs to be acquired and whether the acqui-

sition and image estimation should be performed a single vector at a time or in a block fashion.

Preliminary analysis shows that block-vector acquisitions does not track the image changes quite

as well as single-vector acquisitions, but that they are not significantly different. Implementation

in a clinical setting may in fact be the driving force in this design decision. Likewise, while most

likely image sequence dependent, the rate of data acquisition may depend significantly on hardware

constraints. Firm guidelines as to acquisition rates and algorithm robustness for certain clinical

sequences needs to be more fully addressed.

Finally, it would be preferable to have a “one size fits all” low-order acquisition method. With

the adaptive estimate framework, this would most likely be accomplished with hybrid techniques.

The primary advantage of the linear system model is that inputs need not be constrained to a single

basis. One could potentially use Fourier basis vectors in tandem with vectors identified through

other means, e.g., via the SVD, CG-St, or linear predictor methods. This would provide the image

estimation with the ability to track both contrast and motion changes while not restricted to one

specific modality. Such hybrid techniques are worth further exploration.



Appendix A

Analytic Details

A.1 Linear Algebra Nomenclature

The section seeks to give a brief review of linear algebra terms and concepts required in this thesis.

It roughly follows the conventions given by Stewart & Sun in Chapter I of [40].

Throughout this thesis there is a loose association between the letter denoting a vector or matrix

and the lower-case letter denoting its elements. Thus, aij will usually denote the (i, j)-element of

a matrix A and xj with denote the jth element of the vector x.

The zero vector, or scalar, will all be written 0 (a boldface zero). The zero matrix will be

written 0. The identity matrix will be written as I, or In when it is necessary to specify the order.

The vector, or matrix, of all ones will be written 1 (a boldface one).

The transpose of a matrix A is denoted AT which swaps the rows and columns of the matrix,

i.e., the (i, j)-element of AT is aji. The complex conjugate transpose of a matrix A is denoted AH

which swaps the rows for the conjugate of the columns, that is the (i, j)-element of AH is a∗ji.

The standard matrix-vector product b = Ax is defined as bi =
∑n

j=1 aijxj . The element-

by-element product, also referred to as the Schur or Hadamard product [18, Chp. 5], is denoted

C = A ◦B where cij = aijbij .
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The matrix A is

1. symmetric (Hermitian) if AT = A (AH = A);

2. positive definite ( positive semi-definite, negative definite, negative semi-
definite) if it is Hermitian and xHAx > (≥, <,≤)0 for all x 6= 0; an equivalent condition on
a Hermitian matrix A is that all of the eigenvalues of A are positive (non-negative, negative,
non-positive);

3. normal if AHA = AAH;

4. unitary, or orthogonal if AHA = AAH = I;

5. upper triangular if it is square and αij = 0 ∀ i > j; i.e., if it is zero below its diagonal;

6. lower triangular if it is square and αij = 0 ∀ i < j; i.e., if it is zero above its diagonal;

7. diagonal if it is upper and lower triangular; i.e., its nonzero elements are on its diagonal;

8. a permutation matrix if it is obtained by permuting rows and columns of the identity
matrix.

9. idempotent if A2 = A.

10. skew symmetric (skew Hermitian) if (AT −A)/2 = A ((AH −A)/2 = A)

The notation diag{(δ1, δ2, ..., δn)} will mean a diagonal matrix whose diagonal elements are

δ1, δ2, ..., δn. The scalars δi may be replaced by square matrices, in which case the matrix will be

said to be block diagonal. Block triangular matrices are defined similarly. The notation

vec{A} refers to stacking the columns of matrix A to create a single vector.

The Frobenius norm of A is defined as

‖A‖2F =
∑

i,j

|aij |2. (A.1)

The Frobenius norm may also be calculated as ‖A‖2F = tr{AHA} =
∑

i(A
HA)ii .

Projections

Let X be a subspace of n-dimensional Euclidean space and let the columns of QX form an

orthonormal basis for X . The matrix

PX = QXQH
X

is called the orthogonal projection onto X . Any vector z can be decomposed into two terms

z = PX z + P⊥X z
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where P⊥X is a projection onto the orthogonal complement of X .

Projections do not have to be orthogonal. In fact, any idempotent matrix P , Hermitian or not,

can be regarded as an oblique projection onto the range space of P .

Eigenvalues and Eigenvectors

The pair (x, λ) is called an eigenpair of the matrix A if x 6= 0 and Ax = λx. The set of

eigenvalues of A is written L(A). An eigen vector decomposition of a matrix A is

A = Udiag{L(A)}UH

where the matrix U is unitary. A unitary matrix is a normal matrix with eigenvalues on the unit

circle. A Hermitian matrix is a normal matrix with real eigenvalues.

The Singular Value Decomposition

A matrix A can be decomposed into [39]

A = UΣV H (A.2)

where A is a matrix of order n,

Σ = diag{(σ1, σ2, · · · , σn)}

has non-negative elements arranged in decreasing order, and U = (u1 u2 · · · un) and V =

(u1 u2 · · · un) are orthogonal matrices. The elements of Σ are known as the singular values,

thus A.2 is known as the singular value decomposition (SVD) of A. The Frobenius norm of A is

related to the singular values via

‖A‖2F =
∑

i,j

|aij |2 =
∑

i

σ2
i (A.3)

Through the matrix products

AHA = V ΣUHUΣV H = V Σ2V H

and

AAH = UΣV HV ΣUH = UΣ2UH
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we see that U and V are the eigen-decomposition unitary matrices of AAH and AHA respectively.

E. Schmidt showed [39] that if

Ak =
k

∑

i=1

σiuivH
i (A.4)

then

‖A−Ak‖2F = ‖A‖2F −
k

∑

i=1

σ2
i =

n
∑

i=k+1

σ2
i (A.5)

which was subsequently extended to rectangular matrices by Eckart and Young [9, 10]. Thus

discarding the least significant singular values and associated vectors provides a method of matrix

approximation.

The dominant singular vector of A can be identified [18] through

max
v
‖Av‖2F .

Given that the singular vectors are orthogonal, one could solve the following problem repeatably

max
vk

‖(A−Ak−1)vk‖2F .

for k = 1, 2, · · · , n to identify each singular vector of A in order.

The absolute error of an approximate matrix ̂A is defined as

ae(A, ̂A) = ‖ ̂A−A‖2F . (A.6)

The relative error in ̂A is

re(A, ̂A) =
‖ ̂A−A‖2F
‖A‖2F

. (A.7)

The Moore-Penrose generalized inverse (also known as pseudo-inverse) of A satisfies

each of the following conditions:

1. AA†A = A,

2. A†AA† = A†, and

3. AA† and A†A are both Hermitian.
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By retaining only the k dominant singular values of A one can construct the generalized inverse

A† via

A† = V Σ†UH = V diag{(σ−1
1 , σ−1

2 , · · · , σ−1
k , 0, · · · , 0)}UH (A.8)

A.2 Derivatives of complex valued matrix functions

This section concerns finding the derivative of a complex valued function J (w) with respect to

the vector w. The material presented here draws primarily from the discussion given by Haykin

in [14, Appendix B].

Given a set of N complex valued scalar parameters wk = xk + yk, one can form a complex

valued vector

w =

[

w1 w2 · · · wN

]

.

We begin by defining the gradient of the function J as

∇J = 2
dJ
dw∗

where the derivative and partial derivative operators are defined as

d
dw

∆=
1
2
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and
∂

∂wk
=

1
2

(

∂
∂xk

− 
∂

∂yk

)

respectively. Applying the partial derivative to wk and the conjugate w∗k we find

∂wk

∂wk
=

1
2

(

∂
∂xk

− 
∂

∂yk

)

(xk + yk) = 1/2[1 + 0 + 0− 2] = 1 (A.9)

and

∂w∗k
∂wk

=
1
2

(

∂
∂xk

− 
∂

∂yk

)

(xk − yk) = 1/2[1 + 0 + 0 + 2] = 0 (A.10)

Similarly, ∂wk
∂w∗k

= 0 and ∂w∗k
∂w∗k

= 1.



APPENDIX A. ANALYTIC DETAILS 130

Thus, for the following matrix combinations of w and an arbitrary vector p we find:

∂
∂w (wHp) = 0 ∂

∂w (pHw) = pH

∂
∂w∗ (w

Hp) = p ∂
∂w∗ (p

Hw) = 0

A.3 Efficient solution of vectorized systems

In the development of the CCD algorithm, systems of linear equations appear which are described

by matrix equations that contain Kronecker products. Systems containing Kronecker products

tend to be very large and require a substantial amount of memory and processing power to solve.

However, the system matrices presented in this paper, (4.18) and (4.19), contain a significant level

of structure that can be exploited to speed the system solution calculation.

In each of the equations mentioned, the symmetric matrix to invert is of the form

MT diag{vec{S ◦ S}}M . In (4.18), M = (L ⊗ A) = (L ⊗ IM )(Ir ⊗ AT ) and likewise in (4.19),

M = ((AX)T ⊗ IN ). If A has full row rank, as we assumed throughout this paper, then in each

case the central matrix to invert is of the form R = (BT ⊗ I)diag{vec{C}}(B ⊗ I). For (4.18),

B = L, and for (4.19), B = (AX). Expressions of this type can be rewritten in block matrix form

with each block containing a diagonal matrix, determined as

Rij = (BT
(:,i) ⊗ I)diag{C}(B(:,j) ⊗ I) = diag{C(B(:,i) ◦B(:,j))}. (A.11)

Collecting the sub-blocks together, we find

R =











diag{C(B(:,1) ◦B(:,1))} diag{C(B(:,1) ◦B(:,2))} · · · diag{C(B(:,1) ◦B(:,m))}
diag{C(B(:,2) ◦B(:,1))} diag{C(B(:,2) ◦B(:,2))} · · · diag{C(B(:,2) ◦B(:,m))}

...
...

. . .
...

diag{C(B(:,m) ◦B(:,1))} diag{C(B(:,m) ◦B(:,2))} · · · diag{C(B(:,m) ◦B(:,m))}
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(A.12)

This matrix can then be permuted to form a block diagonal matrix via

PrRPc =











�
�

. . .
�











. (A.13)
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To find the pseudo-inverse of this matrix, one may use the SVD of each individual sub-block to

construct the SVD of the entire matrix R. By decomposing the matrix in this way, the processing

resources required to compute the pseudo-inverse can be dramatically reduced. This enables the

solutions required in each iteration of the CCD algorithm, § 4.3, to be calculated very quickly.

A.4 Index of symbols

This thesis presents material from three disciplines: physics, mathematics, and signal processing.

While closely related, it should not be a surprise that a symbol associated to a concept in a given

discipline will have a completely different association in a different field. There are two conflicting

needs when faced with the choice of symbol designations for the concepts presented. On the one

hand, the symbols presented should be in close correlation with other published literature. On the

other, there are a limited number of symbols, and one would like to avoid symbol conflict — that

is having one symbol represent two concepts.

When discussing linear algebra concepts, this work uses capital arabic letters for matrices.

There is a loose association between the letter denoting a vector or matrix and the lower-case

letter denoting its elements. Thus, aij will usually denote the (i, j)-element of a matrix A and

aj will usually denote a row or column of A. Lower-case greek letters generally represent scalar

quantities. Upper-case greek letters represent either the Fourier domain representation of a matrix

or a significant scalar function. When discussing physics related material, most vectors represent

an element triple in Euclidean space, and are thus represented in bold notation. For clarity, the

tables below list the symbols used for each chapter.
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Chapter 2

âx, ây, ây Euclidean space basis vectors
ρ spin distribution in a volume
~I intrinsic particle spin vector
I particle spin state
~µ molecular magnetic moment
γ gyrometric ratio
~ Planck’s constant divided by 2π
L angular magnetization vector

M = Mxâx + Myây + Mzâz bulk magnetization vector
B0 = B0âz strong static magnetic field

B1 oscillating transverse magnetic field
G gradient magnetic field
t time
T temperature (◦ Kelvin)

Em energy of particle m
r particle position
v particle velocity
ω precessional frequency
ω0 Larmor frequency (ω0 = γB0)
φ phase of magnetization vector
θ tip angle of magnetization vector
τ time (constant) between successive rf pulses
T1 longitudinal or spin-lattice relaxation time

T2 and T ∗2 transverse or spin-spin relaxation time (∗ indicates
recoverable energy)

k = kxâx + kyây + kzâz reciprocal spatial distance
S(t) or S(k) received signal (in either time domain or sampled

k -space domain)
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Chapter 3

S(k) received signal
ρ(r) spin distribution at a spatial point r

k = kxâx + kyây + kzâz reciprocal spatial distance
x, y, z spatial location
M,N number of matrix rows, columns
R k -space data matrix from sampled received signal
ci RIGR model parameters

u, v and m, n RIGR matrix locations
p Linear system model (LSM) input pulse
T LSM duration of phase gradient pulse
τ LSM total time

∆tp LSM interval between hard pulses
gm LSM model parameters
cm LSM fixed set of input pulses with known response
Π LSM hard pulse
R system response matrix
Y system response in k -space

P = Cg system input in k -space
FN Unitary Fourier transform matrix of size N

Y = AX linear system model in spatial domain
E absolute error
S selection matrix
θ principle angles

UΣV H and u, v, σ SVD components

Chapter 4

J cost
Y = AX and Â = Y LT linear system model in spatial domain

S selection matrix
M, N matrix sizes

r number of columns in input/output matrices
Q = XLT special case of reconstruction projection

σi singular values
ε error threshold

s1, s2 and D1, D2 low-rank vectors of S and diag{si}
αi logical index vector
qi columns of Q
i, j (i, j)th element of matrix
sij (i, j)th element of matrix S

Z,W arbitrary matrices (mental constructs)
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Chapter 5

J cost
Yn = AnXn linear system model in spatial domain

Â, Ŷ estimate of image, output
M,N matrix sizes

r number of columns in input/output matrices
α, β generic image change parameters
E absolute error

φ(x), A, b function for development of CG algorithm
rn residual
α step parameter
β step parameter
pk CG step direction

St(n, p) Stiefel manifold of order n with p columns
X,Z matrices in St(n, p) definition
P tangential matrix

QR QR decomposition matrices

Ãn+1 predicted matrix
Ăn predictor input matrix
c predictor model coefficients

u, v, w arbitrary coefficients
RW arbitrary matrices

En = |A− Â| absolute error

Chapter 6

S, Y, A, X,L static problem matrices
N Noise matrix
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