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Hyde, Damon Eliot (PhD E.E.)

Statistical Modeling and Structured Regularization for Fluorescence Molecular Tomog-
raphy

Thesis directed by Prof. Dana Brooks, Prof. Eric Miller, and Prof. Vasilis Ntziachristos

Fluorescence molecular tomography (FMT) is an optical imaging technique that
uses near infrared light to localize and quantify in vivo distributions of fluorescent probes
targeting biochemical markers such as genes, proteins, and enzymes. In this thesis, we
examine three aspects of the FMT reconstruction problem: statistical data modeling in
the context of normalized fluorescence imaging, methods for the use of prior structural
information arising from multi-modal FMT-CT imaging, and techniques to compensate
for errors in that prior information. We derive a probabilistic model for normalized
fluorescence data and use this model as the basis for reconstruction. This eliminates errors
and human biases introduced by manual data thresholding and is shown to yield improved
reconstructions with greater consistency. To improve upon the resolution limits of stand-
alone FMT, we examine modeling and regularization that incorporates structural prior
information available from data acquired by a complementary imaging modality such as
CT or MRI. We show that improved diffusion forward models using average tissue optical
properties can subsequently result in improved reconstructions. A two step inversion
approach is then presented, using the solution to an anatomically defined low dimensional
problem as the basis of a spatially varying regularization term for the full resolution
problem. Results are presented for both simulated and in vivo data, in the context
of imaging a mouse model of Alzheimer’s disease. Such diffuse targets are difficult to
reconstruct with stand alone approaches, thus highlighting the utility of the multimodal
approach. Results are correlated with post mortem fluorescence measurements, and show
a high degree of correlation between reconstruction intensity and observed fluorescence.
Finally, two methods are presented to address situations where the prior information
and underlying fluorescence share similar, but not identical, structure. The first uses
differential equations to derive a Gaussian prior model for the fluorescence image. The
incorporation of boundary conditions between anatomical regions allows information to
cross their boundaries, and can help to compensate for boundary misplacement in the
prior. The second approach uses the sparsity inducing properties of 1-norm minimization
to localize the boundary within an uncertainty region around its initial position. Both
approaches are tested using a range of 2-D simulated experiments.
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Chapter 1

Introduction

1.1 Statement of Problem

Fluorescence based molecular imaging has been an increasingly useful tool in the

advancement of biological science, enabling improved resolution of functional activity at

levels down to the nanometer scale [1,2]. Fluorescent dyes with high molecular specificity

have been designed to target a wide array of biological activity, from protein synthesis to

gene and enzyme activity. This capability has enabled researchers to advance biological

and medical knowledge, led to a greater understanding of disease pathologies, and assisted

in the development of new treatments and cures.

Fluorescence molecular tomography (FMT) takes the advances in probe technology

originally pioneered for the field of microscopy and applies them to the problem of in

vivo imaging in whole animals, thereby allowing studies which would previously have been

difficult if not impossible to accomplish [3–17] . While planar epi-illumination systems

have been used with fluorescent probes to provide in vivo imaging, these methods are

limited by the two dimensional nature of the resulting images. The images collected are

projections of the three dimensional fluorescence distribution onto the 2D plane of the

camera, blurred by the diffusive nature of tissue. Inhomogeneities in the optical properties

of the tissue mean that this blurring is variable, and not easily compensated for the way

one might compensate for Gaussian blurring in an astronomical image [18]. By using

physical models of light diffusion to form and solve an inverse problem, FMT is able
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to directly image the three dimensional distributions of fluorescence, resulting in images

with greater quantification than those obtained with planar systems. Given its capacity

to image whole animals in vivo, FMT systems can additionally be used to implement

lateral studies, with a single animal imaged at multiple dates, where previously that

animal would have been sacrificed to perform a single imaging study. By following animals

through the progression of a disease, information can be gathered which is unavailable

when only a single imaging session can be performed.

Mathematically, the propagation of light through tissue more than a few millime-

ters thick is often modeled by the diffusion approximation [19]. This arises as an ap-

proximation to the radiative transport equation when assuming isotropic scattering [20].

For the case of fluorescence imaging, a full model needs to use the diffusion approxima-

tion twice [21]. The first instance is to describe the diffusion of light at the excitation

wavelength, given the intrinsic optical properties of the medium. The solution to that

equation then becomes the forcing term of the second diffusion approximation, model-

ing the propagation of light at the fluorescence wavelength. The direct solution of this

coupled problem is complicated [21], and has led to the development of normalization

methods for use when only the fluorescence distribution is of interest [4,22,23]. To com-

pute inverse solutions, the underlying physical models are typically linearized, to yield a

linear algebraic form for the inverse problem. The forward matrices involved are highly

ill-posed, and require regularization to stabilize solution of the inverse problem.

1.2 Thesis Contributions

This thesis makes three primary contributions to the advancement of FMT imaging

techniques. The first consists of the derivation and analysis of an approximate statistical

model for normalized fluorescence imaging. This results in two methods for obtaining

approximate maximum likelihood solutions to the problem of fluorescence molecular to-

mography using the Born ratio. The second examines methods for utilizing CT or other
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structural information as a priori information within the FMT reconstruction. The final

contribution offers approaches to compensate for errors within structural prior informa-

tion. These contributions are completed within the context of in vivo imaging of several

mouse disease models, including breast cancer, lung inflammation and Alzheimer’s dis-

ease.

Statistical Inversion For imaging situations where the spatial distribution of

fluorochrome is the only desired image, a data normalization scheme referred to as the

normalized Born ratio has previously been introduced [4,22,23]. By using data collected

at the excitation wavelength to normalize the corresponding fluorescence measurements,

the Born ratio allows for direct determination of fluorescence distributions without ex-

plicitly solving the full coupled set of differential equations. It achieves this by providing

a degree of invariance to inhomogeneities in the background optical parameters of the

medium [23]. Additionally, use of the Born ratio eliminates the need to determine source

and detector coupling coefficients, further simplifying the inversion process.

While the Born ratio is useful for overcoming nonlinearities arising from imaging

through an inhomogeneous medium, it also introduces a problem. Typically in optical

imaging, a higher amplitude received signal is associated with a higher signal to noise ratio

(SNR) (i.e., more information content). However, when using the Born ratio, the pro-

cessed data are the ratio of two such signals, and thus the absolute intensity is no longer

an indicator of SNR. This has led to data preprocessing methods which involve threshold-

ing, using only those data points whose component signals are judged to have sufficiently

high SNRs. While effective, there exists no analytic method for setting these thresholds,

leaving these methods highly subjective and operator dependent. This dependency leads

to increased variability between individual inversions and is highly undesirable.

To eliminate this variability, the first contribution made by this thesis is the deriva-

tion of a statistically-based inversion method which avoids the use of these subjective

thresholds. Beginning with statistical analysis and model determination for the received

ericmiller
Cross-Out

ericmiller
Inserted Text
.



4

signals, we determined an appropriate statistical model for the Born ratio. Several ap-

proximations were then made and justified to arrive at a simplified form of the probability

density. From this, an approximate maximum likelihood solution was derived in the form

of a fixed point iteration [24]. Finally, a further reduced solution was described, imple-

mented as a diagonally weighted least squares problem.

MultiModality Imaging While the data collected by fluorescence based diffu-

sion imaging systems contains large amounts of functional information, they are hindered

by a lack of spatial resolution. One method which has been suggested to help improve

on this limitation is the use of structural prior information, obtained from other imaging

modalities such as X-ray computed tomography (CT) or magnetic resonance imaging

(MRI) [25–29]. This information can then be incorporated into the tomography problem

as an anatomically based prior model of the image being reconstructed [30,31].

The development of appropriate methods for the inclusion of CT or MRI struc-

tural information in the construction of FMT inverse solutions constitutes the second

primary contribution of this thesis. Our approach begins with a high resolution X-ray

CT structural image, segmented into experimentally relevant anatomical regions. This

segmentation leads to a partial volume labeling scheme which accurately represents the

anatomic regions contributing to each solution voxel. From this, a reduced dimensional

problem was constructed to extract information from the collected data regarding the

likelihood of fluorescence within each region.

The construction and validation of this algorithm took place within the context of

an in vivo study of the development of amyloid-β plaques in a mouse model of Alzheimer’s

disease. The described method used the information from the low dimensional solution

to construct a diagonal regularization term where the degree of regularization applied to

each voxel was individualized based on the tissue(s) within which that voxel lay. This

allowed voxels to update individually, and avoids imposing constraints such as smoothness

on the relationships between voxels. While applied here to the study of Alzheimer’s
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disease in mice, the method is general enough that it could easily be applied to other in

vivo imaging targets with only the structural details being altered.

The final chapter of this thesis addresses two approaches designed to help compen-

sate for errors in the structural prior information. These errors can arise either as a result

of poor segmentation or registration between imaging modalities, or from fundamental

properties of the underlying fluorescence. In particular, because the fluorochromes im-

aged by FMT target biochemical level activity, their physical distribution may not align

precisely with anatomy. Physically apparent disease progression may be preceded by

changes on a biochemical level. The ability to accurately image these changes in vivo

would be a valuable tool for biomedical imaging.

The first approach to correcting such errors uses differential equations as the ba-

sis for a more complex Gaussian image prior. Through the incorporation of boundary

conditions between each anatomic region, correlation is established between neighboring

regions. This allows information to be passed across boundaries, and thus also allows for

the more accurate reconstruction of fluorescent distributions whose spatial distribution

does not align perfectly with the anatomic structure. The use of differential equations to

define the prior model provides a natural framework for defining maximum a posteriori

(MAP) estimation problems, and allows for a wide range of behaviors to be accurately

modeled.

As an alternate approach to allowing a “floating” boundary location, we describe

a technique that uses the sparsity inducing properties of 1-norm minimization. This

method begins by defining a boundary region that extends for some distance from the

nominal a priori boundary location. In the “trusted” regions, which are not part of the

boundary region, traditional 2-norm based smoothing regularization is applied. Within

the boundary region, vectors normal to the boundary are determined, and the image

gradient along them computed. The 1-norm of this gradient is then used as a constraint in

the final optimization problem. By using a convex optimization routine, which minimizes
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this 1-norm, subject to constraints on data and regularization mismatch, a boundary is

obtained, which can move freely within the defined boundary region, as determined by

the data itself.

1.3 Optical Medical Imaging

The use of light to extract information about biological tissues is not a new concept.

Microscopy has been around for centuries, and examines the light reflected from at, or

just below, the surface of a medium [32]. A myriad of advances have been made over the

centuries, making microscopy in its multiple current forms among the most commonly

used imaging techniques in science.

The desire to see deeper into tissue has, however, spurred the development of more

complex techniques. Initial efforts can be dated as far back as the early twentieth century,

with the suggestion to image breast lesions with transillumination [33]. Diffuse light has

also found non-imaging applications, such as in the ubiquitous pulse oximetry systems

[34]. However significant progress for tomographic purposes was not made until recent

years, when advances in both optical equipment, mathematical models, and computing

power have made accurate diffusion imaging possible.

1.3.1 Diffuse Optical Tomography

One of these new methods, commonly referred to as Diffuse Optical Tomography

(DOT), uses light in the near-infrared range to determine spatial maps of the intrinsic

optical absorption and scattering coefficients present within tissue [35–37]. This range of

wavelengths, between approximately 650nm and 900nm, corresponds to a gap in the ab-

sorption spectrum of water, allowing imaging of other biologically relevant chromophores

such a hemoglobin and deoxyhemoglobin [38,39]. These molecules, which are closely as-

sociated with blood volume and oxygen saturation, enable imaging applications such as

breast cancer detection, functional brain imaging, and fetal oxygen monitoring [40–42].
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Furthermore, by making use of relationships between physical chromophore concentra-

tions and the resulting optical parameters, multispectral methods have been implemented

which can directly determine the concentrations of target chromophores without inter-

mediate solution of the absorption and scattering parameters [43–47].

1.3.2 Radiative Transport

Due to the diffusive behavior of infrared radiation in tissue, deterministic model-

ing methods based on Maxwell’s equations have such huge computational requirements

associated with them that they are impossible to implement. Because of this, methods

based on stochastic relations have been developed to deal with these types of problems.

Given the enormous number of photons involved in a typical experiment, it is useful to

model them in a bulk stochastic fashion, rather than treating each individually. The re-

sulting “radiance” or “photon density” can be thought of as being related to the number

of photons in a given volume. The equation forming the basis of these methods is the

Radiative Transport Equation (RTE), originally developed by Chandrasekhar [48]:

1

v

∂L(r, Ω̂, t)

∂t
+∇·L(r, Ω̂, t)+µtL(r, Ω̂, t) = µs

∫
L(r, Ω̂′, t)f(Ω̂, Ω̂′) dΩ̂′+S(r, Ω̂, t) (1.1)

In (1.1), L(r, Ω, t) is the radiance (a measure of the relative concentration of photons)

at a position r, propagating along the spherical angle Ω, at time t. The probability of

a photon scattering from direction Ω̂ to direction Ω̂′ is given by f(Ω̂, Ω̂′). The speed

of light is c and the source is denoted as S(r, Ω̂, t). Additionally, µa and µs are the

spatially varying absorption and scattering parameters, respectively, with µt equal to

µs +µa. The terms on the left side represent radiance lost from a differential volume in a

differential solid angle, while the terms on the right represent the radiance gained. Thus

this equation is an expression of conservation of photons.
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1.3.3 Diffusion Approximation

While inversion methods making use of the RTE have emerged in recent years [8,

49–51], the amount of computation involved is still typically more than can be applied for

general inverse problems with large data sets. As such, given source-detector separations

greater than a few millimeters, and several assumptions about the properties of the

source and diffusive material, the diffusion approximation is typically used in placed of

the RTE. Assuming an isotropic source, and f(Ω̂, Ω̂′) which is dependent only upon the

angle between directions, the diffusion approximation can be derived [39,52], which states

that the photon density, Φ(r), satisfies the differential equation:

(D∇2 − µa)Φ(r) = −s(r) (1.2)

D =
1

3[µa + (1− p)µs]

where v is the speed of light in the tissue, µa and µs are the absorption and scattering

coefficients, respectively and s(r) is the source term. The parameter p represents the

mean cosine of the scattering angle and, given the assumption of isotropic diffusion,

replaces the angular dependence seen in the radiative transport equation.

For certain specific homogeneous geometries such as an infinite volume, infinite

halfspace, and uniform thickness slab, analytic solutions to the diffusion approximation

can be obtained in the form of Green’s functions [39]. These functions are solutions to the

diffusion approximation when the source term is a spatial delta function. The solutions

to two such geometries will be of use in this thesis: the infinite space and slab geometries.

The infinite space geometry assumes that the diffusing medium has no boundaries, or

that the boundaries are sufficiently distant that they will have a negligible effect upon

the solution. In this case, the solution to (1.2), given s(r, t) = δ(r− rs) will be [53]:

G(rs, r) =
exp{iD|r− rs|}

|r− rs|
(1.3)

That is, given a source located at rs, and a distance |r − rs| between that point and a

point r, G(rs, r) is the expected photon density at location r.
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To construct solutions for geometries involving air-tissue interfaces, the boundary

conditions at those interfaces must be established and satisfied. While multiple potential

boundary conditions exist [54], one commonly used condition is the zero-boundary or

extrapolated boundary condition. This condition states that the photon density should

take a value of zero either along the physical boundary, or at all points a specified

distance outside the boundary. To satisfy this condition for the slab geometry, an infinite

summation of positive and negative infinite space Greens functions (1.3) is used to force

the solution to zero at the desired boundary location.

More complex geometries require correspondingly more complex methods for so-

lution. For arbitrary geometries, rather than attempt to obtain analytic solutions, the

most common methods instead solve the diffusion approximation numerically. Arising

in such forms as the finite difference (FD), boundary element (BE), and finite element

(FEM) methods, these numerical solutions are used in place of the analytical Green’s

functions for computation of both forward and inverse solutions. Other solutions have

been offered which attempt to find analytical solutions for arbitrary geometries using

discretized surfaces, plane waves, and other mathematical methods [55–57].

1.3.4 Born Approximation

While the forward problem (that is, determining the value of Φ(r), given s(r)) has

a closed form given assumptions about homogeneity and geometry, and can be solved

in the general case using various numerical methods, the inverse problem is significantly

more complicated. Direct inverse solutions to the diffusion equation are very difficult,

and as such, the problem is frequently discretized and linearized in some manner to allow

solutions to be more easily obtained. One commonly used method, arising from pertur-

bation theory, is the Born approximation. This model assumes that the total received

signal is equal to the expected signal given a known background, plus a perturbation due

to differences between the background and the actual optical parameters. This yields the
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model [58]:

utotal ' ubackground + ∆u(x) (1.4)

where x is the perturbation in fluorochrome concentration or optical properties from the

assumed background. In practice, using traditional DOT systems, the value of ubackground

is simply computed and subtracted from the received data to obtain the perturbation

data. For fluorescence based systems, ubackground is typically assumed to be approximately

zero [22]. For experiments with non-negligible background fluorescence, analytic expres-

sions have been developed which allow for the subtraction of this background signal,

allowing for accurate imaging even in its presence [23].

Under the Born approximation, the computation of ∆u(x) assumes that the effects

of a perturbation at a particular point within the volume are unaffected by perturbations

at other locations, and that the total perturbation is simply the sum of all individual

first order scattering events [36]. This results in:

∆u(rs, rd) '
∫

Ω

d3rG(rd, r)x(r)G(r, rs). (1.5)

Here, rs and rd are the source and detector locations, respectively. The Green’s func-

tion G(r, rs) describes the propagation of light from the source, through a homogeneous

medium to the the point r. The perturbation x(r) interacts with the light, and is then

scattered to the detector by the Green’s function G(rd, r). Integrating across the entire

volume gives the total response seen due to first order scattering events.

1.3.5 Linearization and Formation of Inverse Problem

Because computing an inverse solution directly from the above integral equation

is difficult, the spatial domain is commonly discretized, converting the integral into a

summation across a discrete basis. The most commonly chosen is a piecewise constant

voxel basis. This reduces the above equation to:

∆u(rs, rd) =
∑
rj∈Ω

G(rd, rj)x(rj)G(rj, rs)∆Vj (1.6)
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which represents the value of a single data point as a linear combination of the image

values at each of the voxel locations rj. Because the value is constant across the voxel,

the integral is replaced by simple multiplication with the voxel volume ∆Vj, and rj is

typically taken to be at the center of the voxel. Using a vector-vector product to represent

the summation, an equation for the ith source-detector pair can be rewritten as:

∆u(rsi, rdi) = wix, (1.7)

where the jth elements of wi and x are G(rdi, rj)G(rj, rsi) and x(rj), respectively. When

all source-detector pairs are taken into consideration, the resulting forward problem can

be written as the linear system:

u =



w1

w2

...

wM


x = Wx (1.8)

where M is the total number of source-detectors pairs. We have eliminated ∆ from the

equation for simplicity, and will continue to do so for the remainder of this thesis. This

equation can be used to take a known distribution of optical parameters, x, and generate

a vector of expected data values u. The inverse problem, however, is to determine the

value of x, given a known u. For reasons discussed below in §2.2, an estimate of x can

be obtained by solving the Tikhonov regularized least squares problem:

x̂ = arg min
x
‖u−Wx‖2

2 + λ2‖Lx‖2
2. (1.9)

While analytic solutions to this problem are readily available, they are often compu-

tationally expensive. Instead, solution of the above problem is typically solved using

numerical methods such as the conjugate gradient (CG) method, LSQR, and others.

Further discussion of ill-posed problems and regularization, as well as details of several

inversion algorithms, are in Sections 2.1 and 2.3.
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1.4 Fluorescence Diffusion Imaging

Given the proliferation of fluorescent probes available for use in general microscopy,

the extension of diffuse optical methods to systems involving fluorescing targets seems

natural. An excitation laser is chosen with a wavelength such that it will sufficiently excite

the fluorochrome, and filters are used to select the appropriate wavelength of light exiting

the medium. Because the collected data are affected by the intrinsic optical properties as

well as the presence of fluorochromes, data are generally collected at both the excitation

and emission wavelengths. Data at the excitation wavelength contain information about

the intrinsic properties of the medium, while the emission wavelength data additionally

incorporate the presence of fluorochromes.

The resulting physical model is governed by not one, but two, coupled differential

equations. The first of these describes the diffusion of light at the wavelength of the

excitation laser. The second uses the diffuse photon field defined by the first equation as

the forcing term to describe the diffusion of light at the fluorescent wavelength. These

equations, which are dependent upon both the optical properties of the tissue and the

frequency at which the intensity of the source laser is modulated, can be written as [13,21]:

−∇Dx(r)∇Φx(r, ω) +

(
µax(r) +

iω

c(r)

)
Φx(r, ω) = q0(r, ω) (1.10)

−∇Dm(r)∇Φm(r, ω)+

(
µam(r) +

iω

c(r)

)
Φm(r, ω) = Φx(r, ω)νµaf

(r)
1− iωτ(r)

1 + [ωτ(r)]2
(1.11)

Where q0(r, ω) is the source term, µax(r) and Dx(r)x(r) are the absorption and diffusion

coefficients, respectively, and Φx(r, ω) is the photon density at the excitation wavelength.

The modulation frequency of the source laser intensity (if any) is denoted by ω and c(r)

is the speed of light in the medium. At the emission wavelength, Dm(r)x(r) and µam(r)

are the optical parameters, while Φm(r, ω) is the photon density. It should be noted

that the continuous wave case can easily be derived from the above frequency domain

equation by simply setting ω = 0.
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One method of solution, undertaken by several research groups, directly solves the

coupled system in a two step process [13,14,21,59]. Using data collected at the excitation

wavelength, a solution to the first equation is obtained. This yields a spatial map of the

absorption and scattering parameters, allowing for evaluation of the excitation photon

field within the volume. Given this information, a solution to the second equation can

be computed, to yield the spatial distribution of fluorescence. This method introduces

additional complexity by requiring determination of the background optical properties of

the medium, parameters which may not be of interest for fluorescence molecular imaging.

1.4.1 Normalized Born Ratio

As an alternative to directly solving the joint problem, a method known as the

normalized Born ratio, or simply the Born ratio, was introduced in [4, 22, 23]. This

normalization scheme seeks to simplify the process of obtaining a solution when the only

parameter of interest is the distribution of fluorochrome within the tissue. By using data

at the excitation wavelength to normalize the collected fluorescence data, direct solution

for the fluorochrome distribution is made possible. Assuming a homogeneous medium,

the excitation wavelength Green’s function Gλexc
o (rd, rs) can be used to write an equation

for the excitation measurements Uexc(rd, rs) as:

Uexc(rd, rs) = Qλexc
E Θexc

f Θdet(rd)G
λexc
o (rd, rs)Θsrc(rs) (1.12)

with quantum efficiency Qλexc
E ,excitation filter attenuation Θexc

f . The source and detector

coupling coefficients, which measure the efficiency with which photons are transferred

from the laser into the tissue, and then from the tissue to the CCD detector, are denoted

Θsrc(rs) and Θdet(rd), respectively. Given fluorescent measurements modeled as:

Ufl(rd, rs) = Q
λfl

E Θfl
f

∫
d3rΘdet(rd)G

λfl
o (rd, r)

ν

Dλfl
x(r)Gλexc

o (r, rs)Θsrc(rs) (1.13)

where Q
λfl

E is the quantum efficiency of the detector at the fluorescence wavelength,

Θfl
f is the attenuation of the fluorescence filter, while ν is the speed of light within the
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medium and Dλfl is the diffusion coefficient at the fluorescence wavelength. The param-

eter x(r) represents the spatially varying fluorochrome concentration that we want to

recover. Finally, Gλexc
o (r, rs) and G

λfl
o (rd, r) are the two point Green’s functions describ-

ing the transport of light from source to voxel and voxel to detector at the corresponding

wavelengths.

Given these expressions, the so-called Born ratio relationship can be written as:

U(rs, rs) ,
Ufl(rd, rs)

Uexc(rd, rs)

= α

∫
d3rG

λfl
o (rd, r)x(r)Gλexc

o (r, rs)

Gλexc
o (rd, rs)

(1.14)

with:

α =
Q

λfl

E

Qλexc
E

Θfl
f

Θexc
f

ν

Dλfl
(1.15)

The parameter α relies only upon basic system characteristics, and can be easily deter-

mined experimentally from measurements of a fluorochrome of known concentration [23].

Thus, once a simple system calibration has been done, there exist no excess free param-

eters to be determined.

1.5 Non-contact Imaging

Most existing optical diffusion systems are based around fixed imaging geometries.

Imaging of endogenous contrast requires knowledge of source and detector coupling co-

efficients, and these can be made largely constant by coupling every optical fiber into

an identical optical scattering liquid, rather than directly into tissue. The use of these

so called matching fluids led to fixed imaging geometries such as a slab or cylinder. In

addition to reducing the variability in coupling coefficients, analytic Green’s function

solutions to the diffusion equation are available for these geometries. Sources and de-

tectors are localized using fixed optical fibers, and the geometry enforced by filling the

imaging chamber with an optical matching fluid. When imaging fluorescence, however,
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data are collected at multiple wavelengths, and often preprocessed to normalize the mea-

surements [10, 55–57, 59–61]. This process of normalization eliminates or significantly

reduces the problem of variable source and detector coupling coefficients, making the use

of optical matching fluid unnecessary.

To use a fixed geometry, one of two conditions must be satisfied. Either all objects

to be imaged must be the same shape, or they must be able to be placed within a closed

imaging chamber of fixed geometry. Outside of controlled phantom studies, the first

condition is unlikely to be satisfied, and thus the second must apply. To ensure that

the entire chamber is diffusing, any volume not occupied by the imaging target is filled

with a matching fluid, typically composed of a mixture of water, lipid solution, and India

ink [4]. Varying the concentration of lipid and India ink allows for changes to be made

in the scattering and absorption parameters, respectively. However, by using a matching

fluid, light must propagate through additional diffusing media between the source and

detector locations. This reduces the quality of the collected data below its theoretical

maximum, and consequently degrades the final solution.

Additionally, many imaging systems are based on the use of optical fibers for illu-

mination and data collection. While this method had been shown to be experimentally

viable, it introduces problems of limited sampling density and fixed geometry. Reconfig-

uring optical fibers into an arbitrary geometry is generally not feasible on an experiment

to experiment basis. Thus, the source and detectors configurations tend to be fixed. Fur-

thermore, each fiber requires a finite amount of space, meaning that only a fixed number

can be positioned on the surface of the target. Given that dense sampling arrangements

have been shown to yield improved reconstruction images, the use of dense sampling grids

provided by CCD camera based data collection methodologies offer further improvements

over fiber based approaches [62].

By eliminating both imaging chamber and optical fibers, and instead focusing the

laser source directly on the surface of the target with emission data collected via a CCD
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camera, much higher spatial sampling densities can be obtained. Because its position is

defined by the movement of mirrors or translation stages, an infinite number of source

patterns can be defined. This allows for the optimum illumination pattern to be used for

each individual experiment, rather than using a single, non-optimal configuration. De-

tectors, defined as small regions in the CCD image, can likewise be positioned as needed.

By additionally incorporating data collection from multiple projection angles, more com-

plete information about the diffusive nature of the imaging target can be gathered, further

improving reconstruction quality [63].

1.5.1 Surface Reconstruction

One drawback of such non-contact systems is that accurate modeling of light dif-

fusion within an arbitrary volume requires that the structure of the volume’s surface

be known. To do this, we employ a previously developed method which uses a volume

carving algorithm to localize the surface [63–65].

After the fluorescence and excitation data, an additional set of images are collected

using a photoluminescent plate placed such that the target is between the plate and the

camera. The resulting image on the CCD is a silhouette of the target. By collecting these

silhouettes at a large number of angles, information about the structure of the surface

is gained. For each angle, the silhouette gives the volume carving algorithm information

about which points in the reconstruction space are inside and outside of the volume. By

compiling all of this information together, a full picture of the surface emerges, and can

be defined as a triangulated surface such as in Figure 1.2.

1.6 Fluorescence Molecular Imaging Systems

A number of different fluorescence tomography systems have been developed over

the years. Two such systems are used in this thesis, both developed in the Lab for

Biooptics and Molecular Imaging (LBMI) at Massachusetts General Hospital. The first
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of these is a second generation system, based on a slab geometry, and using a fixed, fiber-

based source pattern. This system was used for validation of the statistical inversion

method detailed in Section 3.1, and has been used for a number of different in vivo

studies. The second system is a 360◦ imaging system, using a rotational mounting system

to obtain diffusion data from multiple projections. Additionally, this system is a non-

contact free-space system, and operates by focusing the source laser and detector CCD

array directly on the surface of the animal.

1.6.1 Planar FMT System

The slab based imaging system used for some of the studies in this thesis was

based on a 1.3cm thick slab geometry. A diagram of the system is shown in Fig 1.1.

Illumination was achieved with a laser diode at 672nm, passed through an optical switch

(DiCon Fiberoptics, Richmond, CA) to select from an array of 46 source fibers arranged

on a 1.8×1.2cm2 area. Output power at the imaging chamber was approximately 10mW.

For detection, a CCD camera (Roper Scientific, Trenton NJ) electrically cooled to −35◦C

was used. Selection of excitation and emission wavelengths was achieved by appropriate

filters : bandpass (three-cavity interference at 670±5nm for excitation measurements and

710 ± 10nm for emission measurements (Andover, Salem NH)) and long-pass (emission

wavelength: cutoff 695nm; Omega Optical, Brattleboro VT).

To collect data using this system, the imaging target was placed within the chamber,

which was then compressed to a thickness of 1.3cm. The remainder of the chamber was

then filled with a mixture of Intralipid and India ink, the concentrations of which were

chosen such that the overall absorption and scattering parameters are similar to those

seen in typical bulk tissue. For the so-called 1× matching fluid, this required 60ml of

Intralipid and 6ml of 1% India ink solution in a total solution volume of 600ml. Other

matching fluid concentrations, denoted 1.5×, 2×, etc, were created by holding the amount

of Intralipid in the solution constant and linearly varying the amount of India ink. Note
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that Intralipid is both the brand name of the commercially available lipid solution used in

preparation of the matching fluid, as well as the term used to refer to the final matching

fluid itself. Where not otherwise specified, the term refers to the final, mixed, matching

fluid.

1.6.2 Rotational Imaging System

The second system used was a 4th generation fluorescence molecular tomography

system based on the multi-angle collection of transmission data in a freespace geometry.

Through a combination of rotation and translation stages, a single fiber source is scanned

across the surface of the object and data is collected via a CCD camera in a transmission

geometry. This is repeated for multiple angles, yielding full view diffusive data. A

diagram of the system is shown in Fig. 1.2.

A single optical fiber is used to channel light from a 650nm diode laser to illuminate

the target. The free end of the fiber is mounted on a set of two translation stages

(Velmex, Bloomfield NY), oriented orthogonal to the source-camera axis, and yielding

a 2.5cm range of motion along each of the X and Y axes. This configuration allows

for the source to be localized to any point on the surface facing the stages, resulting

in the transmission geometry previously mentioned. Filter mounts placed between the

fiber aperture and imaging target allow for the placement of focusing and/or attenuation

elements, as required by the experiment. Fluorescence images used only the focusing

lenses to provide maximum power to the target, while excitation images used neutral

density filters to prevent saturation of the CCD camera.

The object to be imaged is loaded onto a centrally located rotation stage (Velmex,

Bloomfield NY) via one of several interchangeable mounting inserts. Mounting for a

phantom will be different than for imaging the torso of a mouse, which will be different

than mounting for brain imaging. This system of multiple inserts allows for the optimal

method to be chosen on a per-experiment basis, and altered as necessary.
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Figure 1.1: Diagram of Planar FMT Imaging System Laser light from the source
laser is coupled into the imaging volume through an optical switch and 46 optical fibers
arranged in a grid pattern at the back of the imaging chamber. Data collected is done
in parallel using a CCD camera and virtual detectors defined as small integrated regions
of the CCD.
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Measurements are collected using an electrically cooled CCD (Roper Scientific,

Trenton NJ) positioned on the opposite side of the chamber from the laser fiber. A multi-

position filter wheel is used to select wavelength appropriate filters. For the experiments

detailed herein, the excitation measurement was collected using a bandpass filter, while

fluorescence measurements were collected with a combination of a bandpass (three-cavity

interference at 710 ±10 nm, Andover, Salem MA) and a longpass filter (Cutoff 695nm;

Omega Optical, Brattleboro VT). Typical data collection configurations collect data from

approximately 18 rotation angles.

Synchronization of the above components is implemented using commercially avail-

able controller hardware (Velmex, Bloomfield NY), and a custom Matlab GUI interface.

Setup consists of defining the source location grid and specifying the angles at which

data is to be collected. The system then scans the target, collecting one image for each

source location in the grid, before progressing to the next rotation angle. This process is

then repeated until data has been collected for all angles.

To obtain surface information for later use in modeling a further set of data is

collected, replacing the laser source with an electroluminescent plate. Single frames of

data are taken at each of an increased number of angles, typically sampling every degree.

These images are then used in conjunction with a volume carving algorithm to reconstruct

the surface of the object being imaged.
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Figure 1.2: Rotational FMT System and Localization of Animal Surface a)
Schematic of data collection system. Source fiber driven by a 650nm diode laser was
mounted on translation stages for focusing and localization on animal surface. Collection
of data was done in a transmission geometry using an electrically cooled CCD camera and
appropriate filters for wavelength selection. A representative excitation channel image is
shown. b) White light image of mouse head. c) Corresponding silhouette image used for
surface localization. 360 such images were used for the surface generation algorithm. d)
Summation of normalized (fluorescence/excitation) data across all source locations for
this projection angle. e) Resolved surface location, showing source (red) and detector
(blue) patterns mathematically projected onto surface for a single projection angle.



Chapter 2

Inverse Problems and Solution Methods

2.1 Introduction to Inverse Problems

There are many aspects of our world for which direct observation is either impos-

sible, impractical, or undesirable for one reason or another. Astronomers seek to see into

the far reaches of our universe, while geophysicists probe the depths of our own planet.

In medicine, doctors want to visualize the internal workings of a patient, without resort-

ing to the scalpel. And in some cases, such as divining the molecular scale activity of

cancers and other diseases, direct observation can significantly disturb the activity be-

ing analyzed. In applications such as these, inverse solutions allow unobservable model

parameters to be estimated based on measurements of physical processes which have in-

teracted with that model. This is in contrast to the so-called forward problem, where the

mathematical model is used in conjunction with a known set of parameters to generate

a set of expected data measurements.

For medical imaging applications, a wide range of physical processes are used to

probe the tissue. Ultrasound, electromagnetic waves, magnetic fields, electric voltage

potentials, X-rays, and other physical phenomena have all been exploited to measure the

internal characteristics of tissue [66, 67]. Each of these applications is associated with a

mathematical model which describes the physical process underlying the data collection,

and relates the data to physical parameters of interest. Some of these physical models can

be analytically ”inverted” to give an expression for the physical parameters in terms of

ericmiller
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the measured data. This is not generally the case for fluorescence molecular tomography

and related diffusion based imaging techniques, although some analytic approaches have

been proposed for certain special cases [68,69]. Instead, diffusion based imaging systems

result in what are referred to as “ill-posed” inverse problems that must be solved by

stabilized numerical approaches.

For a large class of inverse problems, the collected data are assumed to be linearly

related to the model parameters, either globally, or in a small region of the solution space

about some known point. This assumption leads to a linear equation representing the

physical system:

Wx ' u = utrue + n (2.1)

Here, x is the vector of model coefficients to be recovered, and W is a matrix describing

the physical relationship between the model parameters and the collected data. The

collected data are u, comprised of two components. The first, utrue, is the portion of the

data which is consistent with the model (i.e. Wx = utrue is satisfied for some x). The

second term, n, is used to represent both measurement noise as well as errors resulting

from mismatch between the linear model W and the true physical process, which is

nonlinear in the case of FMT as well as many other imaging problems.

In general, the matrix W is not square, and so naive solution of (2.1) as:

x̂ = W−1u (2.2)

is not possible, as the inverse does not exist. Depending on whether the problem is under

or overdetermined (that is, whether there are more or fewer unknowns than there are

data points), and whether the data u is in the range of W there will be either infinitely

many solutions which satisfy the equation, or no solution will exist. To solve the inverse

problem in these situations, (2.1) is replaced with an optimization problem which seeks

to find the set of parameters for which the 2-norm difference between the collected and



24

expected data is minimized:

x̂ = arg min
x
‖u−Wx‖2

2 (2.3)

Solution of this problem leads to the classical least squares solution (also known as the

Moore-Penrose generalized matrix inverse, or alternately, the pseudo-inverse) [70]. For

overdetermined problems, this takes the form:

x̂ =
(
WTW

)−1
WTu. (2.4)

For underdetermined solutions, an infinite number of valid solutions exist, with the min-

imum norm solution x, subject to Wx = u, given as:

x̂ = WT
(
WWT

)−1
u (2.5)

In both cases, these formulations assume that W has full rank, which is in general untrue

for ill-posed inverse problems. In these cases, solution by direct use of this equation (if

explicit matrix inversion is possible) will result in highly unstable solutions. Being ill-

posed, the ratio between the highest and lowest singular values is exceedingly high [71].

When computing a solution, random noise present in the data will be amplified by its

correlation with less significant singular vectors, resulting in solutions which are heavily

corrupted by noise. To counter this issue, solutions are often obtained using the modified

cost function:

x̂ = arg min
x
‖u−Wx‖2

2 + λ2‖Lx‖2
2. (2.6)

The second term in this equation is referred to as a Tikhonov regularization term, which

serves to stabilize the solution by providing a prior model for the reconstructed image

x [72].

The cost function above corresponds to maximum a posteriori (MAP) estimator

given a particular selection of image and noise models as multivariate Gaussians. A

multivariate Gaussian distribution takes the form:

f(x1, x2, . . . , xN) =
1

(2π)N/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
. (2.7)
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Given a zero mean Gaussian noise model (n ∼ N(0, Σn)), and assuming that the Wx =

utrue, this yields an overall signal model of u ∼ N(Wx, Σn). If this is then combined

with a general multivariate Gaussian for the image (x ∼ N(µx, Σx)), the maximum a

posteriori estimate of x can be written as:

x̂ = arg max
x

p(u,x). (2.8)

The joint probability can then be rewritten, and the log-likelihood taken, to obtain:

x̂ = arg max
x

log(p(u|x)) + log(p(x)). (2.9)

Looking back at (2.10), we can see that the log of a multivariate Gaussian will be:

log(f(x1, x2, . . . , xN)) = log

(
1

(2π)N/2|Σ|1/2

)
−

(
1

2
(x− µ)T Σ−1(x− µ)

)
. (2.10)

For a fixed Σ, the first term will be a constant, and subsequently will not affect any opti-

mization routines. Using the second term, in combination with (2.9) and the stochastic

models for u and x, we obtain:

x̂ = arg max
x
−1

2
(u−Wx)T Σ−1

n (u−Wx)− 1

2
(x− µx)

T Σ−1
x (x− µx). (2.11)

By turning the maximization of two negative components into the minimization of two

positive components, eliminating the constant 1/2 terms, and using the identity: (a −

b)TC(a− b) = ‖C1/2(a− b)‖2
2, we can write:

x̂ = arg min
x
‖Σ−1/2

n (u−Wx)‖2
2 + ‖Σ−1/2

x (x− µx)‖2
2. (2.12)

which looks very similar to the expression seen in (2.6). In fact, any Tikhonov regularized

least squares problem can be interpreted as a MAP solution given a particular choice of

image and noise models. The regularization parameter λ, serves to adjust the relative

variances of the noise and image models, when exact values are unknown. Because

multiplication by a constant will not change the minimization, the standard Tikhonov

model can be interpreted as assuming white Gaussian noise, where the variance has been
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absorbed into the λ term. Likewise, the standard ‖Lx‖2
2 regularization term can be seen

as making statements about the covariance structure of the image, while assuming that

the image is zero mean. Specifically, the application of the regularization term λ2‖Lx‖2
2

assumes a Gaussian image prior of x ∼ N(0, 1
λ2 (L

TL)−1).

While the analytic solution to the above problem is:

x̂ =
(
WT ΣxW + λ2LTL

)−1 (
WTu− LTLµx

)
(2.13)

solutions are most frequently obtained using numerical methods such as the conjugate

gradient (CG) method, LSQR, and others. It is to these solution methods that we now

turn our attention. We will discuss regularization and its relationship to the singular

value decomposition (SVD) in section 2.3.

2.2 Solution Methods

A wide range of algorithms have been developed to solve least squares problems,

both with and without explicit regularization. For this work, we make use of four of these

methods. The first is the algebraic reconstruction technique (ART), used for comparison

because of its previously established utility [73]. Given the specific structure of the fixed

point iteration solution derived in section 3.1, the conjugate gradient method [74] is

particularly well suited as a method of solution. For the reduced form of our maximum

likelihood solution, the LSQR algorithm [75] is used to efficiently compute solutions using

Krylov subspaces. Finally, we use the modified residual norm steepest descent (MRNSD)

algorithm [76] to obtain non-negatively constrained solutions in a variety of situations.

2.2.1 Algebraic Reconstruction Technique

The algebraic reconstruction technique (ART) is an inversion method, commonly

used in the construction of CT images, which obtains a solution by repeated projection

onto the rows of the matrix W [77]. The ordering of the projections is frequently random,

to help eliminate any bias that may arise from using the same ordering multiple times.

ericmiller
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 where we have assumed that L^TL is invertible.  If this is not the case, a suitable pseudoinverse can be employed.
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With a typical initialization setting value of x0 to be all zeros, the estimate is updating

using the iteration:

x(n+1) = x(n) + λ
u−Wix

‖Wi‖2
2

Wi (2.14)

A full iteration of the algorithm uses this update equation once for each vector in

the basis set. Thus the above equation represents a single sub-iteration, with x(n) and

x(n+1) representing the the estimate before and after the update is performed. Wi is the

ith row of the forward matrix, selected in a quasi-random fashion as described below.

Finally, u is the collected Born ratio data, and λ is a relaxation parameter, typically

set to 0.1 for our experiments. Given the linearization in our model and the presence

of noise in the data, the relaxation parameter is included in order to help stabilize the

reconstruction.

To minimize the effect of projection order on the reconstruction, the rows of the

matrix are accessed in a quasi-random order [73]. A data collection angle is first selected

at random, and then a random ordering is selected for projection onto the rows associated

with that angle. After each individual projection, all negative image values are truncated

to zero to ensure a non-negative solution. Once complete, the process is repeated for each

remaining collection angle, with a random ordering of the angles as well. This constitutes

one iteration, and is repeated as necessary to obtain a reconstruction.

ART and Diagonal Weighting Matrices Later, in Section 3.1.4, I will derive

a statistical inversion technique which applies a diagonal weighting matrix to the least

squares minimization problem. It should be noted that neither this approach, nor any

other diagonal weighting matrix, can be used with the ART algorithm. Because ART

examines the data one point at time, the addition of a weighting parameter is ultimately

canceled out in the update equation. Rewriting (2.14) to expand the norms and include
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a weighting factor α, we get:

x(n+1) = x(n) + λ
(αW− αWi)

(αWi)T (αWi)
αWi (2.15)

= x(n) + λ
α2(W−Wi)

α2WT
i Wi

Wi (2.16)

= x(n) + λ
(u−Wi)

WT
i Wi

Wi (2.17)

which is exactly the same as (2.14), meaning that the diagonal weighting will have no

effect upon the solution.

An alternative method that may warrant further exploration is the use of the

diagonal weighting parameters to modulate ART steplength, rather than as an explicit

weighting matrix. Using the same α to denote the weighting parameter, the update

equation could then be written as:

x(n+1) = x(n) + λ(α)
(u−Wi)

(Wi)T (Wi)
Wi (2.18)

for some function λ(α), as yet to be defined.

2.2.2 Conjugate Gradient

The conjugate gradient (CG) algorithm is used to solve the linear system

Wx = u (2.19)

for the case where W is a real, symmetric, positive definite matrix [74]. While many

inverse problems exist for which this condition is not satisfied, the CG algorithm can

always be applied to the normal equations:

WTWx = WTu. (2.20)

This allows for the use of the algorithm for all general linear inverse problems.

Conjugate gradient is an iterative algorithm, belonging to the family of Krylov

subspace methods, and like steepest descent, it uses the gradient of the cost function
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as a method for determining a search direction and distance for each individual update.

Unlike steepest descent, however, CG does not directly use the gradient as the search

direction [74]. Instead, CG uses W-conjugate directions for the search, thereby giving rise

to the algorithm’s name. By using conjugate directions, CG ensures that each subsequent

search direction is orthogonal to all previous search directions. This prevents repeatedly

searching along the same direction, a problem that arises when using steepest descent,

which can lead to an increased number of required iterations.

The algorithm starts by initializing the residual r, the search direction p, and the

iteration number k:

r0 = u−Wx0 p0 = r0 k = 0.

For each iteration, the optimal distance along the search direction is computed, then the

residual and image vectors are updated:

αk =
rT

k rk

pT
k Wpk

xk+1 = xk + αkpk

rk+1 = rk − αkWpk

A test for convergence is applied to the residual, and if it has converged, the algorithm is

terminated. If another iteration is to be performed, the search direction is then updated

as:

βk =
rT

k+1rk+1

rT
k rk

pk+1 = rk+1 + βkpk.

Finally, the iteration number k is incremented, and another iteration of the CG algorithm

begins. Further details, along with an in-depth discussion of the relationship between

steepest descent and the conjugate gradient method, can be found in [74].
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2.2.3 LSQR

LSQR is an iterative inversion algorithm, motivated by the Lanczos tridiagonaliza-

tion process, which efficiently obtains solutions to the least squares minimization prob-

lem [75]. Using two bidiagonalizations, one of which reduces the matrix to upper bidi-

agonal form, while the other reduces it to lower bidiagonal form, a parallel problem can

be constructed in a reduced dimensional Krylov subspace. This lower dimensional “pro-

jected” problem can be solved using a QR factorization, applied as a series of orthogonal

transformations, without ever explicitly storing the associated matrices. The solution to

the reduced dimensional problem can then be converted into a solution to the full min-

imization problem through a simple linear relation. The algorithm can be summarized

as follows [75]. First, all necessary variables are initialized as:

βϑ1 = u α1ν1 = WT ϑ1 a1 = ν1 x0 = 0 (2.21)

φ̄ = β1 ρ̄ = α1

For each iteration, the next step of the bidiagonalization is first performed:

βi+1ϑi+1 = Wνi − αiϑi (2.22)

αi+1νi+1 = WT ϑi+1 − βi+1νi+1. (2.23)

Then the next orthogonal transformation in the QR factorization is applied:

ρi =
√

ρ̄i + β2
i+1 (2.24)

ci =
ρ̄i

ρi

si =
βi+1

ρi

θi+1 = siαi+1

ρ̄i+1 = −ciαi+1

φi = ciφ̄i

φ̄i+1 = siφ̄i.
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The solution and basis vectors are then updated as:

xi = xi−1 +
φi

ρi

ai (2.25)

ai+1 = νi+1 −
θi+1

ρi

ai (2.26)

A test for convergence is then applied, and the process repeated as necessary until con-

vergence is obtained. Further details of the algorithm can be found in [75].

2.2.4 Modified Residual Norm Steepest Descent

A final algorithm which was used in the course of this work was the modified

residual norm steepest descent (MRNSD) algorithm, as introduced by James Nagy [76].

This algorithm is a variation on the standard steepest descent algorithm, which uses the

gradient of the cost function as the search direction, and simply implements the added

constraint that the resulting solution cannot have any negative components. This is done

by parameterization of the image and a restriction on the steplength of the algorithm.

Using a parameterized version of the least squares cost functional Φ(x) = ‖u −Wx‖2
2,

with x = ez, the gradient with respect to z is:

∇zΦ(x) = diag(x)∇xΦ(x) = diag(x)WT (Wx− u) (2.27)

This gradient is used as the search direction for an iterative solution of the form:

x(k+1) = x(k) + αkp
(k) (2.28)

with p(k) = −∇zΦ(x(k)). Step length is chosen as either the optimal step length:

αoptimal =
(Wx− u)TWXWT (Wx− u)

‖WXWT (Wx− u)‖2
2

, (2.29)

(with X = diag(x)) or the maximum step length which maintains the non-negativity of

the solution, whichever is greater:

αmax = min
pi<0

(−xi/pi) (2.30)
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The step length used for the update is then chosen as the lesser of αoptimal and αmax. The

iteration is repeated as necessary until some convergence criterion has been satisfied, or

a set number of iterations have been completed.

2.3 Regularization

When dealing with the numerical solution of generalized linear systems, one concept

which is repeatedly encountered is that of regularization. Regularization serves, first, to

help counter the ill-posedness of many such problems, and allow for stable solutions to

be obtained from noisy data. Second, regularization can serve as a means to incorporate

additional information about the solution that is not encoded in the forward operator.

Here, I give a short overview of regularization and how it applies to linear systems, and

introduce several regularization methods which will be used later in this thesis.

2.3.1 Ill-Posedness

The primary reason for using regularization in the numerical solution of linear

inverse problems is as a means to stabilize the solution and provide a level of robustness

to noise for cases where the operator is highly ill-posed. As previously stated, a discrete

ill-posed problem is said to be one in which the condition number of the matrix (that is,

the ratio of highest to lowest singular values) is exceedingly high. This suggests that some

(or all) of the columns of the matrix are close to linearly dependent upon one another.

A useful tool for examining ill-posed problems is the singular value decomposition

(SVD). This matrix decomposition expresses an arbitrary M×N matrix A as the product

of three matrices [70,78]:

A = UΣVT =
n∑

i=1

uiσiv
T
i (2.31)

with U = (u1,u2, . . . ,un) ∈ Rm×n and V = (v1,v2, . . . ,vn) ∈ Rn×n being orthonormal

matrices: UTU = VTV = In. The matrix Σ = diag(σ1, σ2, . . . , σn) is diagonal with

ordered non-negative elements σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The values σi are referred
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to as the singular values, while the associated vectors ui and vi are the left and right

singular vectors, respectively. These vectors can be seen to arise as the eigenvectors of the

matrices ATA = VΣ2VT and AAT = UΣ2UT . For an M × N matrix A, the number

of non-zero singular values will be equal to rank(A).

The SVD can be used to write matrix multiplications such as Ax as:

Ax =
n∑

i=1

σi(v
T
i x)ui (2.32)

A well known property of singular vectors is that as one progresses from the singular

vectors associated with high singular values to those associated with low singular values,

the degree of oscillatory behavior seen in the singular vectors increases [71]. When

computing a matrix vector product as above, correlation with the more highly oscillatory

singular vectors is damped by the correspondingly lower singular values. If, however, the

SVD is used to write a pseudoinverse of A as:

A† =

rank(A)∑
i=1

viσ
−1
i uT

i (2.33)

then those highly oscillatory singular vectors are amplified by the inverse of the associated

low singular values, rather than damped. This can create a problem when computing

numerical inversions. If the data are noise free and perfectly match the model (an unre-

alistic scenario outside of simulations), then a suitable inverse solution will be found. If,

however, the system includes noise and model error, represented jointly as n:

b = Axexact + n (2.34)

then the least squares inverse solution will be:

x̃ =

rank(A)∑
i=1

σ−1
i (uT

i b)vi =

rank(A)∑
i=1

σ−1
i (uT

i Axexact + uT
i n)vi. (2.35)

Here, the random noise present in the signal will correlate with the oscillatory singular

vectors, and result in a solution which is far from the desired value of xexact.
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One established method to compensate for this deficiency is known as Tikhonov

regularization, and involves the addition of a second term to the minimization equation.

Thus ‖Ax− b‖2
2 becomes:

‖Ax− b‖2
2 + λ2‖Lx‖2

2 (2.36)

where L is an arbitrary matrix (often simply the identity), and λ is a parameter control-

ling the degree of regularization. For the case where L = In, the SVD of A can be used

to analyze the least squares problem. Minimization of the above cost functional yields a

solution:

x̂ =
(
ATA + λ2In

)−1
ATb (2.37)

If A is replaced with its SVD, and the equality In = VVT is used, this can be rewritten

as:

x̂ =
(
VΣUTUΣ VT + λ2VVT

)−1
VΣ UTb (2.38)

=
(
VΣ2VT + λ2VVT

)−1
VΣUTb (2.39)

=
(
V(Σ2 + λ2In)VT

)−1
VΣUTb (2.40)

= V(Σ2 + λ2In)−1VTVΣUTb (2.41)

= V(Σ2 + λ2In)−1ΣUTb (2.42)

. (2.43)

This can be rewritten as a summation using the left and right singular vectors to obtain:

A† =

rank(A)∑
i=1

vifi
1

σi

uT
i (2.44)

where the “filter factors” fi =
σ2

i

σ2
i +λ2 have been introduced [78]. For values σi � λ, fi ' 1.

When σi � λ, however, fi ' σ2
i

λ2 . Thus, the introduction of the regularization matrix,

and associated selection of the parameter λ have compensated for the ill-posed nature of

the forward operator by effectively damping out the effect of those singular vectors with

associated singular values below some level. For typical cases where exact noise levels are
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unknown, methods such as the L-Curve of generalized cross validation (GCV) method

are used for selection of an appropriate value for λ [71, 79].

2.3.2 L-Curve Analysis

For the problem of selecting a single regularization parameter, a number of methods

have been developed over the years. Two common approaches are the L-Curve and the

generalized cross validation, or GCV, method [71, 79]. The L-Curve method receives

its name from the characteristic shape of the plots that are generated in the course of

parameter selection [71]. The first step in using the L-Curve is to obtain inverse solutions

to the problem using a range of regularization parameters. Typically, this range will span

many orders of magnitude, and often the values of λ are logarithmically spaced. For each

reconstruction, the residual norm is computed, as well as the norm of the solution times

the regularization matrix. When these points are then plotted on a log-log graph, the

resulting plot will frequently be shaped approximately like an L, as seen in Figure 2.1.

The appropriate regularization parameter is then chosen to be the value whose point on

the plot lies closest to the corner of the L-Curve. This decision is justified as representing a

point at which minimization of the data fitting and regularization terms are best balanced.

Automatic selection of this point can be done using methods based on locating the point

of maximum curvature, or alternately finding the point which minimizes the distance to

some “origin” [71].

L-Curve Analysis for Constrained Problems

The original theory for L-Curve analysis was performed in the context of uncon-

strained minimization. Fluorescence imaging, however, is a constrained problem because

negative fluorescence values are non-physical. When solving such problems using uncon-

strained approaches such as the conjugate gradient (CG) method or LSQR, it is common

to simply truncate the final solutions to set all negatively valued voxels to zero. When
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Figure 2.1: Example L-Curve Example of an L-Curve, computed from a non-contact
FMT problem. This curve displays the characteristic L shape, although it is not as
clearly defined as in some inverse problems. Each point plots the residual norm (X-axis)
and solution norm (Y-axis) for a particular regularization parameter λ. As λ increases,
so does the norm of the residual, while the norm of the solution decreases. Thus the plot
is traversed from lower right to upper left as λ increases. The optimal value of lambda
is chosen to be at the corner of the curve, as indicated by the red point in the plot.
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these truncated solutions are then used to construct an L-Curve, an interesting behavior

emerges.

Rather than the standard L-Curve structure, a log-log plot of the norm of the

residual against the norm ‖Lx‖ results in the red line seen in Fig 2.2. Plotted alongside

this is in blue a standard L-Curve, computed using the untruncated solutions. On the

left half of the plot, corresponding to an increased value of λ, the two lines coincide with

one another. As the plots pass the corner of the L-Curve, however, they diverge. As λ

decreases, the standard L-Curve continues to see reductions in the overall residual, at the

cost of increasing ‖Lx‖. Using the truncated solutions, however, the norm of the residual

rapidly increases, leaving a curve whose minimum lies approximately at the corner of the

standard L-Curve.

Similar to the normal L-Curve, this behavior can likely, given further study and

analysis, be explained using the singular value decomposition, although we have not

completed formal proofs of this. As the singular values σi decrease, the number of zero

crossings of the associated singular vectors increases. That is, the singular vectors be-

come more oscillatory. In a perfectly consistent system, with zero noise, the correlation

between these singular vectors and the data vector being inverted will be very low. Noise

introduced into the system, either in the form of model mismatch or measurement error,

will have a higher correlation with these oscillatory singular vectors than the unperturbed

solution. Because these vectors are highly oscillatory, incorporating them into the solu-

tion to any significant degree will tend to push portions of the total solution below zero.

These components of the resulting solution are, however, critical to the further reduction

of the residual norm. When the solutions are truncated, the negative values responsible

for the reduction of the residual are eliminated, thereby allowing the overall residual to

increase.

While the solutions that result from this approach are likely sub-optimal as com-

pared to solutions obtained with explicitly constrained methods, this result does suggest
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as useful combination of the two. Because of the difficulty implementing non-negativity

constraints when using Krylov subspace approaches such as conjugate gradient and

LSQR, many iterative constrained approaches use modifications of the steepest descent

method. Unfortunately, because searches are often made along the same direction re-

peatedly as the algorithm descends the cost function, the number of iterations required

to reach convergence can be much high than with Krylov subspace methods. Using this

modified L-Curve approach, however, it would be possible to use unconstrained methods

as a method to quickly obtain a solution to initialize an explicitly constrained solution.

By starting the algorithm closer to the true constrained minimum, the required number

of steepest descent iterations could be greatly reduced, allowing for an overall reduction

in computation time. At the moment, however, this remains largely speculation, and will

require further analysis to prove such performance gains in practice.
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Figure 2.2: L-Curve for a non-negatively constrained problem: Computing an
L-Curve prior to truncation of solutions results in the plot denoted with blue X’s. If the
same L-Curve approach is used on the solutions after truncation, the plot denoted with
red squares results. Note that the inflection point of the red curve is as the same point as
the corner of the standard L-Curve. This allows for automated selection of regularization
parameters when using non-constrained methods to solve constrained problems.



Chapter 3

Statistical Modeling of the Born Ratio

3.1 Introduction

While the Born ratio provides an extremely useful tool for examining fluorescence

signals, it simultaneously introduces a number of difficulties. In each of the raw received

signals, the signal intensity is directly proportional to the signal noise, and higher signals

have a proportionally larger influence upon the reconstructions. However, when the ratio

of two such signals is taken, the resulting value does not behave like the intensities of its

constituents. Thus, a higher ratio value could result from dividing two very high signals,

but could just as easily be the division of two very low, and thus very noisy, signals.

Moreover, because of the lower signal to noise ratios present in low intensity signals, the

Born ratio values obtained can be highly unstable, resulting in values which can corrupt

the final reconstruction.

To compensate for this shortcoming, previous work using the Born ratio relied on

the use of thresholding to eliminate those data values whose signal to noise ratio was low

enough that they could potentially lead to corrupted Born ratio values. This process was,

however, highly subjective, and required manual tuning on the part of the investigator

preforming the inversion. This led to a high degree of variability in the reconstruction

obtained from the same data set by different individuals. We will now detail an alternative

method, which examines the statistical properties of the Born ratio, and seeks to use

all collected data to form an approximate maximum likelihood solution. The resulting

ericmiller
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algorithm uses a fixed point iteration and the conjugate gradient algorithm to obtain

a solution. A second method, simplified based on empirical observations, eliminates an

additional term from the cost function, resulting in a diagonally weighted least squares

problem which can be solved using any standard algorithm for least squares problems.

3.1.1 Signal Modeling

Our initial goal was to determine an appropriate statistical model for the signals

output from the CCD camera. A CCD such as that used in the FMT camera system

makes measurements of the number of photons emitted from the surface of the target.

Classically, photon counting processes have been modeled as Poisson random processes

[80, 81]. For large numbers of photons (i.e. a large collection time with respect to the

rate parameter), the Poisson process can be modeled as a Gaussian random variable

with variance equal to its mean [82]. To determine the appropriateness of the Gaussian

approximation, a simple experiment was performed.

A laser (672nm,30mW) was used to illuminate one side of a 1.3cm thick chamber

filled with a solution of Intralipid and ink with optical parameters µa = 0.58 and µs = 10.

This resulted in a circular spot appearing on the collection side of the chamber. A series

of 100 images were then collected, to increase the number of sample points used for

statistical estimation. The location of the source with respect to the CCD was determined

as the center of mass of all data points above some minimal threshold, selected to yield

a large circular region on the CCD.

With the center determined, a number of bins were defined, based on radial distance

from the center. Given that the single source was illuminating a homogeneous medium,

diffusion theory states that the received signal on the opposite side of the slab should be

dependent only upon the radial distance from the source location. Thus, by creating these

bins, data points were effectively grouped as samples of theoretically identical random

variables. Examining histograms of the data points collected into each bin revealed that
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they did appear to be samples of a Gaussian random variable. As such, means and

standard deviations were computed, to determine the relationship between the two.

Theoretically, it should be possible to model the photon stream incident on the CCD

as a Poisson process, so that for a sufficiently high rate parameter it can be approximated

as a Gaussian random variable with variance equal to its mean. From a statistical point

of view, however, a significant amount of non-ideal processes take place is done between

the incident photon stream and the final value output of the CCD’s A/D converter. The

CCD has some realistic efficiency less than one, and thus counts only a large fraction of

the photons. This count is then stored electronically within the cells of the CCD, which

are read out, row by row, through an analog amplifier. This amplifier scales the signal,

which adjusts the dynamic range of the camera given the fixed input voltage range of the

A/D converter. This scaling allows for low-light applications to make more use of the full

16-bit output range. Finally, the amplified voltage is passed to an A/D converter, which

digitizes the signal. To achieve the differential increase in voltage needed to increment the

digital output of the A/D requires that multiple additional photons be collected in the

CCD cell. Thus the digitization itself has a scaling effect upon the signal. Additionally, in

the course of the analog processing, a non-zero amount of additive, white, Gaussian read

noise is added. Ultimately, given an input Poisson process approximated as a Gaussian

N(µ, µ), we derive a model N(m, σ2(m)) for the signal at the output of the A/D with:

m =
ϕµζ

α
(3.1)

σ2(m) =
ϕ2µζ2

α2
+ σ2

r (3.2)

where ϕ is the quantum efficiency of the CCD, ζ is the gain of the amplifier, α is the

constant relating voltage to output increments on the analog to digital converter, and

σ2
r is the read noise associated with the CCD. Attempting to model the received data

using this model resulted in the green line drawn in Figure 3.1, which does not fit the

collected data well at higher signal intensities. The data does however seem to obey a

similar model, with the variance is equal to the read noise, plus a component which is
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Figure 3.1: Fit of Noise Model to Experimental DataScatter plot of experimentally
collected noise data, along with a regression line from the model in (3.3). The R2 value
for the red fit line is 0.86. The green line shows the model as predicted based solely on
published camera parameters. In order to better display the results at all intensity levels,
the plot shows standard deviation plotted against the square root of the mean.
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proportional to the mean signal. Thus, using the model:

σ2(m) = βm + σ2
r , (3.3)

We obtained the parameters σ2
r and β directly from the data. This yielded a value of 2.8

for σ2
r , which is very close to the manufacturers stated value for the camera read noise.

Applying a linear regression to the data, and taking into account the non-zero read noise,

the line drawn in red in Figure 3.1 is obtained, yielding a value of β = 0.4915. This is

approximately 1.5× the modeled value of β = 0.31, obtained from camera specifications

and use of (3.1), and suggests that either the values used to computed the modeled value

may be incorrect, or there may be an additional source of noise in the system. In either

case, for the remainder of this work we use the value of β = 0.4915, as it fits the collected

data.

In order to write an expression for the joint density of the fluorescence and exci-

tation measurements, so that we can then derive an expression for the density of their

ratio, their covariance needs to be modeled both across space at a fixed wavelength, and

also across wavelengths. In the work described here, we make the simplifying assump-

tions that the measurements are uncorrelated both in space and across wavelengths. This

results in a joint density for the received signals of: ufl

uexc

 ∼ N


 mfl

mexc

 , diag

β

 mfl

mexc

 + σ2
r


 (3.4)

While these independence assumptions are not physically accurate, they greatly

simplify the process of finding an inverse solution. As we will show in the results section,

this assumption does not prevent useful results from being obtained in practice.
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3.1.2 Density Derivation

To derive a density for the Born ratio from the experimentally determined signal

densities, we begin with the definition of the Born ratio:

Uborn =
Ufl

Uexc
(3.5)

where Uborn is the Born ratio data, and Ufl and Uexc are a corresponding pair of fluo-

rescence and excitation measurements, respectively. While both of the individual signals

are Gaussian, the generalized ratio of two Gaussians is not. In the case of zero mean,

unit variance Gaussians, the resulting ratio will have a Cauchy density. For the more

general case, a search of the literature provided the density for two correlated normal

random variables [83]:

p(ui) =
b(ui)d(ui)√

2πσ(mfl,i)σ(mexc,i)a(ui)3

[
Φ

{
b(ui)

a(ui)

}
− Φ

{
− b(ui)

a(ui)

}]
+

1

πσ(mfl,i)σ(mexc,i)a(ui)2
e−0.5c

(3.6)

where ui are the individual Born ratio measurements, and a(ui), b(ui), c and d(ui) are

defined as:

a(ui) =

(
u2

i

σ2(mfl,i)
+

2ρui

σ(mfl,i)σ(mexc,i)
+

1

σ2(mexc,i)

)1/2

(3.7)

b(ui) =
mfl,iui

σ2(mfl,i)
− ρ(mfl,i + mexc,iui)

σ(mfl,i)σ(mexc,i)
+

mexc,i

σ2(mexc,i)

c =
m2

fl,i

σ2(mfl,i)
− 2ρσ(mfl,i)σ(mexc,i)

σ(mfl,i)σ(mexc,i)
+

m2
exc,i

σ2(mexc,i)

d(ui) = exp

{
b2(ui)− ca2(ui)

2(1− ρ2)a2(ui)

}
.

with ρ being the correlation coefficient relating the two variables and Φ(u) the usual

integral of the unit normal density φ(ui):

Φ(u) =

∫ u

−∞
φ(y)dy

φ(u) =
1√
2π

e−
1
2
u2

. (3.8)
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The independence assumption made in constructing our signal model means that the

correlation coefficients will be zero. Given this assumption and some algebraic rear-

rangement, the various functional components can be rewritten as:

a(ui) =

(
u2

i

σ2(mfl,i)
+

1

σ2(mexc,i)

)1/2

(3.9)

b(ui) =
mfl,iui

σ2(mfl,i)
+

mexc,i

σ2(mexc,i)

c =
m2

fl,i

σ2(mfl,i)
+

m2
exc,i

σ2(mexc,i)

d(ui) = exp

−0.5
m2

exc,i

(
mfl,i

mexc,i
− ui

)2

(σ2 (mexc,i)ui + σ2 (mfl,i))

 .

This density provides a basis for further derivation. To obtain an inverse solution,

we look to use a maximum likelihood (ML) approach, which uses the log-likelihood

function to convert a product of probabilities into a sum of probabilities. The current

formulation of the density, with two separate terms, makes this significantly more difficult,

so we seek now to determine a simplified version of the density which consists of a single

term.

The first simplification made is to eliminate terms containing Φ by making the

approximation: [
Φ

{
b(ui)

a(ui)

}
− Φ

{
− b(ui)

a(ui)

}]
' 1. (3.10)

As is shown in Appendix A.1, this approximation holds with probability (1− 2× 10−6)

when either mfl,i > 18 or mexc,i > 18. Note that these required signal levels are less than

0.3% of the maximum output values of 216 = 65536. Additionally, the introduction of

these thresholds does not run counter to the goal of eliminating user defined thresholds

because these are static and analytically determined.

Furthermore, in Appendix A.2, we show that by slightly increasing the above

thresholds to mfl,i > 18 and mexc,i > 20, the second term in the expression will be

smaller than the first by several orders of magnitude. Thus, we simplify the overall den-

sity by eliminating the low magnitude term, resulting in an approximate density for the



47

Born ratio data of:

p(ui) '
[

b(ui)d(ui)√
2πσ(mfl,i)σ(mexc,i)a(ui)3

]
(3.11)

This density, simplified to a single term, is now in a form from which an approximate

maximum likelihood solution can be constructed.

3.1.3 Density Conditioning

At this point, the density function given above is a function of the collected data,

mfl,i and mexc,i, the mean values for each of the individual excitation and fluorescence

signals. In order to construct an inverse problem, we must first relate this density to

the forward model W and x, the image we are attempting to recover. The parameter

mexc,i is the mean value of the excitation channel for the ith measurement and is therefore

independent of the fluorochrome distribution. Explicit computation of this value requires

knowledge about the optical absorption and scattering parameters of the medium, and a

model which uses these to accurately predict measurement values. This is the problem of

traditional diffuse optical tomography (DOT). Avoiding direct solution of this problem is

one of the advantages of using the Born ratio, and as such, we do not want to introduce

it here simply to determine parameter values. Instead, we use the approximation:

mexc,i ' uexc,i. (3.12)

Thus we simply use the received signals as an approximation of the mean value. Next, we

assume that the forward model for the Born ratio data generates the ratio of the mean

signal values to write:

Wix =
mfl,i

mexc,i

. (3.13)

Here, we am assuming that the values generated by the forward model are equivalent to

the ratio of the means of the two distributions. This equation can then be rearranged to

write an expression for mfl,i as:

mfl,i(x) ' uexc,iWix. (3.14)
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Equations (3.12) and (3.14) now allow the density for the Born ratio data to be rewritten

in a form conditioned on the image:

p(ui|x) =

[
b(ui,x)d(ui,x)√

2πσ(mfl,i(x))σ(mexc,i)a(ui,x)3

]
, (3.15)

which enables the development of a statistical inverse solution to proceed.

3.1.4 Maximum Likelihood Solution

An inverse solution to the fluorescence molecular tomography (FMT) problem can

now be constructed as a maximum likelihood (ML) problem. The general form for an

ML problem is:

x̂ML = arg max
x

p(u|x). (3.16)

Given the independence assumptions made in the previous section, the right side of (3.16)

can be rewritten using Eq (3.15) as:

x̂ML = arg max
x

∏
i

[
b(ui,x)d(ui,x)√

2πσ(mfl,i(x))σ(mexc,i)a(ui,x)3

]
(3.17)

Taking the log-likelihood of this probability converts the product to a summation. Elim-

inating terms which are not dependent upon x (they will be constant for purposes of the

optimization) yields:

x̂ML = arg max
x

∑
i

[log(b(ui,x))− log(σ(mfl,i(x)))− 3 log(a(ui,x)) + log(d(ui,x))]

(3.18)

To simplify notation, we define a function:

gi(ui,x) = log(b(ui,x))− log(σ(mfl,i(x)))− 3 log(a(ui,x)) (3.19)

and a vector q(u,x) with elements:

qi(ui,x) =
mexc,i√

σ(mexc,i)2ui + σ(mfl,i(x))2
(3.20)
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and obtain:

x̂ML = arg max
x

∑
i

[
gi(ui,x)− 0.5

(
qi(ui,x)

(
mfl,i(x)

mexc,i

− ui

))2
]

. (3.21)

The second term of the above equation can be rewritten into matrix form, yielding:

x̂ML = arg max
x

[∑
i

gi(ui,x)− 0.5‖Q(u,x)(Wx− u)‖2
2

]
(3.22)

where the matrix Q is defined as: Q(u,x) = diag(q(u,x)).

To solve this maximization equation we want to find the point at which the gradient

of the right side is equal to zero, as this corresponds to a maximum in the function.

Defining the cost function to be maximized as f(x), the results of Appendices A.3.2 and

A.3.1 can be used to write:

df(x)

dx
=

[∑
i

dgi(ui,x)

dx

]
−WTQ(x)TQ(x)(Wx− u)−

(
dq(x)

dx

)T

A(x)T A(x)q(u,x)

(3.23)

where we have defined A(x) in App. A.3.1 to be:

A(u,x) = diag(Wx− u). (3.24)

Setting equation (3.23) to zero and rearranging yields:

x =[WTQ(x)TQ(x)W]−1×[∑
i

dgi(ui,x)

dx
+ WTQ(x)TQ(x)u−

(
dq(x)

dx

)T

A(x)T A(x)q(x)

]
. (3.25)

Given the dependence on the solution x of the terms on the right, this result suggests a

fixed point iteration, which, calling the right hand side ζ(x), can be written as:

x(n+1) = ζ(x(n)). (3.26)

To solve this fixed point iteration, we use the conjugate gradient algorithm, given

that the matrix being inverted is symmetric and positive definite. To initialize the al-

gorithm and obtain a value for x0, we set a fixed threshold, based entirely upon the
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excitation signal, such that only 25% of the data is retained. We then solve the thresh-

olded inversion problem using either ART or LSQR, and use the resulting solution as the

value of x0.

Reexamining equation (3.22), it is clear that the cost function could be simpli-

fied significantly by the elimination of first term within the brackets. Given empirical

evidence, this term is in general several orders of magnitude smaller than the second

term, and consequently, can be removed from the optimization with minimal effect. This

leaves:

x̂ML = arg max
x

[
−0.5‖Q(u,x)(Wx− u)‖2

2

]
(3.27)

= arg min
x
‖Q(u,x)(Wx− u)‖2

2

which is just a weighted least squares problem. However, the weighting matrix Q is still

dependent upon the value of x. To eliminate this, we apply a point estimate similar to

that used earlier to obtain µexc. Replacing mfl,i with ufl,i leaves:

x̂ML = arg min
x
‖Q(u)(Wx− u)‖2

2, (3.28)

which can be solved with any standard least squares solver.

3.1.5 Results and Discussion

Testing of this statistical solution was done using the planar FMT system described

in Section 1.6.1. A grid of 13× 13 virtual detector locations was defined, corresponding

to uniform spacing over a 2.2 × 2.2cm2 region centered around the source array, on the

opposite side of the illuminated volume from the sources. Individual detector values

were obtained by integrating the values of CCD pixels corresponding to 1mm diameter

equivalent circular detectors on the camera. The solution space, defined to be the 2.4×

2.4 × 1.3cm3 region centered around the sources, was discretized into 20 × 20 × 21 =

8400 volume elements (voxels), each of dimension 0.12cm × 0.12cm × 0.0619cm. On all

reconstruction images, this region is demarcated by a red box. For all cases, the imaging
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chamber was filled with a solution of 1% intralipid and 0.5% India ink which has optical

properties µa = 0.58cm−1 and µs = 10cm−1. These values were chosen to correspond

closely with the bulk background optical parameters of mice.

Phantom Experiment The first set of data employed came from phantom mea-

surements, providing a simple scenario to validate this method. The phantom consisted

of two tubes, 8mm long and 2.5mm wide, each containing 400nM Cy5.5, suspended in

a tank of intralipid solution. The two tubes were placed 5mm apart along the lateral

axis, with one tube located against the detector side of the volume, and the other in its

center, corresponding to distances of 0.6cm and 1.2cm from the source plane. Figures

3.2(a) and 3.2(d) show flat images (two dimensional photographs) at the fluorescence

and excitation wavelengths, respectively. They were taken prior to the chamber being

filled with intralipid, and while the objects appear to be at the same distance from the

camera, they are in fact separated by 0.6cm along the source-camera axis.

Euthanized Mouse The second set of data examined consisted of two plastic

catheter tubes with an inner diameter of 0.8mm, containing 1µM Cy5.5, implanted in

the body of an euthanized mouse. As can be seen in the fluorescence reflectance and

flat images (Figures 3.3(a) and 3.3(d) respectively), one tube was inserted down the

esophagus while the other was implanted subcutaneously on the anterior side of the

torso. The goal of this experiment was to provide an easily identifiable and quantifiable

target (the tubes) under conditions where the background optical parameters are similar

to those of an in vivo experiment.

In-vivo Mouse The third study presented considered an in vivo experiment. A

Her2-neu transgenic mouse was selected, exhibiting a spontaneous breast tumor. The

tumor was located in the left mammary pad as indicated by an arrow on Fig 3.4(a),

and was approximately 5x6mm in size, as measured externally with calipers. The an-
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imal was injected with 2nmol of the ProSense680 cathepsin-sensitive activatable probe

(VisEn Medical, Woburn MA) twenty four hours prior to imaging. Accompanying the

reconstructions is a flat image at the excitation wavelength in 3.4(a), on which the tumor

is visible as a dark region in the left mammary pad (right side of image).

Description of Results For each data set, we present and compare two meth-

ods. The first method obtains a solution using the normalized Born ratio after threshold-

ing to reject all ratio data with an excitation wavelength intensity less than a fixed value.

The threshold values used for each data set were determined by obtaining inverse solu-

tions for thresholds set between the 0th and 95th percentile of the excitation wavelength

measurements, in 5% increments. The ‘optimal’ solution was then chosen from among

these 20 results, based on prior knowledge of the target being imaged. Results with the

chosen thresholds varied from 15% to 35% of the Born ratio values being retained for use

in the inversion algorithm.

The second method utilized the statistical methods derived in Section 3.1.4. The

previously established threshold requiring uexc,i > 20 counts or ufl,i > 18 counts was

applied to the data prior to inversion, resulting in between 0.1% and 32% of the data being

removed. For both reconstruction methods, depth dependent regularization was achieved

by making the stopping point of the iterations increase exponentially as a function of

depth, from either 4 or 10 iterations, which optimally reconstructed surface activity, to

25 for the middle reconstructed slice. Further iterations resulted in only minor changes

in the reconstruction. We note that compared to utilizing a depth independent number

of iterations, the depth dependent regularization employed does not alter the relative

performance of the statistical vs. the automatic method but yields a more accurate

reconstruction of the physical dimensions of the fluorescence activity, as was also noted

in [84].

Comparison Metrics In addition to subjective visual analysis of results, we
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also used two analytic metrics to compare my statistical method to existing threshold

based methods. These metrics serve to quantify the size and location of the resolved

object, to compare to known values.

In order to compute these two metrics, we first needed to determine the extent of

the reconstructed object. Given the differences in intensity owing to the different depths

at which fluorescent objects are located, we started this process by manually selecting,

for each object, a slice which contained a clear cross section of that object. We then took

the voxel in that slice with the highest amplitude to be the initial location of the detected

object. Selecting a threshold of 50% of this initial value, we allowed the object to grow

by iteratively incorporating neighboring voxels in 3D whose amplitude were above the

threshold. In this manner, we determined which voxels were considered to lie within the

resolved object.

The two metrics used to quantify the reconstructions were the centroid of the re-

constructed object, and its average dimensions. The centroid was computed as the mean

of the objects’ constituent voxel locations, weighted by the associated image intensities.

Average dimensions were determined by first computing the average location of each side

of the object, then taking the distance between the two sides associated with each of the

X, Y, and Z axes.

3.1.6 Phantoms in Intralipid

In addition to the reconstructions for the phantom experiment, Figure 3.2 displays

two images of the phantoms without intralipid present. Figure 3.2(d), the flat image, is a

front illuminated image of the chamber, while Figure 3.2(a), the fluorescence reflectance,

is an image captured at the fluorescence wavelength while front illuminating the chamber

with light at the excitation wavelength. Note that the reconstruction slices displayed in

Figure 3.2 are chosen at the depth of maximum intensity in the statistical reconstruction,

and were obtained using 4 iterations for the surface object, and 25 for the central one.
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Data Set Object Inversion Method Centroid Location Average Dimensions

Phantom

Central
Threshold (-0.53,-0.18,0.55) cm 0.47× 0.66× 0.71
Statistical (-0.54,-0.20,0.53) cm 0.45× 0.73× 0.69

Actual Value (-0.51,-0.23,0.6) cm 0.48× 0.8× 0.48

Detector Threshold (0.56,-0.18,1.15) cm 0.27× 0.62× 0.26

Side
Statistical (0.55,-0.03,1.18) cm 0.27× 0.56× 0.21

Actual Value (0.57, -0.23, 1.2) cm 0.48× 0.8× 0.48

Euthanized

Esophageal
Threshold (0.05,-0.17,0.64) cm 0.28× 0.53× 0.59
Statistical (0.06,-0.06,0.61) cm 0.36× 1.35× 0.76

Actual Values Unknown 0.2× 1.5× 0.2

Subcutaneous
Threshold (0.60,-0.21,1.14) cm 0.34× 0.61× 0.24
Statistical (0.66,-0.14,1.12) cm 0.30× 0.56× 0.30

Actual Values Unknown 0.2× 1.0× 0.2

In Vivo Tumor
Threshold (0.34,0.20,1.22) cm 0.20× 0.63× 0.13
Statistical (0.56,0.32,1.14) cm 0.32× 0.59× 0.28

Table 3.1: Locations and Sizes of Reconstructed Objects Centroid and Maximum
Dimension are given in (x,y,z) coordinates except for the subcutaneous tube in the eu-
thanized mouse, where width, length, depth of the tube are given, as it is not parallel
with any of the three primary axes. Measurements on the reconstructions are computed
as described in the text. All size measurements are given in cm.
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Using the manually optimized method, the threshold was set to retain 15% of the

data for use in the reconstruction. Figures 3.2(b) and 3.2(c) depict two coronal slices

of the reconstructed three-dimensional image. In each slice, the solution clearly shows a

fluorescing object present at the location of the phantoms. The slice located deeper within

the volume, shown in Figure 3.2(b), resolves the object to be larger in size compared to

the slice in 3.2(c), a result of decreasing resolution at greater depths.

The results with our statistical inversion are illustrated in Figures 3.2(e) and 3.2(f),

where very similar reconstructions are seen. The object in Figure 3.2(e) is slightly larger

than that in 3.2(b), but remains consistent with the size of the phantoms seen in the

flat and fluorescence images. Figure 3.2(f) shows an image very similar to that in Figure

3.2(c). These images were achieved with the use of 99.9% of the collected data. Only

about one hundred of the 14000 data points collected did not satisfy the minimum signal

requirements.

The sizes reconstructed with the two methods are reasonably consistent with one

another. Notably, in both cases, the resolution is poorest along the Z-axis between

the source and detector planes. Both methods overestimate the object size along this

dimension. Additionally, while the thickness (Z-axis measurement) of the central tube

is overestimated, that of the detector side tube is underestimated. This variation in

reconstructed object thickness is seen for both methods, with all data sets, and is due to

the restrictions on source and detector locations when using a slab geometry.

3.1.7 Euthanized Mouse

As with the tubes in intralipid, flat and reflectance fluorescence images are displayed

in Figures 3.3(d) and 3.3(a), alongside reconstructions corresponding to the slice at which

the maximum intensity was obtained with the statistical reconstruction method. As with

the tube phantom, these reconstructions use 4 iterations for the subcutaneous tube, and

25 for the esophageal one.
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(a) (b) z = 0.42cm (c) z = 1.25cm

(d) (e) z = 0.42cm (f) z = 1.25cm

Figure 3.2: Dual Tube Phantom: (a) Reflectance Fluorescence image (b) Manual
Threshold: Coronal slice through tube @ z=0.42cm (c) Manual Threshold: Coronal slice
through tube @ z = 1.25cm (d) Flat (Photographic) Image (e) Fixed Point: Coronal
Slice through z=0.42cm (f) Fixed Point: Coronal Slice through z=1.25cm In all images,
z = 0cm corresponds to the source side of the slab, with a total slab thickness of 1.3cm.
The red box in the image denotes the boundary of the solution space, and the orientation
of the coordinate system specified in 3.2(b) is shared by all images.
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The results using the threshold method are shown in Figures 3.3(b) and 3.3(c).

These were obtained by retaining 35% of the data. As with the phantom, two coronal

slices are shown, one through each of the implanted tubes. Figure 3.3(c) shows a vaguely

tube-like object located just under the surface. Its location corresponds well with the

fluorescence image seen in Figure 3.3(a), but it is not nearly as large as would be expected.

The object in the center of the volume can be seen in Figure 3.3(b). However, rather than

appearing to be a uniform tube, the object appears to be more centrally concentrated.

Figures 3.3(b) and 3.3(c) contains the results for this data set using our fixed

point iteration. The subcutaneous tube is resolved in a manner similar to that using

the thresholding technique. It is, however, slightly larger, more tube-like, and more

consistent with Figure 3.3(a). Looking at the esophageal tube, it is resolved to be a much

more uniform tube than it was in Figure 3.3(b). For this data set, the minimum signal

requirements resulted in 32% of the data being left out of the reconstruction, as with

the threshold method a significantly higher number than for the phantom experiment.

This seems to be a result of a higher level of absorption within the mouse body. While

for the other two data sets, less than 200 excitation measurements failed the minimum

criterion, for the euthanized mouse, nearly 3700 points failed the test. The additional

absorption also seems to have affected the resulting fluorescence levels, as a significantly

higher number of fluorescence measurements failed as well.

Observing the metrics in Table 3.1, we see that the esophageal tube, as with the

central tube of the previous data set, is resolved to have a much larger X-Z cross section

than the subcutaneous tube. However, the length (Y-dimension) of the esophageal tube is

much more accurately resolved using the statistical reconstruction. While the statistical

method does result in average X and Z dimensions that are slightly larger than the

threshold method, the difference is small, and comparable to the size of a single voxel.

Looking at the subcutaneous tube, the location shift was less than a fraction of

a voxel, while the sizes along the three dimensions are very similar between the two
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methods. In both cases, while the width and depth are slightly overestimated, the length

is underestimated, and the reconstruction does not appear to extend the full length of

the tube seen in 3.3(a).

3.1.8 In-Vivo Mouse

Figure 3.4(a) shows a flat image of the mouse being imaging. In it, the tumor is

clearly visible as a dark spot in the left mammary pad (right side of image). This is

indicative of the increased angiogenesis and blood concentration expected in the tumor.

This reconstruction used 10 iterations to reconstruct the tumor.

For this data set, the manually selected threshold was set to retain 25% of the data,

based on results from previous studies [4]. The resulting inversion is seen in Figure 3.4(b).

A fluorescing mass is clearly present on the anterior surface of the mouse, just to the

right of center. Results with the fixed point iteration are shown in Figure 3.4(c). There,

the tumor is resolved to be slightly larger than with the threshold, and its spatial extent

is more consistent with the dark appearance of the tumor in the flat image. As with the

phantom experiment, less than 0.1% of the data was dropped from the reconstruction.

Looking at the analytic metrics, we can see that the statistical method resolves the

tumor to be slightly larger in width and depth than the threshold method. This is more

consistent with the approximate size of the tumor of 5mm×6mm, and represents a more

ellipsoidal and less flattened tumor than the threshold method.

3.2 Conclusions

This work has presented a new method by which Fluorescence Molecular Tomog-

raphy solutions can be obtained based on the normalized Born approximation. This

method incorporates statistical properties of the measurements at the excitation and

emission wavelengths in order to eliminate the use of operator defined thresholds. The

method performed consistently and automatically across a variety of experimental scenar-
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(a) (b) z = 0.59cm (c) z = 1.25cm

(d) (e) z = 0.59cm (f) z = 1.25cm

Figure 3.3: Euthanized Mouse: (a) Fluorescence Reflectance (b)Manual Threshold:
Coronal slice through esophageal tube (c) Manual Threshold: Coronal slice through
subcutaneous tube. (d) Flat (Photographic) Image (e) Fixed Point: Coronal slice through
esophageal tube (f) Fixed Point: Coronal slice through subcutaneous tube. In all images,
z = 0cm corresponds to the source side of the slab, with a total slab thickness of 1.3cm.
The red box denotes the boundary of the solution space.
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(a) (b) z = 1.25cm (c) z = 1.25cm

Figure 3.4: In-Vivo experiment. (a) Flat (Photographic) Image. Arrow indicates
location of implanted tumor. (b) Manually Selected Threshold (c) Fixed Point Iteration.
In both reconstructions, the red box denotes the boundary of the solution space.



61

ios, something which was not possible with previous thresholding techniques. Examining

the results we see that they compare favorably with those obtained using empirically

defined thresholds, even when the thresholds were tuned using knowledge of the correct

result.

Possible future extensions to this work include the use of fully nonlinear inversion

methods, more complex regularization methods, the inclusion of correlation between the

various data points, and spatially variant regularization to improve the dependence of

size estimates on depth.

One of the advantages of using repeated solution of linear systems, such as we have

done here, is that such systems are in general efficient and easily implemented. If instead,

we were to apply the conjugate gradient method directly to our nonlinear cost function

in (3.22), we could eliminate the need for the fixed point iteration, at the cost of greater

algorithmic and computational complexity.

Another possible extension of this work is the inclusion of correlation into the equa-

tions. Two independence assumptions were made to arrive at the weights detailed in this

paper. The first of these was that each fluorescence measurement was independent of its

associated excitation measurement. The second was that each fluorescence measurement

was independent of every other fluorescence measurement, and likewise for the excitation

measurements. Neither of these conditions is truly accurate. The intensity of excitation

light reaching a detector is highly predictive of the intensity of fluorescence that detector

may see, although the exact value seen is still primarily dependent upon the physical

distribution of the fluorochrome.

Overall, the method presented offers an inversion scheme that can enable more

robust tomographic performance, by reducing image accuracy dependencies on calibra-

tion studies and user defined thresholds. Guided by a-priori information based on the

statistical nature of the measurements, this approach potentially offers a generalized and

transferable inversion method across different platforms appropriate for standardization
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of optical tomography techniques. Further studies will involve application of the method

to a larger number of in-vivo data to confirm the validity of application across a large

number of different potential targets, organs and tissues sizes.



Chapter 4

Effects of Parameter Selection on Finite Element Modeling for Normalized

Fluorescence Imaging

4.1 Introduction

While non-contact, rotational FMT imaging systems such as described in §1.6.2

offer improvements in image quality over previous slab based systems, the ill-posed na-

ture of the inverse problem still limits the resulting image resolution. Multi-modality ap-

proaches have been suggested as a method to help overcome this limitation [26,30,31,85].

Available from imaging modalities such as X-ray CT or MRI, structural prior information

can be used in both modeling and inversion, and has been shown to significantly improve

image quality. Multiple approaches have been proposed to incorporate prior information

into the inverse problem, with methodologies that avoid the use of hard priors offering

promising characteristics in order to avoid image bias [86].

Here we investigate the forward modeling aspect of the hybrid tomographic prob-

lem. Our imaging system employs the normalized Born approximation, or Born ratio,

which divides measurements at the fluorescence wavelength by corresponding measure-

ments at the excitation wavelength [22]. This approach allows direct computation of

fluorescence parameters, without the intermediate determination of tissue optical prop-

erties [23]. Additionally, the Born ratio has been shown to grant a significant degree

of invariance to inhomogeneities in the background optical properties of the medium.

That is, the Born ratio corrects for differences between the modeled optical parameters

and those present in vivo. Because of this correction, it is unclear whether the use of



64

more elaborate forward models is necessary, or if forward model simplifications will be

sufficient to obtain optimal results.

Additionally, the use of prior information in the inverse problem also yields signifi-

cant performance improvements on the resulting images. This raises questions regarding

the interaction between structural prior knowledge obtained from XCT images in the for-

ward and inverse problems, and to what degree inverse structural priors can compensate

for simplifications of the forward model. To this end, we investigated inverse solutions

both with and without structural priors, for each potential forward model, and examine

the relative cost incurred by each subsequent model simplification.

In stand-alone FMT, where only the air-tissue surface may be known using surface

extraction techniques, an internally homogeneous medium can be assumed with each op-

tical property constant throughout the volume, and data normalization can be employed

to correct for the effects of tissue optical heterogeneity [65]. For imaging of whole ani-

mals, the resulting parameter values are commonly set in the range of µa = 0.3cm−1 and

µ′s = 10cm−1, to correspond with the average values of bulk soft tissue. In contrast, the

X-ray CT component of the hybrid approach provides knowledge of the internal geome-

try which can enable the implementation of more elaborate photon propagation models

to account for the differences in absorption and scattering present within each organ or

tissue. This improved modeling yields sensitivity functions which more accurately reflect

the physical diffusion taking place within the animal. However, the introduction of ad-

ditional optical parameters complicates the implementation of these models. Anatomic

images are frequently segmented into a number of discrete regions corresponding to indi-

vidual organs or optically similar tissue types, each of which must be assigned absorption

and scattering values which accurately reflect those present in vivo. One option for se-

lecting these values is to explicitly calculate them through solution of the diffuse optical

tomography (DOT) problem [21]. This approach is theoretically the most accurate, but

leads to increased complexity and additional computation requirements. Importantly,
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this calculation may include and therefore propagate errors to the fluorescence recon-

struction problem that can bias the final fluorescence image. An alternate approach that

can be employed when constructing forward models for optical tomography is to employ

average parameter values from ranges that exist or may be measured for the different

tissue types segmented on the CT image. While perhaps not as accurate as explicit pa-

rameter estimation on a per animal bases, this approach is offset by the simplicity and

lack of additional computation. What remains to be established is the tradeoff in terms

of reconstruction accuracy that results from having a mismatch in modeled issue optical

parameters.

4.2 Methods

To examine the effects of parameter selection upon the resulting solutions, we

assumed a three-dimensional geometry representative of the murine chest, as illustrated

in Figure 4.1(a). This geometry was based on an in vivo X-ray CT of a nude mouse,

segmented to differentiate heart, lung, liver, and bone from surrounding soft tissue. It

is thus both physically realistic and representative of geometries for in vivo multimodal

imaging of the chest cavity, a region that presents a difficult tomographic problem due to

the high degree of optical inhomogeneity. Two hexahedral finite element method (FEM)

meshes were generated, one with approximately 64k nodes, used for data generation, and

a more coarse 11k node mesh for data inversion.

Optical parameter ranges for each tissue were obtained from existing literature

(Tables 4.1 and 4.2). From these ranges, values were selected to create four models of light

diffusion. We will refer to these models as the “matched,” “mismatched,” “mid-range,”

and homogeneous models. The matched model is so-called because the high resolution

model used for data generation employed the same set of tissue optical parameters. For

each tissue type, the optical parameter value in the matched model was selected to be

at one extreme of the associated published range. This allowed us to select optical
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Figure 4.1: a) Rendering of FEM geometry b) Rendering showing exterior surface, lung
surface, and location of all four fluorescing inclusions used in combination to generate
simulated data measurements.

parameters for the mismatched model at the opposite end of each range from those

selected for the matched model. Given the physically realistic ranges and the use of the

matched model for data generation, this represents a worst case scenario, as the mismatch

in µa and µ′s was maximized with respect to values used for data generation. The mid-

range model used values at the center of their corresponding ranges. Assuming that this

represents the average absorption and scattering parameters for each tissue type, this

choice will on average minimize the mismatch between the model and those parameters

present in vivo. Finally, the homogeneous model assumed that the optical parameters

were uniform throughout the medium, equivalent to assuming no prior knowledge about

the animal’s internal structure. These values are not shown in the tables, and were set

to µa = 0.3cm−1 and µ′s = 10cm−1 for all tissues.

Each of these four sets of model parameters was used to construct a diffusion prob-

lem on the anatomically defined finite element mesh. Using the Deal.II finite element

Table 4.1: Modeled and Published values for µa.

µa
Published Model

Range Matched Mismatched Mid Range
Tissue 0.34 0.28 0.30
Bone 0.10 0.10 0.10
Lung 0.20 - 0.30 0.30 0.20 0.25
Heart 0.30 - 0.40 0.30 0.40 0.35
Liver 0.40 - 0.60 0.60 0.40 0.50
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Table 4.2: Modeled and Published values for µ′s

µ′s
Published Model

Range Matched Mismatched Mid Range
Tissue 12 10 10
Bone 20 17 20
Lung 25-35 35 25 30
Heart 20-25 20 25 23
Liver 10-15 15 10 13

libraries [?,?], solutions to the diffusion approximation were obtained for point sources

at each of source and detector locations. These solutions can be seen as Green’s func-

tions associated with the diffusing system, and can be used to construct the appropriate

normalized Born models using the formula [22]:

w(rs, rd, r) =
G(rs, r)G(rd, r)

G(rs, rd)
(4.1)

where w(rs, rd, r) denotes the sensitivity of a measurement collected at point rd, to flu-

orescence at a point r, given a point source of appropriate wavelength at point rs. The

function G(r1, r2) denotes the solution to the diffusion problem at point r2, given a point

source at r1.

Five fluorescing inclusions were constructed on this geometry, differing in location

and physical dimensions. In each case, the boundaries of the inclusion were defined, and

interior voxels given Gaussian distributed fluorescence intensities. The first simulates a

situation where the fluorescent probe is spread throughout one entire lung, such as might

be found when imaging lung inflammation. The remaining four targets were smaller,

roughly spherical inclusions, as illustrated in 4.1(b). Three of these were approximately

3mm in diameter, while the fourth had a diameter of 2mm. Each was located at a dif-

ferent, non-overlapping location within the lung, to cover a range of possible interference

from other organs.

These inclusions were used to construct a total of 16 imaging scenarios. The first

scenario consisted only of the full lung inclusion, while the remaining 15 data sets cor-

respond to all possible combinations of 1-4 of the smaller inclusions. For each scenario,
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multi-angle collection of diffuse data in a transmission geometry was assumed. At each

collection angle, a 3 × 10 grid of source locations was defined, with overall dimensions

0.8cm × 1.8cm. A corresponding set of detectors locations was defined, using a 10× 10

grid of size 1.6cm × 1.0cm. Using 17 projections spaced evenly every 20 degrees these

values resulted in a total of 51000 source-detector pairs. Simulated data with 10% added

shot noise was generated using the fine resolution mesh for Green’s function computation,

and the linear model presented above.

4.3 Results

Reconstructions for every data set-model combination were obtained by solving the

Tikhonov regularized least squares problem:

x̂ = arg min
x
‖Ax− b‖2

2 + λ2‖x‖2
2 (4.2)

with the regularization parameter λ selected to minimize 2-norm error with the known

true image. Solution of the above minimization was implemented using 50 iterations of

the LSQR algorithm [75]. Each data set was reconstructed twice; once using the full

weight matrix, and once using a structural prior model which constrained image values

to lie solely within the lung region. The prior model was implemented by eliminating the

elements of x and corresponding columns of A associated with voxels lying outside the

lung region. For display purposes, the values of these voxels were then set to zero.

For each solution, 2-norm error with respect to ground truth was computed as:

ei =
‖xi − xtrue‖2

2

‖xtrue‖2
2

. (4.3)

These errors are plotted for the the standard and apriori inversion techniques in Figures

4.2(a) and 4.2(b), respectively. In both cases, the matched model consistency provides the

lowest reconstruction error, with the mid-range model yielding the second lowest error.

For the standard reconstruction, the mismatched model also consistently outperforms the

homogeneous model. When using the simple apriori approach, the errors obtained with
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each model are significantly lower than those seen with the standard solution method.

However, unlike the standard approach, there are several cases, when imaging three or

four of the small inclusions, where the homogeneous model yields a lower 2-norm error

than the mismatched model. Additionally, the spread in errors between the different

models has increased.

(a) (b)

Figure 4.2: Absolute 2-norm Error using a) standard and b) a priori inversion. Re-
sults show consistent improvement when using mid-range and matched parameter mod-
els. Error levels for the full lung inclusion incorporating a priori structure in the inverse
problem are not shown to better display other results.

To give a better comparison of the relative performance gain achieved by moving

to a move complex model, we also computed the the errors relative to the error seen with

the matched forward model:

ei,relative =
ei

ematched

. (4.4)

There values are plotted in Figures 4.3(a) and 4.3(b). As also seen in the absolute

error plots, the homogeneous model consistently shows the largest errors when using

the standard inversion approach. As more accurate model parameters are incorporated,

solution error correspondingly decreases in all cases. The mismatched model offers some

improvement over the homogeneous,while the mid-range model consistently shows less

than a 1% increase in error. Average relative error increases of 0.74%, 2.5%, and 4.8% are

seen for the mid-range, mismatched and homogeneous models, respectively, as compared
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to the matched model.

(a) (b)

Figure 4.3: Relative 2-norm Error using a) standard and b) apriori inversion. Note
that relative penalty for using the incorrect model is significantly higher when using
apriori inversion techniques.

The situation changes slightly when incorporating structural prior knowledge into

the inversion process. The full fluorescing lung (Test Case #1) is reconstructed with the

lowest overall error levels, as the structure of the image is provided by the prior informa-

tion. When reconstructing the smaller targets, the homogeneous model yields the highest

error in 12 out of 16 trials, with the mismatched model yielding the highest error for the

remaining 4 cases. Interestingly, while the use of prior information offered consistently

lower error levels, the relative penalty for using an incorrect model increased. The aver-

age relative increase in error was 4.2% for the mid-range, 8.9% for the mismatched, and

10.9% for the fully homogeneous model, significantly higher than was seen without prior

knowledge. These values reflect an increase in both the absolute error resulting from

improper model selection, as well as the proportion of total error. This indicates that

while structural a priori information in the inverse problem alone can offer improved

performance, the biggest gains are to be made by a combination of prior knowledge and

improved diffusion modeling.

Sample reconstruction slices from the full lung target using apriori knowledge are

shown in Figure 4.4. While all models obtain the true structure of the lung, the matched
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and mid-range models more accurately resolve the quantitative values. When reconstruct-

ing smaller inclusions, the more accurate models consistently offered improved separation

of objects and lower 2-norm errors than the homogeneous and mismatched parameter

models.

Figure 4.4: a) True full-lung image. b-e) Reconstructions of inclusion using: b) Matched
model c) Mismatched Model d) Mid-range model e) Homogeneous Model

Our results suggest that for imaging within the murine chest, the use of established

ranges for tissue optical parameters does not significantly degrade reconstruction quality,

even when mismatch in values remains. Furthermore, by using values from the center of

the established ranges, results can be obtained which consistently offer less than a 5%

increase in error as compared to using perfectly matched parameters. In contrast, the

use of homogeneous models results in significantly higher error levels and reduced image

fidelity. We conclude that structural CT data can provide improvements to diffusion

modeling for fluorescence molecular tomography without the additional experimental

and computational complications of explicit parameter estimation.
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Chapter 5

MultiModality Imaging

5.1 Introduction

While significant improvements have been made in stand-alone FMT imaging sys-

tems, one drawback of fluorescence (as well as endogenous) optical contrast imaging using

diffusion tomography techniques is the inherently low spatial resolution of the resulting

solutions. Smoothness in the kernel results in poor conditioning of the linearized forward

model, ultimately limiting resolution to objects of approximately millimeter scale and

larger [4]. Given this low spatial resolution, there has recently been increasing interest in

multimodality imaging [27–31,86–94] These techniques seek to combine the spatial reso-

lution achievable by CT and MRI methods with the functional information available from

optical techniques to obtain improved localization and quantification of contrast agent

concentrations. The structural information can be used to improve both the forward and

inverse aspects of the tomography problem. Techniques such as the finite element method

(FEM) allow for solution of the diffusion problem on complex inhomogeneous tissue ge-

ometries, thereby improving the accuracy of the associated physical model. Additionally,

the anatomical structure can be used to construct a prior model of the fluorescence im-

age to be reconstructed. When applied to the inverse problem of recovering an image

of the fluorescence distribution from a set of collected surface intensity measurements,

this prior information can guide the reconstruction process to yield images that are both

qualitatively and quantitatively superior.
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Several methods currently exist for constructing such prior models, all of which

share similar characteristics [30, 30, 85, 86, 95]. Most typically begin by labeling voxels

in the high resolution structural image according to tissue type. Registration between

the modalities then allows the assignment of a tissue label to each voxel in the FMT

reconstruction. This labeling divides the solution image into a number of segments, each

comprising a group of voxels with a common tissue label. Image constraints are then

established on each segment, based on the assumption that the anatomic and functional

images share a common structure.

The simplest method by which spatial structural information can be used is to

constrain the solution to certain regions of the volume. If it is know a priori that

fluorescence (or other contrast agent) can only appear in specific areas, then allowing

the solution to take nonzero values only within that region can be an effective way

of incorporating that structural information. For example, in the case of functional

diffuse optical imaging of the human brain, it is known that changes in hemoglobin

and deoxyhemoglobin concentrations are going to be occurring within the cortex of the

brain, but not within the skull or cerebrospinal fluid [90]. By only allowing the inversion

algorithm to place perturbations only within the cortical region, the accuracy of the

reconstructed images is increased.

An alternate method of using structural information, proposed by Brian Pogue’s

group at Dartmouth, makes the assumption that the distribution of contrast agent is

well correlated with the physical structure of the medium [27, 28, 30, 31, 94]. Further

assuming that the concentration of contrast agent will be relatively smooth across each

physical domain, a regularization matrix, with structure similar to that of a Laplacian

regularizer, can be constructed. Given a total of N physical regions {Ω1, Ω2, . . . , ΩN},
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each with number of elements ni

Lij =


1 i = j

1
nk

xi, xj ∈ Ωk

0 otherwise

(5.1)

This encourages the solution within each spatial region to be uniform, while still allowing

for sharp edges at the boundaries of each region.

A third proposed solution uses what the authors refer to as a hierarchical Bayesian

approach to solving a masimum a posteriori (MAP) statistical problem [86]. Their overall

problem takes the form of a MAP problem, using the joint probability density:

p(y, x, λ, µ, σ|C) = p(y, λ|x)p(x|µ, σ, C)p(µ|C)p(σ|C)

=
1

K(2π)3N/2|Λζ(λ)|1/2|Λx(σ)|1/2|Λµ(ϑ)|1/2|Λσ(γ)|1/2

× exp

[
−1

2

(
‖y −Wx‖2

Λ−1
ζ (λ)

+ ‖x− µ‖2
Λ−1

x (σ)
+

‖µ− µ̄‖2
Λ−1

µ (ϑ)
+ ‖σ − µσ‖2

Λ−1
σ (γ)

)]
(5.2)

Here, Λ−1
ζ (λ),Λ−1

x (σ),Λ−1
µ (ϑ), and Λ−1

σ (γ) are the measurement, image, image mean, and

image covariance covariance matrices, respectively. The variables µ, µ̄, and µσ represent

the mean of the image, the mean of the image mean, and the mean of the image covari-

ance, respectively. The final two, µ̄ and µσ, are set based on analysis of the literature.

The remaining values are left as hyperparameters, to construct a cost function:

Ψ(x, λ, µ, σ) = − log p(y, x, λ, µ, σ|C) (5.3)

With C being the particular image segmentation. Solution of this problem is done by

repeatedly alternating between single conjugate gradient iterations to update the value

of x, and individual MAP estimation of each of the hyperparameters.

In this section, we explore two aspects of the multimodality problem not directly

considered in earlier reports. First, simply as a result of the imaging physics, multi-

modal imaging approaches generally use a high resolution structural image to enhance
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low resolution images of functional activity. In the case of FMT-CT imaging, this means

that each voxel in the low resolution FMT reconstruction will cover several voxels in

the high resolution CT structural image. This inherent difference in spatial resolution

has not, however, generally been reflected in the formation of the FMT inverse problem.

While each CT voxel is assigned a single anatomic type during the initial segmentation,

FMT voxels near tissue boundaries will potentially span two or more tissue types. By

associating each FMT voxel with only a single tissue type, errors will result in tissue

labeling, likely causing subsequent artifacts in the reconstruction. We note here that

we use the term voxel to identify individual elements of the CT or FMT images, while

segment refers to a group of voxels that share a common tissue type labeling at either

the CT or FMT image scales.

Second, existing methods typically use a priori assumptions which are applied in

an identical manner to each data set. Smoothness constraints are applied uniformly

to all segments, and prior estimates of signal intensity are likewise fixed for all data

sets. However, each segment of each experimental volume may have unique intensity

and smoothness levels, which should be taken into account if they are to be constrained

by the prior model. These image features can often be defined using a small number of

parameters, which, if estimated from the collected data, could provide customized prior

models offering improved reconstruction results.

This type of customized regularization is potentially of great benefit for imaging

fluorescent targets. While endogenous optical contrast is often well correlated with phys-

ical structure, the fluorescent probes imaged by FMT systems are specific to molecular

activity levels which may not correlate perfectly with anatomy, and whose intensity lev-

els will not be known a priori. Accurately identifying regions of activity and subsequent

selection of appropriate regularization levels would enable segments such as the back-

ground to be highly constrained, while permitting the remaining voxels in segments of

higher activity to best account for the collected data.
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To those ends, we introduce here a new space varying regularization technique

for the incorporation of CT or other structural information into the solution of inverse

diffusion problems. Our method addresses the fundamental resolution differences by

labeling each FMT solution voxel as a linear mixture of the tissue types identified in the

high resolution CT image. At the interface between physical regions, the resulting prior

model is then able to incorporate information from multiple regions, more accurately

representing the underlying anatomy.

Additionally, the segmental labeling is used to create a low dimensional inverse

problem that yields a single intensity value for each anatomic segment. We then use

these solution values as parameters to define a spatially varying regularization term for

the full resolution FMT problem. The central idea of this paper is that the solution

of the parameterized inverse allows us to construct customized constraints that vary

depending on the collected data and spatial segmentation. The values obtained from

the low dimensional problem provide an initial estimate of the total fluorescence activity

present within each of the regions, and thus we have information about where we expect

the highest intensities to lie.

We present two approaches for incorporating this information into the inverse prob-

lem as a spatially varying regularization term. In both cases, we use the solution of the

parameterized problem to define a separate regularization term for each physical segment.

This is then used in conjunction with the partial labeling map to assign a particular reg-

ularization level to each individual FMT voxel based on the underlying tissue types.

The difference between the approaches lies in how the spatially varying mean values

for the FMT voxels are applied. The first method uses the parameterized solution and

partial labeling matrix to apply a spatially varying mean value prior, while the second

forgoes this step. In both cases, the degree of regularization applied within each region is

dependent upon the the solution of the low dimensional parameterized problem. Specif-

ically, regions corresponding to a low value in the parameterized solution are regularized
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more than regions with a high solution value. The assumption is that regions associated

with low parameterized solution values are background regions which should be tightly

constrained to prevent imaging artifacts from arising. Similarly, high values of the pa-

rameterized solution are assumed to correspond to regions of high fluorescence activity,

and are subsequently regularized less to allow for accurate reconstruction of fluorescence

intensities. In this way, we establish an intermediate step between hard priors, which

reconstruct values on only a limited number of voxels (for example, one value within each

particular physical region), and naive approaches which regularize each voxel uniformly.

5.2 Structural Priors

Given a CT or other structural images properly registered to the FMT coordinate

system, individual voxels within the FMT image can be labeled with one or more tissue

types. The segments arising from this labeling allows construction of a low dimensional

problem that produces as a result a single intensity value for each physical segment. These

values can then be used to construct a dataset-specific spatially varying regularization

term for use in the full resolution FMT problem.

5.2.1 Low-Dimensional Parameterized Inverse

In order to employ structural information in the inverse problem, voxels in the FMT

solution space must first be associated with the structural image. Modalities such as X-

ray CT, however, have significantly better physical resolutions than FMT. Each FMT

solution voxel will therefore occupy the same space as several voxels in the structural

image. In the vicinity of tissue boundaries this difference in resolution means that each

FMT voxel will potentially include more than one anatomic region. We propose to use a

partial volume approach that models each FMT voxel as a mixture of multiple segments.

This allows for the anatomical structure to be correctly related to the inverse problem.

To begin, we assume the existence of a fluorescence image at the CT image scale,
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denoted xCT . This can then be related to the image at the FMT image scale as:

xFMT = CFMT
CT xCT , (5.4)

where the matrix xCT , size NFMTvoxels×NCTvoxels, computes the value of each FMT voxel

as the average of the underlying CT voxels. We then introduce a second matrix CCT
Segments,

size NCTV oxels ×NSegments, which maps each CT voxel to its underlying tissue type. The

product of these two matrices: C = CFMT
CT CCT

Segments, size NFMTvoxels×Nsegments, will thus

allow each FMT voxel to be fractionally labeled with multiple tissue types, depending

on the labels of the underlying CT voxels. The individual elements Cij will then be the

fraction of voxel i which lies within segment j. This process is depicted pictorially in

Figure 5.1.

Using this matrix, a parameterized version of the inverse problem in (2.4) can be

written as:

µ̂x = arg min
µx

‖Q(WCµx − u)‖2
2 = arg min

µx

‖Q(W̃µx − u)‖2
2 (5.5)

where W̃ = WC, of size Ndata × NSegments and µx is a vector of length NSegments. This

formulation is equivalent to obtaining an inverse solution using a piecewise constant ba-

sis defined by the anatomical segmentation. Alternately, it can be seen as a method

for estimating a mean fluorescence intensity for each tissue type or anatomical region.

Conceptually, the idea is that by solving a reduced dimensional problem using the struc-

turally defined basis, we can use the collected data to provide information about the

fluorescence content of each region. We will then use this reconstruction to build a

regularization matrix customized to each specific multimodal data set.

Because negative fluorescence concentrations are non-physical, we would like to

constrain the solution of (5.5) to be non-negative. The low dimensionality of the param-

eterized problem allows us to use the modified residual norm steepest descent (MRNSD)

approach without significantly increasing total computation time [96]. MRNSD requires

a non-zero initialization, which we achieve using a normalized projection of the data onto
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Figure 5.1: Partial Volume LabelingConstruction of partial volume labeling matrix.
Here, voxel I lies 50% within region 1 and 50% within region 2, while voxel II lies 25%
within region 1, 25% within region 2, and 50% within region 3. This is reflected in the
rows of the matrix C, each of which is of unit 1-norm.

the segments:

µ̂
(0)
xj =

1

NSegments

uTW∗j

‖W∗j‖2

(5.6)

with W̃∗j denoting the jth column of the matrix W̃ . The quantity µ̂
(i)
xj corresponds to

the value associated with the jth region at iteration i.

5.2.2 Regularization Construction

Solution of (5.5) then yields a single value for each anatomic segment, which we

will use in the construction of an appropriate spatially varying regularization term. If, as

suggested earlier, these values are viewed as estimates of the mean for each segment, or

alternately as an initial estimate of the image [78], then (2.4) could be modified to take

the form:

x̂ = arg min
x
‖Q(Wx− u)‖2

2 + λ2‖L(x−Cµx)‖2
2 (5.7)

which explicitly applies the µx values as spatially varying prior or initial estimates of

mean intensity over the segments. This formulation also has a statistical interpretation

as the maximum a posteriori (MAP) estimator of x, given the collected data u, noise

covariance (QTQ)−1, and the Gaussian image prior x ∼ N(Cµx, λ
−2(LTL)−1).

Though optical contrast is often correlated with physical structure, the fluorescent

probes that serve as the contrast agents for FMT imaging do not appear on a CT scan.
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Moreover, their ability to traverse anatomical boundaries means it is possible for probe to

be located within only a small portion of a physical segment, be present within more than

one segment, or even be contiguous across an anatomical border. Thus, the assumption of

a uniform mean across the entire segment may not strictly hold for fluorescence imaging.

But as we will show in the results section, improved reconstructions can be obtained

when this assumption is not explicitly satisfied. However, owing to these possibilities, we

also consider the original minimization equation:

x̂ = arg min
x
‖Q(Wx− u)‖2

2 + λ2‖Lx‖2
2 (5.8)

which does not explicitly impose mean values upon the solutions in each region, and can

be interpreted as a MAP solution given the prior model x ∼ N(0, λ−2(LTL)−1).

In both cases, the matrix L is constructed as a diagonal matrix, with spatially

varying diagonal elements derived from the low dimensional solution:

L = diag(Cα). (5.9)

We define α = f(µx) for some function f , with C the same matrix used in (5.5) to build

the parameterized problem. Thus a regularization level is defined for each anatomic

segment, and individualized regularization for each FMT voxel is then generated as a

mixture of those intensities using the matrix C. The function f(µx) can thus be seen in

the statistical interpretation as generating the inverse of the standard deviation for each

individual voxel. We want to select the function f(µx) such that an increase in mean

value corresponds to a decrease in the corresponding regularization level. Regions with

a low parameterized solution value will thus be treated as background regions, and more

heavily regularized, while high parameterized solutions will lead to corresponding regions

with lower levels of regularization.

A straightforward choice for f(µx) which achieves this goal corresponds to a model

where the variance is proportional to the mean, as in the Gaussian approximation to a
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Poisson process, resulting in the relationship:

αi =
1

√
µxi

(5.10)

Unfortunately, this choice for αi is unstable for small values of µxi, which are expected

to appear frequently as a result of the non-negativity constraint applied by the MRNSD

algorithm. In place of the above equation, we use the modified version:

αi =

√
(1 + β) max(µxj|∀j)
µxi + β max(µxj|∀j)

, (5.11)

which constrains αi to be in the range αi ∈ [1,
√

1 + 1/β]. This alteration prevents

regions from being infinitely regularized as µxi goes to zero, which would be equivalent

to applying a hard prior and not reconstructing values within that region. Our approach

avoids this and allows fluorescence intensities to be reconstructed at any location within

the volume, but more heavily penalizes their appearance within background regions.

5.2.3 Summary of Approach

Given an appropriately segmented anatomical image, coregistered to the solution

image, our approach can be summarized as follows:

(1) Use the segmentation to assign partial volume labels to each of the solution

voxels, and construct the matrix C.

(2) Solve (5.5) using MRNSD to obtain a single parameter value for each region.

(3) Use the solution to compute the values of the αi’s using (5.11).

(4) Construct the regularization matrix L using (5.9), and proceed to solve either

(5.7) or (5.8).

5.3 Experimental Methods

To evaluate our spatially varying regularization technique, we investigated a range

of simulated and experimental data sets imaging amyloid-β plaques in the brains of
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transgenic mice exhibiting the symptoms of Alzheimer’s disease. These plaques exist only

within the brain, and are known to preferentially form within the cortical region. This

yields a challenging tomographic problem, because the fluorescent targets are distributed

throughout the volume, and not contained to a single small region.

External geometries were obtained directly from the FMT system using silhouette

images and a previously described volume carving algorithm [65], while all anatomic in-

formation was provided by a single CT data set, collected from a wild type mouse on

an X-SPECT small animal imaging system (Gamma Medica, Northridge CA). Given

the relatively fixed internal skull geometry, an affine transform was used to coregister

the CT data set with the computed exterior surfaces using the eyes, teeth and base of

skull as fiducial markers. Semi-automatic segmentation was achieved using the software

package AMIRA (Visage Imaging, Carlsbad CA). Because of the preferential formation

of plaques, the cortical region and remaining brain tissue were assigned as separate seg-

ments. This differentiation was used as prior knowledge in the inverse problem, while the

forward model treated the entire brain as a single optically homogeneous region. Finite

element method (FEM) solutions to the diffusion approximation were obtained using

COMSOL (COMSOL Inc, Burlington MA) to construct the linear model for simulated

data generation and all inversions.

5.3.1 Anatomic Subsegmentation

In initial experiments, large changes in the parameterized solution occurred with

very small changes in the data or initialization, indicating poor conditioning of the re-

duced dimensional system. Further examination revealed that certain anatomical con-

figurations result in a high degree of linear dependence among the columns of W̃ (The

matrix of size Ndata × Nsegments resulting from the aggregation of voxels belonging to

each segment). The columns of W̃ associated with the cortical and remaining brain

tissue segments were highly correlated. This made it extremely difficult for the MRNSD
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Figure 5.2: CT-FMT Registration and Modeling Geometry a) A 2D slice of the CT
data, showing labeled brain (red) and cortical (blue) regions. Dotted red lines indicate
where regions were subdivided prior to the inversion process. b) An isosurface from the
CT image (gray) superimposed with surface computed by FMT volume carving algorithm
(yellow). This alignment allows for use of CT information in the FMT problem. c)
Alignment between modalities allows the brain (red) and cortical (blue) regions to be
appropriately located within the surface computed by the FMT system (yellow). d-
e) Contour information was extracted from the segmentation information and used to
construct surface meshes prior to generation of a tetrahedral mesh for obtaining solutions
to the diffusion equation using the finite element method (FEM).
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algorithm to discriminate between segments, leaving the reconstructed parameters highly

dependent upon initialization of the algorithm.

To correct this problem, we investigated the effects of subdividing the brain and

cortex into smaller subsegments. For the work presented here, this was done in a purely

geometrical manner, without taking the physical model or other attributes into account.

We considered subdivision of both the central brain and cortical segments. The central

brain was either left as a single segment, or divided into left and right hemispheres. To

subdivide the cortex, the segment’s centroid was located, and used as the reference point

for dividing the cortex into N ∈ {1, 2, . . . , 10} subsegments, using an equal central angle

subdivision scheme. This process is illustrated in Figure 5.2.

(a) (b) (c)

Figure 5.3: Anatomic segmentation and subsegmentation. a) The original seg-
mentation separated the brain and brain cortex segments (red and blue segments, re-
spectively), from the remaining soft tissue. Subsegmentation of the cortex divided it into
three equal angle subsegments, as denoted by the white dashed lines. b) Plot of number
of cortical subsegments against resulting average angle between segments, with (trian-
gle) and without (square) subdivision of the central brain segment. c) Average angle
divided by total number of subsegments plotted against number of cortical subsegments.
Maximum is seen when cortex is divided into three subsegments.

For each configuration of subdivisions, the reduced dimensional matrix W̃ was

generated for analysis. To analyze the matrix, the angle between each pair of columns

was computed as [70]:

cos(θij) =
W̃

T

∗iW̃∗j

‖W̃∗i‖‖W̃∗j‖
(5.12)

The average of these angles was taken across all pairs of columns, to generate a single
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average measure of the linear dependence present across columns of W̃. As can be seen

in Figure 5.3, this average angle rapidly increases with the number of cortical segments

until it levels off at approximately 63 degrees by the time 7 segments are used. This sug-

gests that additional subdivision of the cortex should help stabilize the reconstructions,

but that there is a diminishing return from each additional subsegment. Interestingly,

introducing subdivision of the central brain (indicated by the triangles in Fig 5.3) reduces

the average angle by approximately 4 degrees as compared to leaving it in undivided.

Our goal is to minimize the number of additional subsegments introduced, thus

preserving as much of the initial segmentation as practical. As a metric to measure

the increased complexity against the benefits of increased average angle, we divided

the average angle by the total number of subsegments used. As shown in Figure 5.3b,

this metric has a maximum when the cortex is divided into three subsegments, and the

remainder of the brain remains whole. Thus we employed this subdivision scheme for all

reconstructions presented below.

5.3.2 Mouse Brain Simulation Studies

A series of simulation studies were generated to evaluate algorithmic performance

in a range of situations. These scenarios were constructed to emulate scenarios expected

to be seen in-vivo, as well as more artificial scenarios to test algorithm performance. The

first test case is a simple arrangement, with each voxel more than 50% within the cortex

assigned an intensity as a sample of a single non-zero mean Gaussian process.

The second test case uses the same cortex voxels, but applies a spatially varying

mean value to the Gaussian process. The maximum is at the centerline of the head, and

decreases linearly as it moves away to the left and right. Test case three is the same

as test case two, with the addition of low level fluorescence within the remaining brain

tissue. Test case number four has two small fluorescing regions within the cortex, while

cases five and six have a spatially varying intensity within a portion of the cortex that
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overlaps two subsegments, without and with the addition of background fluorescence

elsewhere.

Figure 5.4: System Diagram and Internal Head Geometry a) Noncontact FMT
imaging system diagram. b) Surface reconstructed with FMT system (yellow) overlaid
with brain (red) and cortical (blue) segments obtained from CT structural image.

5.3.3 In Vivo Imaging Study

Longer human lifespans bring with them an increased prevalence of age related

conditions such as neurodegenerative diseases [97]. Among these, Alzheimer’s disease

(AD) is the primary cause of neuronal degradation, accounting for between 42 and 81% of

dementia cases. From an average onset of 80 years, AD incidence increases exponentially,

with more than 50 percent of 90-95 year old individuals likely being symptomatic [98].

Furthermore, most similarly aged asymptomatic individuals are likely to acquire at least

some amyloid-β plaques and hyperphosphorylated tau (tangles) which are the primary

pathological hallmarks of the disease [99, 100]. While the specific importance of the

neurofibrillary tangles has begun to attract significant interest in recent years [101,102],

the amyloid-β plaques have long been the primary target.

The widespread prevalence and significant impact of Alzheimer’s disease upon both
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patients and families have spurred the development of investigational tools for in vivo

evaluation of both disease progression and the efficacy of potential therapeutic strategies.

In the laboratory, several lines of transgenic animals exhibiting altered expression levels

of amyloid precursor protein (APP) have been developed using mutations similar to those

seen in early-onset familial AD (FAD) [103–106]. In particular, the APP23 line contains

a mutated human APP gene that results in a 7-fold over-expression of APP compared

to control animals [106], leading to the formation of amyloid plaques with age correlated

increasing proliferation. Additionally, these mice show all other pathological hallmarks of

Alzheimer’s disease such as hyperphosphorylated tau and manifest learning and memory

deficits. Since their development, these animals have been widely used in research ranging

from disease pathogenesis [107] to behavioral research [108] and imaging of altered brain

vasculature [109–111].

Linked to the development of appropriate animal models for understanding and

finding treatments for AD is the search for appropriate methods that can non-invasively

image AD biomarkers in vivo. In vivo longitudinal imaging offers real time evaluation

of drug efficacy and has been linked to accelerating therapeutic discovery. In response,

imaging techniques such as positron emission tomography (PET) and magnetic resonance

imaging (MRI) have been applied to AD visualization. Fluorodeoxyglucose (FDG) PET

studies have examined AD related aberrations in glucose metabolism [112], while other ra-

diotracers such as FDDNP [113,114] and Pittsburgh Compound-B [115,116] can directly

asses amyloid plaque burden and tau bundles. Structural alterations such as decreased

gray matter volume [117] and altered vasculature [109] have been imaged using mag-

netic resonance. Developments in fluorescence probes have yielded the ability to target

amyloid-β plaques using the AO1987 probe [118]. Given the choice, fluorescence methods

have advantages for biological research as they offer versatility that overcomes several of

the technical difficulties of other modalities such as the use of ionizing radiation and the

requirement for dedicated cyclotron facilities to produce adept PET probes or challenges
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in visualizing molecular function with MRI. However current optical methods offer in-

adequate imaging performance. Fluorescence microscopy lacks the ability to penetrate

deeper than a few hundred microns, preventing non-invasive imaging of the brain. Pla-

nar fluorescence imaging, previously utilized [118], offers single projection viewing and

compromised accuracy due to the strong non-linear dependence of fluorescence intensity

on activity depth and tissue optical properties. Furthermore, current state-of-the-art

fluorescence tomography methods, developed to improve on planar imaging by using the-

oretical models of photon propagation in tissues, do not have adequate resolving power

to produce accurate brain images. This is a particular problem when determining dis-

tributed fluorescence activity, i.e. spatially extended fluorescence patterns, as expected in

neurodegenerative disease. Indeed, we demonstrate here that conventional fluorescence

molecular tomography (FMT) of distributed fluorescence activity in the animal head is

particularly challenging due to the optically heterogeneous structures and highly curving

boundary characteristic of this problem.

In Vivo Imaging

Two hours prior to imaging, each mouse was injected with a 1mg/kg dose of AO1987

(Novartis Institutes for BioMedical Research Inc) by tail vein injection. Additionally,

each animal’s head was shaved and a depilatory cream applied to ensure good coupling

between the laser and tissue. Immediately prior to imaging, animals were anesthetized

by tail vein injection of ketamine (100 mg/kg) and xylazine (10 mg/kg). This was

supplemented as necessary during imaging by additional intraperitoneally injected doses.

Animals were mounted vertically within the chamber, with their abdomen and lower

extremities restrained within a cylindrical tube. To properly orient and restrain the

head, the animal’s incisor teeth were fastened to the top of the rotation stage with

suture thread. Imaging sessions lasted approximately 1 hour from initial anesthetization

to completion and euthanasia by C02 inhalation.
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Mean FMT Data Signal

Collected FMT data were used to generate images approximating those collected

in vivo with uniform illumination planar transmission systems. A single projection was

selected, corresponding to the CCD camera being positioned directly over the dorsal

surface of the head. Laser source locations were on the ventral side. Images from fluo-

rescence and excitation channels were summed across all source locations to yield single

images for each channel. By dividing each pixel of the fluorescence image by the corre-

sponding image in the excitation image, the normalized Born ratio was applied to correct

for differences in excitation intensity. Mean normalized intensity over the brain region

was then computed, for comparison with in vivo tomographic reconstructions and ex vivo

planar imaging results.

Ex vivo Imaging

Immediately following in vivo FMT imaging, each animal was perfused intra-

aortically with a 4% performaldehyde in phosphate buffered saline (PBS) solution to

fix and solidify brain tissue. Brains were surgically extracted and imaged whole using

a planar reflectance imaging system before being manually sliced into 8 axial sections,

approximately 1.5mm thick, for further examination. Illumination for planar reflectance

imaging was with the same 650nm continuous wave diode laser used in the FMT system.

Beam expanders enabled a planar illumination field, rather than the point illumination

used for tomographic imaging. Data were collected at excitation and emission wave-

lengths using the same wavelength selection filters as the FMT system, as well as under

white room light. Post-processing using ImageJ and Matlab (The Mathworks, Natick

MA) was used to identify the cortical region of each slice and compute the mean normal-

ized fluorescence signal using the Born ratio.

Confocal Imaging

Fixed brain slices were mounted onto CoverWell & Secure Seal Imaging Chambers
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(Electron Microscopy Sciences, Harfield, PA) with Crystal Mouse (BioMeda, Foster City

CA). Photographs of each slice were taken with an Olympus C7070 Digital Camera

mounted to an Olympus Model SZX12 Research Stereo Microscope. Regions of interest

were selected on these images to guide region selection for confocal microscopy. Confocal

microscopy data were collected with a Zeiss LSM 510 Meta confocal microscope with

the two photon (NLO) feature from a subset of these regions. Confocal images were

acquired using the 635 nm HeNe laser. The emitted light was collected through a 650-

710 nm bandpass filter. A 10 layer stack was collected of each field then collapsed to one

maximum projection image. Data were analyzed using the CRi Maestro (CRi, Woburn,

MA) measurement software to select plaques (defined as pixel clusters above certain

threshold values); the sum of the selected plaques (area in pixels) was then normalized

within that image.
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5.4 Results

5.4.1 Partial Volume Labeling

Figure 5.5 shows results for a simulated data set with fluorescence present evenly

throughout the cortical region. Figure 5.5(b,c) show reconstructions where each FMT
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voxel was assigned a single tissue type, while Figs. 5.5(d,e) are reconstructions of the

same dataset using partial volume labeling. Subfigure (b) and (d) were constructed by

incorporating a mean value into the prior model, while (c) and (e) only specify prior

knowledge about the covariance. The original image used to generate the data is shown

in Fig. 5.5a. Without the use of partial labeling, the structure of the segmentation is

clearly visible, with hard edges and right angle corners that are not present in the original

image. By incorporating partial volume labeling, however, these artifacts can largely be

eliminated, yielding reconstructions with a much more natural appearance. Additionally,

as indicated by the overlaid numerical values, the use of partial volume labeling reduces

the relative 2-norm error present in the solutions.

Figure 5.5: Effects of Partial Volume Labeling: a) Original Image b-c) Reconstruc-
tions without partial volume labeling d-e) Reconstructions employing partial volume
labeling.

5.4.2 Simulations

Figure 5.6 shows inversion results for each of the simulated datasets. The original

images are seen in the first column, while the second column shows reconstructions using

standard Tikhonov regularization with the identity matrix. In all cases, these reconstruc-

tions fail to recover either the location or intensity of the fluoresence activity. Instead,
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they are heavily corrupted by surface artifacts, and the more deeply situated fluores-

cence is blurred throughout the volume. Clearly, the identity matrix is an inappropriate

regularization choice for imaging of the distributed phenomenon of interest.

The reconstructions in column 3 are obtained by applying a simple a priori tech-

nique which regularizes voxels outside the brain segments in the CT segmentation four

times as heavily as those within. This has the effect of largely constraining the recon-

struction to the brain segment by heavily penalizing solutions with fluorescence within

the surrounding soft tissue. These reconstructions show a marked improvement over re-

constructions using the identity matrix. The fluorescence is now inside the brain, but the

different segments within the brain are not distinct, and the reconstructions still have a

largely diffuse nature. For example, in test cases 5 and 6, the entire brain is resolved to

have approximately the same fluorescence intensity, although the original images have

higher intensity in the cortical segment.

Reconstructions using both region dependent means and variances are shown in

the forth column. Here we see a much better differentiation of of the cortical region, as

compared to the reconstructions where the images is simply restricted to lying within the

brain, and a closer resemblance to the original images. Relative 2-norm error with respect

to ground truth is also significantly reduced. However, these reconstructions yield highly

uniform values on each of the regions, and fail to capture the shifting mean values seen in

cases 5 and 6. These uniform values reflect the estimates of the mean value obtained in the

first, low dimensional, inversion step. For datasets one, two, and three, where the voxels in

each subsegment have similar intensities, the resulting reconstructions closely resemble

ground truth. However, in test case six, applying the mean value actually performs

worse with regards to 2-norm error than the simple a priori approach. Additionally,

the reconstructions clearly show artifacts from the segmentation and subsegmentation

procedures, suggesting that a more complex, data-driven subsegmentation procedure

may be useful for providing further improvements in the reconstructions.
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Finally, the fifth column shows reconstruction results using our region dependent

variance model without the explicit use of mean values. As when implementing the

mean values, the reconstructions seen are improvements over both the Tikhonov with

the identity, and the simple a priori technique. In case 1, additional artifacts can be

seen as compared to the image in column 4, and this is reflected in a higher 2-norm error.

Reconstructions for cases 2-5 appear very similar to those obtained using the mean value,

although the 2-norm error is higher. In test case 6, however, the reconstruction without

the use of a mean value yields both the lowest 2-norm error, as well as the greatest

subjective similarity to the original image.

5.4.3 In-Vivo FMT-CT Imaging of Amyloid-β Plaques

Six mice were imaged during the course of this study: four APP23 tg mice, at ages

17 to 28 months, and two APP23 wt control mice, ages 13 and 17 months. For all APP23

tg mice, the initial parameterized inversion identified one or more of the cortical segments

as the region(s) most likely to contain fluorescence, a conclusion consistent with prior

expectations. By contrast, applying an initial inversion step to the wt mouse shown

in Figure 5.9 did not identify strong fluorescence within any individual region. This

resulted in a reconstruction with a less structured fluorescence distribution and lower

overall intensity, suggesting that activity may be the result of free fluorochrome or non-

specific binding. Full resolution reconstructions of the APP23 tg mice in our algorithm’s

second step resulted in images showing fluorescence activity primarily within the cortical

region of the brain.

Images constructed using our structurally guided multimodal algorithm consis-

tently showed a marked improvement in quality and significant decrease in artifacts

compared to those regularized using standard Tikhonov regularization with the identity

matrix. As in the simulated tests, without structural prior information reconstructions of

in vivo data were dominated by diffuse fluorescent masses and surface artifacts, offering
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little qualitative or quantitative information about plaque localization. The developed

multi-modal algorithm eliminated these artifacts and enabled quantitative measurement

of fluorochrome concentrations which were correlated with measurements gathered ex

vivo by other imaging methods detailed below.

Correlative ex vivo Imaging Immediately following in vivo imaging, each ani-

mal was euthanized and its brain surgically excised for imaging with a planar fluorescence

reflectance system. Individual image slices were analyzed to determine mean normalized

fluorescence intensity levels within the manually segmented cortex. The resulting values

were then plotted against the mean in vivo reconstructed cortical intensity from the FMT

system (Fig. 5.8) yielding a highly linear relationship (R2=0.9587) between the signal

observed by ex vivo imaging and multi-modal FMT reconstructed intensities. By con-

trast, the mean FMT input signal from a single projection, which approximates planar

transmission imaging, shows a markedly lower correlation with the ex vivo measurements

(R2=0.7422). While correlation between mean FMT input signal and reconstructed val-

ues is observed (R2=0.8712), it is lower than that present between ex vivo data and

reconstructed values. Additionally, higher input values do not always yield higher recon-

structed intensities, indicating that the tomographic process is properly correcting for

variations in geometry and fluorochrome localization within the head.

Subjective evaluation of the ex vivo images further confirms the relationship be-

tween underlying activity and the FMT reconstructions (Fig. 5.10). No lesions are seen

in the C57BL/6 control mouse, while varying degrees of plaque density appear in the cor-

tex of the APP23 tg mice. Fluorescence localization in the FMT images correlates well

with these ex vivo findings. While the resolution of the FMT system cannot resolve the

individual lesions seen in the planar fluorescence images, the pattern of plaque deposits

in the planar images correlates well with that seen in the FMT reconstructions.

Further validation of both the AO1987 probe and the multimodal FMT-CT imag-
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ing technique were provided by confocal microscopic imaging of the excised brain slices.

Confocal images of cortical and hippocampal brain regions showed dense plaque accu-

mulations in the APP23 tg mice, while the images from control mice were void of all

staining (Fig. 5.10). Thick slices were analyzed to quantify the total area within cortex

and hippocampus occupied by amyloid-β plaques. The average fractional area for five

APP23 mice (average age 23.6 months) was 11.62% (SEM 0.22) while control wt mice

lacked any measurable signal. This was in accordance to previously established plaque

load in these mice8. Notably larger blood vessels in the cortical area stained positive.

5.5 Optimal Parameter Estimation

An area in which further research could improve these techniques is with a more

statistically appropriate method for determining the means and variances associated with

each of the individual physical regions of the solution image. In this chapter, mean values

within each region were estimated as:

µ̂x = arg min
µx

‖Q(WCµx − u)‖2
2 (5.13)

with variances estimated as an analytic function of the means. If each region were truly

piecewise constant, this approach would be the maximum likelihood estimator of the

means. However, fluorescence intensity within each region will have some variability

about the mean value that should be accounted for in the estimation process. I therefore

assume a general image prior of:

x ∼ N(Cµx,Σx(µx)). (5.14)

Note that the covariance matrix Σx is assumed to be dependent upon the vector of mean

values µx. This is based on the assumed availability of an estimate of µx, which is then

used to compute variances estimates. The specific details of the covariance model are

unimportant for these derivations. Only the existence of the dependence is relevant. If

the covariance is assumed to be known, with no dependence upon the mean values, the
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fixed point iteration derived below can be eliminated, and the process reduced to a single

step. The above model can now be used to return to the original linear model, and

rewrite it as:

u = W(Cµx + ∆x) + n (5.15)

where n is the measurement noise, distributed as n ∼ N(0,Σn), and ∆x is the vector

of variations about each voxel’s mean value, with ∆x ∼ N(0,Σx). This can be further

rearranged to write:

u = WCµx + ntot (5.16)

with, ntot = W∆x + n, ntot ∼ N(0,WΣxW
T + Σn). Here, the variation around the

background, and its resulting effects upon the measured data, are treated as additional

noise, rather than either being ignored or treated as deterministic. From this, it is

straightforward to show that the maximum likelihood solution is:

µ̂x = arg min
µx

(u−WCµx)
T (WΣxW

T + Σn)−1(u−WCµx) + log(|WΣxW
T + Σn|).

(5.17)

Here, the dependency of Σx upon µx makes direct solution of this minimization diffi-

cult. The determinant in the second term will be computationally expensive to compute,

making even direct gradient based methods difficult to implement. However, if Σx were

known and fixed, the second term would be constant, and therefore eliminated from

the minimization, and the first term would simply be a weighted least squares problem.

One possible solution to this is to use a currently available estimate of µx to compute a

fixed estimate of Σx, which allows easy solution of the above minimization, providing an

updated estimate of µx. Repeating this procedure results in a fixed point iteration:

µ̂(n+1)
x = arg min

µx

(u−WCµx)
T (WΣ(n)

x WT + Σn)−1(u−WCµx) (5.18)

with Σ
(n)
x = Σx(x

(n)), which is the same as solving:

µ̂(n+1)
x = arg min

µx

‖(WΣ(n)
x WT + Σn)−1/2(u−WCµx)‖2

2, (5.19)

ericmiller
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and which has the solution:

µ̂(n+1)
x =

(
CTWT (WΣ(n)

x WT + Σn)−1WC
)−1

CTWTu (5.20)

Now, however, the issue arises of how to compute either the inverse or inverse square root

of the matrix WΣ
(n)
x WT + Σn. Given the size and dense nature of this matrix, explicit

computation of the matrix inverse will be computationally expensive. By making use of

the standard or generalized singular value decompositions, an approximate inverse can

be computed in an iterative fashion which will likely require less overall computation,

and be able to execute in a smaller memory footprint.

First, the matrix to be inverted can be rewritten as:

WΣ(n)
x WT + Σn =

[
W I

]Σx 0

0 Σn


WT

I

 (5.21)

= Σ1/2
n

[
Σ
−1/2
n WΣ

1/2
x I

] Σ
1/2
x WTΣ

−1/2
n

I

Σ1/2
n (5.22)

if the GSVD of the matrix pair {Σ−1/2
n W,Σ

1/2
x } is taken, you obtain:

Σ−1/2
n W = USX−1 (5.23)

Σ−1/2
x = VMX−1. (5.24)

The second equation can also be rearranged to yield Σ
1/2
x = XM−1VT , from which you

can get: Σ
−1/2
n WΣ

1/2
x = USM−1VT , which is a standard SVD. I present both the SVD

and GSVD forms, because the ease with which the two can be implemented depends on

whether Σ
−1/2
x or Σ

1/2
x is more readily available, and which imposes a higher cost for

matrix-vector multiplications (One matrix is likely to be sparse while the other will be

dense due to the inversion). In either case, using the identity Σ
−1/2
n WΣ

1/2
x = USM−1VT

in (5.21), yields:

WΣxW
T + Σn = Σ1/2

n

(
U(S2M−2 + I)UT

)
Σ1/2

n (5.25)
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and additionally:

(WΣXWT + Σn)−1 = Σ−1/2
n

(
U(S2M−2 + I)−1UT

)
Σ−1/2

n . (5.26)

This formulation can be used in conjunction with the identity W = Σ
1/2
n USM−1VTΣ

−1/2
x

to rewrite (5.20):

µ̂(n+1)
x =

(
CTWT (WΣ(n)

x WT + Σn)−1WC
)−1

CTWTu (5.27)

=
(
CTWT (Σ−1/2

n

(
U(S2M−2 + I)−1UT

)
Σ−1/2

n )WC
)−1

CTWTu (5.28)

=
(
CTΣ−1/2

x VS2M−2(S2M−2 + I)VTΣ−1/2
x C

)−1
CTWTu (5.29)

= C−1Σ1/2
x VS−2M2(S2M−2 + I)−1VTΣ1/2

x C−TCTWTu (5.30)

= C−1Σ1/2
x VS−2M2(S2M−2 + I)−1VTΣ1/2

x C−TCTΣ−1/2
x VSM−1UTΣ1/2

n u

(5.31)

= C−1Σ1/2
x VS−1M(S2M−2 + I)−1UTΣ1/2

n u. (5.32)

This final equation gives a method for iteratively estimating the values of µx from the

collected data that explicitly incorporates the knowledge that the image to be recon-

structed will have some variability within each region. This approach does, however,

require significantly more computation than the more basic estimation scheme used in

Section 5.2.2. With that scheme, the system matrix WC was significantly reduced from

the original W, and computation could be done very rapidly. The approach presented

above, however, operates at the full dimensionality of W, and thus each step of the fixed

point iteration will require approximately as much time as solving the fully voxelated

problem Wx = u. The question remains whether or not the estimates obtained from

this more complex system offer sufficient improvement over the more basic approach to

warrant the additional computation.

5.6 Discussion and Conclusions

Non-invasive fluorescence tomography of laboratory animals can become a natural

extension of in vitro fluorescence assays and microscopy studies given that high image
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fidelity and quantification accuracy can be achieved in vivo. Fluorescence is an essential

modality in biological research and the extension of fluorescence imaging resonates with

the biology culture. In addition, fluorescence imaging offers attractive characteristics such

as the ability to simultaneously differentiate multiple markers based on multi-spectral

imaging [119], the use of non-ionizing radiation and the widespread use of fluorescent

proteins [120], recently also extending to the near-infrared [121–123]. The use of ap-

propriate scrambled or inactive probes emitting in a different wavelength compares to

the active probe, can further generate imaging protocols where each mouse serves as

its own control, for example by independently resolving probe binding vs. probe bio-

distribution, leading to increased accuracy and minimization of the animals required to

obtain statistically significant results. While in vivo imaging does not replace traditional

ex vivo studies or intravital microscopy measurements based on established microscopy

protocols, it can be used to provide volumetric data at the tissue level and accurately

guide the selection of animals for entering established high resolution imaging protocols

for deciphering events at the cellular and sub-cellular level.

For these reasons, several methodologies have been described for quantitative fluo-

rescence imaging of tissue. However none of these methods have proven so far sufficient

for in vivo imaging of neurodegenerative disease. The particular challenge associated

with optical imaging of neurodegenerative diseases is that the disease is rarely confined

within a small volume of the brain but it is more typical that a distributed spread pat-

tern arises in the brain. Therefore, while localized cancer-related fluorescence activity has

been resolved with conventional fluorescence tomography in the animal brain [124], this

technology has difficulty accurately visualizing distributed fluorescence bio-distributions

as shown here with relevant simulations and in vivo.

We have presented here two new methods for the inclusion of a priori structural in-

formation in the construction of inverse diffusion images via data-informed multimodality

space-varying regularization. In contrast to existing techniques, this approach accurately
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associates solution voxels with their underlying tissues types, and then regularizes vox-

els based on these associations rather than imposing a prior structure directly on the

solution. We achieve this by using a multiple label map to define a low dimensional

parameterized problem which yields information about the relative importance of each

region to the overall reconstruction. These values are then used to construct a space-

varying regularization term based on the tissue labeling of each voxel.

These methods are used to demonstrate that a hybrid method based on state-of-

the-art FMT measurement combined with CT structural information enables the in vivo

visualization of plaque distributions in a mouse model for Alzheimer’s disease. We show

that the use of this technique is essential to produce highly accurate fluorescence images,

in contrast to using standard tomographic methods. Simulation studies demonstrate that

even with perfect model information, accurate reconstruction of spatially distributed flu-

orescent inclusions can be a difficult problem without prior knowledge of the underlying

anatomical structure. The ill-posed nature of the problem bias regularized solutions to-

wards smooth solutions which do not reflect the underlying structure of the fluorescence

distribution. Without the use of structural priors to compensate for this bias, recon-

struction of distributed fluorescence is extremely difficult. By employing CT structural

information in the reconstruction process, we are able to recover spatial and quantitative

information with a much higher degree of accuracy than previously possible.

This capability provides an important new tool for in vivo imaging of Alzheimer’s

disease progression within a single mouse, and suggests applicability to imaging other

neurodegenerative diseases in the murine head. The information obtained from such

studies could provide real time evaluation of the efficacy of new anti-amyloid treatments

and insights into Alzheimer’s disease pathology over time. By utilizing the same method

at several spectral windows, with corresponding fluorochromes or expressed fluorescent

proteins from transgenic animals emitting at different spectral bands, different disease

biomarkers and signaling pathways or cellular migration can be visualized including phys-
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iological and molecular markers.

An important aspect of the method developed is the restriction of the use of a priori

information to the definition of physical regions in the head; i.e. without other restrictions

on fluorescence bio-distribution. This allows the use of CT structural information in a

manner which does not overly impose itself onto the fluorescence reconstruction. Instead,

the collected FMT measurements themselves are allowed to determine the final output.

This is important because operator bias and/or conceptions of a desired output can

strongly impact the resulting reconstructions when using a priori information in a less

flexible manner, especially in fluorescence mode where the underlying spatial distribution

does not necessarily correlate with anatomic structure, and thus the information required

to make such assumptions is unavailable.

One drawback seen in the images from several of the mice with heavier cortical

amyloid-β plaque loads was a degree of spatially non-uniform sensitivity to the presence

of fluorochrome. Lesions present in the dorsal portion of the cortex are more easily

reconstructed than those present in the left and right lateral segments, and result in

higher reconstructed intensities than the lateral segments. This can be explained by

the geometry of the head, differences in absorption between the brain and surrounding

tissue, and the presence of esophageal and ear canal void spaces within the head. In

particular, the void spaces alter photon transport in a manner not accounted for by a

diffusion model. Ongoing research into more complex physical models and improvements

to data collection methodologies will both help to alleviate these shortcomings.

The method developed herein describes a co-registration scheme that can use X-ray

CT images acquired at a different time-point compared to the fluorescence measurements.

Using advanced processing schemes, this concept could also be adapted to using mouse

atlases instead of actual scans. However, the most obvious, and perhaps important, ex-

tension to this work will be the development of a single physical system for the collection

of both FMT and CT data sets. As presented here, registration between the two is avail-
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able only because the skull structure of each mouse presents a relatively straightforward

rigid transformation, where the internal spatial relationships are maintained regardless

of animal orientation or soft tissue distortion. Data collected concurrently or under iden-

tical placement could eliminate image these registration issues, enabling more accurate

performance and the potential extension of the methods to areas other than the animal

head, for example the chest cavity and abdomen, enabling the use of multi-modal FMT

for preclinical imaging of virtually any fluorescent target. Even in its present form how-

ever, the method developed could complement stand-alone free-space FMT systems and

offer a significantly higher degree of performance.

Another potential avenue for improvement of this technique is to automate the frag-

mentation of the original segments. Here, it was done geometrically to obtain segments

which yielded a numerically stable reduced problem. If the heuristic approach presented

here was instead replaced by an explicit optimization problem, issues of consistency and

repeatability could potentially be reduced. With appropriately parameterized shapes and

segments, techniques such as clustering algorithms could potentially aid in this process.

The overall goal of such a procedure would be to create segments whose effects upon the

diffuse forward model are as different from one another as possible, while maintaining

reasonable shapes and minimizing the number of subsegments.

In conclusion, multimodal fluorescence imaging of tissue offers the potential for

significant improvements in image fidelity and in vivo quantification over conventional

fluorescence tomography methods. With the advent of new probe technologies and trans-

genic platforms utilizing fluorescence proteins, one could envision multi-modal FMT used

to perform rapid and high-throughput visualization of neurodegenerative biomarkers.

Optical sampling of human brain parameters has also been showcased in several stud-

ies [125,126], further pointing to the possibility for clinical propagation of the technology

presented here. While it is not foreseen that the entire human brain can be visualized

with optical methods in clinical settings, it would be nevertheless feasible to probe cor-
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tex biomarkers at depths up to 3-5 cm, which could be sufficient for obtaining diagnostic

information or clinical information on therapeutic efficacy.
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Figure 5.6: Simulated Imaging Reconstructions Ground truth is shown in the first
column, while results using Tikhonov regularization with the identity matrix are in the
second column. The simple a priori technique in the third column restricts the solution
to either brain segment. The fourth and fifth columns show reconstructions using the
techniques developed in Section 3, with and without explicitly imposing a mean value
in the image prior model, respectively. Overlaid numerics indicate relative 2-norm error
with respect to ground truth.
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Figure 5.7: In Vivo Imaging Reconstructions A control animal is shown in the
first row, while APP23 transgenic animals exhibiting amyloid-β plaques in the cortical
segment (ages 26 and 28 months) are shown in the second and third rows. The first
column shows reconstructions using Tikhonov regularization with the identity matrix,
while the second columns using a simple a priori technique which favors solutions in the
brain region. The third and forth columns show reconstructions using the techniques
developed in Section 3, with and without explicitly imposing a mean value in the image
prior model, respectively.
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Figure 5.8: In-Vivo vs Ex-Vivo Correlation a) Correlation between in vivo re-
constructed activity and normalized fluorescence intensity measured ex vivo (x-axis)
(R2=0.9587) . b) Comparison of mean input FMT data for a single projection (x-
axis) with resulting FMT reconstructed intensity (R2=0.7422) . The single projection
was chosen with the camera positioned directly above the dorsal side of the head. c)
Mean input FMT signal (x-axis) as in (b), correlated with measured ex vivo fluorescence
activity (R2=0.8712) .
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Figure 5.9: In Vivo vs. Ex Vivo Imaging Ex vivo versus in vivo FMT imaging com-
parison for 13 month old C57B/6 control mouse (First row) a 17 month old APP23 tg
mouse (Second row) and a 26 month old APP23 tg mouse (Third row). (a) The first col-
umn shows full brain images in the excitation channel using a planar reflectance imaging
system. The red dotted line denotes the approximate location corresponding to the slice
shown in subsequent columns. (b) Planar reflectance images of normalized fluorescence
from a single slice are then presented in the second column. (c) The third column presents
planar images at the excitation wavelength (top) and FMT reconstructions overlaid on
normalized planar fluorescence images (bottom). (d) in vivo multi-modal FMT recon-
structions are shown in the final column for a slice corresponding to the same location as
the ex vivo images, overlaid on a representative CT slice. All FMT reconstructions are
scaled to the same colorbar.
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Figure 5.10: Confocal Imaging Representative confocal images of thick brain slices
from a 13 month old C57B/6 mouse and two APP23 transgenic mice, at ages 23 and 27
months. In each image, amyloid-β plaques appear as bright areas.



Chapter 6

Robust use of Structural Information

6.1 Introduction

A final area of work examined for this thesis involves the development of techniques

for using a priori structural information which are robust in the face of differences be-

tween the a priori anatomic segmentation used and the true fluorescence distribution

which we are attempting to reconstruct. Such differences could arise from incorrect

segmentation of the structural image or from fluorescence distributions which do not

precisely conform to anatomic boundaries. As detailed below, the second case may arise

because fluorescent probes react on a molecular rather than anatomic scale. The de-

velopment of algorithms which are robust to such errors would be useful in improving

algorithms for multi-modal imaging systems.

Considering the first situation more carefully, there are several reasons why the a

priori boundaries in the structural image may be incorrectly located. For example, the

structural and functional data sets may not be collected at the same time, or on the

same apparatus. Registration is necessary in such situations to relate the data from each

of the systems. If soft tissue deformation or other movement has taken place between

the imaging sessions, perfect registration between the modalities will be difficult if not

impossible. Even in situations where little or no deformation has taken place, the seg-

mentation process itself can introduce errors. When accurate automated segmentation

techniques are unavailable, manual segmentation must be done by experts, and the re-
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sulting segmentation will be operator dependent. Additionally, if reconstruction methods

can work well with sub-optimal segmentations, faster segmentation approaches, includ-

ing manual segmentation by non-experts, could be used to simplify the process. Finally,

such a technique could potentially allow the use of predetermined anatomical atlases in

place of exact segmentations, enabling approximate structural information to be applied

even in situations where it is not explicitly available.

As for the lack of precise correspondence between anatomy and function, in the

case of optical fluorescence imaging, differences between the physical structure of the

material and the structure of the fluorescence distribution may occur. Because FMT

images molecular level activity, the parameters to be reconstructed are not necessarily

bound by anatomic boundaries. The most interesting aspects of a functional image may

be molecular activity which extends into the milieu beyond an organ boundary, or areas of

an organ where the targeted activity is lower than the surrounding regions. As a specific

example, the spread of cancerous growths may be preceded by biochemical changes in

the surrounding tissue which have not yet manifested themselves as structural changes.

The ability to accurately identify these regions in vivo would provide a valuable tool for

researchers in the biological laboratory.

Below, we present two different solution approaches to this problem. The first

uses differential equations as the basis for a Gaussian prior model of the image. While

similar regularization schemes have been proposed on a tissue by tissue basis [30, 85],

these existing methods do not permit information to be shared across boundaries. The

inclusion of boundary conditions in the construction of a stochastically driven differential

equation model, however, allows such interchange. This, in turn, allows fluorescence

distributions which cross anatomic boundaries to be more accurately reconstructed.

The second method uses the sparsity inducing properties of 1-norm minimization

as applied to underdetermined inverse problems. The a priori boundary locations are

used to construct a series of vectors normal to the boundary, along which the 1-norm
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of the gradient is computed. By extending these vectors to some limited extent on

either side of the a priori boundary, the boundary’s final location is constrained within

a defined uncertainty region. To prevent artifacts from arising outside of the boundary

region, least squares smoothing using a Laplacian operator is applied within the “trusted”

regions away from this uncertain boundary. We apply this technique to a limited angle

Radon type problem in place of FMT, because the underdetermined nature of the problem

allows for an infinite number of valid solutions, and thus explicit 1-norm minimization,

as discussed below.

6.2 Differential Equation Based Covariance Models

As stated stated in §2.1, a well known manner in which the regularized solution:

x̂ = arg min
x
‖Wx− u‖2

2 + λ2‖L(x− µx)‖2
2 (6.1)

can be interpreted is as a maximum a posteriori (MAP) solution given a Gaussian image

prior for x with mean vector µ and covariance matrix (λ2LTL)†, where † indicates the

pseudoinverse [72]. Typically however, the construction of L is not interpreted in this

manner, and also µ is frequently assumed to be a vector of zeroes. Construction of L is

carried out to explicitly minimize image traits such as the local gradient or Laplacian.

While this can quickly encode simple image constraints, more complex relationships are

possible for which the appropriate regularization structure may not be readily evident.

To enable more complex regularization for diffusion and other inverse problems, we

propose here an alternative method for the generation and analysis of correlation (reg-

ularization) matrices. Rather than explicitly construct the regularization matrices, we

allow them to arise implicitly from the construction of a differential equation governing

the behavior of the solution image [72,127]. Specifically, an anatomically based differen-

tial equation is written, using a noise source of known statistical characteristics as the

driving term.
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Parameters for the differential equation are obtained using the low dimensional

inverse solution described in Chapter 5. To incorporate relationships between anatomical

regions, boundary conditions are established for each pair of neighboring regions. Once

this has been done, a discretized version of the equation can be written as a linear

system, which is then inverted to obtain an expression for the image prior in terms of

the discretized differential operator and the driving noise process. This type of approach

has previously been applied to oceanographic monitoring applications, where sparsely

sampled data points are used to estimate behavior across an entire region [128].

6.2.1 From Differential Equation to Covariance Matrix

The central concept of this approach is that a linear differential system driven by

a stochastic noise process can be discretized and written as:

Ax = w. (6.2)

Here, the matrix A encodes the differential operator with boundary conditions, x is the

discretized image, and w is the driving noise process. If w is a Gaussian random vector

with w ∼ N(µw,Σw), then:

x = A−1w (6.3)

immediately implies a stochastic model for x of:

x ∼ N(A−1µw,A−1ΣwA−T ). (6.4)

When used as a prior probabilistic model for x in the tomographic inverse problem, a

maximum a posteriori (MAP) estimation problem can then easily be constructed as a

linear least squares minimization:

x̂ = arg min
x
‖Wx− u‖2

2 + (x−A−1µw)T
(
A−1ΣwA−T

)−1
(x−A−1µw) (6.5)

which has the solution:

x̂ =
(
WTW +

(
A−1ΣwA−T

)−1
)−1

WT (u−A−1µw). (6.6)
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Note that this is analogous to (2.4) if the matrix L is constructed such that LTL =(
A−1ΣwA−T

)−1
.

In multi-modal FMT, the structure upon which this differential model is based is

constructed at the higher resolution of the structural image rather than the lower final

FMT resolution. Thus, if a differential model constructed at the structural resolution is

denoted:

xCT ∼ N(A−1µw,A−1ΣwA−T ) (6.7)

The matrix CFMT
CT , defined in §5.2.1 (which transforms an image from the CT image

scale to the FMT image scale), will be necessary to obtain a stochastic prior at the FMT

resolution as:

xFMT ∼ N
(
CFMT

CT A−1µw,CFMT
CT A−1ΣwA−T (CFMT

CT )T
)

(6.8)

In this manner, any image model derived from a PDE can be encoded at the resolution

of the structural image, where a one to one correspondence exists between image voxels

and anatomic regions, and subsequently shifted to the FMT image resolution. This is the

general form of our approach. The details of the construction of the differential equation

have significant bearing upon the traits of the resulting covariance matrix, and hence the

regularization of the FMT inverse problem.

6.2.2 An Example Implementation

We now present an example of this approach, using a general image model with

the potential for wide applicability. Within each anatomical region Ωm, we assume that

the solution x(r) should obey the differential equation:

∇2x(r)− γ2
mx = wm(r) (6.9)

where wm ∼ N(0, σ2
m1I) is a zero mean Gaussian white noise process with variance σ2

1.

This differential equation was chosen as it encourages general smoothness within each
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region, and thus has the potential for applicability to a wide range of imaging problems.

At the internal boundaries between each region, we impose the constraint:

βp,qn̂ · ∇f(r) = βp,qvpq(r) (6.10)

where vpq ∼ N(µ2, Σ
2
pq) is a second vector of independent Gaussian variables, with mean

vector µ2 and nonuniform diagonal covariance Σ2
pq. A zero boundary condition is used at

the external boundary of the medium. This choice of internal boundary condition will

encourage a jump at the boundary between anatomic regions, with the size of the jump

dependent upon the construction of the probability model of vpq

The parameter βp,q appears on both sides of the boundary condition because the

left hand side of the boundary condition will be used in the construction of the differen-

tial operator, while the right will be incorporated into the driving noise process. Thus

the value of βp,q scales the entire boundary condition so it is properly weighted against

the primary differential operator. Mean values for vpq(r) are computed as the differ-

ence between the mean values for the two adjoining regions, as determined using the

low-dimensional parameterized solution. Variances for both wm(r) and vpq(r) are also

computed from the low dimensional parameterized solution, using the approach detailed

in the preceding chapter.

As illustrated in Figure 6.1, the above differential equation is discretized in 2D using

an 4-neighborhood for both the primary differential equation and the boundary condition.

Elements of the matrix representing the discretized equation are thus generated as:

Ai,j =



−γ2
p −

∑
k 6=i Ai,k : i = j

1 : xj ∈ Neighbors4(xi) &

{xj, xi} ∈ Ωp

βp,q : xj ∈ Neighbors4(xi) &

{xj} ∈ Ωp, {xi} ∈ Ωq

(6.11)

This allows an equation for the image xCT to be written in terms of the noise processes
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Figure 6.1: Construction of Differential Regularizer Shown here is a 3 × 3 voxel
region about the voxel x5. Here, the voxels {x1, x4, x7} lie within region Ω1, while the
remaining voxels lie within region Ω2. The mean values for each region are denoted mΩ1

and mΩ2 , respectively. To construct the row of the differential operator corresponding to
x5, a 4-neighborhood is employed. The differential operator within Ω2 results in the first
equation written above, while the boundary condition results in the second. The final
equation to be satisfied at x5 is then the sum of these two equations.
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wm and vpq:

xCT = A−1(wm + vpq) (6.12)

where the construction of A as a discretization of a well defined differential operator with

boundary conditions ensures its invertibility. This, in conjunction with Σw = σ2
1I + Σ2

and (5.4), give us the model for the image at the FMT image scale, xFMT . This can then

be used to write a maximum a posteriori inverse solution as:

x̂ = arg min
x
‖u−Wx‖2

2+

λ2(CFMT
CT A−1µw − xFMT )T

(
CFMT

CT A−1ΣwA−T (CFMT
CT )T

)−1
(CFMT

CT A−1µw − xFMT ).

(6.13)

6.2.3 Effects of Parameter Selection on Covariance

Looking at (6.9) and (6.10), it is clear that the values of γ2 and β chosen for each

region will have a direct effect upon the resulting structure of the correlation matrix.

The parameter γ2 will adjust the amount of smoothing applied to each region, while β

will control correlation between the regions. In order to better understand the effects

boundary conditions have upon the covariance structure of the image prior, as well as the

role of the selection of β and γ2, we look now at a one dimensional version of the same

differential equation, incorporating two physical regions, and the boundary condition as

described above. Allowing β and γ to take on a range of values, we can more closely

examine the effects of each.

Allowing β to take on a range of values, while holding fixed γ = 0.5, covariance

matrices for the voxels along the one dimensional space can be constructed as:

Σ = A−1A−T (6.14)

where A is the matrix encoding the one dimensional differential operator with boundary

conditions. Figure 6.2(a) shows the 20th row of these matrices, for several values of β,

plotting the covariance between voxel 20 and all other voxels for each β value.
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What can be seen in this graph is the effects of introducing correlation across the

boundary between the two regions. When β = 0, there is no relationship between the

two regions, and the covariance immediately drops to zero when crossing the boundary.

As the value of β is increased, the covariance present between voxel 20 (lying in the

right hand region), and voxels in the left hand region, begins to increase. For values of β

between 0 and 1, there still exists a drop in correlation when crossing the boundary. Once

β = 1, however, the boundary in a sense disappears. This occurs because the structure

of the covariance matrix is dependent only on the left sides of the differential operator

and boundary condition. When β = 1, the left side of the boundary condition will be

identical to the differential operator that would be present in the absence of a boundary.

The right side of the overall equation (differential operator plus boundary condition) will

however be different as it represents the stochastic process driving the system. When the

variances of the left-hand and right-hand regions are identical, the resulting covariance

plot will be symmetric as seen in 6.2(a). If the variances are not identical, the structural

symmetry of the plot will remain, but each side will be scaled according to the variance

of its corresponding region.

This plot can also be used to examine how changes in β affect the structure of

the resulting covariance matrix. For β = 0, the covariance matrix will take on a block

diagonal structure, with one block for each of the two physical regions. As β is increased,

non-zero covariances will arise in the off-diagonal blocks, evidenced by the non-zero co-

variances between voxel 20 (in the right hand region), and voxels 1-19 (in the left hand

region) seen in Fig. 6.2(a).

Figure 6.2(b) shows a related plot of the changes in covariance as the value of β

changes. Forty lines are plotted in the graph, one line for the covariance between voxel 20

and each of the 40 voxels. Each line is normalized such that its maximum value is equal

to 1, yielding a measure of the relative change in covariance as β is varied. These forty

lines can be seen to fall into two distinct groups, corresponding to whether the associated
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(a)

(b)

Figure 6.2: Change in Covariance Structure as a Function of β: a) Plot of co-
variance of voxel 20 with all other voxels, for a range of β values, given γ2 = 0.5. b)
Plots of the relative change in covariance between voxel 20 (right hand region), and all
other voxels, as a function of β. Plots are normalized such that their maximum value
is equal to 1. Note that plots are clustered into two groups. The lower, exponentially
increasing group, corresponds to the covariance between voxel 20 and voxels within the
alternate (left-hand) region. The upper plot shows covariance between voxel 20 and all
other voxels within the right-hand region. Note that most voxels have a relative decrease
in covariance as β is increased. However several plots, corresponding to those voxels close
to the boundary, show a decrease followed by an increase in covariance as β is increased.
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voxel falls into the right-hand (voxels 1 through 19) or left-hand (voxels 20 through 30)

region. Those voxels falling into the left-hand region have covariance plots which form

the lower line of the graph and which, as β is increased, increase correspondingly in

approximately the same relative manner (ie- if a particular change in β results in a 50%

increase in covariance between voxel 20 and voxel 17, then the increase in covariance

between voxel 20 and each of voxels 1-19 will be approximately 50%).

The other group of voxels are those that fall within the same region (the right-hand

region) as voxel 20. The covariance plots for these voxels are clustered together in the top

line of the graph, and show covariances which roll off and decrease as β increases beyond

approximately 1e−2. Interestingly, for those voxels clustered closely to one another, in

the same region, and near the boundary, the decrease in covariance actually reverses itself

as β approaches 1. The precise reason for this reversal is currently unknown, and will

require further investigation.

Figure 6.3 shows the changes in covariance between voxel 20 and all voxels as a

function of γ2, with β fixed equal to 1. What can be seen in this plot is that as γ2

increases, the covariance becomes a function which decreases exponentially as a function

of distance from voxel 20. This result compares well with previously published results for

the case of a one-dimensional diffusion equation in an unbounded continuous space [128].

For that case, the covariance between any two points is a function only of the distance

between those points, and can be expressed as [85,128]:

C(r) = (1 + γr)e−γr. (6.15)

The suggested interpretation of this is that γ2 can be seen as setting a “correlation

distance”, which determines at which distance two points will still be significantly corre-

lated.
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Figure 6.3: Change in Covariance Structure as a Function of γ2: Covariance
between Voxel 20 and all others for a range of γ2 values. Note that as γ2 increases, the
covariance plot becomes a double sided exponential,
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6.2.4 Results

We now apply this regularization technique to two 2D examples simulating fluo-

rescence within the murine chest cavity. This type of imaging target could arise, for

example, when localizing inflammation within the lungs. To generate data for these ex-

amples, a finite element mesh was generated on a geometry extracted from an X-Ray

CT of a mouse. Each anatomic region was assumed to be optically homogeneous, and

individual optical properties were assumed known. The finite element solutions were

used as Green’s functions to compute simulated data sets using the normalized Born

approximation. The model used for the inverse solutions was also computed from the

finite element model, by downsampling onto a regular rectangular grid. Shot noise equal

to 10% of the signal intensity was also added to the simulated data.

Figure 6.4 simulates a situation where the fluorescent inclusion is present pri-

marily within the lung, but with regions of high intensity that extend beyond the

a priori boundary of the lung. For this case, we have taken γ2(Ωj) = 1 ∀Ωj and

β(Ωp, Ωq) = 0.25 ∀Ωp, Ωq. This corresponds to approximately a 40% reduction in cor-

relation between regions as compared to the boundary-less case. In all images presented,

the a priori boundary of the right lung is indicated by a solid red line. Reconstruction

using Tikhonov regularization with the identity matrix results in Fig 6.4(b). While the

general location of the fluorescent inclusions are correct, the image is quite smooth and

doesn’t accurately represent the underlying fluorescence distribution. Using a regular-

ization scheme which applies a discrete approximation to a Laplacian operator to each

region independently yields Fig 6.4(c). This image is clearly an improvement over the

identity regularized result; however the reconstruction is still quite smooth, and lacks

some some of the structural detail of the original. Applying our differential equation

based regularization scheme results in Fig 6.4(d). Here, the structure of the lungs is

more accurately reconstructed than with the other approaches. Additionally, because of

the incorporation of boundary conditions in the construction of the differential equation,
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our technique is able to identify the fact that fluorescence extends beyond the boundary

of the right lung.

Figure 6.5 shows the results of this method applied to another lung inflamma-

tion target, with significantly more complex structure. The results obtained with the

Tikhonov and Laplacian regularization schemes are similar to those seen for the previous

lung inflammation simulation, despite the significant differences between the two cases.

The two reconstructions are heavily smoothed, and while the reconstructions both appear

vaguely lung-like, they do not incorporate the detail seen in the original. Reconstructing

using the differential regularizer with boundary conditions, however, results in the image

seen in Fig. 6.5(d). Several improvements are notable in this image. First, there is a flu-

orescent inclusion reconstructed outside of the lungs, that is also indicated in the original

image, but missing from the Tikhonov and Laplacian solutions. Second, the structure of

the fluorescence distribution in the left lung is more accurately reconstructed. Finally, in

the right lung, the region of low fluorescence at the right edge of the lung is better recon-

structed. Each of these is a substantial improvement over the Tikhonov and Laplacian

solutions.

6.3 1-Norm Based Floating Boundaries

While the approach presented in the preceding section allows for correlation be-

tween individual anatomic regions to be incorporated into the regularization scheme, the

results still tend to be heavily smoothed by the differential operator, even at the bound-

aries. In some cases where a priori structural information is available, it may be known

or assumed that a sharp boundary should be present within the functional image, at a

location near the boundary in the anatomic image. To achieve this, we desire to have a

single boundary location that is able to shift within some predetermined limits.

To develop such an approach, we examined a regularization scheme based on a

combination of standard linear smoothing and use of the 1-norm of the image gradient
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(a) Original (b) Tikhonov

(c) Laplacian (d) Differential

Figure 6.4: Reconstructions of Simulated Fluorescence within an Artificial 2D
Geometry: a) Fluorescence Distribution used for Data Generation. Red line denotes
boundary of lung region b) Reconstruction using Tikhonov Regularization with the Iden-
tity Matrix. c) Reconstruction using Laplacian Regularizer applied to each region inde-
pendently. d) Reconstruction using Differential Equation Based Regularization Tech-
nique.
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(a) Original (b) Tikhonov

(c) Laplacian (d) Differential

Figure 6.5: Reconstructions using Differential Regularizer on a Complex Tar-
get: a) Fluorescence Distribution used for Data Generation. b) Reconstruction using
Tikhonov Regularization with the Identity Matrix. c) Reconstruction using Laplacian
Regularizer applied to each region independently. d) Reconstruction using Differential
Equation Based Regularization Technique.
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in regions surrounding the a priori boundary locations. The 1-norm is known to encour-

age sparsity, and the conceptual idea is that applying the 1-norm to the image gradient

in a region near the boundary will result in a single jump somewhere within that re-

gion. Specifically, we divide the reconstruction space into trusted and boundary regions.

Trusted regions are those areas where the label assigned by the a priori segmentation

can be trusted as correct. All other areas are defined to be boundary regions, where we

examine the 1-norm of the gradient, taken along lines that are normal to the a priori

boundary location.

As shown in Figure 6.6, the trusted and boundary regions were defined by intro-

ducing an uncertainty measure ∆, which defines the distance normal to the anatomical

boundary at which the boundary of the trusted region lies. Within the trusted regions,

regularization is applied to the 2-norm of the gradient. This is implemented as a ma-

trix L, and yields the penalty term ‖Lx‖2. By regularizing the gradient of the image,

smoothness will be encouraged within each of the trusted regions.

Voxels which do not fall within a trusted region are considered to be boundary

voxels. The expectation is that if a straight line is traced from one trusted region through

a boundary region to another trusted region, somewhere along that line a jump should

be encountered in the image. The location of this jump will correspond to the boundary

of the functional region, which may or may not be in the same location as the a priori

anatomic boundary. Choosing the straight lines to be vectors normal to the a priori

boundary, the uncertainty measure ∆ is used to define how far in either direction one

must traverse the line in order to guarantee to have passed from one region to another.

Figure 6.6 diagrams how the trusted and boundary regions were computed, along with

the construction of the boundary normal lines.

For each of these boundary normal lines, the 1-norm of the image derivative along

that line was then computed, and the sum across all boundary normals taken as an image
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penalty constraint, as:
Nnormals∑

i=1

∫
Ω

|∇x|δi(r)dr. (6.16)

Here ∇x is the gradient of the image, while δi(x, y) is a delta function supported on the

line segment ni, the ith vector normal to the a priori boundary location, extending a

length ∆ in either direction from that boundary. The integral is taken across the entire

solution space Ω, with respect to the coordinate location r. This penalty constraint can

be implemented on a discrete voxelized space as:

Nnormals∑
i=1

‖Dix‖1 (6.17)

where the matrix Di computes the appropriate first order differences along the normal

vector ni between voxels in the pixelated image, while the 1-norm takes the absolute

value and sums them together.

Similar to other 1-norm minimization work done for compressed sensing [129,130],

we look to solve this problem using convex optimization techniques. While general nonlin-

ear methods such as steepest descent, Newton’s method, or nonlinear conjugate gradient,

could be applied, they do not leverage the convexity of the problem in x. Because of

this, we use the Matlab package CVX [131,132] to solve the minimization:

min

Nnormals∑
i=1

‖Dix‖1 (6.18)

subject to:

‖Wx− u‖2
2 ≤ δ (6.19)

‖Lx‖2
2 ≤ λ2. (6.20)

The first constraint is a data fitting term, while the second applies a linear smoothness

constraint on each trusted region. The parameter δ is taken to be the expected noise

power in the measured signal, while λ2 will act as a regularization parameter controlling

the degree of smoothing within each of the trusted regions. For this proof of concept, we

assume that the noise power is known.
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6.3.1 Limited Angle Radon

One issue that arises with 1-norm optimization as a sparsity inducing measure is

that the system being solved must be underdetermined. In applications such as compres-

sive sensing [129, 130], the 1-norm is used in place of stronger sparsity-inducing norms

such as p-norms for 0 < p < 1. The ultimate sparsity inducing norm is the 0-norm, which

unfortunately changes a convex optimization problem into a combinatorial optimization

problem, thereby exponentially increasing the computational complexity. If, given a ma-

trix W describing the system, collected data u, and an image x to be recovered, a linear

constraint of the form:

Wx = u (6.21)

can be written (assuming for the moment that W is n×n), then use of the 1-norm becomes

equivalent to use of the 0-norm [?]. Figure 6.7(a) pictorially describes this effect in 2

dimensions. Essentially, the surface defined by all solutions sharing the same 1-norm takes

the shape of an n-dimensional diamond. The constraint Wx = u defines a hyperplane

in n-dimensional space upon which the solution must lie. As the n-dimensional diamond

expands (corresponding to increasing the 1-norm of the solution), with high probability

it will eventually be one of the tips of that diamond which first reaches the hyperplane

defined by the linear constraint.

By contrast, when 1-norm minimization is applied to an overdetermined system,

the set of valid solutions is no longer a hyperplane. By using a quadratic cost function

for an overdetermined system, each point within the solution space will instead have a

particular cost associated with it, with the isocontours of this cost function frequently

being ellipsoidal in shape, as show in Fig 6.7(b). While the pointedness of the 1-norm ball

is beneficial when fitting the solution to a linear hyperplane, all points on the surface of

that 1-norm ball still share the same 1-norm value. When using the quadratic constraint,

the cost function optimization will seek out the point on that surface where the quadratic

function is minimized, and this point is highly unlikely to lie at one of the corners or
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edges which define sparse solutions.

Given the low resolution nature of diffusive imaging, FMT problems are typically

highly overdetermined. While they can be downsampled to yield an underdetermined

problem, this typically involves throwing away large amounts of data. As an initial proof

of concept example, we instead look at a limited view Radon type problem. This type

of problem is encountered in situations such as breast tomosynthesis, where X-ray data

is available for only a small number of angles over a limited angular view [133]. The

result of this restriction is a significant increase in imaging artifacts as compared to

full view CT with a high angular sampling density. By incorporating structural prior

information into the inverse problem, we seek to reduce the number of artifacts present

in the reconstructed image.

6.3.2 Results

Figure 6.8 results shows the results of applying this technique to a boundary loca-

tion problem on a simple geometry. The original image used for data generation is seen

in Fig. 6.8(a). This differs from the a priori assumed boundary of the region, which is

circular, and visible as the border of the red region in the Laplacian regularized solution

6.8(c). The reconstruction in Fig. 6.8(b) was obtained using Tikhonov regularization

with the identity matrix. For this example, the Radon problem was limited to a 60◦ field

of view, with 6 evenly spaced angular views, and 75 samples per view. In this image,

reconstruction artifacts resulting from the limited view nature of the problem are clearly

visible. Introducing a priori knowledge to the problem, Fig. 6.8(c) was obtained by

applying a Laplacian within each of the regions on either side of the a priori bound-

ary location. Here, the reconstruction clearly shows the a priori located boundary, and

completely fails to resolve any of the differences between that boundary and the true

boundary of the object. Finally, Figs. 6.8(d)-6.8(f) present reconstructions obtained

using our 1-norm based approach for varying values of λ. In each case, a hard boundary
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is achieved, which more accurately represents the true location than was obtained with

either previous approach. As the value of λ decreases, smoothness in the reconstruc-

tion correspondingly decreases, until at λ = 0, a piecewise constant solution is obtained.

While an improvement on other approaches, the boundary location is still not correct in

all locations. In particular, those portions of the boundary falling along the axis of the

limited views are poorly reconstructed.

6.4 Conclusions

Multimodal techniques offer the potential for significant improvements in diffusion

based optical imaging. Using information about anatomical structure, these methods

can guide the reconstruction of fluorescence distributions to improve both spatial fidelity

and quantitative accuracy. However when imaging fluorescence distributions, differences

may exist between the a priori anatomical structure, and the structure of the underlying

fluorescence distribution. We have presented here two new techniques which help to

compensate for these errors by allowing the boundary location to shift from its original

a priori location.

Our first approach uses differential equations and boundary conditions to construct

regularization matrices which allow information to be exchanged across anatomic bound-

aries. Using a very general differential equation and boundary, we were able to obtain

significant improvements in image quality over approaches which do not employ infor-

mation transfer between anatomic regions. Given the ubiquitous nature of differential

equations as models for physical phenomena, this approach has the potential to generate

regularization schemes which are highly specific and particularly suited to each imaging

target. If the target fluorochrome is known to behave in a specific pharmacological man-

ner, it would be possible to write equations governing this and use them to regularize the

solution. Thus, rather than penalizing based on some generalized characteristics of the

solution image, the fluorescence tomography problem could be coupled to the underlying
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biochemical processes. This potential for fusion between bodies of knowledge is what may

make this differential equation approach to regularization a useful tool for multimodal

biomedical imaging.

As a potential method for encouraging a jump at the boundary, our second method

employed convex optimization and the use of the 1-norm as a regularization constraint.

Rather than minimize the 1-norm of the gradient across the entire image, our approach

used the a priori boundary locations to construct boundary normals along which the 1-

norm was computed. This constrained the boundaries to lie within some predetermined

distance of their a priori location. While the results obtained are still very preliminary,

they suggest that future work may be able to employ such an approach to more accurately

localize the boundary in the presence of errors in the prior knowledge.
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Figure 6.6: Diagram of 1-norm Boundary Regularizer At each of a number of points
along the boundary denoted by the heavy black line, the normal vector was computed.
Using this direction, and stepping some distance ∆ in either direction from the boundary,
the integral of the 1-norm of the derivative of the image along that line was computed.
The summation of all such 1-norms was then used as a penalty term in the inversion
process.
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(a) (b)

Figure 6.7: The 1-norm and Sparse Optimization a) By minimizing the 1-norm
when solving a system subject to some underdetermined linear constraint Wx = u, the
minimum norm solution which intersects the constraint plane will be a sparse solution,
with high probability. b) If the linear constraint is overdetermined, an approach min-
imizing the norm ‖Wx − u‖ needs to be taken, which likely results in a non-sparse
solution.

(a) Original (b) Tikhonov (c) Laplacian

(d) λ = 0 (e) λ = 0.1 (f) λ = 1

Figure 6.8: Results Using Boundary Normal 1-Norm Regularization: a) Flu-
orescence Distribution used for Data Generation. b) Reconstruction using Tikhonov
Regularization with the Identity Matrix. c) Reconstruction using Laplacian Regulariza-
tion on each region independently. d-f) Reconstructions using 1-norm regularization. d)
λ = 0 e) λ = 0.1 f) λ = 1.



Chapter 7

Conclusions

In this thesis, we have presented approaches which use statistical signal processing

techniques to improve reconstruction algorithms for fluorescence molecular tomography

(FMT). In Chapter 1.2, we presented existing work on optical tomographic techniques,

and detailed the imaging systems which generated the data sets processed in this thesis.

Research into system development is continuing to improve the quality of both single

and multi-modal datasets, which will in future contribute to further improved imaging

capabilities. Chapter 2 presented an introduction to inverse problems, regularization,

and applicable algorithmic methods. Future work into the effects of constrained versus

non-constrained solution methods for FMT will help determined the best algorithmic

approaches for solving these problems, and may be aided and accelerated by work such

as the modified L-Curve presented in Sec .

In Chapter 3, we examined the normalized Born ratio from a statistical perspec-

tive, building up a probability model from experimental data, and resulting in several

solution methods based on a sequence of approximations. These methods were shown to

yield superior reconstruction results as compared to existing threshold based techniques.

Furthermore, by eliminating the manual selection of thresholds, this technique allows

for optimal use of all available data, and reduces variability among reconstructions from

multiple datasets. This in turn allows for more accurate comparison of reconstruction

images.

Two assumptions of independence were made in the course of our derivations. The
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first was the independence of each individual fluorescence and excitation measurement

from all other measurements of the same type. The second assumed that each fluorescence

measurement was independent of its associated excitation measurement. Neither of these

assumptions is strictly true, due to errors in the assumed physical model. Were the model

perfectly accurate, the measurement noise at each detector would be independent of one

another. However, differences between the model and the true physical process can be

considered as additional noise in the system. Given the smoothness of diffusion photon

fields, this noise will contain some degree of spatial correlation. If this model error could

be quantified and accounted for, the noise covariance matrix would become non-diagonal,

and better able to compensate for the shortcomings of the approximate linear model. As

model error is highly dependent upon the physical system being observed, approximation

will likely be necessary in order to develop techniques which can be applied to multiple

imaging targets. Additionally, the utility of such models would need to be evaluated, to

determine whether the required additional complexity would result in sufficient gains in

accuracy to justify their use.

Chapter 5 used a single core concept for multi-modal signal processing to define two

new regularization methods, as well as several potential avenues for future research. The

central idea of this chapter is that when imaging with multi-modal data sets, parameter-

ized image models can be constructed whose parameters can then be estimated directly

from the collected data. In this way, regularization terms are defined which are cus-

tomized to each individual data set. This allows for the creation of regularization terms

that require fewer parameters to be defined a priori, and allow for differentiation between

test and control animals without such prior knowledge being explicitly incorporated into

the inversion scheme.

This technique was then applied to an in vivo imaging study which clearly showed

the utility of multi-modal FMT-CT. Studying the development of amyloid-β plaques in

the brains of transgenic mice provided an experimental study which could not have been
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performed without multi-modal techniques. Incorporating correlative ex vivo imaging,

this Alzheimer’s imaging study showed that FMT can achieve quantitative results in vivo

in difficult imaging scenarios, extending the capabilities of FMT as a tool for advancing

biological science.

Potential future work offers several interesting expansions upon this technique.

While the current two step multi-modal approach uses a simple relationship between

mean and variance, further developments could provide ways for estimating all parame-

ters of the structured image model directly from the collected data. If the structure of the

covariance matrix is known to within a small number of scaling coefficients (i.e. variances

on each of the physical regions), an approach such as that diagrammed in §5.5 could be

applied to explicitly estimate the variances, rather than using the heuristic approach

presented in Chapter 5. By computing statistically robust variance estimates directly

from the data, the resulting prior models will more accurately reflect the underlying

fluorescence distribution, and likely result in improved reconstruction capabilities.

Another area in which the two step multi-modal technique could be improved is a

more analytic method of choosing the subsegmentation of the original anatomic regions.

In this thesis, the cortical region of the brain was divided into three subsegments to

improve the numerical properties of the resulting reduced dimensional inverse problem.

This division was done in a heuristic manner, and evaluated using the average angle

between the columns of the resulting reduced matrix. Future work could examine this

process more closely. An initial goal could be the development of an improved metric

for judging the quality of each potential subsegmentation. By taking into account both

the number of subsegments and the shape of each subsegment, as well as the resulting

effects upon the reduced forward matrix, a minimization scheme could be developed

which allows selection of an optimal subsegmentation.

Our two step approach as presented in Chapter 5 can in some sense be considered

a two resolution multi-grid method. If instead a series of such subsegmentations were
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developed, corresponding to a change in average subsegment size, existing research on

multi-grid methods could be used to develop algorithms which allow further improved

reconstruction results. Current multi-scale methods typically involved a sequentially

decimated grid pattern [134] which is not constrained by anatomical boundaries. By

incorporating multi-modal anatomical information into the construction of the solution

spaces at each resolution level, improvements in both reconstruction speed and accuracy

may be available that are unachievable with fixed grid approaches.

Significant additional gains will also be made through the development of improved

imaging apparatus, and construction of dedicated multi-modal imaging systems. The

multi-modal data used in this thesis was collected on multiple imaging systems, requir-

ing the use of registration to combine the two datasets. By constructing a single imaging

system capable of collecting both functional fluorescence data and structural information

in parallel, the effects of misregistration and soft tissue deformation will be minimized.

These reductions in error will likely result in significant improvements in the reconstruc-

tions seen with all multi-modal approaches applied to the data collected.

Finally, Chapter 6 offered two approaches to help provide robustness to differences

between the anatomical structure acquired from multi-modal data, and the structure of

the underlying fluorescence distribution. Using a differential equation with boundary

conditions as the prior model for the fluorescence, the first approach constructed a model

which allowed information to be passed between anatomical regions, thereby helping to

correct for improperly located boundaries. The second approach used a 1-norm constraint

along lines normal to the boundary to encourage a single large jump within some distance

of the a priori boundary location.

Future work using differential equation based image prior models could allow in-

verse problems to easily incorporate knowledge from other areas of signal processing,

physics, chemistry, and biology. Wide bodies of research have been done on using differ-

ential equations to model a wide range of phenomena. By working with biologists and
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biochemists to better understand the physical processes being imaged, it may be possible

to create prior models which more accurately model the physical and pharmacological

behavior of fluorochromes, allowing for corresponding increases in the accuracy of in vivo

FMT imaging.

As further advancements make fluorescence molecular tomography more accurate,

reliable, and repeatable, the technology will further disseminate throughout the biological

laboratory. Replacing existing planar fluorescence imaging systems, FMT will provide

better quantitative representation of in vivo fluorescence activity in whole animals.
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Appendix A

Detailed Derivations of Density Approximation

A.1 Approximation of terms involving Φ

In section ??, our first step in simplifying the statistical density for the data was

to make the approximation:[
Φ

{
b(ui)

a(ui)

}
− Φ

{
− b(ui)

a(ui)

}]
' 1 (A.1)

in order to eliminate the integrals from the density. We show here the conditions under

which this approximation is valid. Clearly, as b(ui)
a(ui)

→∞, (A.1) is valid, and equivalently

the integral: ∫ b(ui)/a(ui)

0

φ(u)du (A.2)

is equal to 0.5. Using the definition of erf():∫ q

0

φ(t)dt =
1

2
erf

(
q√
2

)
(A.3)

we can write the inequality:

0.5− 1

2
erf

(
b(ui)√
2a(ui)

)
<

ε

2
(A.4)

where we define ε as the tolerance allowed in the final approximation. From this we

can obtain the values for the ratio a(ui)
b(ui)

which satisfy the inequality. We rearrange the

inequality to obtain:

b(ui)

a(ui)
>
√

2erf−1(1− ε) = δ (A.5)
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where δ is set equal to the bound. Setting ε = 2 ∗ 10−5 in (A.4) yields δ = 4.42 as the

required condition for (A.1) to be an appropriate approximation. Even increasing the

precision to ε = 2 ∗ 10−16 only requires δ = 8.21.

However, a(ui) and b(ui) are compound quantities which depend on the physical

quantities mfl,i and mexc,i in a complicated fashion (See (3.9)). Thus we want to know

equivalent bounds on the values of mexc,i and mfl,i, given a specified value for δ. We

start with:

b(ui)

a(ui)
=

mfl,iui

σ2(mfl,i)
+

mexc,i

σ2(mexc,i)(
u2

i

σ2(mfl,i)
+ 1

σ2(mexc,i)

)1/2
. (A.6)

By placing this into the equation b(ui)
a(ui)

> δ, squaring both sides, and rearranging, we can

obtain:

σ2(mexc,i)u
2
i

(
m2

fl,i

σ2(mfl,i)
− δ2

)
+ (A.7)

σ2(mfl,i)

(
m2

exc,i

σ2(mexc,i)
− δ2

)
> −2mfl,iuimexc,i

When both
mfl,i

σ(mfl,i)
and

mexc,i

σ(mexc,i)
are greater than δ, the inequality is satisfied because the

left hand side will be positive while the right hand side will be negative (given that ui,

mexc,i and mfl,i are all positive quantities). For δ = 4.42, this occurs when both mexc,i

and mfl,i are greater than 18 counts. In general, however, we want to be able to use as

much of our data as possible, so we consider the case where one of the two values is less

than δ. This will result in one of the two left hand terms being negative rather than

positive. Using the approximation ui ' mfl,i

mexc,i
, we can rewrite the inequality as:

σ2(mexc,i)

m2
exc,i

(
m2

fl,i

σ2(mfl,i)
− δ2

)
+ (A.8)

σ2(mfl,i)

m2
fl,i

(
m2

exc,i

σ2(mexc,i)
− δ2

)
> −2.

Given that the means and variances are all positive quantities, it is easily seen that the

values of the quantities inside the parentheses must be greater than −δ2. If, as assumed,
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only one of the two quantities is greater than zero (ie - the associated signal is higher

than 18), then it can quickly be proven that the inequality must be satisfied. Because

of this, we now choose to utilize all data points where at least one of the two signals is

greater than 18.

A.2 Elimination of Low Magnitude Term

Equation (3.6) in Section ?? gives the density of the data as the sum of two terms.

However, it turns out that the second term is significantly smaller than the first, given

reasonable conditions, thereby greatly simplifying the log-likelihood function. These

conditions turn out to be achievable by minor additional requirements on the values of

mexc,i and mfl,i compared to those obtained in Appendix A.1.

In the course of these derivations, we will make two primary assumptions:

(1) 0 ≤ ui ≤ 1.5

The lower end of this bound is a result of both received signals inherently being

positive quantities, while the upper bound arises from analysis of many data sets.

In all data sets examined, the inequality mfl,i < 1.5mexc,i is satisfied by all data

points. Thus, when taking the Born ratio, ui =
mfl,i

mexc,i
, the inequality ui < 1.5

will be satisfied.

(2) Wix =
mexc,i

mfl,i
' ui The equality portion of this statement is the same assumption

that was made in relating our statistical model to our forward model. We simply

restate it here, and further assume that the value of x which corresponds to the

actual distribution of fluorochrome, will result in a value of Wx which closely

matches the received data u.

What we explicitly need to show is that the term:

1

πσ(mfl,i)σ(mexc,i)
e−c/2 (A.9)
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is small enough to be dropped from the density. We assume that it can be removed when

it is several orders of magnitude smaller than the other term in the density. We take the

ratio of the two terms, and study the conditions under which it will be much larger than

one:

πb(ui)d(ui)√
2πa(ui)

ec/2 � 1. (A.10)

We specify the explicit bound at which (A.10) is satisfied to be α, take the log of both

sides and rearrange to get:

log(d(ui)) + c/2 ≥ β + log(a(ui))− log(b(ui)) (A.11)

with:

β = log(α) + 0.5 log(π/2). (A.12)

Now, given that:

c/2 = 0.5

(
m2

fl,i

σ2(mfl,i)
+

m2
exc,i

σ2(mexc,i)

)
(A.13)

and:

log(d(ui)) =

−0.5
m2

exc,i

(
mfl,i

mexc,i
− ui

)2

(σ2 (mexc,i)ui + σ2 (mfl,i))

 (A.14)

we can now move the first term of c/2 to the right hand side and combine the second

term with log(d(ui)) in order to obtain:

0.5

 m2
exc,i

σ(mexc,i)2

1−
(

mfl,i

mexc,i
− ui)

2

ui +
σ2(mfl,i)

σ2(mexc,i)

 ≥ (A.15)

β + log(a(ui))− log(b(ui))− 0.5
m2

fl,i

σ(mfl,i)2
(A.16)

Rearranging things a bit yields:1−
(

mfl,i

mexc,i
− ui)

2

ui +
σ2(mfl,i)

σ2(mexc,i)

 ≥ σ(mexc,i)
2

m2
exc,i

× (A.17)

[
2β + 2[log(a(ui))− log(b(ui))]−

m2
fl,i

σ(mfl,i)2

]
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Looking at the terms on the right hand side, we want to find an upper bound for a(ui)

and a lower bound for b(ui), in order to maximize the overall value of the right hand

side. Looking at log(b(ui)), we have:

log(b(ui)) = log

(
mfl,iui

σ2(mfl,i)
+

mexc,i

σ2(mexc,i)

)
(A.18)

≥ log(mexc,i)− log(σ2(mexc,i)) (A.19)

where we have used the lower bound on ui to establish the inequality.

For the term a(ui), we want to determine an upper bound. We use our assumed

upper bound on ui to obtain the inequality:

log(a(ui)) ≤ 0.5 log

(
1.52

σ2(mfl,i)
+

1

σ2(mexc,i)

)
(A.20)

By substituting these bounds in place of log(b(ui)) and log(a(ui)) in (A.17) and rear-

ranging, we get:

(
mfl,i

mexc,i

− ui

)2

≤ σ2(mfl,i)

σ2(mexc,i)

[
1− σ2(mexc,i)

m2
exc,i

× (A.21)[
2β + log

(
1.52

σ2(mfl,i)
+

1

σ2(mexc,i)

)
−

2
(
log(mexc,i)− log(σ2(mexc,i))

)
−

m2
fl,i

σ2(mfl,i)

]]
This puts the left hand side in terms of the mismatch between the estimate and

the collected data, and makes the right hand side independent of ui. Now, we use our

assumption that
mexc,i

mfl,i
' ui in order to assume that the left hand side of the inequality is

less than or equal 1. This allows for a significant mismatch between the received data and

our model, and provides a convenient threshold for determining a bound on which data

pairs are usable. We establish this bound in a graphical fashion by simply computing

the right hand side for a range of mfl,i and mexc,i values and plotting to determine where

the value is greater than one. The resulting surface plot is shown in Figure A.1. From

this plot, we established that all points with mfl,i > 15 or mexc,i > 20 will satisfy the
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Figure A.1: Plot of the right hand side of (A.21). Those points with magnitude less than
one have been set equal to -1 to give a better idea of the shape of the region in question.

criterion. Combining this requirement with the previously established requirement that

one of the two signals be greater than 18 counts, we determine that all data point pairs

with either mfl,i > 18 or mexc,i > 20 will be retained for use in the reconstruction.

A.3 Deriving the Gradient of the Cost Function

A.3.1 Primary Derivations

In the course of obtaining a maximum likelihood solution in Section ??, we derived

the cost function:

f(u,x) =
∑

i

gi(x)− 0.5‖Q(u,x)(Wx− u)‖2
2 (A.22)

which we want to maximize in order to obtain our solution. In order to simplify the

notation involved in finding the gradient of (A.22), we write:

s(u,x) = 0.5‖Q(u,x)(Wx− u)‖2
2. (A.23)

We then write an equation for the gradient as:

df(u,x)

dx
=

[∑
i

dgi(u,x)

dx

]
− ds(u,x)

dx
. (A.24)
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Given the complexity of the gi(u,x) terms, we derive the gradient of those components

separately in Appendix A.3.2, and make use of those results at the end of this section.

Turning our attention to the second term of the gradient, we can write that gradient as:

ds(u,x)

dx
= (A.25)[

d(Wx− u)

dx

]T
ds(u,x)

d(Wx− u)
+

[
dQ(u,x)

dx

]T
ds(x)

dQ(u,x)

The first term of the sum can then be computed as:[
d(Wx− u)

dx

]T
ds(x)

d(Wx− u)
= 2WT C(x)T C(x)(Wx− u). (A.26)

To compute the second term, we use the fact that q(u,x) = diag(q(u,x)) in order to

rewrite s(x) as:

s(u,x) = q(u,x)T diag(Wx− u)Tdiag(Wx− u)q(x). (A.27)

This rearrangement allows us to write the gradient as:

ds(u,x)

dq(x)
= 2diag(Wx− u)Tdiag(Wx− u)q(x). (A.28)

For notational simplicity, we now define:

A(x) = diag(Wx− u) (A.29)

and rewrite the gradient as:

ds(u,x)

dQ(x)
= 2A(x)T A(x)q(x). (A.30)

Now we derive the value of dq(x)
dx

. Given that:

qi(x) = mexc,i

(
βmexc,i(ui + Wix) + (1 + ui)σ

2
r

)−1/2
(A.31)

we can write the derivative as:

dqi(x)

dx
=

−mexc,i

2

(
βmexc,i(ui + Wix) + (1 + ui)σ

2
r

)−3/2
βmexc,iWi (A.32)
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This gives us a vector, representing the gradient of a particular qi(x) with respect to x.

Obtaining one for each qi(x), we can then arrange all of these vectors into a matrix as:

dq(x)

x
=

[
dq1(x)T

dx

dq2(x)T

dx
. . .

dqN(x)T

dx

]
(A.33)

This, combined with the gradient of gi(x), derived in Appendix A.3.2, allows us to write

the full gradient of the cost function as:

df(u,x)

x
=

[∑
i

dgi(u,x)

dx

]
−WTQ(x)TQ(x)(Wx− u)−(

dq(x)

dx

)T

A(x)T A(x)q(x) (A.34)

which we use to derive our fixed point iteration in the text.

A.3.2 Derivation of one of the gradient components

In this section, we explicitly determine the gradient of the gi(ui,x) terms. We

repeat (3.19) to begin:

gi(ui,x) = log(b(ui,x))− log(σ(mfl,i(x)))− 3 log(a(ui,x)). (A.35)

We explicitly write the gradient of this equation:

dgi(x)

dx
=

1

b(ui,x)

db(ui,x)

dx

− 1

σ(mfl,i(x))

dσ(mfl,i(x))

dx
− 3

1

a(ui,x)

da(ui,x)

dx
. (A.36)

This leaves us with a gradient which is the sum of three terms, each of which consists

of the gradient and the reciprocals of known functions. We treat each term separately.

First we write the gradient of b(ui,x) with respect to x as:

db(ui,x)

dx
=

db(ui,x)

dmfl,i(x)

dmfl,i(x)

dx
=[

uiσ(mfl,i(x))2 − βmfl,i(x)ui

σ(mfl,i(x))4

]
[mexc,iWij] . (A.37)
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Combining this with (3.9) yields:

1

b(ui,x)

db(ui,x)

dx
=

(mexc,iWij)σ (mexc,i)
2 [uiσ(mfl,i(x))− βmfl,i(x)ui]

σ(mfl,i(x))2 [σ(mexc,i)2mfl,i(x)ui + σ(mfl,i(x))2mexc,i]
(A.38)

Next, given the definition for σ(m) in (3.3), we can write the second term in the gradient

of gi(ui,x) as:

1

σ(mfl,i(x))

dσ(mfl,i)

dx
=

1

2

βmexc,iWi

βmexc,iWix + σ2
r

(A.39)

Finally, we look at the third term, which depends on a(ui,x), and contains the gradient:

da(ui,x)

dx
=

da(ui,x)

dmfl,i(x)

dmfl,i(x)

dx
=[

−1

2

(
u2

i

σ(mfl,i(x))2
+

1

σ(mexc,i)2

)−1/2

×

βu2
i

σ(mfl,i(x))4

]
[mexc,iWij] . (A.40)

Thus, again using (3.9), we get:

1

a(ui,x)

da(ui,x)

dx
=

[
1

2

1

a(ui,x)2

βu2
i

σ(mfl,i(x))4

]
[mexc,iWij] (A.41)

The values of (A.38), (A.41), and (A.39) allow us to write the full gradient of gi(ui,x).

With that in hand, we are able to explicitly evaluate the full gradient of our cost function.


