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1. Introduction

Various applications in fields such as nondestructive evaluation, medical imaging,

and geophysical prospecting are concerned with the determination of the spatial

variation of some physical properties of an unknown and compactly supported object

from measurements of the scattered response of a known electromagnetic or acoustic

excitation. Several algorithms, such as those in [8, 11, 17], have already been developed

to solve the corresponding non-linear and ill-posed inverse problem. These approaches

require the solution of a large-scale, non-linear optimization problem the size of which

corresponds to the number of pixels or voxels used to discretize the search area. These

algorithms generate values for every pixel, including those not associated with the object

itself thereby accentuating the ill-posed nature of the problem.

In this paper, to reduce the complexity (i.e., the dimensionality) of the problem, an

adaptive B-spline approach is proposed and applied to a two-dimensional scalar inverse

scattering problem. B-splines have already shown their usefulness in interpolation,

approximation and they have been widely used in computer-aided geometric design

(CAGD) [1, 3, 6, 9]. They have successfully been also used in a one-dimensional,

rough-surface inversion [13] and, in previous work, for solving a one-dimensional inverse

scattering problem for a diffusion coefficient [15] and for a two-dimensional shape-based

approach for the localization of buried objects [14]. In this contribution, the use of

tensors products of B-splines, defined in terms of their knot distributions, provides a

potentially useful means of parameterizing the unknown object.

The primary objective of the proposed method is to construct adaptively an efficient

an accurate and low-order parameterization of the object using a small number of knots.

Roughly speaking, such a distribution is characterized by few knots in flat regions of

the object and a higher density of knots in regions of more “activity” such as edges.

Then, the size of the problem one has to solve would only depend on the number of

knots in our representation, a quantity many times smaller than the corresponding

number of pixels. Several knot insertion and deletion procedures have been developed

for CAGD, interpolation or approximation. In this work, a knot insertion procedure

based on curvature information and a deletion procedure based on data fitting are

proposed. These knot refinement processes are embedded in an overall inversion strategy

comprised of a sequence of very low-order, non-linear optimization steps. Specifically,

given a collection of knots as determined by our refinement process, the optimization

step is solved using a conjugate-gradient method [7, 12].

Moreover, as exemplified using both synthetic and real data, our reduced order and

adaptive representation can improve the quality of the recovered object for the class

of problem of our interest. In fact, using low order B-spline parameterization of the

unknown imposes a degree of smoothness to the reconstructed image which removes the

need for explicit regularization using e.g., a Tikhonov-type functional.

The paper is organized as follows. In section 2, the formulation of the problem is

presented. Section 3 presents the pixel-based, non-linear inversion procedure. Section
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4 introduces the B-spline formulation. Section 5 and 6 describe the knot insertion and

deletion processes, respectively. Section 7 shows some results obtained using simulated

data and in section 8 the proposed algorithm is tested against laboratory-controlled

data, both in the microwave domain. Finally, section 9 gives a brief overview of the

proposed approach and some concluding remarks.

2. Formulation of the problem

The geometry of the problem is presented in Figure 1. A two-dimensional object of

arbitrary cross-section is illuminated by a given incident field and the scattered field

is measured on receivers all around the object along a contour Γ. A search domain Ω

containing the object is considered. The embedding medium Ωb is assumed to be of

infinite extent and homogeneous, with a given permittivity εb = ε0εbr, and permeability

µ = µ0 (ε0 and µ0 being the permittivity and permeability of the vacuum, respectively).

The object is assumed to be an inhomogeneous non-magnetic cylinder with complex-

valued permittivity distribution ε(r) = ε0εr(r).

The sources that generate the electromagnetic excitation, Transverse Magnetic

(TM) polarized, are assumed to be lines parallel to the z-axis, located at (rl)1≤l≤L.

With an assumed exp(−iωt) time dependence, the time-harmonic incident electric field

created by the lth source is given by:

einc
l (r) = P

ωµ0

4
H

(1)
0 (kb |r − rl|), (1)

where P is the strength of the electric source, ω is the angular frequency, H
(1)
0 is the

first-kind, zero-order Hankel function and kb is the wavenumber in the surrounding

medium.

For the inverse scattering problem we assume that the unknown object is

successively illuminated by L electromagnetic excitations and for each incident field

the scattered field is available at M positions. For each excitation, the forward problem

is described by two coupled contrast-source integral equations, the observation equation:

ed
l (r ∈ Γ) = k2

b

∫

Ω

χ(r′) el(r
′) G(r, r′) dr′, (2)

and the coupling equation:

el(r ∈ Ω) = einc
l (r) + k2

b

∫

Ω

χ(r′) el(r
′) G(r, r′) dr′, (3)

where χ(r) = εr(r) − εbr denotes the contrast function, G(r, r′) is the two-dimensional

homogeneous free-space Green function, and kb is the wavenumber.

The coupled integral equations (2) and (3) are discretized by using the method of

moments (of the segment-segment type) [10]. The discretization is done by subdividing

the search domain into a regular mesh, [Nx × Ny] sized. Then, for each source l, the

two coupled equations can be written as the following matrix system:

einc
l = el − GΩD(c)el, (4)
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ed
l = GΓD(el)c, (5)

where el is the total field vector of dimension N(= Nx × Ny), einc
l is the incident field

vector of dimension N , ed
l is the scattered field vector of dimension M , c is the contrast

vector of dimension N and GΩ and GΓ are the [N × N ] and [M × N ] matrices made

of properly integrated Green’s functions. D(t) denotes a diagonal matrix whose entries

are the elements of a vector t.

These two coupled equations can be expressed as the following non-linear equation

in c:

ed
l = Al(c) + b, (6)

where Al(c) = GΓD
[

(Id − GΩD(c))−1 einc
l

]

c and where b stands for the noise, assumed

to be additive. Id is the [N × N ] identity matrix. Moreover, in what follows, we define

Θ(c) = (Id − GΩD(c))−1.

The problem is now to retrieve the contrast profile c from the given scattered fields

ed
l .

3. The non-linear inversion procedure

In order to solve the corresponding non-linear inverse scattering problem, a conjugate-

gradient method [7, 12] is applied. Considering (6), one introduces the cost function:

J(c) =
L

∑

l=1

‖ρl(c)‖
2, (7)

where ρl(c) = ed
l − Al(c) is the residual vector. Eq. (7) represents the error when

matching the scattered field data.

Because the object to be estimated is complex-valued (the real part represents the

permittivity and the imaginary part is associated with the conductivity), following [7]

the contrast function reads as:

χ = ξ + iη − εbr, (8)

where ξ and η are two real-valued auxiliary parameters. Then, the optimization problem

defined in (7) is transformed into the minimization of the function J depending on the

two auxiliary vector parameters cξ and cη:

J(cξ, cη) =
L

∑

l=1

‖ρl(cξ, cη)‖
2. (9)

In order to find a minimizer of J(cξ, cη), two sequences {cξ,n} and {cη,n} are

constructed using the following iterative relations:

cξ,n = cξ,n−1 + αξ,ndξ,n, (10)

cη,n = cη,n−1 + αη,ndη,n, (11)
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where all quantities are real-valued. The coefficients αξ,n and αη,n are determined at

each iteration using the derivative Brent method [16]. The (vector) search directions

dξ,n and dη,n are the standard Polak-Ribière conjugate gradient directions:

dξ,n = gξ,n + γξ,ndξ,n−1 with γξ,n =
〈gξ,n|gξ,n − gξ,n−1〉Ω

‖gξ,n−1‖2
Ω

, (12)

dη,n = gη,n + γη,ndη,n−1 with γη,n =
〈gη,n|gη,n − gη,n−1〉Ω

‖gη,n−1‖2
Ω

, (13)

where < .|. >D represent the inner product defined on L2(D) and gξ,n and gη,n are

the gradients of the cost functional J(cξ, cη) with respect to cξ,n and cη,n, respectively.

These gradients are given by:

gξ,n = −2
L

∑

l=1

Re
[

D(Θ(c)einc
l )[Id + D(c)Θ(c)GΩ]†G†

Γρl(cξ, cη)
]

, (14)

gη,n = −2
L

∑

l=1

Im
[

D(Θ(c)einc
l )[Id + D(c)Θ(c)GΩ]†G†

Γρl(cξ, cη)
]

, (15)

where T̄ denotes the complex conjugate of T, while T† denotes the adjoint operator of

T.

4. Adaptive B-spline approach

4.1. Bivariate spline overview

The most direct extension of the univariate splines to the bivariate case is via a tensor

product. In accord with [1, 6], let us consider the strictly increasing sequences:

a = λ0 < λ1 < ... < λg+1 = b,

c = µ0 < µ1 < ... < µh+1 = d.

The function s(x, y) is a bivariate spline on [a, b] × [c, d] of degree k (order k + 1) in

x and l (order l + 1) in y, with knots λi, i = 0, ..., g + 1, in the x-direction and µi,

i = 0, ..., h + 1, in the y-direction, if the following properties are satisfied:

• On each subrectangle [λi, λi+1]×[µj, µj+1], s(x, y) is given by a polynomial of degree

k in x and l in y at least:

s[λi,λi+1]×[µj ,µj+1] ∈ Pk ⊗ Pl,

with i = 0, ..., g; j = 0, ..., h.

• The function s(x, y) and its partial derivatives are all continuous on [a, b] × [c, d]:

∂i+js(x,y)
∂xi∂yj ∈ C([a, b] × [c, d]),

with i = 0, ..., k − 1; j = 0, ..., l − 1.
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Given the above set of knots, the collection of functions which satisfies the specified

properties forms a vector space, denoted by ηk,l(λ0, .., λg+1; µ0, .., µh+1), of dimension

(g + k + 1)(h + l + 1). From the univariate case (see [6]), the following boundary knots

are introduced:

λ−k < λ−k+1 < ... < λ0 = a,

b = λg+1 < λg+2 < ... < λg+k+1,

µ−l < µ−l+1 < ... < µ0 = c,

d = µh+1 < µh+2 < ... < µh+l+1,

so that any tensor product spline s(x, y) ∈ ηk,l(λ0, .., λg+1; µ0, .., µh+1) has a unique

representation:

s(x, y) =

g
∑

i=−k

h
∑

j=−l

ai,jNi,k+1(x)Mj,l+1(y), (16)

where Ni,k+1(x) and Mj,l+1(y) are the (normalized) B-splines and ai,j are the B-spline

coefficients of s(x, y).

One recalls that the B-spline Bi,k+1(x) of degree k with knots ti, .., ti+k+1 is defined

as:

Bi,k+1(x) = (ti+k+1 − ti)
k+1
∑

j=0

(ti+j − x)k
+

∏k+1
l=0,l 6=j(ti+j − ti+l)

, (17)

where

(t − x)k
+ =

{

(t − x)k if t ≥ x,

0 otherwise.

From the univariate case, the tensor product B-spline Ni,k+1(x)Mj,l+1(y) has the

following properties:

Ni,k+1(x)Mj,l+1(y)

{

≥ 0 for x, y ∈ [a, b] × [c, d]

= 0 for x, y /∈ [λi, λi+1] × [µj, µj+1]
, (18)

g
∑

i=−k

h
∑

j=−l

Ni,k+1(x)Mj,l+1(y) = 1 for x, y ∈ [a, b] × [c, d]. (19)

4.2. Adaptive inversion

The proposed approach is rather simple in principle since it consists in reducing the

complexity of the inverse problem by approximating the object using splines. The

contrast is then defined as:

c = Ba, (20)

where B is the (sparse) matrix made of cubic B-splines and a is a vector of expansion

coefficients.

Thus, the problem can be reformulated as:

ed
l = Al(a) + b, (21)
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where Al(a) = GΓD
[

(Id − GΩD(Ba))−1 einc
l

]

Ba. The corresponding non-linear

inversion is solved by considering the following cost functional:

J(a) =
L

∑

l=1

‖ρl(a)‖2, (22)

where ρl(a) = ed
l − GΓD

[

(Id − GΩD(Ba))−1 einc
l

]

Ba.

As for the complex contrast function χ, a can be split in two as:

a = aξ + iaη − εbr. (23)

The initial inversion problem, i.e., the retrieval of the auxiliary vectors cξ and cη, both

vectors being of dimension N , is transformed into the retrieval of the two auxiliary

vectors aξ and aη of dimension N1 and N2, respectively, depending on the number of

knots, where N1 << N and N2 << N . In what follows, to simplify the implementation

of the algorithm and assuming either dielectric or metallic objects, only the real part or

the imaginary part is considered. This prior consideration does not affect the general

features of the analysis.

The problem is now to determine an appropriate knot distribution. On the one

hand, one seeks a compact representation of the object to control complexity. On the

other hand, one wishes to have sufficient flexibility in the representation of the object to

capture its salient structure. This leads us to consider a multi-scale type of approach.

Starting with a coarse collection of spline basis defined with relatively few knots, one

obtains a coarse estimate of the object. Then, the spline functions are refined inside

what it believed to be “interesting regions” (i.e. objects inside the search domain) in

order to allow for improvements in the reconstruction. In the event that new or old

knots are inefficient for the image representation, a method for removing them is also

incorporated. The steps of the proposed global procedure are as follows:

S1 - Initialization steps:

S1.1 - Fix a collection of few knots, along the x-axis and y-axis, which define a

coarse representation of the search domain without taking into account any a

priori information concerning the object locations (e.g. figure 6a).

S1.2 - Construct B and initialize a to zero.

S1.3 - Solve the corresponding non-linear inversion by minimizing (22).

S2 - Iterative procedure:

S2.1 - From the previous estimate of a, insert new knots in areas of interest. Such

areas are identified by curvature information. This step is detailed in Section

5.

S2.2 - Delete the inefficient knots for the object representation (see section 6 for a

detailed description).

S2.3 - Construct B corresponding to the new knot distribution.

S2.4 - Solve the corresponding non-linear inverse problem using the previous

estimate of a as initial solution.
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As the first distribution of knots is a coarse representation, few iterations at the

inversion step S1.3 are necessary. Moreover, for the other non-linear inversions (step

S2.4), a maximum number of iterations is fixed as a parameter at the start of the

algorithm. The global procedure is stopped when the difference between two successive

criterion values is smaller than a fixed value (about 1.10−6), or when the maximum

number of iterations for the step S2 (fixed at the beginning of the algorithm) is reached.

The key steps in this approach is to determine a useful knot insertion scheme (step

S2.1) and deletion scheme (step S2.2). Both are detailed below.

5. Knot insertion

Different knot insertion schemes have already been developed for approximation,

interpolation or CAGD, but these methods seem to be not really convenient for the

problem. The goal of our knot insertion process (step S2.1) is to efficiently introduce

new knots in “interesting areas”. A method based on mean curvature information,

which can be easily done by dealing with splines, is proposed.

5.1. Curvature computation

Let us briefly introduce, using [9], the mean curvature computation of a surface curve.

The surface may be given by its parametric form as:

x =







x(u, v)

y(u, v)

z(u, v)






; u =

[

u

v

]

∈ [a,b] ⊂ R
2, (24)

where the Cartesian coordinates x, y, z of a surface point are function of parameters u

and v and [a,b] denotes a rectangle in the (u, v) plane (see Figure 2). To avoid potential

problems with undefined normal vectors, one assumes:

xu ∧ xv 6= 0 for u ∈ [a,b]. (25)

where xu = dx
du

and xv = dx
dv

.

For a regular curve x[u(t)] on the surface, the (squared) arc element is defined as:

ds2 = Edu2 + 2Fdudv + Gdv2, (26)

where:

E = E(u, v) = xu.xu,

F = F (u, v) = xu.xv,

G = G(u, v) = xv.xv.

(27)

Recall that the arc element ds, being a geometric invariant of the curve through the point

x, does not depend on the particular parameterization chosen for the representation (24)

of the surface.

To facilitate the description of local curve properties at a point x(t) on the curve,

a local coordinate system (see Figure 3) is introduced. Let xu and xv be its axes, with
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origin x. The partials xu and xv span the tangent plane to the surface at x. Its normal

xu ∧ xv coincides with the normal to the surface at x. The normalized normal n is

defined as:

n =
xu ∧ xv

‖xu ∧ xv‖
. (28)

Let now u(t) be a curve on the surface x(u). From curve theory and Meusnier’s

theorem (see [9] for more details), the normal curvature κ of a surface curve at x in the

direction t, defined as du
dv

= λ, is given by:

κ(λ) =
L + 2Mλ + Nλ2

E + 2Fλ + Gλ2
. (29)

where L = n.xuu, M = n.xuv and N = n.xvv.

In the general case, κ(λ) is a rational quadratic function whose extreme values κ1

and κ2 (principal curvatures of the surface at x) occur at the roots λ1 and λ2 (principal

directions in the tangent plane) of:

det

[

κE − L κF − M

κF − M κG − N

]

= 0. (30)

The mean curvature follows as:

Mc =
1

2
(κ1 + κ2). (31)

5.2. Knot insertion

During the insertion, the added knots must provide a refined representation of the sought

objects. The proposed steps are as follows:

S2.1.1 - From a current estimate of the (spline) object, compute the normalized mean

curvature map.

S2.1.2 - Apply a threshold Th, relative to a percentage of the maximum value of the

curvature, on the map to find the “interesting areas” (objects inside the search

domain).

S2.1.3 - Insert new knots between the old ones within these areas.

In the proposed insertion procedure, a threshold must be fixed. Large threshold

values do not allow for the type of refinement sought in terms of best resolving the

structure of the object. Small values of Th lead to the introduction of a large number

of knots, not all of them being required to represent the true objects. While these

“inefficient” knots will be removed during the deletion procedure (step S2.2) the

practical desire of controlling the computation time at this step leads us to enforce

enforces a minimum spacing between pairs of inserted knots. One can notice here that

the location of the knots is referenced in terms of (center) numbered pixel (see the

section on the numerical results).
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6. Knot deletion

The goal is to remove knots in a way that does the least damage to the accuracy of

the reconstruction as measured by the cost function. That is, removal of knots tends to

decrease the fidelity of the representation of the object thereby impacting the value of the

cost function. Thus, one defines as “inefficient” knots those which do not significantly

alter it.

To find the inefficient knots, a “weight” is computed for each knot of the

distribution. Specifically, one removes a knot from the distribution and computes the

cost, J , associated with this lower order representation of the object. The difficulty

here is that, in principal, one must solve a non-linear optimization problem for each

knot removed. To avoid the practical computational problems associated with such a

strategy one notes that the removal of any one knot typically induces a “small” change

in the object and hence we are motivated to solve linearized inverse problems at this

stage of the algorithm in which the total field is held fixed at the value obtained with

the full knot sequence. This ‘linearization’ does not directly influence the reconstruction

in the sense that here one just looks for a value information on the weight of knots.

Formally, to compute the weight of each knot and to delete the inefficient ones, the

following steps are proposed:

S2.2.1 - From the previous estimate of a and the knot distribution obtained after the

insertion process (step S2.1), compute the total field el using (4).

S2.2.2 - Minimize the following (linearized) criterion:

J ′(a) =
L

∑

l=1

‖ρ′
l(a)‖2, (32)

where ρ′
l(a) = ed

l − GΓD (el)Ba. This gives the reference criterion value J ′
ref .

S2.2.3 - Remove a knot from the distribution (except the extremum knots).

S2.2.4 - Minimize the criterion (32) and associate the obtained criterion value J ′
knot to

the removed knot.

S2.2.5 - Put back the knot and go to step S2.2.3 until all weights are computed.

S2.2.6 - Remove the redundant or inefficient knots - i.e. knots associated to a criterion

value close to the reference one J ′
ref (i.e. (J ′

knot − J ′
ref )/J

′
ref < 0.001).

S2.2.7 - Go back step S2.2.2 until it is not possible to delete a knot.

As complementary computational considerations, if adjacent knots (along the x-

axis or the y-axis) have a criterion value close to the reference one, only the closer one is

removed. In fact, when a knot is removed from the knot distribution, the weight of the

neighboring knots change. So, after each knot removal, the weight of each knot of the

new distribution must be computed again. Moreover, each minimization of the criterion

J ′ is achieved for a given limited number of iterations (once again, here, one just looks

for a weight of each knot).
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The proposed knot insertion and deletion schemes have been constructed to

determine an effective knot distribution for representing the unknown object. This

approach enables us to insert knots essentially within the area of the object and

hence introduces some “geometrical information” about the unknown. Although not

necessarily optimal, this method is quite well adapted to the inverse scattering problem

and in what follows, the results obtained with simulated data and real data show the

efficiency and accuracy of the proposed method.

7. Numerical results

In this section, in order to show the potential of the proposed adaptive B-spline method

and the specific knot insertion and deletion procedures, results obtained with simulated

data are presented.

7.1. Adaptive reconstruction

The configuration under study [11] consists of homogeneous dielectric cylinders with a

4λ/5 sided square cross-section, separated by a distance of approximatively λ/2. The

contrast of these cylinders is χ = 1.8. The square search domain, of side d = 3λ, is

discretized into 29× 29 cells. L = 29 electromagnetic excitations and M = 29 receivers

are considered. The simulated object (see Figure 4a) and the retrieval ones are presented

through amplitude and/or gray level maps with wavelength-normalized scale axis.

To initialize the algorithm, a knot collection comprised of: kx=[1, 7, 14, 21, 29]

and ky=[1, 7, 14, 21, 29] is considered. This initial knot distribution does not take

into account any a priori information on the objects locations and allows us to obtain

a homogeneous coarse representation of the domain (see Figure 6a). Figure 4 shows

the reconstructions obtained after each non-linear inversion, for a threshold fixed at

Th = 0.80. Figure 4b shows the solution obtained after the first non-linear inversion

(step S1.3), which required 5 iterations and corresponded to the first knot distribution

(see Figure 6a). Figures 4c,d,e,f show the results at the end of each stage S2.4, where

10 iterations of the non-linear conjugate-gradient (CG) method were used in all cases.

The final knot distribution consists of: kx= [1, 4, 4.75, 6.43, 8.75, 9.62, 10.50,

14.00, 18.37, 19.25, 20.12, 21.75, 22.50, 23, 25, 29] and ky=[1, 7, 10.50, 11.37, 12.25,

14.87, 15.75, 16.62, 17.50, 21, 29] (see Figure 6b). Thus, the final retrieved object is

represented by 176 control points requiring the determination of only 27 knots in the

B-spline approach instead of 841 pixels for the pixel-based approach.

Figure 5 shows the simulated object, the reconstructions obtained using 45

iterations of the conjugate-gradient method (presented in section 3) where the unknowns

are the full set of 841 pixel values, and the results of the adaptive B-spline approach.

One can notice a slight enhancement of the final solution, particularly for the shape of

the object, using the adaptive approach which requires only 27/841 ≈ 0.032 degrees of

freedom relative to a pixel-based reconstruction.
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7.2. Noise effect

In this subsection, in order to show the influence of the noise on the reconstructions, the

previous configuration is considered with noise added to the scattered field as follows:

ed
b = ed(1 + r exp(iφ)), (33)

where r is the percentage of added noise and φ is a vector of random deviates in the

range [0, 2π].

To compare the reconstructions, depending on the noise level, the Peak Signal to

Noise Ratio (PSNR), commonly used in image processing, is considered. It is defined

for a gray level B bits by:

PSNR = 10 log

(

(2B − 1)2

d

)

, (34)

where d is the mean quadratic error given for a [Nx × Ny] image by:

d =
1

NxNy

Nx−1
∑

i=0

Ny−1
∑

j=0

(I0(i, j) − I1(i, j))
2, (35)

where I0 is the initial image (simulated object) and I1 is the reconstructed image.

Figure 7 shows the evolution of the PSNR for the adaptive approach (dashed

line) and the pixel-based approach (black line) for various noise levels. From these

results one can observe that the reconstructions obtained with the adaptive approach

are better than the pixel-based reconstructions. Hence by controlling the complexity of

the inversion process using our B-spline technique one obtains a degree of robustness

that does not require the use of an explicit regularization functional.

7.3. Effect of Threshold, Th

Here some results are presented to show the effect of the one key free parameter, Th, on

the reconstruction process.

The target is comprised of two dielectric cylinders with circular cross-section of

radius r = 15 mm. One is characterized by χ = 3 and the other one by χ = 1.8. The

search domain is a rectangular area 9.6×14.4 cm2 sized and it is discretized into 24×36

cells. The imaging system consists in 36 sources and 72 receivers and the operation

frequency is f = 6 GHz.

The initial knot distribution consists of kx=[1, 5, 10, 15, 20, 24] and ky=[1, 7,

14, 21, 29, 36]. Figure 8 shows the simulated object and the obtained reconstructions

using the pixel-based approach and the adaptive scheme for various threshold values.

The adaptive process causes new knots to be introduced only in the area of the higher

permittivity object which leads to some degradation in the reconstruction of the smaller

contrast object relative to the pixel-based approach. On these simulated data, the

reconstructions for two successive thresholds are close but it was noticed that it is not

always true particulary for real data. Moreover, some artifacts appear in the regions

where there is no object. One can think that they are due to our global representation
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of the search domain - the obtained knot distribution is optimal for the representation

of the objects but this distribution leads to a non-efficient representation of the regions

where there is no object.

Finally, the number of elements to be estimated in the adaptive approach is about

120 to 132, depending on the threshold level, to be compared with the 864 elements for

the pixel-based method.

8. Application to real data

The experimental data used in this paper were carried out at Institut Fresnel (Marseille

- France) and have been used to test a wide range of inversion schemes. One

can particulary refer to the special section: “Testing inversion algorithms against

experimental data,” of the journal Inverse Problems (December 2001). Hence, the

proposed adaptive scheme and the obtained results can be compared with these different

approaches.

The considered experimental setup (see Figure 9), is described in [4]. A dielectric

or metallic homogeneous object is irradiated by L = 36 different locations evenly

distributed around the object. The TM polarized incident fields, einc
l (l = 1, ..., L),

are modelled in the investigating domain by a linearly polarized isotropic cylindrical

wave as defined in (1). The scattered field for each irradiation ed
l is measured for

M = 72 different locations evenly distributed around the object. However, due to

physical limitations, there is a blind zone of 60◦, from each part of the emitter, such

that the scattered field is measured for 49 out of the 72 receiver angles.

8.1. Two dielectric objects

A dielectric target made of two identical cylinders with circular cross-section of radius

1.5 cm is considered here. The relative permittivity of this target was estimated to

εr = 3±0.3 [4]. The data associated to the so-called twodielTM 8f.exp file are considered

for two frequencies corresponding to 4 GHz and 7 GHz. In both cases, a rectangle search

domain of 8 cm (along the x-axis) ×16 cm (along the y-axis), discretized into 20 × 40

cells and centered at (x = 0 cm, y = 0 cm) is considered.

Figure 10 shows the reconstructions obtained after 65 iterations of the conjugate

gradient algorithm and the reconstructions obtained using the adaptive B-spline

approach. For this method, 5 iterations of the nonlinear CG method are used in the

first inversion step S1.3, and in the 5 iterations of step S2.4 12 iterations are employed.

For both frequencies, the initial knot distribution consists of: kx=[1, 5, 10, 15, 20] and

ky=[1, 10, 20, 30, 40] and the threshold is fixed at Th = 0.60.

At 4 GHz, the maximum value of the reconstructed permittivity is εr = 4.53 for the

conjugate-gradient method and εr = 3.48 for the adaptive approach - to be compared

with εr = 3± 0.3. The final knot distribution is: kx =[1, 7.50, 9.37, 11.25, 11.87, 12.50,

13.12, 13.75, 15, 20] and ky=[1, 7.75, 10, 10.62, 11.25, 15, 20, 25, 29.37, 30, 31.25, 35,
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40]. The final estimated object is represented by 130 control points through 23 knots in

the B-spline approach instead of 800 pixels. For this frequency, the two reconstructions

are similar but the estimated permittivity is better with the adaptive approach.

At 7 GHz, the maximum value of the reconstructed permittivity is εr = 4.23 for

the conjugate-gradient method and εr = 4.10 for the adaptive approach. The final knot

distribution is: kx =[1, 5, 7.50, 8.12, 8.75, 9.37, 10, 10.62, 11.25, 11.87, 12.50, 13.12,

13.75, 20] and ky=[1, 5.50, 8.31, 8.87, 9.43, 10, 10.62, 11.25, 11.87, 15, 25, 26.25, 27.50,

28.12, 28.75, 29.37, 30, 30.62, 31.25, 35, 40]. The final estimated object is represented

by 294 control points through 35 knots in the B-spline approach instead of 800 pixels.

The enhancement of the reconstruction using the adaptive approach is clearly visible on

these results.

One can notice that the center of the reconstructed cylinders, for both frequencies,

is slightly shifted. This shift, observed in all previous results (see the special section of

Inverse Problems), is within the experimental margin.

8.2. Metallic rectangular object

The metallic target is a centered filled cylinder with a rectangular cross-section of

1.27 × 2.54 cm2. The considered experimental data correspond to the so-called

rectTM cent.exp file for 8 GHz and 16 GHz. For the search domain, a 2.1 cm × 3.2

cm area, discretized into 20 × 30 cells and centered at (x = −0.5 cm, y = −0.75 cm) is

considered. The results are presented as gray level maps of the normalized non-negative

imaginary part of the contrast functions, since only the shape is of interest for such

impenetrable object.

Figure 11 shows the obtained reconstructions after 45 iterations using the conjugate

gradient algorithm and the adaptive scheme. For both frequencies, the initial knot

distribution is: kx=[1, 5, 10, 15, 20] and ky=[1, 10, 20, 30] and the threshold is fixed at

Th = 0.8.

At 8 GHz, the final knot distribution is kx =[1, 5, 6.25, 7.50, 8.12, 8.75, 9.37, 10,

11.25, 13.75, 15, 20] and ky=[1, 5.50, 10, 11.25, 12.50, 13.75, 14.37, 15, 16.25, 16.87,

17.50, 18.75, 20, 30]. The final estimated object is represented by 168 control points

through 26 knots in the B-spline approach instead of 600 pixels.

At 16 GHz, the final knot distribution is kx=[1, 5, 7.50, 10, 11.25, 12.18, 13.12,

13.75, 15, 20] and ky=[1, 5.50, 10, 10.62, 11.25, 12.18, 13.12, 14.37, 15, 15.62, 16.25,

16.87, 17.50, 18.75, 20, 25, 30]. The final estimated object is represented by 170 control

points through 27 knots in the B-spline approach instead of 600 pixels.

As the object to be estimated is impenetrable, only its edges are expected to be

retrieved like for the results at 16 GHz. So, at 8 GHz it seems reasonable to consider that

the results correspond to an equivalent object. One can also notice that the resolution

is not very good in some parts of the object for the reconstructions obtained with the

adaptive approach. One can also think that it is due to our global representation.
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8.3. “U-shaped” metallic object

In this part, a “U-shaped” metallic cylinder defined within a 8 × 5 cm2 rectangle is

considered. The corresponding experimental data are the so-called uTM shaped.exp

file for 16 GHz. The considered centered search domain is a 15 cm × 12 cm area

discretized into 50 × 40 cells. Like for the previous target, the results are presented as

gray level maps of the normalized non-negative imaginary part of the contrast.

Figure 12 shows the discretized search domain, the reconstructions obtained using

the conjugate gradient and using the adaptive approach for a threshold fixed at

Th = 0.70. The initial knot distribution consists of kx=[1, 10, 20, 30, 40, 50] and

ky=[1, 10, 20, 30, 40]. The final knot distribution, is kx =[1, 10, 10.75, 11.50, 12, 23.50,

36.40, 36.72, 38, 38.92, 40] and ky=[1, 10, 11.42, 12, 14.75, 17.52, 18, 22.75, 25.52, 26.50,

27.68, 28, 28.5, 29.25, 29.75, 30, 30.50, 31.25, 40, 50]. So the search domain is described

by 210 control point through 31 knots instead of 2000 pixels.

Here, one can notice the very good reconstruction obtained using the adaptive

approach and the very small number of element to be estimated with the adaptive

approach in comparison with the pixel-based method. Moreover, some artifacts can be

seen inside the “U” they appear to be due to stationary wave created inside the cavity.

9. Conclusion

In this paper, an adaptive spline-based approach for solving inverse scattering problems

has been presented. This inversion method has been proposed in order to reduce the

complexity of this non-linear, and ill-posed inverse problem. In addition our experiments

indicate that the reconstructions can be improved in comparison with a simple pixel-

based representation of the object. The implementation of this method allows us to solve

the inverse problem by determining the knot distribution which approximates the object

to be estimated. In order to estimate the knot distribution a specific knot insertion

process, based on curvature information, and a deletion process, based on data fitting

information, have been proposed. We demonstrate its utility both in the processing of

simulated data and real data. Thus the feasibility and utility of the underlying approach

of spline-based adaptive processing for inverse problem is validated. Moreover, this

approach has been also applied for the detection and characterization of buried objects

in an half-space using simulated data [2].

An area of current interest is the development of more rigorous methods for

performing knot refinement in order to improve the results and the computational

time. Indeed, the small number of elements to be estimated leads to decrease the

computational time in the minimization procedure however; the actual deletion scheme

can be time-consuming. In an other way, a more localized description of the image is

under consideration in order to avoid some artifacts or the loss of resolution. In future

works, the use of Non-Uniform Rational B-Splines (NURBS) could be an interesting

area of studies for the enhancement of the approach.
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Figure 4. (a) Real part of the simulated object. (b) Initial reconstruction obtained

at the end of stage S1.3. (c,d,e,f) Successive reconstructions obtained at the end of

each stage S2.4.
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Figure 5. (a) Mesh and (b) gray level map of the simulated object. (c,d)

Reconstruction obtained using the conjugate gradient algorithm. (e,f) Reconstruction

obtained using the adaptive approach (same as in figure 4f).
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Figure 6. (a) Initial knot distribution display over the simulated object (Figure 5b).

(b) Final knot distribution display over the final reconstruction (cf figure 5f).
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Figure 8. (a) Simulated object. Reconstructions obtained using (b) the

conjugate gradient approach and the adaptive approach for (c) Th = 0.6%,

(d) Th = 0.7%, (e) Th = 0.8% and (f) Th = 0.9%.
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Figure 10. Gray scale images of the reconstructed dielectric target made of two

cylinders at (a,b,c) 4 GHz and (d,e,f) 7 GHz, within a 8 cm × 16 cm centered search

domain discretized into 20 × 40 cells. (a,d) Simulated object, (b,e) reconstructions

obtained with the conjugate-gradient method, and (c,f) reached solutions by the

adaptive approach.
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Figure 11. Reconstruction of the metallic target at (a,b,c) 8 GHz and (d,e,f) 16 GHz,

within a 2.1 cm × 3.2 cm centered search domain discretized into 20 × 30 cells. (a,d)

Simulated target, (b,e) reconstructed object with the conjugate-gradient method, and

(c,f) reconstructions obtained using the adaptive approach.
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Figure 12. Reconstruction of the “U-shaped” metallic target at 16 GHz, within a 15

cm × 12 cm centered search domain discretized into 50×40 cells. (a) simulated target

(b) reconstructed target with the conjugate-gradient algorithm, and (c) reconstruction

obtained using the adaptive approach.


