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Abstract

In the context of recognition of free-form objects, which are characterized by range sensor-
generated 3D point clouds, this dissertation addresses two fundamental issues (1) segmentation
of surface meshes constructed over the input point clouds, (2) determination of correspondence
between the Scene and Model point clouds. Many existing recognition systems require uniform
sampling of the Model and the Scene or they assume that these point clouds overlap. This disser-
tation describes the solutions to the segmentation and correspondence problems without resorting
to any of these restrictive assumptions.

Mesh segmentation is an important step toward deriving an efficient representation of the
underlying object and is challenging due to noisy input data. In the proposed approach, curved-
ness, which is a rotation and translation invariant shape descriptor, is computed at every vertex
in the input mesh. lterative graph dilation and morphological filtering of the outlier curvedness
values result in multiple, disjoint sub-meshes corresponding to the physical parts of the under-
lying object. Results indicate that the algorithm compares well with the existing state-of-the-art
approaches and it provides robust segmentations in the presence of noise.

The second contribution of this thesis is toward the determination of a one-to-one correspon-
dence between the Scene and the Model point clouds during recognition, when the cardinalities
of the two point sets are orders of magnitude different. Formulations for graph enthalpy and the
Gibbs free energy capture the structural nuances between a pair of graphs and the spatial dif-
ferences between the underlying point sets. The desired correspondence is obtained by tackling
a sequence of inexact graph matching problems that optimizes the Gibbs free energy. Results
indicate that the proposed approach outperforms many existing state-of-the-art graph matching
algorithms in dealing with clutter and noise.

The third contribution of this thesis aims at reducing the computational and storage burden
to enable real-time recognition. A graph-based mesh decimation algorithm is proposed to obtain
shape-preserving coarser approximations of a highly detailed 3D surface mesh. A degradation
metric is then derived to link hierarchical decimation with the multi-scale correspondence.



Acknowledgments

The best part of pursuing a PhD at Northeastern University was having the opportunity to work
with Professor Eric Miller, my thesis advisor. Eric provided the ultimate freedom to explore my
developing interests. His question: ‘What's new this week?’, his patience and critical thinking
during our undeniably long weekly meetings and his words of appreciation greatly boosted my
performance levels. His advice on the need to think outside the box holds the key to the unifica-
tion of classical thermodynamics, graph theory and computer vision. | would like to express my
sincere gratitude to Eric for being such an awesome advisor.

The financial support provided by Textron Systems is gratefully acknowledged. For express-
ing their genuine appreciation for my work, special thanks are due to Dr. Robert Kessler, Dr.
Charles Davis and Dr. Michael McCormack of Textron Systems. Many thanks are due to Pro-
fessors Dana Brooks and Jennifer Dy for serving on my committee. It was indeed a pleasure to
learn Digital Signal Processing under the guidance of Professor Brooks during Fall 2003 and his
support and understanding during that semester is graciously acknowledged.

Sincere thanks are due to everyone at CenSSIS -NU especially, Professor Michael Silevitch,
Kristin, Brian, Deanna, Anne, Beeta, Greg and Mohamed. Cynthia Bates’s amiable personality
and her help with many administrative issues is noteworthy. Srikanth Vadde deserves a special
mention for offering cookies, Indian sweets and for his advice on numerous issues.

| will forever be indebted to my parents who in addition to their words of encouragement,
put extraordinary efforts toward setting very high standards for learning and infusing good work
ethics. Nitya's good words have always worked wonders especially after the qualifying exams
and before the proposal defense! Without my brother Basanth’s good intentions, smart thinking
and the much needed support and trust, this dissertation would never have come to fruition. His
emphasis on quality rather than quantity, his advice on resilience and various demos on planning,
organization and prioritization have led me to this day when | stand tall with my head held high,
proud of my accomplishments!

Vi



Contents

Abstract Y
Acknowledgments Vi
1 Introduction 1
1.1 Automatic Scene Analysis . . . . . . . . . 1
1.1.1 General Challenges in 3D Object Recognition . . . . . . ... ... ... 4
1.2 Proposed System . . . . . .. e e e e 6
1.2.1  ASSUMPLIONS . . . . . o oo e 6
1.2.2 SystemDesign . . . . . . . .. 7
1.2.3 ChallengesConsidered . . . . . . . .. .. .. . .. ... .. .. ... 7
1.2.4 Contributions . . . . . . . .. 8
1.3 ThesisOrganization . . . . . . . . . . . e e 11
2 Related Work and Technical Background 12
2.1 3D Mesh Segmentation . . . . . .. ... ... ... 13
2.2 3DObjectRepresentation. . . . . . . . .. ... 16
2.3 Matching Strategies . . . . . . . . . 18
24 MeshDecimation . . . . . . . . . . . e 20
25 GraphTheory . . . . . . . . . e 22
2.6 ThermodynamiCs . . . . . . . . . . . 25
26.1 Enthalpy . . ... ... 25
2.6.2 Entropy . . . . . 26
2.6.3 GibbsFreeEnergy . . .. .. .. ... ... 26
2.6.4 Thermodynamics of Heterogeneous Systems . . . . ... ... .. ... 28
2.6.5 Phase Diagram: Relationship between Pressure and Temperature . . . . . 28

Vil



2.6.6 Efficiency . . . . . . . 29
2.7 ConcClUuSIiONS . . . . . . . . e e

Conversion from Non-manifold to Manifold Surfaces 31

3.1 Definitions . . . . . . ... e 33

3.2 Shape ComputationBasics . . . . . . . . . . . . e
3.3 TheAlgorithm . . . . . . .. 36
3.3.1 ASSUMPLIONS . . . . .. e
3.3.2 Seed Triangle Selection: Formulation of the Objective Function . . . . .
3.3.3 A Geometric Interpretation of the Cost Criterion . . . . . .. .. .. ..
3.3.4 The Algorithm: Greedy Strategy . . . . . . . . . . . .. .. ... ....
3.4 ExperimentsandResults . . .. ... .. ... .. .. ... .. .. . ..
3.5 Conclusions . . . . . ..

Mesh Segmentation for Object Representation 44
4.1 Definitions and Notations . . . . . . . . . . . . .. . .. ...
4.1.1 Shape Descriptor: Curvedness . . . . . . . . . . e
412 Graphs . . . . . .. e
4.2 Graph Morphology-based Segmentation: Overview . . . . . .. ... ... ...
4.3 Algorithm for Extraction of MCASG . . . . . . . . . . . ... . ... . ..... 53
4.3.1 Adaptive Selection of Thresholds . . . . . ... ... ... .......
4.3.2 Basic Segmentation Algorithm . . . . . . . . ... ... ... ...
4.3.3 Modified Algorithm . . . . . . . ... 59
4.4 Psychological Support . . . . . . ...
4.5 Two-tier Representation. . . . . . . . . . . . e
4.6 Experimentsand Discussion . . . . . . . . ..
4.6.1 Comparison with the State-of-the-Art . . . . . ... ... ... .....
4.6.2 ComplexDataSets . . ... .. ... . . . . . ..
4.7 CONCIUSIONS . . . . . . o e

Point Cloud Matching within Graph-theoretic and Thermodynamic Frameworks 73

5.1 Definitionsand Notations . . . . . . . . . . . ...

5.2 Point Matching via Classical Thermodynamics- Theory . . . . . . . . ... ...
5.2.1 Enthalpy Change: Measure of Structural Difference . . . . . . ... ...
5.2.2 Entropy Change: Measure of Spatial Difference . . . . . . ... ... ..

viii



5.2.3 Significance of Thermodynamic Quantities in the Context of the Problem 81

5.3 Algorithm . . . . . . e 82
5.3.1 PreproCcessing . . . . . . . e e e 83
5.3.2 Coarse Scale B&B Algorithm . . . . . ... ... ... .. ....... 83
5.3.3 Fine Scale B&B Algorithm . . . . . . .. ... ... .. ......... 85
5.3.4 Temperature as a Regularization Parameter . . . . . .. ... .. .... 86
535 MissingData . . . . ... ... .. 86

5.4 Multi-part Point Cloud Matching . . . . . . . .. .. ... .. ... ....... 87
5.4.1 CoarseScaleProcessing . . . .. ... .. . .. .. 89
5.4.2 FineScale Processing . . . . . .. . ... ... 89

5.5 Experimentsand Discussion . . . . . . . . .. ... e 90
5.5.1 Point Matching Process: Validation of the Laws of Thermodynamics. . . 90
5.5.2 Comparison with an Existing State-of-the-art . . . . . .. .. ... ... 92
553 RealDataSets . ... ... .. . .. ... 94

56 Conclusions . . . . . . .. 94

Hierarchical Mesh Decimation for Multi-scale Correspondence 98

6.1 VertexContraction . . . . . . . . . . . . . . e 99

6.2 Graph-based Vertex Contraction Algorithm . . . . . . ... .. .. ... .... 100
6.2.1 Motivation . . . . . ... 100
6.2.2 Proposedalgorithm . . . . . ... ... ... 101

6.3 Evaluating Surface Approximations . . . . . . . .. . .. .. .. ... ... 103

6.4 Relationship between Hierarchical Decimation and Multi-scale Correspondence . 104
6.4.1 Decimation: A Thermodynamic Viewpoint . . . . . ... ... ..... 104
6.4.2 Formulations for Enthalpy, Entropy and Free Energy at Multiple Scales . 105
6.4.3 Performance Evaluation across Multiple Scales . . . . .. .. ... ... 106

6.5 Resultsand Discussion . . . . . . . . .. 106
6.5.1 Graph-based Mesh Decimation. . . . . ... ... ... ......... 106
6.5.2 Hierarchical Decimation Vs. Multi-scale Correspondence . . . ... .. 108

6.6 Conclusions . . . . . . . 110

Conclusions and Future Work 111

7.1 Major Contributions . . . . . . . . .. L 111

7.2 Minor Contributions . . . . . ... 113

7.3 OngoingWork . . . . . . . 115



7.4 Future Work

Bibliography



List of Figures

1.1
1.2

1.3

1.4

2.1

2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

Examples of scene and model pointclouds . . . . . . .. .. ... ........ 2
Components of a 3D vision system for representation and recognition. For the
automated recognition system to be powerful, the representation and the recog-
nition phases must be designed to work intandem. . . . . .. .. ... ... .. 2
Curvedness [19] is a rotation, translation invariant shape descriptor which is
popularly used for object representation/recognition. In (a), the vertices have
been partitioned into three categories corresponding to three different curvedness
threshold intervals. As shown in (a), the known segmentation approaches re-

sult in small fragments of connected vertices as opposed to regions representing

the physical parts of the underlying object. Panel(b) illustrates a more practical
segmentation. . . . . ... 4
Outline of the proposed approach for representation and recognition . . . . . . . 9

(a) A cube with eight vertices (b) A possible representation in the three dimen-
sionalspace . . . . . . .. e e 24
Variation of thermodynamic quantities with respect to temperature . . . . . . .. 27
Let the system be in equilibrium at point (a). When pressure is applied to such a
system, the equilibrium is disturbed. It can be restored by changing the tempera-

ture of the system. Thus the system movestopoint(b) . .. ... ... ... .. 29
(a) Example olonetriangles (b) An example of asingularedge . . . ... ... 33
Definition of various parameters for the seed triangle computation. . . . . . .. 34
Shape interpretation of a surface based on dihedralangles . . . . . .. ... ... 35
Geometric interpretation of the cost criterion . . . . . . ... ... ... .... 38
Triangle Stitchingprocess . . . . . . . . . . . . . 40
Manifold surface conversion . . . . . . . . . ... .. 42

Xi



4.1 Koenderink'sshapescale . . .. ... ... ... . ... ... a7
4.2 Definition of various parameters with respect to the triangular faces incident on

VEIEXV . . . o e e e 48
4.3 Need for a new graph-morphology based segmentation algorithm . . . . . . . .. 50
4.4 The steps involved in the extraction of two disjoint MCASGs for the given input

mesh, G. The curvedness thresholds are specified as before. . . . ... ... .. 52
4.5 Selection of curvedness threshold for the simplified horse consisting of 1548 ver-

tCeS. . . . 55
4.6 Segmentation of the simplified horse with 1548 vertices into MCASGs . . . . . . 56
4.7 Dilated graph extraction process involves expansion of the initial sub-mesh, iden-

tification and morphological filtering of outliers in the expanded sub-mesh . . . . 57
4.8 Robustness of the algorithm to bad initializations . . . . . ... ... ... ... 59
4.9 An attributed supergraph representation of an object. An edge connects two ver-

tices in the supergraph iff the corresponding MCASGs are adjacent each other . . 63

4.10 Spherical Representation of the MCASG normals. Mean normals are determin-
ing by a clustering process. It is possible that multiple mean normals map onto
the same point/neighborhood on the sphere resulting in multiple folds. . . . . . . 64
4.11 Proposed segmentation algorithm partitions the input mesh into submeshes cor-
responding to the physical parts of the underlying object. Since a cube consists
of planar faces, the algorithm outputs only one MCASG whereas the watershed
algorithmresultsin6 sub-meshes. . . . . . . . ... .. ... ... ....... 65
4.12 For reasonable noise levels, our proposed algorithm partitions the cube into ex-
actly one MCASG. On the other hand, the watershed segmentation algorithm
does not provide the desiredresults. . . . . . ... ... ... ... .. ... 67
4.13 The point cloud of the horse was subjecting to varying amounts of Gaussian noise
(SNR between 44dB and 55 dB). Considerable amount of noise is required before
the MCASGs results in patchy sub-meshes. . . . .. .. ... ... ....... 68
4.14 The algorithm allows for reconciliation between disjoint yet similar sub-meshes.
Establishing such an association between similar, disjoint sub-meshes is vital for

higher level tasks such as objectrecognition . . . . . ... ... ... ...... 69
4.15 Segmentation of complexsurfaces . . . . .. .. .. ... ... .. .. ... 70
5.1 Graphs participating in the matchingprocess. . . . . . .. ... ... ... ... 77
5.2 Block diagram of the proposed point matching algorithm . . . . . ... ... .. 82

xii



5.3 Coarse scale and fine scale processing steps in the proposed point matching al-

gorithm . . . . . e 84
5.4 Coarse scale optimization for minimization of entropy will not be effective when

the Sceneisnon-compact . . .. .. .. . ... ... 86
5.5 Need for the refinement of segmentation labels prior to point correspondence .. 88
5.6 Variation of various thermodynamic parameters with respect to temperature for

different different types of pointsets . . . . . . . . ... .. ... ... ... 91
5.7 Performance comparison between the proposed point matching algorithm and the

existing state-of-the-art . . . . . . .. .. ... .. ... 93
5.8 Pointmatchingresultsonrealdata . . . .. ... ... ... ... ........ 95
5.9 Point matching results for missing scenedata . . . ... .. ... ... ..... 96
6.1 Basic Vertex ContractionProcess . . . . . . . . . .. ... 0o 99
6.2 lllustration of the proposed hierarchical vertex contraction process . . . . . . .. 101
6.3 HorseData ... .. .. . . . . .. e 107
6.4 Misclassificationerrorplot . . . . .. .. .. .. ... .. 108
6.5 Relationship between decimation pressure and correspondence temperature . . . 109
6.6 Rate of decimation vs. % degradation: Extent of degradation as a result of deci-

Mation . . . . . e 109

Xiii



List of Tables

2.1

3.1

4.1

6.1

A comparison of some state-of-the-art mesh segmentation approaches . . . . . . 14
Timing Performance of the proposed mesh repair algorithm on various data sets . 43
Timing Performance of the proposed segmentation algorithm on various data sets 72

Timing Performance of the proposed decimation algorithm on various data sets . 107

Xiv



Chapter 1

Introduction

One goal of computer vision research is to design systems that provide human-like visual capa-
bilities so that a certain environment can be sensed and interpreted to take appropriate actions.
This involves the physical elements of illumination, geometry and image formation as well as
the intelligent aspects of interpretation and understanding. Such a system if efficiently designed,
can find use in a number of applications such as recognition of targets in defense applications,
automated inspection of industrial assembly parts and autonomous vehicle navigation [11, 97].
Toward an efficient design of an automated system for the recognition of rigid, free-form objects
which are characterized by 3D point clouds, this thesis addresses practical issues that arise in the

segmentation and the matching aspects of the problem.

1.1 Automatic Scene Analysis

A 3D point cloud is an unstructured collection of points in the three dimensional space. Such
point clouds are generated using range sensors [112]. As illustrated in Figure 3Dnadel
or template of an underlying object is characterized its complete or near-complete unstructured
point cloud. Thescene(test or query data) consists of partial 3D point cloud of a known 3D

object. Aninterpretationof the scene is then defined as knowimich model is locatedvhere



(a) Model (Template): Complete or(b) Scene (Test or query data)
near complete 3D point cloud Partial 3D point cloud

Figure 1.1: Scene and the model point clouds are sampled at different points in time, therefore the
point sets are non-overlapping i.e., no two points correspond to the exact same location in the 3D
coordinate space. Also, due to sensor inaccuracies the point clouds may be noisy. Recognition
of the scene involves (1) classification of the scene as an instance of the stored object model (2)
determination of orientation parameters that would align the scene with respect to the identified

model (3) determination of one-to-one correspondence between scene and model points

—  Real time processing
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Figure 1.2: Components of a 3D vision system for representation and recognition. For the auto-
mated recognition system to be powerful, the representation and the recognition phases must be
designed to work in tandem.



in the scene. Such an interpretation binds the entities in the scene to the models that we al-
ready have the knowledge about. Efficient interpretation of a scene requires the solution to three
sub-problems. The first problem deals wiflassification wherein the scene is classified as an
instance of a stored object model. The second problem involves the determination of the orien-
tation parameters (rotation, translation) that would align the scene with respect to the identified
object model. The third problem involves the determination of the location of the scene within
the identified model. Classification, orientation determination and localization together consti-
tute the problem obbject recognition

Scene analysis is indeed a difficult problem, as the recognition system needs to draw useful
inferences from a point cloud, which in itself is not very informative. Therefore, instead of using
a raw point cloud based information for recognition purposes, a rich, meaningful description of
the object’s shape/composition and connectivity information between diffeagtstin the object
is extracted from the point cloud data. This constitutes the task of algjesentation

Stated succinctly, the design of a computer vision system involves a two stage processing:

1. Representation: The objective is to derive a rich, compact yet meaningful description of

the object for efficient storage and for fast and accurate retrieval during recognition.

2. Recognition: The derived spatial and geometric descriptions of the partial point cloud from
the scene are compared with stored models of objects in order to identify what is present
in the scene. As mentioned before, this involves the tasks of classification, determination

of alignment parameters and localization.

Figure 1.2 illustrates the various steps involved in building such a recognition system. A good
representation scheme is required for efficient recognition since a poor representation scheme will
put a heavy burden on the recognition system when it attempts to retrieve corresponding object

models from the database, and there exists a very high possibility of incorrect retrieval/match.



(a) Colors on the vertices correspond to different (b) Segmentation using proposed algorithm
curvedness thresholds intervals

Figure 1.3: Curvedness [19] is a rotation, translation invariant shape descriptor which is popu-
larly used for object representation/recognition. In (a), the vertices have been partitioned into
three categories corresponding to three different curvedness threshold intervals. As shown in (a),
the known segmentation approaches result in small fragments of connected vertices as opposed
to regions representing the physical parts of the underlying object. Panel(b) illustrates a more
practical segmentation.

1.1.1 General Challenges in 3D Object Recognition

For representation purposes, the point cloud is often triangulated and the resulting mesh (sur-
face/volumetric) is used to obtain geometric descriptions of the underlying object. The intense
research in the field of object recognition over the past two decades or so reflects the importance
of certain representation and recognition challenges that need to be addressed by any vision sys-

tem. We discuss below some emerging challenges that are of interest to us:

1. Object shape characterization in the presence of ndisehree dimensions, noise causes
the perturbation of the data points. For the representation scheme to be effective, such point
clouds need to be pre-processed to remove noisy artifacts, prior to computation of shape
features. Also, it is a challenging to compute shape descriptors fairly accurately from
surface triangulations and the inability to do so may result in an unreliable segmentation

and representation as illustrated in Figure 1.3(a).

2. Model and Scene DescriptioMost existing vision systems represent a 3D object model

as a collection of multiple 2D views. Also, the scene is a certain 2D view of the underlying

4



object or alternatively it is a projection of 3D data onto the 2D space. The recognition
process in such vision systems, also referred to as view-based recognition [107, 97], in-
volves classifying the 2D scene data as an instance of one of the 2D views in the model
and further, determining the orientation of the scene with respect to the 2D model view.
Although image-based approaches simplify the task of recognition, they struggle to ad-
dress some other major issues such as sensitivity to lighting conditions. Object centered

representations [97] on the other hand, are highly sensitive to noise.

. Size of the object Database: Efficient retrieval i.e., accurate indexing into the database
and classification of the scene as an instance of the stored object model, is strongly linked

to the description and the organization of a model as a set of connected entities. Model
databases for real-world applications contain tens of thousands of models. The matching
cost increases as more and more models get added to the database because the input scene
representation needs to be matched with all object models present in the database. Thus,
there is an increasing need for the development of efficient pruning strategies and imposi-

tion of geometric constraints to enable real-time recognition.

. Learning: Most all existing vision systems use a pre-compiled database of models for
recognition of the input scene data. A system breakdown occurs when the scene is not
an instance of one or more of the object models stored in the database. Ideally, a vision
system needs to be able to learn from a new input as well as from the models in the ex-
isting database. For this to happen, the system must be able to learn the description of
the unknown object and in addition, have the ability to represent and store such modeling
information, not originally present in the object database. Noise is another issue that the
existing vision systems have been grappling with; a failure to recognize noisy instances of

models already present in the database.



5. Articulated vs Rigid ObjectsRigid objects such as a tea-pot hawenovable partsCon-
versely, objects with movable parts are referred to as articulated objects. In addition to
these two categories, there exists a class of deformable objects which are purely non-rigid.
While it is fairly straight forward to recognize articulated objects i.e., by incorporating
the possible ranges of movement for the part(s) of objects that is (are) movable into the
representation scheme, the representation and recognition of deformable objects is a very

challenging problem.

6. Recognition Methodologie®\n important step in recognition is the determination of cor-
respondence between the scene and the model data points. While this problem is trivial
when the scene point cloud provides a complete description of the underlying object, it
is challenging when the scene provides only a partial description of the object of inter-
est. Most existing systems assume that the scene and a subset of the points in the model
overlap. In reality, different sensors can lead to different samplings of data points, and
under such circumstances, the existing systems would fail to function. Also, the known
matching strategies are either spatial or structural, but not both. The graph-based structural
approaches [40, 71, 54, 12, 72], are highly sensitive to noise and perform well as long as
the scene and the model graphs have the similar number of points. Information theoretic
approaches [56, 88, 106], on the other hand, do not attempt to match the implicit structure

connecting the data points i.e., matching is performed purely in the feature/spatial domain.

1.2 Proposed System

1.2.1 Assumptions

We are interested in the recognition of rigid, free-form objects described by 3D point cloud
data. However, the study does not include statistically defined shapes such as textures, fractals

or other objects such as trees and bushes. We restrict ourselves to scenes containing partial,
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uncluttered point clouds of a single object. We assume that the model exists in the database prior
to recognition. Also, we assume that the scene or the model point clouds are not sparse. But we

do not assume that these point clouds are (1) uniformly sampled or, (2) overlapping.

1.2.2 System Design

There are a number of processing steps involved in our recognition system and they can be di-
vided into two stages: model construction and recognition. During the model construction stage,
the following steps are carried out (i) acquisition of a complete or near complete point cloud
of an object using range sensors (ii) construction of a triangular mesh using the commercially
available softwarePoint2Polys(iii) conversion of a non-manifold mesh into the corresponding
manifold surface (iv) Partitioning a manifold mesh into multiple, disjoint sub-meshes using a
graph-theoretic segmentation algorithm (v) building a graph-based representation using the sub-
meshes identified in (iv).

During the recognition stage, a partial point cloud of an object is presented to the system.
Given the sensed data, the following actions need to be taken (i) classification of the scene using
its representation (ii) estimation of the rotation and the translation parameters that would align
the scene with respect to the identified model (iii) determination of correspondence between the
scene and the identified model. The performance of the recognition stage, in terms of its accuracy

and speed, essentially determines the usefulness of the system in real-world situations.

1.2.3 Challenges Considered

We address the following important issues related to the design of a recognition system for rigid,

free-form 3D objects obtained from unstructured point clouds:

e Given a 3D surface mesh constructed over the point cloud of an underlying object by using

a commercially available software, how can we repair this mesh so that along every edge



in the mesh there are at most two triangles incident? This problem is considered in Chapter

3 of this thesis.

e How to segment the surface mesh into disjoint sub-meshes such that each sub-mesh corre-

sponds to a certain physical part provided in Chapter 4.

e How to establish a one-to-one correspondence between the scene and a subset of the iden-

tified model points. This problem is considered in Chapter 5.

e How to coarsen model point clouds so that the object of interest can be described by a point

cloud with fewer points. This problem is addressed in Chapter 6.

e How to determine the number of model points required for robust (scene-model) corre-

spondence? A solution is proposed in Chapter 6.

We believe that these issues are inter-coupled in terms of the representation and the recognition

schemes that can be used.

1.2.4 Contributions

Figure 1.4 presents an overview of the approach and a brief description of the modules listed in
the figure is given below. The following are the key features that distinguish our 3D recognition

system from other existing state-of-the-art systems in computer vision:

e Conversion to manifold surface meshelsually, the 3D surface meshes constructed from
unstructured point clouds are non-manifold due to the presence of topological singularities
caused by human or software induced ‘bugs’ [98]. In this dissertation, we are interested
in repairing surface meshes wherein the reason for a non-manifold behavior is attributed
to the presence of a large number of singular edges i.e., edges along which more than
two triangles are incident. A greedy surface conversion algorithm based on geometry and

topology is presented to convert a three dimensional non-manifold triangulation into the

8
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Figure 1.4: Outline of the proposed approach for representation and recognition

corresponding manifold surface. Since it is assumed that every vertex is reachable from
every other vertex in the input triangulation, an arbitrary vertex is selected. A seed triangle
incident on this vertex is then identified such that it isregular [61] as possible and
bears a close resemblance to its neighboring triangles with respect to certain geometric
attributes. The input triangulation is then partitioned into the constituent triangles. The
surface growing process works bijtching[98] optimal triangles along the boundary edges
identified on the grown surface. The growing process terminates when all vertices present
in the original non-manifold triangulation have been accounted for in the new manifold

triangulation.

¢ Mesh Segmentatidi25]: A new graph morphology based segmentation algorithm is pro-
posed to address the problem of partitioning a 3D triangular mesh into disjoint sub-meshes

that correspond to the physical parts of a particular object. Curvedness, which is a rotation



and translation invariant shape descriptor, is computed at every vertex in the input trian-
gulation. Every sub-mesh is characterized by a pair of curvedness thresholds which are
adaptively determined The fact that the geometric behavior of a vertex is influenced by its
neighbors allows us to identify vertices with outlier curvedness values. Iterative graph dila-
tion and morphological filtering of the outlier curvedness values result in multiple, disjoint,
maximally connected sub-meshes such that each sub-mesh contains a set of vertices with
similar curvedness values, and vertices in disjoint sub-meshes have significantly different

curvedness values.

Correspondence determinati¢3]: In the context of object recognition from point cloud

data, a thermodynamically-inspired graph theoretic algorithm is presented to address the
problem of matching the scene and the model point clouds, when the cardinalities of the
two sets are orders of magnitude different. A thermodynamically inspired objective func-
tion is proposed to capture the structural nuances between a pair of graphs and the spatial
differences between the underlying point sets. The desired correspondence is obtained
by tackling a sequence of inexact graph matching problems that optimizes the proposed

objective function.

Mesh Decimatiofl24]: Since the object models contain highly dense point clouds of data
points, not all of which are required for recognition, a shape- preserving mesh decimation
algorithm is presented to obtain approximations of the fine scale surface meshes. The input
mesh is segmented into multiple, disjoint sub-meshes to facilitate decimation. Given a sub-
mesh, various shape clusters are identified and the vertices in those clusters are labeled as
boundary/interior. Shape is preserved by considering only similar-labeled vertex pairs as
candidates for a potential merge. Sub-mesh decimation is realized by merging a vertex pair

that minimizes a certain graph energy based cost function.
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e Model Database The object model database used to test the strengths of our representa-
tion, recognition and simplification schemes consists of two categories. The first category
consists of simulated point clouds of 8 different objects, specifically created to quantita-
tively evaluate the performance of our proposed algorithms. The second category includes

unstructured point clouds of 15 objects obtained from an online repository.

1.3 Thesis Organization

The rest of the thesis details the key ideas outlined above. Chapter 2 presents the literature
survey of the related work in object recognition and the technical background in graph theory
and classical thermodynamics, required for understanding the rest of the dissertation. Chapter
3 describes the proposed algorithm for conversion of non-manifold triangulations into manifold
surface meshes. In Chapter 4, the motivation for a new segmentation approach is presented and
the proposed graph morphology-based segmentation algorithm is described in detail. The results
of segmentation are then used to derive a two-tier representation scheme for rigid free form ob-
jects. In Chapter 5, motivated by classical thermodynamics, a point cloud matching scheme is
described for the determination of a one-to-one correspondence between a partial scene point
cloud and an identified model point cloud. In Chapter 6, we address the mesh decimation prob-
lem, the solution to which is cast within a graph theoretic framework. In Chapter 7, the proposed
contributions to segmentation, decimation and correspondence problems are summarized and

directions for future work are provided as well.
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Chapter 2

Related Work and Technical Background

A free-form object is assumed to be composed of one or more non-planar surfaces. Typical
examples of free form objects include sculptures, car bodies, human faces and terrain maps [55,
97]. General mathematical properties exhibited by object representation schemes are ambiguity,
conciseness, uniqueness and locality [97].

Ambiguityor completeness measures the representation’s ability to completely define the ob-
ject in the model spaceConcisenessepresents how efficiently or compactly the description
defines the objectUniquenesss used to measure if there is more than one way to represent
the same object, given the construction methods of representation. If the representation is un-
ambiguous and unique, then there is one-to-one mapping from the object to the representation.
Locality of an object representation is of interest in applications of recognition in the presence of
occlusion. A representation that explicitly reveals local geometrical structure is characterized as
occlusion tolerant and hence is better suited for such applications. However such representations
are generally verbose. The importance of the above mathematical properties depends on the ap-
plication context. In the case of object recognition applications, completeness and compactness
are often sacrificed in favor of uniqueness [32]. The pragmatic issue of performance often makes
such compromises appropriate. Depending on the type of the sensor used to capture the data and

the method of registration, the points on the surface can be in one of the two basic forms. In
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the first case, all points form@oint cloudwhere no connectivity information is known. In the
second case, the data ateucturedvia relationships (e.g., image-plane connectivity) known a
priori in each view [97]. For unstructured point clouds, the default computer representation is a
polygonal mesh.

This chapter surveys the prior art in three important topics of computer vision and visualiza-
tion that relate to this thesis: mesh segmentation, representation, pose estimation and localization

for recognition.

2.1 3D Mesh Segmentation

3D mesh segmentation refers to the problem of partitioning a given 3D triangular mesh into large,
homogeneous, disjoint sub-meshes usually based on certain geometric properties of the vertices
that comprise the mesh. Typically, such meshes are obtained from unstructured point clouds of
underlying 3D objects, which, in turn are generated by range sensors [26]. Examples of applica-
tions that benefit from mesh segmentation include vertex simplification, object recognition and
scene understanding [75]. The success of several existing mesh segmentation algorithms, judged
based on their ability to provide meaningful partitions, can be attributed to the specific appli-
cations for which they have been designed. Over the past decade or two, the problem of mesh
segmentation has received significant attention and numerous algorithms have been proposed to
solve the problem. We have grouped the related work into three categories.

The first category covers methods that use Reeb Graph ideas [20, 109, 110, 49], based on
Morse theory, for segmentation of meshes. A Reeb graph, or a contour tree, represents the
topological skeleton of the underlying 3D object, and uses height functions for determination
of level-set curves. Each such curve represents a vertex in the graph. Segmentation is achieved
by extracting edges that link different pairs of vertices. The main drawback of the basic Reeb
graph approach is the determination of appropriate height functions that would lead to good seg-

mentations. Also, the approach is highly sensitive to noise [109]. Various extensions to this
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Segmentation | Shape De- Perceptual Asi Post Process- Stability  to

Algorithm scriptors pect ing Overhead | Noise
Basic Reel height func-| No No No
Graph [20] tions; Affine-

variant
Affine- height  func-| No No Yes

Invariant Reel tions; Affine-
Graph [109] | Invariant

Medial Axis | radius func-| No No No

Transforma- | tion; Affine-

tion [48] Invariant

Watershed [75] Total Curva-| No Yes; merging| No
ture at every insignificant
vertex regions

Binary Mor-| Curvature at No Yes;conversion No

phology [83] | every vertex to graphs

Fast March-| principal cur-| Yes Yes;Merging | No

ing Water-| vatures small gaps

sheds [111]

Table 2.1: A comparison of some state-of-the-art mesh segmentation approaches

approach have been proposed, which include: formulation of application dependent height func-
tions [20], the discrete Reeb graphs [110], extended Reeb graphs [49] and affine-invariant Reeb
graphs [109]. The affine-invariant Reeb graphs [109] provide a rotation and translation invariant
segmentation. However, to obtain good results, the authors in [109] suggest that the input mesh
be uniform. Also, [109] does not specifically address the perceptual aspect of segmentation.

The second category covers methods that extend classical segmentation approaches used in
image analysis, to three dimensions. Mangan and Whitaker [75] propose a watershed algorithm
for segmentation. They compute total curvature at every vertex and identify local curvature min-
ima that represent thresholds. Adjacent vertices with uniform curvatures between two minima
are labeled as belonging to the same region. The algorithm is designed to provide good segmen-
tations only for uniform meshes.dRsl et.al in [83] propose a boundary extraction algorithm by

extending binary morphology to three dimensions. They compute curvatures at every vertex in
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the mesh and subsequently threshold them to obtain a binary feature vector. Further, they apply
various binary morphological operators to obtain the skeleton of the feature region. Each skeleton
is then post-processed to obtain a graph-based characterization. The Medial Axis Transformation
(MAT) [48] provides an affine-invariant segmentation but is sensitive to noise [109]. In the planar
case, the medial axis of the shape is a graph defined as the locus of the centers of all maximal
discs contained inside the shape and having at least two points of contact with its boundary.

The third category covers algorithms that perform perceptual segmentation. These algorithms
are based on minima theory that defines a framework for how human perception will decompose
an object into its constituent parts [111]. Essentially, this theory defines boundaries as lines of
negative minima curvature. Wu and Levine in [52] address the perceptual aspect by formulat-
ing an algorithm based on the simulated distribution of electrical charge across the surface of a
mesh. Page et.al in [111] use the principal curvatures as shape descriptors and implement a vari-
ation of the watershed algorithm to identify regions that are bounded by lines of negative minima
curvatures. Table 1 summarizes other key differences among some of these algorithms.

The performance of most of the existing state-of-the-art segmentation approaches is heavily
reliant on the availability of uniformly sampled point clouds [75, 20, 109, 110, 49]. For the
segmentation results to be useful for higher level tasks such as object recognition, it would be
advantageous to develop an algorithm that best mimics the human visual system, in terms of
isolating different physical parts in an object [52, 37]. In Chapter 4, we address the challenge of
segmenting a 3D surface mesh into physical parts [52] without making any assumptions about
the clouds being sampled uniformly. To meet this objective, we consider a graph-morphology
based region growing algorithm which uses curvedness [55, 19, 24], computed at every vertex

in the mesh as the similarity metric for segmentation purposes.
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2.2 3D Object Representation

Representations used in computer vision can be fundamentally classifiethjatd-centereadnd
view-centeredtategories. Techniques that use an object-centered representation attempt either to
describe the entire 3D volume occupied by the object or use view-independent features of ob-
jects such as corners and straight edges, projected onto a 2D image space, which are ultimately
detectable by various image processing operations. On the other hand, view-centered representa-
tions rely on specifying thappearancef the object from a single or a set of multiple views and

use features such as silhouettes of a shape that are not intrinsic to an objects. Representations can
also be distinguished depending on whether they use local or global shape descriptors.

Among the object-centered representations are the boundary-based methods, volumetric de-
scriptors and sweep representations (based on generalized cones). [97, 26] present comprehen-
sive reviews of the object-centered representations. The local boundary-based methods describe
an object by lists of faces, edges and vertices. Since polyhedral representations of curved ob-
jects require large amounts of space to adequately approximate them, both planar and quadric
equations were used to approximate them. In [13], surfaces are classified into primitive shapes
such as peak, pit, saddle etc., based on the signs of the gaussian and the mean curvatures. Typi-
cal global volumetric representations include voxels, octrees and superquadrics [26]. In a voxel
representation, an object is described as the union of non-overlapping cubes, where the cubes
occupy positions in a 3D lattice. Octrees describe objects in a hierarchical tree-like structure. A
superquadric representation for an object is obtained by fitting an implicit equation to the set of
data points that describe the object. The limited set of shapes represented by the superquadric
primitives can be extended to represent more complex shapes by adding parameters and defor-

mations to the implicit equations. Such an approach is computationally very expensive.
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Spherical representations for describing 3D objects have a rich history in the vision com-
munity. Ikeuchi and Hebert [35] provide an excellent review of these representations. The rep-
resentations include the class of orientation based descriptors such as extended Gaussian im-
age(EGI), support-function based representations (SFBR), the complex EGI (CEGI), distributed
EGI (DEGI), the generalized Gaussian image(GGl) and spherical attributed image (SAl). In the
EGI representation, it is assumed that the object is evenly sampled into surface patches. At each
surface patch, we define a surface normal with unit mass. The normals are then mapped onto
the unit sphere. The disadvantage of this approach is that it cannot be used for representation
of nonconvex objects, and further, while the representation allows for the determination of the
orientation parameters, the position of the object cannot be determined. The CEGI representation
addresses the latter issue, but it still can handle only convex objects. The DEGI representation can
deal with non-convex objects but it cannot handle occlusion. The GGI representation can handle
convex as well as non convex objects, but fails when parts of the objects are occluded (partial
surface matching). The SAIl addresses the shortcomings of many of these earlier spherical rep-
resentations (EGI, DEGI, CEGI). The SAIl representation maps points on an object’s surface to
vertices on a quasi-regular tessellated sphere. Local surface characteristics are stored at the ver-
tices of the tessellated sphere that correspond with the vertex point. The surface point to vertex
mapping is determined by deformation of the sphere on the object’s surface. The representation
provides rotational invariance and has to ability to deal with occluded objects. However, the en-
tire representation assumes that the mesh is regular and uniform, which for practical purposes, is
not a realistic assumption.

The view-based approach to 3D object recognition represents an object as a collection of 2D
views. Popular view centered recognition systems include the parametric eigenface technique,
aspect graphs [26], COSMOS (Curvedness Orientation Shape Map On Sphere) [55] and Spin
Images [69, 68]. In the vision system proposed in [55], a histogram of shape index values is used

to characterize the surface curvature of a view. The histogram bins store the amount of area on
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a view that lies within the range of shape index values. During recognition, these histograms are
quickly matched using moments. Their recognition system works well for single object scenes
not containing polyhedral objects. Johnson and Hebert [69, 68], use spin images for recognition
purposes. Their spin images are 2D histograms of the surface locations around a point. The spin
image is generated by using a normal at a point and by rotating a cutting place around the point,
using the normal as the axis of rotation. As the plane spins around the point, the points of inter-
section between the plane and the surface are used to index a 2D histogram. The drawback of

their system is that they assume that the data points describing the object are uniformly sampled.

2.3 Matching Strategies

In the previous section, we discussed various approaches for representing objects. The next step
is the classification and localization of objects that are present in the scene. Recognition is per-
formed by matching features derived from the scene with those stored in the model database. The
popular and important approaches to the recognition and localization of 3D objects are (i) graph
matching (ii) information- theoretic matching (iii) interpretive tree search (iv) hypothesize and
test and (v) Iterative model fitting.

Graph matching approaches [25, 16, 12, 7, 71, 89, 21, 73] capture the structural properties of
objects for ease of recognition. The scene and the model are described using attributed graphs,
where each vertex characterizes a scene or a model feature and the edge between vertices rep-
resents the relation between two features. Graph matching algorithms find the best match by
minimization of the edit distance [108, 54, 66, 85, 74]. The idea behind edit distance is that
it is possible to identify a set of basic edit operations (insertion/deletion) on the set of vertices
and edges in a graph that could make it isomorphic with another graph. Associated with these
operations is a cost and hence, the objective is to find a sequence of edit operations that will
minimize the cost. Other algorithms for graph matching include graph isomorphism [12], sub-

graph isomorphism [54, 66, 81, 103, 118], matching using graduated assignment [40, 82, 104],
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and matching using Markov chains [90]. The scene and the model can alternatively be modeled
by their shock graphs. In [119, 96, 72], recognition is performed by the minimization of the edit
distance computed over the shock graphs. While graph matching algorithms primarily differ with
respect to the implicit graph structures used for matching purposes, recognition by minimization
of edit distance is now a widely accepted paradigm. The edit distance approach has its drawbacks
(i) it is computationally expensive (ii) in its current form, it does not accommodate edge weights.

In [116], earth mover’s distance is used to measure dissimilarity between graphs, which are rep-
resented using a view-centered approach. The advantage of this distance measure is that it can
deal with edge weights as well as noisy data sets.

In the recent past, information-theoretic methods have been extensively used for matching
purposes. Viola and Wells [56] proposed the mutual information (MI) matching approach, to
align the scene image with the model image. They search over a set of possible transforma-
tions to find the transformation that maximizes the mutual information between the scene and the
model. More recently, in [88], an entropic graph approach is proposed to align the scene image
with the model. The advantage of entropic methods is that they can capture non-linear relations
between the features (associated with the scene and the model) in order to improve the discrimi-
nation between poor and good matches. When combined with a highly discriminatory feature set
and reliable prior information, entropic methods have shown very promising results [88, 120]. In
[88, 120], the minimum spanning tree is used as an entropic graph, and it has been shown that
the normalized total length of the MST is a consistent estimator of the entropy.

In an interpretive tree search [18], a search tree is constructed by pairing scene features with
the model features. Instead of searching the entire tree for a complete match, local geometric
constraints such as distance between features are used to prune the search tree. Upon completion
of the search, a global transformation is computed to determine and verify the pose of the object.

In the hypothesize- and test paradigm [18, 26], a transformation from the model’s coordinate
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frame to the scene’s coordinate frame is hypothesized. A set of non-linear equations is formu-
lated to characterize the transformation. The equations are solved in an effort to minimize the
squared error. The resulting transformation is then used to align the scene features with the model
features. The hypothesis is accepted or rejected based on the matching error.

Iterative model fitting [18, 26] is used when 3D objects are described using parametric rep-
resentations. There is no feature computation or correspondence determination between model
and scene features. Object recognition and pose estimation reduce to estimating the orientation
parameters of the model from the scene data, and matching with the stored parametric represen-
tations. Typically, the estimation of parameters is done by solving a set of non-linear equations
in an effort to minimize the squared error.

In Chapter 6, we present a thermodynamically inspired algorithm to determine a correspon-
dence between the scene and the model point clouds by combining the goodness of the graph-
based structural approaches and the entropy-based spatial matching approaches. The maximiza-
tion of the proposed objective function which captures the structural and spatial differences be-

tween point sets, leads to the desired correspondence.

2.4 Mesh Decimation

Laser range scanners and medical imaging devices generate highly detailed models of intricate
3D objects. In order to achieve acceptable processing times, often the original model needs to
be substituted by coarser approximations. Polygonal decimation [33, 60] refers to the problem
of transforming a three-dimensional polygonal model into a simpler version, by reducing the
number of polygons required to represent the underlying object. Therefore, the primary aim of
decimation is to produce a surface approximation whicasisimilar aspossible to the origi-

nal model. Polygonal decimation algorithms that need manifold triangulations as input, can be

broadly classified as :
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e Multi-pass algorithms: In the vertex decimation algorithm [58, 43, 23], multiple itera-
tions are made over all the vertices present in the manifold surface. During an iteration,
each vertex is a candidate for removal and if it meets the specified decimation criteria, then
the vertex and all triangles incident on it are deleted. The resulting mesh is re-triangulated
to remove holes, generated by the decimation process. The decimation process is repeated
until some termination condition is reached. By far, the most popular hierarchical simpli-
fication algorithms are based on the optimization of certain energy functionals. Most of
these algorithms, also known as iterative edge contraction algorithms [60, 42, 45, 62, 65],
follow a greedyapproach to select the sequence of edge contractions. Each vertex pair
being considered for merging is assigned a cost. Typically, this cost, represents the error
induced as a result of a potential merging of the vertex pair in question. At each iteration,
the lowest cost pair is merged. This leads to a collapse of certain edges and also gener-
ates some degenerate triangular faces which are subsequently removed. The Progressive
Meshes algorithm proposed by Hoppe et al [45, 62] performs iterative contraction based
on the minimization of an energy function, which evaluates the geometric compactness of

the resulting representation.

e Single-pass Algorithms In [46], Kalvin and Taylor propose a single-pass algorithm that
works by partitioning the surface into disjoint planar patches and simplifying each of the
patches, before re-triangulating them, to obtain an approximation to the input triangulation.
Each patch is determined by selecting a triangular face at random and merging the adjacent
faces until the triangles in the patch can no longer be fit by a plane within some error
tolerance. Degenerate or highly elongated patches are prevented by employing additional
constraints. In a similar approach [29], patches of triangles with nearly parallel normal
vectors are determined. Each of these patches is simplified by merging coplanar or nearly
coplanar polygons into larger complex polygons. Finally, the patches are merged together

to get an approximated version of the input triangulation. While the two approaches appear
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similar at a higher level of abstraction, the difference lies primarily in how the patches are
determined. In [29], Hinker and Hansen define patches based on angles between the
normals while in [46], Kalvin and Taylor define the patches based on the distance to the
plane. In [75], patches are determined in a way such that each patch has a relatively
consistent curvature throughout and is bounded by areas of higher or significantly different

curvatures.

In Chapter 5, we present a graph theoretic approach to hierarchical mesh decimation wherein, in
the context of hierarchical vertex contraction, a cost function based on graph energy is proposed

to identify the optimal vertex pair for merge.

2.5 Graph Theory [34, 64, 92, 63]

An attributed graph AG is denoted loy[(V, V,), (E, E.)|, whereV = {vy,...,v,} is the set of
vertices and/, = {avy, ..., av, } is the set of attributes associated with the vertices [5, 10, 38].
Note thatav; may represent a single attribute or a set of attributes for vefteZimilarly, £ and

E, define the set of edges and the set of attributes corresponding to edges, respectively. When
E, = ¢ andV, = ¢, which implies that there are no attributes associated with the set of edges
and the set of vertices, respectively, then the attributed gedfhi V), (E, E, )] can be re-written

simply as a grapli:[V, E].

In a directed graph, the edge $etconsists of edges connecting ordered pairs of vertices,
while in undirected graphs, the detontains edges that connect unordered pairs of vertices, i.e.,
in anundirectedgraph,e;; = e;;, where(v;,v;) € V. Note thate;; may also be denoted by
(vi,v;). In an undirected graph, self-loops - edges from a vertex to itself - are forbidden and so
every edge links exactly two distinct vertices.elf is an edge in the grap8¥, then it implies
that verticesy;, v; are adjacent and are neighbors. For undirected graph, the adjacency relation

is symmetric while for undirected graph, the adjacency relation is not necessarily symmetric.
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Further,e;; is said to be incident on the verticesandv;.

The degree of a vertex in an undirected graph is the number of edges incident on it. A walk
in G is a sequence of verticgs, , vs..., vx), k > 1 such thatv;, v;,1) € Efori=1,2,....k — 1.
A walk without repeated vertices is called a path. A closed walk with no repeated vertices other
than the first and the last one is called a cycle. A graph is connected if there is a path between any
two vertices. A tree is a connected graph without cycles and, when the tree connects all vertices,
it is called a spanning tree. A minimum spanning tree is the spanning tree whose sum of edge
weights are the least among all possible weighted spanning trees for a giverigraph

A complete graph is an undirected graph in which every pair of vertices is adjacent. A bi-
partite graph is an undirected gragtiV, £) in which V' can be partitioned into two set§ and
V5 such that,,, € E implies that eithew, € V; andv,, € V; orv,, € Vi andv, € V5. That
is, all edges go between the two sé{sand ;. A matchingM of a graphG(V, E) is a subset
of edges with the property that no two edgesiéfshare the same vertex. When the cardinal-
ity of matching isL'zﬂj, the largest possible in a graph witi| vertices, the matching is said
to be complete or perfect. weightedundirected graph is an undirected graph for which each
edge has an associated non-negative real weight, usually computed as the distance between the
corresponding vertices.

A subgraph of a grapiX is a graphY” such that’' (V) C V(X), E(Y) C E(X). If V(Y) =
V(X), thenY is called a spanning subgrapht Any spanning subgraph of can be obtained
by deleting some of the edges frakh A subgrapht” of X is an induced subgraph if two vertices
of V(Y') are adjacent i’” if and only if they are adjacent iX. Any induced subgraph of can
be obtained by deleting some of the vertices fr&malong with any edges that contain a deleted
vertex. A clique is a subgraph that is complete.

In an undirected graph, the weight along any edge satisfies the following properties:
1. Wij > 0if €ij € Eandwij =0if €ij Q E
2. wij = w]'i
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Figure 2.1: (a) A cube with eight vertices (b) A possible representation in the three dimensional
space

Thedegreed; of a vertexv; € V' in a weighted undirected gragh(V, E) is given by the sum of

weights of all edges incident on vertex Mathematically, this is given as:

vjEV

Given a graplG(V, E) with n vertices, itsveighted adjacency grapA(G) = [w;;] isann x n
matrix with rows and columns indexed by, whose entries are,; as defined above. diagonal

matrix D(G) = diag(d;) is ann x n matrix indexed by/” and has the vertex degrees along the
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principal diagonal of the matrix. Theeighted Laplacian L(§of the graphG is then defined as:
L(G) = D(G) — A(G) (2.2)

A representatiop of a graphG in ™ is a mapping fronl” into ™. Informally, a representation
is the position of the vertices in an-dimensional space.
Figure 2.1(a) provides an example of a possible representation for a coifeHare,V =

{v1,v9, ..,v7,u3}. A possible mapping fo¥ is given in Figure 2.1(b).

2.6 Thermodynamics [2, 67]

Thermodynamics is the study of energy transformations in systems. A system may be homo-
geneous or heterogenous. The energy interactions in heterogeneous systems are analyzed by
dividing the system into a number of homogeneous components. The state of a system is char-
acterized by its pressur, volumeV, temperaturd’, and compositiom. For a fixed amount

or composition of a substance contained in a system, the state of the system can be completely
determined by any two of the three quantities\” or 7. Energy transformations during which
pressure, temperature and volume remains constant are called isobaric, isothermal and isochoric

transformations, respectively.

2.6.1 Enthalpy

The total energy possessed by a substance is called its internal driexgg,is the total kinetic
and potential energy of the molecules present in the substance. According to the first law of
thermodynamics which essentially is the principle of conservation of energy for thermodynamical

systems, the heat content in a system is given by its entlfalagd is defined as:

H=U+PV (2.3)
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where P is the pressure and V is the volume occupied by the molecules. At constant pressure
during substance conversion, the heat absorbed or produced by the system (or change in heat

content) is characterized by its change in enthalgy.

AH = AU + PAV (2.4)

In a sense A H results due to addition or deletion of bonds during the substance conversion

process.

2.6.2 Entropy

A spontaneous direction of change is one that does not require work to be done to bring about
the change, for instance, for a gas to be confined to a smaller volume some work needs to be
done. Thus, a gas does not spontaneously contract because to do so the chaotic motion of its
molecules would have to take them all into the same region of the container. Gas expansion on
the other hand, is a spontaneous change; it is a consequence of increasing disorder. Spontaneous
changes are always accompanied by a dispersal of energy into a more disordered form and this
is the essence of the second law of thermodynamics. Entropy is a measure of the spatial disorder
of a system. The second law uses entropy to identify the spontaneous changes among those
permissible changes. The entropy of a system increases with increase in temperature. According
to the third law of thermodynamics, the entropy change accompanying an physical or chemical

transformation approaches zero as the temperature approacheagere:» 0 asT — 0.

2.6.3 Gibbs Free Energy

The criterion for spontaneous change is defined by the Gibbs free energy, which at constant
temperature is given by:

AG = AH — TAS (2.5)
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Figure 2.2: Variations i\ H, AS, AG as a function of temperature T. Observe that as the tem-
perature decreases and tends to z&H, AS, AG approach zero, leading to an equilibrium. At
equilibrium i.e., wherl" = 0, AH = 0,AS = 0, AG = 0. Note thatAG must necessarily be
less than zero for the reactions to be spontaneous or feasible.

The variations in enthalpy, entropy and Gibbs energy as a function of temperature T is shown in
Figure 2.2. Since the entropy is always positive, it follows that the free energy decreases with
increase in temperature, while the pressure is maintained constant. The free energy decreases
most sharply when entropy of the system is large. Thus, entropic contributions are dominant at

very high temperatures.
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2.6.4 Thermodynamics of Heterogeneous Systems

A heterogenous system consists of more than one substance. For such systems, the Gibbs free

energy is given by:
AG = pAng + niApg + pelAng +nolpg + .+ piAng + njAp; (2.6)
subject to the constraint that
ny +mng + ... +n; =n = const (2.7)
Here,n;, 1u; represent the composition and the partial Gibbs’ energy (or chemical potential) of

AG
R il 2.
& (Anj ) PTn @8

Essentially,; is the contribution of thg’” component toward thAG of heterogeneous system.

the j** component,

Mathematically speaking, the partial Gibbs energy of a component is the slope of the total Gibbs
energy of the system with respect to the amount of substance of interest.

Due to the Gibbs-Duhem equation, which states that under conditions of constant temperature
and pressure

nlAul + TLQA,LLQ + ...+ njA,uj =0 (29)

the Gibbs free energy is then given by:

AG = i Ang + peAng + ...+ piAn; (2.10)

2.6.5 Phase Diagram: Relationship between Pressure and Temperature

Physical changes in a system are often analyzed using the phase diagram. As illustrated in Fig-
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Figure 2.3: Let the system be in equilibrium at point (a). When pressure is applied to such
a system, the equilibrium is disturbed. It can be restored by changing the temperature of the
system. Thus the system moves to point (b)

ure 2.3, when pressure is applied to a system in which two phases are in equilibrium, the equi-
librium is disturbed. It is then restored by changing the temperature. Thus, there is a relationship
between pressure and temperature that ensures that they system remains in equilibrium as either

parameter is changed and is given by the Clapeyron equation:

g _ AtrsS
ATl AysV

(2.11)

Here,A,..S, AV are the entropy and volume changes associated with the phase transition.

2.6.6 Efficiency

Carnot efficiency is defined as the maximum efficiency obtained when heat energy input to a

system gets converted into work and is given by:

(2.12)

whereT; is the initial temperature aritl; is the final temperature.
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2.7 Conclusions

In this chapter, we presented a review of the prior art concerning mesh segmentation, decima-
tion, object representation and recognition. In the next chapter, we will present an algorithm for
repairing triangulations containing a large number of topological singularities. In Chapter 4, we
will present a new graph morphology based segmentation algorithm which can effectively deal
with noisy point clouds. The proposed approach does not require an explicit pre-processing step
for the removal of noisy artifacts. The sub-meshes resulting from the segmentation are then used
to derive a two-level representation scheme. In Chapter 5, a graph theoretic mesh decimation
algorithm is presented using the notion of the Laplacian of a graph and its energy. In Chapter
6, ideas from classical thermodynamics are applied to obtain robust correspondences for noisy

scenes, for scenes with missing data and for scenes consisting of multiple parts.
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Chapter 3

Conversion from Non-manifold to Manifold

Surfaces

Three dimensional triangulations are a popular choice for representing underlying objects primar-
ily because they provide easy solutions to a given application problem [13]. The applications
span many research disciplines, from computer aided design and computer aided manufacturing
to computer graphics and computer vision. Triangulations are non-manifold due to the presence
of topological singularities caused by human or software induced ‘bugs’ [98]. Algorithms that
strictly need manifold triangulations for processing can have undesirable results when used on
non-manifold surfaces. Examples of typical algorithms that fail to work on non-manifold sur-
faces include the algorithms for vertex decimation, surface compression, surface smoothing and
rapid prototyping [98]. For the purposes of reliable 3D object representation and recognition, a
geometric modeling system must deal with such topological singularities to enable an efficient
description of the underlying objects. In this dissertation, our particular interest is in 3D triangu-
lations with a large number of topological singularities caused by the presence of singular edges,
i.e., edges along which more than two triangles are incident. Further, we assume that the un-
derlying surface is smoothly curving concave or convex. To address the problem, we propose a

surface growing algorithm that uses topological as well as geometric characteristics to generate a
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manifold surface.
The general approach for generating manifold surfaces from non-manifold triangulations involves

the following steps:

1. Decomposition to simpler parts Triangulations are ‘cut’ along the geometric elements
(vertices, edges, faces etc.) where singularities occur [42, 98]. Such a decomposition

results in singularity free components.

2. Stitching: Some of the components obtained in step (1) are grouped together at the geo-

metric elements where singularities occur [98].

The algorithm presented in this chapter directly builds on the approach proposed in [88leGu

et.al in [98] present a manifold surface conversion algorithm purely based on the topology. In
their algorithm, the input triangulation is cut along singular edges. Stitching along the identi-
fied boundary edges results in a manifold surface. Also, the stitching process ensures that the
boundary edges do not become singular. However, by their approach there can be many possible
manifold surfaces, not all of which represent the underlying surface geometry. While following
their overall approach of cutting and stitching, we employ additional geometric constraints for
the selection of optimal triangles to stitch along the boundary edges. We have observed that such
an approach, that of combining topology with geometry for stitching purposes, yields a manifold
surface that is more representative of the underlying object geometry.

We now present an outline of our algorithm. To initiate the surface growing process, an ar-
bitrary vertex is selected and a seed triangle incident on this vertex is determined based on the
minimization of a cost criterion. The input non-manifold triangulation is then decomposed into
unique triangular faces by cutting along all the edges present in the triangulation. The growing
process primarily involves (1) identification of boundary edges on the grown surface (2) determi-
nation of optimal triangles to stitch along the boundary edges.

This chapter is organized as follows. In Sections 3.1 and 3.2, we provide the definitions

and the necessary background required for understanding the proposed algorithm. The surface
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Figure 3.1: (a) Example dbnetriangles (b) An example of a singular edge

growing algorithm is presented in Section 3.3. The results obtained by the algorithm are shown

in Section 3.4.

3.1 Definitions

A 3D triangulationT'(V, F') is characterized by a set of verticés= {vy, v, ..., v} and a set
of triangular faces” = { fi23, fa34, ..., fijx} such that a triangular face is an unordered subset of
three distinct vertices. Every triangular face is said tinoglenton its set of constituent vertices
and corresponding edges [98]. A vertex with no incident triangular face is cal@teaertex
and a triangular face islanetriangle when there are no other triangular faces incident on any of
its edges. Figure 3.1(a) provides an example of three lone triangles.

An edge is asingular edgef there are more than two triangular faces incident on that edge,
else the edge is said to begular [98]. The notion is pictorially represented in Figure 3.1(b).
Both the vertices connected by a singular edge are necessarily singular [98]. However, there can
be instances in a triangulation, when all the edges incident on a vertex are regular but the vertex
on which they are incident is singular. Such a vertex is called@ated singularvertex [98].

Isolated singular vertices are usually created due to holes in the triangulation. A regular edge in
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Vk fijk
Figure 3.2: Definition of various parameters for the seed triangle computation.

a triangulation can be eithertundaryedge or arinterior edge. An edge with one and only
one incident face is called a boundary edge, and is an interior edge otherwise. In a non-manifold

triangulation either one of the following conditions are true:
e Presence of singular edges, which implies the presence of singular vertices
e Presence of isolated singular vertices

The algorithm proposed in this chapter is primarily useful in treating triangulations with a signif-

icantly large number of singular edges.

3.2 Shape Computation Basics

Consider Figure 3.2. A vertex in a three dimensional triangulation is represented as a triplet of
coordinates i.e., a vertex is denoted by, = {z;, y;, z; }. A triangle is represented as a triplet of
distinct vertices and is given bff;;, = {v;, v;, vy }.

With respect to vertex; present in triangle;;;, we define two edge vectors; ande;;, as:
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Figure 3.3: Shape interpretation of a surface based on dihedral angles

eij = v; — v; ande;, = v, — v;. The normak;;;, to the triangle is defined as the cross product of
the two edge vectors :

Nijk = €45 X €k (31)

The area of the trianglg ;. is then defined as:

A(fije) = llei; x el /2 (3.2)

The dihedral angles;; is defined as the angle between the normals of two adjacent triangles

fijx, fu;, computed along the edgg. Thus,

6@']’ = cos_l(nijk . nilj) (33)

The dihedral angle varies between80° and+180°.

Figure 3.3 shows various shape interpretations of a triangulation in terms of the dihedral an-
gle. While positive angles represent a locally convex surface, negative angles represent a locally
concave surface and zero dihedral angle implies a locally planar surface. A dihedral angle of
180° implies that the underlying surface edge is a sharp edge whereas a dihedral argjle of
occurs when the surface folds back on itself [13]. To construct a smooth surface triangulation,

the adjacent triangular faces should have small magnitude dihedral angles, positive or negative,
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which are indicative of gently curving convex or concave surfaces respectively. Since the objects

of interest are free-form,the need for smooth surface triangulations is justified.

3.3 The Algorithm

3.3.1 Assumptions

1. Number of singularities: We assume that the input triangulation has a significantly large

number of topological singularities for removal.

2. Vertex Accessibility. We assume that every vertexrsachablefrom every other other
vertex by walking a certain path along a set of triangular faces. Therefore, we do not deal

with triangulations that have lone vertices.

3. Nature of the underlying surface The underlying surface is assumed to be smoothly

curving concave or convex.

4. Nature of Point Cloud: We do not assume sparse point clouds. This allows for the selec-

tion of an arbitrary seed vertex during the region growing process.

3.3.2 Seed Triangle Selection: Formulation of the Objective Function

An arbitrary vertex in the input triangulation is selected as the seed vertex. The next step in our
algorithm is the determination of seedtriangle from a given three dimensional triangulation.
Let {fi;x} C F be the set of triangular faces incident on an arbitrary seed vertekrom a

geometric perspective, a seed triangle should have the following characteristics: (i) it should be

36



as regular as possible (ii) it should be as similar as possible to the adjacent triangles, which in a
sense, implies that it should be representative of other triangles in the neighborhood. . In order
to achieve the above criteria, we select the seed triaﬁg{e{fijk}, as the one that minimizes

the total cost;;;, defined below. Suppose, there ateangular faces incident on the seed vertex

v; . Let the two edges of the trianglg;,, that are incident on vertex; bee;; ande;,. Further,
suppose, there adeadjacent triangles along the edggof triangle f;;;, andK adjacent triangles

along the edge;,. With respect to each of the adjacent triangles is associated a dihedral angle,
computed along;; or e;;, of the trianglef;;;. The total cosC;;;, associated with trianglé; ;.

(incident on the seed vertey) is defined by (3.4).
Ciji = llessll + el + | cos(Biy) Aig — A(fije)| + | cos(Bix) Ak — A(fisi)| (3.4)

Here,A(f;x) is the area of the triangular fagg,, ﬁw is the optimal dihedral angle betwegp;
and asimilar adjacenttriangular face along edgs; andA}j is the area of the adjacent triangle
that results in the dihedral ang@. Similarly, 3, is the optimal dihedral angle betwegn, and
a similar adjacent triangular face along edgeand A;; is the area of the adjacent triangle that

results in the optimab;,. Therefore 3;; and;, are defined as:

By = min |G|

~

Bik = mI}H | Bi| (3.5)

Rearranging terms in (3.4), for every triangle, we can associate the total cost in terms of the

cost along its two constituent edges that are incident on the seed verfexs is defined as :

Cijk = ||ein + ‘COS(@J')AAM — A(fijk)| + |leix]| + | COS(ﬁAik)AAik — A(fijk)’ (3.6)

cost(e;j) cost(ek)
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Figure 3.4: Geometric interpretation of the cost criterion

Among all the triangles incident on the seed vertgXhe seed triangle is the selected to be the

one that minimizes the coét ;.

3.3.3 A Geometric Interpretation of the Cost Criterion

The cost function defined in (3.6) reflects the aforementioned criteria. The norm of the edges en-
sures the regularity of the selected seed triangle. To explain the significance aﬁi{‘@)AU —
A(fi1)| term, consider Figures 3.2 and 3.4.
For a certain triangle to be representative of the other triangles in the neighborhood, the areas
of the two triangles in consideration must be close to each other. Mathematically, this means that,

for two adjacent triangles, incident on edgg

Area(fijr) = Area(fi;)
= Area(fijr) = o - Area(fuyj),a =~ 1 (3.7)

= Llley x el = $llea x el
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From (3.1) and (3.7), we have:
al|ni;|| = lIni| (3.8)

From Figure 3.4||n;;|| cos(53;;) is the length ofn,;; as a projection. One can approximate the
length of this projection with the length af;, for small values ofs. Therefore, for the areas of
the adjacent triangles to be similass(3;;) = o ~ 1. Normally, this is true wher,; is in the
preferred region

From the cost metric in (3.6), we can conclude that if two triangles have similar areas and
further, if the underlying surface is smoothly curving concavg & 0) or convex (3;; > 0) ,
then | cos(f;;)Ai; — A(f:1)] = 0, thereby satisfying one of the more important criteria for the

selection of the seed triangle.

3.3.4 The Algorithm: Greedy Strategy

After selecting the seed triangle for surface growing purposes, the input non-manifold surface
triangulation is decomposed into the constituent triangles. Stitching is essentially a grouping
process [98] in which an optimal triangle is selecteth&rgealong the boundary edges identified

on the grown surface. Stitching for surface growing involves the following steps:
1. Identification of boundary edges on the grown surface

2. Constraint-based selection of triangular faces to stitch along the boundary edges identified

in step (1)
3. Merging the triangular faces selected in step (2) along the corresponding boundary edges.
4. Updating the boundary edge and the vertex lists after stitching.

Figure 3.5illustrates the stitching process. Clearly, the key elements of the stitching strategy that
will ensure that the resulting surface is manifold are: (a) identification of the boundary edges (b)

Optimal triangular faces to stitch along the identified boundary edges.
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Figure 3.5: (a) Grown surface with boundary edgesand e, (b), (c) Two optimal triangles
identified for stitching (d)A surface that can never be generated by the surface growing algorithm
(e),(f) Two possible stitches

Identification of boundary edges on a grown surface The edges that constitute the trian-
gular faces present on the grown surface can be classified either as interior edges or as boundary
edges. The edges with exactly one incident triangular face are termed as boundary edges. Edges
with at most two incident triangular faces are termed as regular interior edges. Stitching is pos-
sible only along boundary edges. In our algorithm, stitching along interior edges is clearly not
allowed for it will render the resulting surface as non-manifold.

Selection of Optimal triangle for stitching: Having selected the seed triangle, other opti-
mal triangles (for stitching along identified boundary edges) for the surface growing process are
chosen from a set of potential candidates by employing additional constraints. Specifically, an
adjacenttriangular face which, if stitched, would minimize the erigy,. computed as the mag-

nitude of the dihedral angle along a boundary eglgas selected as the best candidate. The cost

40



E,.,. associated with a triangular fagg,. is given by:

Eabc = lﬁbc‘ (39)

Among theT triangles incident on edgs,, the one that minimizes the error computed above, is
selected for stitching along the edge. The rest of the triangles that were evaluated for stitching
along the edge,., are now discarded from the list of triangles that are available for subsequent
processing. Observe that the cost function formulated for the selection of the seed triangle is
quite different from the one proposed for stitching along the grown surface.

After stitching a triangle along a boundary edge, the edge is subsequently labeled as interior.
Further, when all the edges incident on a vertex are labeled as interior edges, the vertex conse-
guently becomes an interior vertex. If however, there is at least one boundary edge incident on a
vertex, the vertex remains a boundary vertex. The process of selectionagftthreal triangular
faces (for stitching) followed by stitching along the corresponding boundary edges is continued
until all the vertices are labeled as interior vertices. Such a growing process ensures that isolated

singular vertices are not created. Further,it guarantees that the resulting triangulation is manifold.

3.4 Experiments and Results

Figure 3.6 presents some results obtained by our algorithm. The non-manifold surfaces of vari-
ous objects are shown in the left-hand column. These triangulations were obtained by processing
the point clouds of the objects using commercially available mesh generation software. The sin-
gularity test [98] indicates that these triangulations contain a large number of singular edges.
The results obtained by the surface growing algorithm are shown in the right hand column. The
timing performance of the algorithm is indicated in Table 3.1. The approach can be used to repair

non-manifold surfaces off-line.
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Figure 3.6: Manifold surface conversion

42



object Number of| Time (in minutes) for conversion to manifold
vertices surface

Ball 2932 3.9

Dog 4305 6.3

Pig 4332 6.35

Car 7401 10.4

Table 3.1: Timing Performance of the proposed mesh repair algorithm on various data sets
3.5 Conclusions

In this chapter, a surface growing algorithm is described to convert a 3D non-manifold trian-
gulation into a manifold surface mesh. The surface hence generated is truly reflective of the
underlying object’s geometry. The results of the approach have been used in Chapter 4 for seg-
mentation and representation. In chapter 5, the manifold meshes have been used for decimation
purposes. Due to the propagating nature of the algorithm and due to the constraints employed
on the triangles used for stitching, the algorithm generates a smoothly triangulated surface, free
of any self-intersections. The algorithm is particularly useful, when a given triangulation has
a significantly large number of singularities to be corrected. The method, however, does not
address issues like filling gaps in disconnected triangulations. It may not be suitable if the under-
lying object has sharp concave or convex regions. Otherwise, the method is general and handles

singularities without user intervention.
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Chapter 4

Mesh Segmentation for Object

Representation

Toward deriving an efficient representation scheme for free-form objects which are character-
ized by point cloud data, this chapter details a new approach for segmentation of surface meshes
constructed over the point clouds. While we make very few restrictive assumptions about the
shapes of the underlying 3D objects, we do not consider statistically defined shapes (such as tex-
tures, foams), infinitely detailed objects that are best described using fractals and non-orientable
surfaces (such as Klein bottles, Moebius strips). Typical free-form objects of interest include
vehicles, industrial assembly parts and animals.

Although existing free-form representations [55, 69] provide an efficient description of 3D
objects to enable fast and accurate retrieval during recognition, they implicitly assume a uniform
sampling of the point clouds. In practice, however, due to noise or sensor inaccuracies, point
clouds are rarely uniformly sampled. Representations derived from non-uniformly sampled point
clouds do not provide concise descriptions of underlying objects for the following reasons (1)
shape descriptors computed from noisy point cloud data are often inaccurate, (2) segmentation
of meshes constructed over such point clouds result in numerous fragments as opposed to sub-

meshes corresponding to the physical parts in the underlying object. This work addresses the
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challenge of segmenting a 3D surface mesh into physical parts [52] without making any assump-
tions about the clouds being sampled uniformly. Segmentation results are then used to derive a
compact representation of the underlying object.

It is known that humans disambiguate objects in terms of their shapes. Shape is the visible or
perceived form of an object that distinguishes a cylinder from a sphere, a human from a dog. The
shape of a rigid object is independent of its position and orientation in space. In fact, as pointed
out by Koenderink [19, 24], shape is independensadle a ping pong ball and a tennis ball
have different radii, but are both described as spherically-shaped. Thus, shape plays an important
role in differentiating one object from another. Most man-made objects are not composed of a
single shape but are usually made of regions of different shapes. Therefore, an object can be
effectively characterized by partitioning it into different shape categories. It may be noted that
shape alone does not constitute a complete description of an object. One factor that distinguishes
a ping-pong ball from a tennis ball is the scale or curvedness [19, 24]. Scale describes the amount
of curvature present in an object and plays a conspicuous role in recognition [55]. We provide
mathematical descriptions of shape and scale in the following section. Unless a representation
scheme provides information about the orientation of an object or its parts in the 3D space, it will
be extremely difficult to perform recognition of scenes, which primarily consist of the rotated
versions of the stored object models. Hence, the orientation information complements the shape
and scale characterization of an object.

In this work, an input point cloud is triangulated using a commercially available software,
Points2polys [126]. For the efficiency and the ease of computation of the shape descriptors,
manifold input triangulations [98] are considered. This means that there exist at most two trian-
gles incident along any edge in the mesh. A non-manifold triangulation can be converted into
a manifold surface mesh using the approach described in Chapter 3 or using other techniques
[98]. Subsequently, the shape descriptors namely, the shape index and curvedness, are com-

puted at every vertex in the triangulation, in order to capture the shape and the scale information
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about the 3D object. The surface mesh is partitioned into multiple, disjoint sub-meshes using the
graph-morphology based segmentation algorithm, described in Section 4.3.2. Curvedness serves
as a similarity metric for segmentation purposes. The segmentation results are used to derive
a two-tier representation wherein, at the coarser scale, adjacency relationships between disjoint
sub-meshes are established by constructing a super-graph over these sub-meshes. At the finer
scale, the orientation information about the object is captured by mapping the normals of each of
the disjoint sub-meshes onto a unit sphere.

Specific objectives that are accomplished in this chapter are:

e description of a framework to deal with noisy point clouds without performing an explicit

mesh smoothing operation,

e formulation of a new sub-mesh extraction algorithm that combines graph morphology and

signal filtering ideas,

e design of an approach for the adaptive selection of curvedness thresholds that leads to
disjoint sub-meshes that seem to match the human visual segmentation of the underlying

object, and,
e design of a two-tier representation scheme for the description of free-form objects.

This chapter is organized as follows. In Section 4.1, we provide the background required for
computation of shape descriptors at every vertex in the input triangular mesh. Section 4.2
presents the definitions and properties of various morphology based notions, all of which are
required for segmentation purposes. Sections 4.3 and 4.4 provide a complete description of
the algorithm and highlights its capabilities. In Section 4.5, we design a two-tier representation
scheme for the description of rigid free-form objects. In Section 4.6, the proposed segmenta-
tion algorithm is compared with an existing state-of-the-art approach and results are provided to

demonstrate the effectiveness of the approach.
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Figure 4.1: Shape Index scale is divided into nine shape categories. The two extreme shape
thresholdst, = —1,t9 = +1. The other eight thresholds are indicated on the scale. These
thresholds are used to identify shape clusters present in a sub-mesh

4.1 Definitions and Notations

4.1.1 Shape Descriptor: Curvedness

Curvedness which is also known as the bending energy [19, 55], measures the intensity of the
surface curvature and describes how gently or strongly curved a surface is. Mathematically, it is

defined as:

Cy = /(K210 (0) + K2, () /2 (4.1)

wherek, ... (v), kmin(v) are the principal curvatures of the surface at vertex
The shape index provides the quantitative definition of the shape of a surface at anartex

is defined as [19, 24]:
S(U) — _g tan_l ’imax(v) + limm(v)

T Kmaz (V) — Kmin (V)

(4.2)

As illustrated in Figure 4.1, in [19] a surface is classified into nine categories based on shape
index. Vertices on a planar surface (with indeterminate shape index) are assigned a value outside
the interval [-1,1].

The principal curvatures, ..., km:, are defined as:

Fmaz(V) = H(v) + 1/ H2(v) — K(v); Emin(v) = H(v) — /H?(v) — K(v) (4.3)

The mean curvature and the Gaussian curvatures denotdddy K (v) respectively, are com-

puted by considering the triangular mesh as a piece-wise linear approximation of an unknown
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Figure 4.2: Definition of various parameters with respect to the triangular faces incident on vertex
V. «; is the angle subtended by the triangular fécat the vertexy and is computed as the angle
between the corresponding edge vectgrande; 1; (; is the dihedral angle between adjacent
triangular faces and is computed as the angle between the corresponding normals.

smooth surface [78]. Therefore,

k
2r — Z 1e%
i=1

Ky =—7375 — (4.4)
12 mjlles]
_ a2 IS
Hlv)="=473
where,
p; if edgee; is convex
mj = 0 if edgee; is planar (4.5)

—B; if edgee; is concave

k
A =Y f; is the sum of areas of triangular faces incident on the vertex«; denotes the

angleis:lljbtended by a triangular faget vertexv. 3; is the dihedral angle between two adjacent
triangular facesf; and f;;, and is computed as the angle between the corresponding normals.
Here,||e,|| is the Euclidean norm. These quantities are illustrated in Figure 4.2.

In the proposed segmentation algorithm described in Section 4.3, curvedness will be used as

the shape feature to partition an input surface mesh into disjoint sub-meshes.
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4.1.2 Graphs

In this work, an input mesh is defined as an attributed gréplV, C), E], whereV (G) =
{v1,v9,...,v,} is the set of vertices comprising the mesiG) = {C,1,Cyo,...,Cyn} is the
set of curvedness values associated with the vertices in the mediy &hds a set of edges con-
necting the vertices ifv' (G). Verticesy; andv; areadjacentand are neighbors if there exists an
edgee;; connecting them [34]. The neighborhoddv;) of a vertexy; consists of a set of vertices
that are adjacent to vertex.

Given the grapltz and a threshold intervad;, ¢;11), t;, tiv1 € [Crin, Cimaz|, WhereC,,;,, and
Cnae are the minimum and the maximum curvedness values respectvelyximally connected

attributed subgrapiMCASQ Y is defined as:
1. V(Y) C V(G)

2. E(Y)=EG)N(V(Y) x V(Y))ie. E(Y) contains edges from the naturally generated

edge set,
3. Cy,, Cy, € [ti, tiy1), Vi, v; € V(Y)

4. there exists a patp from v; to v; containing distinct verticesy, vy, ...., v, € V(Y), such

that condition (3) holds true for every pair of vertices along the path

The details of the MCASG extraction algorithm are presented in Section 4.3.
In the following section we explain the need for new graph-based morphological operations

and provide an overview of the proposed algorithm’s characteristics.

4.2 Graph Morphology-based Segmentation: Overview

Non-structured graph morphology as well as soft morphology [28, 27, 14, 36, 39, 47,87, 17] have

been extensively applied in 2D image processing. In 2D morphology, a connected component is
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Figure 4.3: The implication of not transforming the geometric properties of outlier vertices is
shown by way of Outputl. Output2 shown in (c) is obtained by our algorithm. The proposed
algorithm performs graph dilation by identifying and morphologically filtering outlier vertices
such as;, vo. The outliers in the dilated graph are discarded formally by performing attributed
graph matching.
extracted by the iterative application of the dilation and intersection operators to the input image
[100]. For segmentation of meshes, this idea needs to be applied carefully because (1) extraction
of multiple MCASGs requires that non-structured dilation [27, 14] be performed in restricted
regions of the input mesh, and (2) the intersection operator must be specialized to handle graphs
as opposed to an array of pixels.

Figure 4.3 illustrates the need for a new graph theoretic formulation. The color on the ver-
tices indicate the range of curvedness values assigned to them. The segment&tiasirmdg
the known algorithms will result in four MCASGs as shown in Figure 4.3(b). Such partitions

are not acceptable for our purposes because the MCASGs correspond to small, discontinuous re-

gions (possibly arising from the noisy data). On the other hand, the proposed morphology-based



processing of the grapB forces the outlier vertices; andv, in Figure 4.3(a) to behave like
their neighbors, thereby resulting in two MCASGs as indicated in Figure 4.3(c). The proposed

algorithm has the following components:

e Adaptive threshold selection: Sub-meshes are obtained using adaptively determined curved-
ness threshold intervals. The details of the threshold selection process is presented in Sec-

tion 4.3.1.

e Sub-mesh Growing: The MCASG extraction process is initialized by identifying a vertex
from the input mesh with curvedness value in the specified threshold interval. For example,
given the input mesh shown in Figure 4.4(a) and the curvedness threshold ifitefval
the segmentation initialization is shown in Figure 4.4(b). At any iteration, the initial sub-
mesh is expanded by graph dilation, which also implicitly identifies and filters the outliers
in the expanded sub-mesh. Specifically, this approach exploits the idea that the geometric
behavior of a vertex is influenced by its neighbors, so that an outlier vertex is transformed to
be a part of the MCASG by replacing its curvedness value by the median computed over the
curvedness values of its neighbors. The resulting expanded sub-mesh is scooped out of the
input mesh to form thdilated graphfor the iteration. As an example, graph dilation around
the initialized vertex (Figure 4.4(b)) followed by the extraction of the expanded sub-mesh
results in the dilated graph for the first iteration, as shown in Figure 4.4(c). Observe that
the morphological filtering during this iteration has not transformed the outlier neighbors
(v2, v3) Of the initialization vertex);. On the other hand, during the second iteration, the

dilation of A/ morphologically filters the outliers,, v5 (Figure 4.4(f)).

o Attributed Graph Matching to discard outliers: When only a proper subset of the vertices
of the dilated graph have the curvedness values in the desired curvedness interval then,
the outlier vertices are discarded formally by performing attributed graph matching with

the desiredgraph. The motivation for this is drawn from 2D image processing, wherein

51



0:c<2,@:2<c<5 @:C=>5 0: void vertices

(a) Input graph (b) Initialization of (c) Dilated GraphG}, (d) Desired grapm!
G[(V,C),E] V (M?P); Initial sub-mesh
for first iteration

(e) Matched Graph/*; (f) Dilated GraphG? (9) Desired grapm? (h) Matched Graph/2
Initial sub-mesh for
second iteration

Figure 4.4: The steps involved in the extraction of two disjoint MCASGs for the given input
mesh, G. The curvedness thresholds are specified as before.
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a connected component is extracted through an iterative process of dilation and intersec-
tion [100]. These ideas are illustrated using Figure 4.4(c),(d) and (e). The matched graph,
shown in Figure 4.4(e) is used as the sub-mesh for expansion during the second iteration.

The resulting MCASG is shown in Figure 4.4(h).

In the following section, we formally describe the basic segmentation algorithm and then

extend the approach for the extraction of multiple, disjoint MCASGs.

4.3 Algorithm for Extraction of MCASG

4.3.1 Adaptive Selection of Thresholds

The proposed segmentation algorithm is driven by the assumed knowledge of a pair of curved-
ness thresholds;, ¢, ), that identifies the range of curvedness values allowed for the vertices in
a MCASG. A threshold pair corresponds to the representative curvedness values for a MCASG.
The motivation for the threshold selection process described here is derived from k-means clus-
tering [93] and histograms [100]. For our problem, the selection of cluster centers resulting from
a straightforward application of the k-means algorithm to the set of curvedness values does not
result in the desired MCASGs. Also, the optimal number of classes needs to be specified. We
have found that the use of curvedness histogram peaks as thresholds leads to over-segmentation.
Such over-segmentations can be avoided by selecting a curvedness value (threshold) that is close
to the identified peak.

We propose a hierarchical threshold determination technique based on the sub-bin processing
of the histograms. Specifically, at a levelve construct a curvedness histogram with an optimal
bin width over the set of curvedness values in the intejtyal’,,...|. Heret; is the minimum of
the V; curvedness values available for processing at levé/heni = 1, t;, = C,,.;,. Next, we

identify thefirst binwith an appropriate peak i.e., the bin with at least 10% of the total number of
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vertices in the input mesh. Sub-bin processing of this bin involves (1) partitioning of the curved-
ness values in the bin into two classes using k-means (2) assigning the cluster mean that is closer
to the bin center as the threshald,; for the extraction of the MCASG in the curvedness interval
[ti,tir1). The repetition of this process for= 2,3, ... results in the determination of all the
curvedness intervalg;, ¢;, ;) that are required for the extraction of the corresponding MCASGs.

The threshold determination process is illustrated in Figure 4.5 and is formally described below.

Fori = 1,2, ...(representing various levels in the hierarchy), the selection of a threshold pair

[ti,ti11), InVOlves

1. Construction of Curvedness Histogramt a leveli, a histogram is constructed over the
curvedness values in the interVal C,,....|. The set of curvedness values is partitioned into
m binssuch that thg’" bin is the half-open intervdt; + (j — 1)W;, t; + jW;). Here,IW;

is the optimal histogram bin width [6] computed as:
W, = 3.490; N,/ (4.6)

whereo; is the standard deviation of th€; curvedness values. The number of vertices
whose curvedness value falls in t}i& bin is given byn; = SN xx(Cy,) Wherey is the
characteristic function of thg" bin:

L (ti+(—OW) <z < (ti+jWi)

Xu() = (4.7)

0 otherwise
In Figure 4.5, fori = 1, the histogram is constructed by usialy the curvedness values,
whereas fori = 2 andi = 3, the corresponding histograms are constructed over the

curvedness values in the intervéi!d2.04, C,,,..] and[382.84, C,,....] respectively.

2. ldentification of the first bin of interesfhe k" bin is identified as thérst bin of interest
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Figure 4.5: Selection of curvedness threshold for the simplified horse consisting of 1548 vertices.
The gray colored bin in (a) and (c) indicates the first bin of appropriate peakiness. All curvedness
values in this bin are clustered into two classes using k-means with cluster centeasidcen,.

In (b) and (d) ‘x’ and ‘+’ correspond to the cluster centers and the bin center respectively. The
cluster center closest to the bin center is assigned as the threéshold
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(a) Curvedness Interval [0 292.04) (b) Curvedness Interval (c) Curvedness Interval [382.84,2304.4]
[292.04,382.84)

Figure 4.6: Segmentation of the simplified [23] horse with 1548 vertices into MCASGs corre-
sponding to the threshold intervals shown in Figure 4.5

wherek = min{j | n; > 10%N}. In Figure 4.5(a)k = 6, as indicated by the gray

colored bin.

3. Sub-bin processing for the determinationtof,: While there exists thérst bin of interest

with bin centerX;, perform steps (a)-(c):

(a) Using k-means, partition the curvedness values in this bin into two classes and iden-
tify the corresponding cluster cente#s:,, cens; ceny < censy. The cluster centers in
Figures 4.5(b) and (d) are obtained by patrtitioning of the gray colored bins shown in

Figure 4.5(a) and (c) respectively.

(b) Sett;.; = cen; wherel = argmin,_; 5 |X; — cen,|. Thus, the cluster center that is

closer to the bin centeX;; is selected as a threshold. In Figure 4.5¢(b)~ cen;.

(c) Extract MCASG corresponding to the threshold intefwat; ), using the segmenta-
tion algorithm described in Section 4.3.2. Figure 4.6 illustrates the various MCASGs

obtained using the threshold intervals indicated in Figure 4.5.

4. Stopping Condition: Sub-bin processing terminates when none of the bins in the curved-

ness histogram satisfy the peakiness constraint. Then, the threshold interval for remaining
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0:c<2,®:2<c<5 @:C=>5 0: void vertices

(a) Input: G[(V,C),E], initial sub-mesh is shown in (b) Dilated graph: curvedness values of certain ver-
dotted lines; curvedness threshold range [2,5) tices are modified in the expanded sub-mesh

Figure 4.7: (a) Dilated graph extraction process involves expansion of the initial sub-mesh, iden-
tification and morphological filtering of outliers in the expanded sub-mesh. The idea exploited
here is that a vertex geometrically behaves like its neighbors. Thus, it is reasonable to replace
the curvedness value of an outlier by the median curvedness computed over its one-connected
neighbors. For exampl€,; = median{C, ., C,.,, Cvss Cogs Cvgs Curo }

unprocessed meshl(is, C,,..]. Such a histogram is shown in Figure 4.5(e).

Observe that, a new curvedness histogram is constructed at every level in the hierarchy. This is be-
cause segmentation (at the previous iteration) modifies the curvedness values of certain vertices.
A fundamental advantage of such an approach is that the thresholds are selected without any user

intervention and it does not require the specification of the desired number of sub-meshes.

4.3.2 Basic Segmentation Algorithm

Given an input mesidz and a curvedness threshold rarjget; 1), the extraction of a certain

MCASG, sayM involves:
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1. Initialization step: Select an arbitrary vertex from G such that its curvedness value

C, € [ti,tiy1). SetV (M) = v. E(M°) = ) andC(M°) = C,.
2. Iteration Step:Fork = 1, 2..., perform the following:

(a) Dilated graph extraction:Determine the neighbors of the verticeslitiA/*~!) and
perform median filtering on their curvedness values if necessary. Extract the dilated

graphG* such that:

V(GY) = {V(M*YY uv'|v' € N(v),Jv e V(MF1)}

C(G%) = {C!}, where

Yo € V(GH), O, = { median{Cul' € NW)), Gy ¢ lttin]  (48)
d)r»~v T

C(v), otherwise

E(Gg) = {ew € E(G)|u,v € V(G)}

The dilated graph extraction process is illustrated in Figure 4.7.

(b) Desired graphA: Using G*, define desired grapH* such that (a)/ (A*) = V(G%)
(b) E(A%) = E(G) (c) C(AF) = {82 vy, € V(AF)}. By this definition, de-
sired graph has the same sets of vertices and edges as the dilated graph. However,
the curvedness values associated with the vertices in the desired graph arden the
sired threshold interval. For example, corresponding to the dilated graphs shown in
Figures 4.4 (c) and (f) , the desired graphs are illustrated in Figures 4.4 (d) and (g)

respectively.

(c) Extraction of MCASGAttributed graph matching between dilated graph and desired
graph will result in amatchedgraph M* where (a)V (M*) = {v € V(GY)|C, €
[ti,tir1)} (0) E(M*) = (V(M*) x V(M*)) N E(GE) (¢) C(M*) = {C,,Vv €
V(M*)}.
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(a) Input graphs (b) Initialization: Choice 1 (a) Initialization: Choice 2

O:C<2,@:2<c<5 @:C=5 0: void vertices

Figure 4.8: Algorithm exhibits robustness to bad initializations. Selection of veitas the
starting vertex doesn't allow the sub-mesh to grow as much. The vertices in such MCASGs are
considered unprocessed. Vertexs a good choice for initialization.

The algorithm converges whed* = A%, thereby resulting in the MCASG correspond-
ing to the threshold range;, ¢;.1).

It is observed that this approach causes the smoothing of a local surface shape, by modifying
outlier curvedness values. We list below certain modifications to the basic algorithm that provide

practical and robust segmentations.

4.3.3 Modified Algorithm

In Section 4.3.2, the segmentation initialization was done by arbitrarily selecting a vertex having
its curvedness in the desired interval. However, if such a vertex has its neighbors outside the
desired interval, then a reasonable sized MCASG may not be guaranteed. The implications of
a bad initialization are illustrated using Figure 4.8. If we Béf\/°) = v; and implement our
segmentation algorithm, we observe that the MCASG cannot grow as much as would have been
expected, as shown in Figure 4.8(b). Since such MCASGs do not really repreasonably

large segmented regions, the vertices that comprise such MCASGs are considered ‘unprocessed’
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from a segmentation point of view. This leads to selection of another vertex for segmentation
initialization. As shown in Figure 4.8(c), vertex is definitely a good starting point. It may

be noted that the termeasonables subjective, and for our problem, we drop MCASGs with
fewer than 15 vertices, and consider these vertices as unprocessed. As we show in the examples,
such an approach works well for quite a broad range of objects.our experience indicates that the
algorithm is robust against bad initializations. For a given curvedness threshold[tange),

due to the propagating nature of the segmentation algorithm, there will be a single MCASG at
the output. In general, there may be several parts in any object with similar intensity of curvature,
which are otherwise disconnected. We take into account such situations, and modify the basic
segmentation algorithm to obtain multiple, disconnected, similar MCASGs.

Modified Segmentation Algorithm:
1. Obtain the list of all vertices, sdy, satisfying the curvedness threshold criterion.

2. Select an arbitrary unprocessed vertex frbrmnd implement the basic segmentation algo-

rithm.

3. Drop the MCASG obtained in step 2, if it is not reasonably large (fewer than 15 vertices)

and consider the corresponding vertices as unprocessed, else proceed to Step 4.

4. Repeat Step 2 until all vertices inhave been processed. This step ensures that all possible

sets of MCASGs satisfying the given curvedness threshold criterion have been extracted.

Stopping Condition: The algorithm terminates either when all vertices imave been processed
or when only isolated regions with fewer than 15 vertices (which are not reachable by any prop-

agations) are left.
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4.4 Psychological Support

Algorithms that address the perceptual aspect of segmentation derive support from human vision
theories, like the minima rule [111, 52](which defines boundaries along the lines of negative
minima curvature) or Gestalt rules of organization [1, 15, 79, 80, 9, 50]. In this section, we show
that in segmenting an input mesh into sub-meshes, our algorithm adheres to the following Gestalt
rules of organization [1]. However, we do not provide a rigorous treatment of the perceptual
aspect for that would require proofs from psychophysics, which are beyond the scope of this

work.

e Proximity Rule: Points that are close to each other are grouped together.
The proximity rule of perception is reflected in the definition of MCASG, that captures the

adjacency relationship between any two vertices.

e Similarity: Two points that are similar along a perceptual dimension (shape, color) are
grouped together.
In the context of our problem, this rule implies that two vertices belong to the same sub-
mesh if they have similar curvedness values. Clearly, this rule is incorporated in the defini-

tion of MCASG.

e Good Continuation and Smoothness: Points that fit the path of a continuous curve are
grouped together.
The formulation of dilation enforces the smoothness and continuation criteria. As ex-
plained in Section 4.2, dilation followed by morphological filtering results in smoothing
of the local shape when the input data are noisy. This, in conjunction with the proxim-
ity rule, results in sufficiently large MCASGs (instead of small fragments) that delineate
continuity. It may be mentioned that the minima rule does not deal wittcdminuity
aspect [79] and hence, segmentation algorithms that are based on this rule also suffer from

the drawback of lack of continuity.
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4.5 Two-tier Representation

For the sake of completeness, we describe below the design of our representation scheme. Due

to the following key features that define an efficient representation scheme,

1. ability to represent all types of surfaces,
2. provision for accurate determination of orientation and translation parameters,

3. efficient representation for the surface described, in terms of storage and matching compu-

tation, and,

4. stable and sensitive in the sense that a small local change to a surface corresponds to a

small, local change in its representation.

in this work, we are motivated to borrow ideas from the two-level Generalized Gaussian Image
(GGI) representation scheme [31] because of the advantages it offers (1) rotation and translation
paramaters are de-coupled; rotation of the object induces an equal rotation of normals on the
sphere, (2) the GGI representation provides unique representations for convex and non-convex
objects, and, (3) it allows us to uniquely determine a surface up to a translation thereby simplify-
ing the recognition process considerably. In the GGI scheme, at the higher level, the connectivity
between surface patches (where each patch consists of a set of vertices with constant Gaussian
curvature) is established by constructing a graph linking the patches. At the lower level of repre-
sentation, the surface normals of each one of the patches is mapped onto the unit sphere.

In our representation scheme, at the coarse scale, the global information about the object
is provided by establishing adjacency relationship between various MCASGs. This is accom-
plished by constructing an attributed super-graph over the MCASGs. Each vertex in the super
graph is a MCASG, the attributes associated with the vertices being the shape index thresholds
and the range of curvedness values associated with the corresponding MCASGs. At the fine
scale, the orientation information about each MCASG is preserved by mapping the correspond-

ing normals onto a unit sphere. Figure 4.9 illustrates an example of the attributed supergraph
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(a) MCASGs in a dog indicated by different colors (b) Attributed super-graph over the MCASGs

Figure 4.9: An attributed supergraph representation of an object. An edge connects two vertices
in the supergraph iff the corresponding MCASGs are adjacent each other

representation. It may be recalled that the normal to a triangle is defined as the cross product of
the edge vectors. The normal at a certain vertex is then computed as the mean of the normals of
the triangles that are incident on the vertex under consideration. Having computed the normals
for all the vertices associated with a certain MCASG, each such normal is then mapped onto a
unit sphereS?. Thus, a normal vector at a vertexin cartesian coordinate®?® is denoted by

n(v) = {n.(v),n,(v),n.(v)}. When mapped onto a unit sphefg, it is represented using polar
coordinates as(v) = {0(v), ¢(v)}.

Since a MCASG describes a physical part in the underlying object e.g., the leg of a dog,
the corresponding normals when mapped onto the unit sphere, will be spread across multiple
regions on the sphere. As illustrated in Figure 4.10(a), the normals corresponding to the front
and the rear faces of the leg of the dog map onto opposite regions on the sphere. These normals
are then clustered based on the shape index values assigned to the corresponding vertices and
the mean normal for each such cluster is determined. As shown in Figure 4.10(a), there are
primarily two clusters of normals corresponding to the leg of the dog, i.e., MCASGFor
the two clusters, the mean normals are then computéd,as;) and (6., ¢,) respectively. As

shown in Figure 4.10(b), it is possible that multiple MCASGs map onto the same point on the
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(05, ds)

(a) Clustering of the normals mapped on to a sphere (b) Multiple folds on the sphere

Figure 4.10: Spherical Representation of the MCASG normals. Mean normals are determin-
ing by a clustering process. It is possible that multiple mean normals map onto the same
point/neighborhood on the sphere resulting in multiple folds.

sphere, leading to multiple folds on the sphere. The attributed super-graph is then used to extract
the connectivity information between various MCASGs, and thus, each fold can be identified
uniquely. Referring to the block diagram illustrated in Figure 1.4, the derived representation
for a model point cloud is stored in the database. The representation for the Scene point cloud
is used for during recognition for classification and pose estimation. Specifically, the Scene
is classified as an instance of a stored model by performing inexact graph matching between
the Scene supergraph and the supergraphs corresponding to the stored models. Using the fine
scale representation information, the rotation parameters that would align the Scene with respect
to the identified model are then recovered. Determination of the translation parameters is then
straightforward (we assume an affine model in this work). The challenge then is the determination
of correspondence between the Scene and a subset of the model points. Our solution to the
correspondence problem is described in Chapter 5 of this dissertation.

In the following section, we present experiments and results that validate the performance of

the proposed segmentation algorithm.

64



Graph morphology based segmentaWatershed segmentation results
tion results

(a) 1 MCASG (b) 6 sub-meshes

-»

(c) 5 MCASGs (d) 11 sub-meshes

(e) 5 MCASGs (f) 6 sub-meshes

Figure 4.11: Proposed segmentation algorithm partitions the input mesh into submeshes corre-
sponding to the physical parts of the underlying object. Since a cube consists of planar faces, the
algorithm outputs only one MCASG whereas the watershed algorithm results in 6 sub-meshes.

4.6 Experiments and Discussion

4.6.1 Comparison with the State-of-the-Art

A comprehensive comparison of our algorithm with all the existing state-of-the-art approaches is
beyond the scope of this thesis. From the mesh segmentation literature, we selected the watershed
algorithm [75] for evaluation purposes, primarily because it is also built on ideas borrowed from
morphology. Our algorithm differs from [75] in the way the morphological operators are defined

and applied.
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Perceptual Aspect

To qualitatively analyze the segmentations, we simulated a uniformly-sampled point cloud of a
cube, which was subsequently triangulated using the commercially avatalnts2Polyssoft-

ware. Our algorithm segments the cube into exactly one MCASG as shown in Figure 4.11(a).
The watershed algorithm [75], on the other hand, segments the mesh into six sub-meshes (Fig-
ure 4.11(b)), wherein, each sub-mesh corresponds to a face in the cube. The input to both the
algorithms is the same surface mesh. For a cube, the curvatures and hence the curvedness values
associated with the vertices that lie along the edges are starkly different from the values associ-
ated with the interior vertices. The vertices along the edges are treated as outliers and the process
of graph dilation forces the outliers to behave like their neighbors by modifying their curvedness
values. Hence, segmentation results in the exactly one MCASG. On the other hand, the water-
shed algorithm [75], treats the vertices along the edges of the cube as points of minima. Hence
gradient descent from vertices, lying on the interior of the cube, toward the minima, results in six
connected components. It may well be argued that partitioning a cube into six sub-meshes (ob-
tained using watershed algorithm) is maneaningfuthan a segmentation into a single MCASG.

As stated in the beginning of the paper, the definitiomefningfulis highly application depen-

dent. For the purposes of recognition, we think that it is reasonable to partition a cube into a
single MCASG. We point out that our results are similar to the perceptual segmentation results
presented in [111].

Figures 4.11(c),(e) represents the segmentation results on a tea pot and tea cup using the
proposed graph morphology based segmentation algorithm, while Figures 4.11(d),(f) represent
corresponding segmentations obtained using the watershed algorithm. For the tea pot, our seg-
mentation algorithm results in five MCASGs, while the application of the watershed algorithm
results in 11 sub-meshes. We remark again that the segmentation results of the tea cup and tea
pot, as provided by our algorithm are comparable to the perceptual segmentation results obtained

by the fast marching watershed algorithm presented in [111] (Figures 2(a),(b) and (c), Figure
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Watershed Seamentation

Graph Morphology Segmentat

(a) SNR=55dB, 1 MCASG (b) SNR=55dB, 13 sub-meshes

-

(c) SNR=45dB, 1 MCASG (d) SNR=450B, 34 sub-meshes

Figure 4.12: For reasonable noise levels, our proposed algorithm partitions the cube into exactly
one MCASG. On the other hand, the watershed segmentation algorithm does not provide the
desired results.
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16

Number of MCASGs

ha 26 28 50 52 54
Signal to Noise Ratio

(8) SNR =44dB; 15 MACSGs obtained for Noisy(b) Plot of SNR vs. Number of MCASGs for the horse

Horse with 59547 vertices

Figure 4.13: The point cloud of the horse was subjecting to varying amounts of Gaussian noise
(SNR between 44dB and 55 dB). Considerable amount of noise is required before the MCASGs
results in patchy sub-meshes.

3(c) and Figure 9(b) in [111]).

Effect of Noise

The point cloud of the cube was subjected to two different levels of Gaussian noise resulting in
SNR=55 dB and 45 dB. SNR is the ratio of signal-to-noise energy on a logarithmic scale and is
mathematically expressed aSNR = 20log(S/o2) wheres? is the variance of the Gaussian
noise andS is the maximal signal strength. Since the noise causes a perturbation of the ver-
tices that constitute the point cloud, the curvature estimates are not accurate, resulting in many
more outlier vertices or minima (as compared to the noise-free point cloud). As illustrated in
Figure 4.12(a) and (c), due to median filtering during dilation, our algorithm segments the noisy
input mesh into exactly 1 MCASG. The watershed algorithm results in 13 and 34 sub-meshes for
SNR=55 dB, and 45 dB respectively, as shown in Figure 4.12(b) and (d).

The effect of noise on more complex surfaces was analyzed by subjecting the point cloud of
the horse to varying amounts of white Gaussian noise (SNR varying between 44dB and 55dB).

Figure 4.13(a) indicates the segmentation obtained at SNR=44dB. From Figure 4.13(b), we
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(a) Pig: 11 MCASGs (b) Human: 15 MCASGs

(c) Car: 19 MCASGs (d) Pickup Truck: 15 MCASGs

Figure 4.14: The algorithm allows for reconciliation between disjoint yet similar sub-meshes.
Establishing such an association between similar, disjoint sub-meshes is vital for higher level
tasks such as object recognition
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(a) fire hose nozzle: 7 MCASGs (b) Lamp: 5 MCASGs (c) Dart: 4 MCASGs

)

(d) Bunny: 6 MCASGs (e) Dragon: 7 MCASGs

Figure 4.15: Segmentation of complex surfaces
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conclude that considerable noise is required before the algorithm results in patchy MCASGs.

4.6.2 Complex Data Sets

In order to demonstrate the effectiveness of the proposed algorithm, acceptable test cases from
the realms of computer graphics and object recognition/machine vision were segmented into
corresponding MCASGs. As the results in Figures 4.14 and 4.15 demonstrate, the proposed
algorithm provides coarse yet clean segmentations for objects such as a car, a pickup truck, a dart
and a lamp. For the textured surfaces such as the bunny and the dragon, the algorithm seems
to over-segment certain regions of the mesh. These results confirm (1) the robustness of the
adaptive threshold selection process and its applicability in a wide context (2) the extraction of
multiple similar yet disjoint MCASGs using the modified segmentation algorithm. The recon-
ciliation between such similar disjoint MCASGs can be used in higher level tasks such as object
recognition.

Table 4.1 shows the timing performance of the proposed algorithm on various data sets. The

algorithm was coded in Matlab, and tested on Pentium IV processor at 1.5 GHz, 256MB memory.

4.7 Conclusions

In this chapter, a graph morphology-based 3D mesh segmentation algorithm was presented to
classify vertices into different categories based on their intensities of curvatures. The proposed
threshold selection technique requires zero user intervention and provides robust segmentations
for a wide variety of test cases. The segmentation process allows for extraction of multiple
similar yet disconnected sub-meshes. The extracted sub-meshes seem to match the human visual
segmentation of the underlying object. Results indicate that graph dilation together with morpho-

logical filtering of outliers can effectively deal with the noise The algorithm compares well with
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object Number of| Number of sub- Time (in sec-
vertices meshes onds)
human 2097 15 13.98
dart 1122 4 6.23
tea pot 2220 5 15.11
tea cup 11241 5 75.08
simplified horse 1548 8 11.59
horse 59547 8 451.31
Car 7401 19 43.30
Pickup Truck 4902 15 29.97
Bunny 35947 6 238.61
Pig 4332 11 27.89
Lamp 1954 5 14.25
Fire-hose nozzle 5885 7 38.78
Dragon 22998 7 189.56

Table 4.1: Timing Performance of the proposed segmentation algorithm on various data sets

the existing state-of-the art approaches, it suffers from zero pre-processing and post-processing
overheads and can be effectively used for higher level tasks such as object recognition. To avoid
over-segmentations of textured objects such as the Stanford bunny or the dragon and to obtain
segmentation results for such objects that seem perceptual, texture-based features need to be con-
sidered in addition to the shape features. A two-tier representation scheme is then designed to aid

in classification and pose estimation during recognition.
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Chapter 5

Point Cloud Matching within
Graph-theoretic and Thermodynamic

Frameworks

The task of recognition of a given partial, unstructured point cloud oBttendquery data) using
a database of stored representations of the 3D Model point clouds involves (i) classification of
theSceneaas an instance of one or more stored Models (ii) alignment obtemnevith respect to
the identifiedModel(iii) determination of the location of th8cenawithin the identifiedVodel

In our recognition system, given the two-tier representation foSteneclassification is ac-
complished by performing inexact graph matching between the Scene super-graph and the stored
attributed super-graphs of the models. The shape attributes (shape index and curvedness thresh-
olds) associated with the super-graph nodes (MCASGS) allow for a rapid pruning of the model
database. The rotation parameters are then computed as a function of the angular distance be-
tween the mean normals associated with the scene and the identified model GGIs. The translation
parameters are determined by assuming an affine transformation model. This chapter addresses

the problem ofocation determinatiome., determination of a set of points in the identifidddel
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that are structurally and spatially as similar as possible to the pSadeieoint cloud.

There are two fundamental issues that make this problem challenging. First, the number of
points in theModeland theScengooint clouds are orders of magnitude different. Secondly, due
to sensor inaccuracies or because3lengoints are collected at different times, the two point
sets may be non-overlapping i.e., no two points correspond to the exact same location in the 3D
coordinate space.

As mentioned in Chapter 2, graph-based structural approaches and spatial location based
algorithms have been reported in the literature on point matching. Graph-based algorithms estab-
lish the desired correspondence by matching configuratio8s@fdeatures to those ofldodel
[116]. Ininexact graph matching, approximate solutions to the problem are obtained based on the
minimization of the edit distance [115, 119], probabilistic optimization [117, 105], deterministic
annealing P], bipartite graph matching [21, 108] and spectral graph theory [22, 70, 84, 12]. Most
existing graph matching techniques suffer from the inability to match graphs of largely varying
cardinalities. Additionally, their performance severely degrades with small perturbations (posi-
tional jitter). Spatial matching approaches determine correspondence solely based on the spatial
location of the points [88, 57]. While these algorithms are generally robust, they do not take
into account the underlying structural information that exists between the points in a set. With
non-overlapping point sets, this could be a problem, since there may be more than one subset of
Modelpoints that is spatially close to tt8cene

In this work, a thermodynamically inspired objective function is proposed to capture the struc-
tural nuances between a pair of graphs and the spatial differences between the underlying point
sets. The desired correspondence is obtained by tackling a sequence of inexact graph matching
problems that optimizes the proposed objective function.

We now provide a brief overview of our algorithm, which works in two stages. In the first
stage, to facilitate inexact graph matching, Medel space is partitioned intModel Clusters

(MCs), such thatMC;| = |Scene| (| - | represents the cardinality of a set). The change in
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entropy, computed for everyIC relative to theScene identifies theMC that is spatially the

closest to thesceneand the modelneighborhoodaround it. The advantage of such an approach

is that the closes¥IC already provides a fraction of correct correspondences. In the second stage,
the maximization of the free energy between8uenend theclosest MCwhich is achieved by
swapping certain points between ttlesest MCand the identifiedModel neighborhoogresults

in the desired correspondence. The reason for using different objective functions (i.e., based on
entropy or free energy) during different processing stages is strongly motivated by the principles
of thermodynamics. These ideas are non-trivially extended to deal with missing data. Also, we
use ideas from thermodynamics of heterogeneous systems to address challenges in part-based
matching approaches.

We contribute to the existing state-of-the-art by:
e defining graph enthalpy to quantify the underlying structural information in the point sets,

e deriving the Gibbs’ free energy for the point sets based on the proposed formulation of

graph enthalpy and existing notions of graph entropy,

e optimizing the free energy-based cost function to obtain the desired correspondence be-

tween theSceneand a subset of thilodelpoints, and,

e proposing a part-based matching algorithm that uses ideas from the thermodynamics of

heterogeneous systems

This chapter is organized as follows. In Section 5.1, we provide descriptions of various
graph structures used in this chapter. In Section 5.2, we derive formulations for graph enthalpy
and Gibbs free energy. Section 5.3 details the basic correspondence determination algorithm.
In Section 5.4, we use ideas from thermodynamics of heterogeneous systems in the context of

part-based matching. Experiments and results are provided in Section 5.5.
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5.1 Definitions and Notations

In Chapter 2, we defined the temmatchingin the context of graphs. Given a complete bipartite
graphGep((Vi, V2), E), |Vi| = uy and|Va2| = uy, @ matching iperfect when|E,| = ||u; +
uz|/2] [64]. A minimum weight perfect matching bipartite graph; ((V1, V), Ev,v,), Where
V1| = |Va| = w and Ey,y, denotes a minimum weight perfect matching, is obtained by the
implementation of the Hungarian method Ga s [64].

Let Q and M denote the querySceng and the identifiedModel point sets respectively.
|M| >> |Q|. MC represents a certain model cluster, obtained by partitioningMbdel space
suchthatMC| = |Q)|.

As illustrated in Figure 5.1, the graphs of interest are:

o Gusr(Q, Eg), Gusr(MC, Eye) represent the minimum spanning tree (MST) constructed

over Q and a certain MC respectively.

o Gp((Q,MC), Equc) denotes a bipartite graph constructed over the point @etdC,

where,Eqg ¢ represents the minimum weight perfect matching.

e The union ofG;57(Q, Eg) andGp((Q, MC), Equc) is denoted by
Gui((Q, MC),(Eq, Equc))- The union oGy sr(MC, Eyc) andGp((Q, MC), Equc)
is denoted byG»((MC, Q), (Evc, Equc)).

The above graphs, denoted &Y,57(Q), Grnsr(MC), Gg, G, Gua, Will be used in Section
5.2.1 to define graph enthalpy.
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(b) Point SetV/ C (c) Minimum weight perfect match-
ing bipartite grapi 5

(@G amsT(Q) (d)Gv1 = Gusr(Q) + G

@0

? 4o o0
@ 9O ¢o0 o9
® o0 06

0)GrsT(MC) (e)Gu2 = GusT(MC) +Gp

Figure 5.1: Given: Two point sets Q and MC;Q| = |MC|.
Gp,Gusr(Q), Gu1, Gusr(MC), Gy are the graph structures of interest in this work.
Note thatG(Q, MC, Egue) = Ge(MC,Q, Equce). When the weights of the edges (s
are all zero, point sets Q and MC completely overlap. TH&én,, Gys7(Q) have the same
structure.Go, G s (MC) have the same structure as well
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5.2 Point Matching via Classical Thermodynamics- Theory

From Chapter 2, recall that in chemical thermodynamics, substance conversion results in the

Gibbs’ Free Energ\AG, which quantifies the structural and the spatial differences as:
AG =AH —TAS

whereT is the temperature and H is the change irenthalpy resulting from the structural
difference caused by the addition/deletion of chemical bonds between molechiess the
change irentropydue to the spatial disorder of the molecules involved [67].

Since graph edges are analogous to chemical bonds [4], a new formulation for graph enthalpy,
guantifying the structural differences between a pair of graphs, is proposed in Section 5.2.1. The
spatial differences between the point sets are estimated using the existing notions of graph entropy

[88]. The Gibbs’s free energy for the point sets is then derived based on these differences.

5.2.1 Enthalpy Change: Measure of Structural Difference

In classical thermodynamics, at a constant presButhe enthalpy, of a substance, is given

by:
Hs1 = Usl + P‘/:sl

where, Uy, is the internal energy and;, is the volume occupied by the moleculessin The
structural differences associated with the conversion td s, contributes to a change in enthalpy

A H where:

AH = H,, —H,

= (Usz - USI) + P(VS2 - VSl)
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In a similar vein, the enthalpy of a graghis computed as:

H(G) =U(G) + PV(G) (5.1)

whereP = 1 to indicate a constant pressure procdsds(y) is the volume occupied by the ver-
tices inG, and is computed as the volume of the convex hull of the corresponding 3D points [51].
The internal energy/(G) is computed as the minimum energy of a balanced orthogonal repre-
sentation of, using the following theorem:
Theorem 5.1[92]: For a graphG onn vertices and the corresponding weighted Laplaciamhet
the eigenvalues af be \; < )\, < ... < A, and that\, > 0. The minimum energy of a balanced
orthogonal representation o in R™ equalsy. 75" A;.

Consider Figure 5.1. In the context of matching of point €d aMC, (|Q| = |M (), the
change in graph enthalp / is determined by considering ;s7(Q), Gysr(MC), Gy and
Guo. Specifically, we are interested in evaluating the structural differences betigen(Q)
andGy; on one hand and the structural differences betwegn (M C') andG, on the other.
In this regard, two interesting features@®@f; need attention. First, the edgedif provide a one-
to-one correspondence betwdd andQ. Secondly, these edges are indicative of the extent of
structural dissimilarity betwee@',;s1(Q) and Gy or G st (MC) and Gy, for the following
reason. Since the weight of an edge4p is a measure of the Euclidean distance between a ver-
tex in M C and the corresponding vertexdh when the weights of edges @iz are all zero, then
the point sets are completely overlapping. Thén and G, sr(Q) are structurally the same.
Guo andG s (MC) will have the same structure as well. However, when the edge weights in

G p are not all zero, the structural differenddd; between,,s7(Q) andGy, is given by:

AH; = H(Gu1) — H(Gusr(Q)) (5.2)
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and, the structural differenc® H, betweenG ;s (MC') andGy is given by:

AH; = H(Guz) — H(Gusr(MC)) (5.3)

Then,A H quantifies the total structural difference for the two point §endMC as:

AH = AH, + AH, (5.4)

Note that for completely overlapping point sefst{;, AH,, AH are all zero.

5.2.2 Entropy Change: Measure of Spatial Difference

Given a sety,,, consisting oh points, Maet.al[88] estimate the entropy by the power weighted

length of the MST constructed over the set of vertices as:

S0 = 1 llog 2 1o 55)

where, L(,,) is the length of the minimum spanning tregjs a constant independent of the
underlying density of the points andis the fractional order of the density.

In this work, the change in entropy.S for the two sets of point® andMC, is computed as
AS = AS; + AS; (5.6)
where,

AS; = S(QUMC) — S(Q)
ASy, = S(QUMC) — S(MC) (5.7)
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With the knowledge ofAH, AS, the Free energAG is computed for same-sized point s€ls
andMC. The temperaturé@ measures the degree of desired correspondence. High temperatures
imply low degrees of desired correspondence and vice versa. The initializafiors alescribed

in Section 5.3.4, within the context of the proposed matching algorithm.

5.2.3 Significance of Thermodynamic Quantities in the Context of the Prob-

lem

By the laws of thermodynamics,

(a) At very high temperatures)\G is dominated by entropic contributions, and at very low

temperatures, it is dominated by enthalpic contributions.
(b) AH andAS decrease with decrease in temperature.

(c) At high temperatures)\G is a large negative number. As the temperature decreasds,

increases toward zero.
(d) At T =0,AH =0,AS8 =0,AG = 0.

Motivated by (a), our matching algorithm usas$ and AG as objective functions for the coarse
scale and fine scale processing respectively. Property (b) provides a pruning strategy for mini-
mization of AS during the coarse scale processing. The temperature’s role in the algorithm is
influenced by (c), and from a graph-theoretic perspective, the following theorem is in order.
Theorem 5.2092]: Let X be a graph with n vertices and let Y be obtained from X by adding an
edge joining two distinct vertices of X. The{.X) < A\,(Y) for all i.

Theorems 5.1 and 5.2 imply thatH > 0. Also, AS > 0. Therefore, the temperatufie
decides whetheAG < 0 or not. In the proposed point matching algorithm, in order to ensure

thatAG < 0, T is initialized to a large number. This is described in detail in Section 5.3.4.
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Using property (d) in conjunction with the proposed definition of the temperdtuvee can
say that the desired correspondence betvi@and a subset of tHdodelpoints is achieved when
AG between the point sets reaches its maximurf; at 0. In general, at any given, the edges

in G g provide the correspondence between the points in a cavi@randQ.

5.3 Algorithm
Preprocessing Coarse Scale Processing
Q e Partition M into B & B Strategy
M’ MCs, IMCi|=|Q| to minimize AS
— » « NNGraphover ——» « Compute AS
MCs between Q, MC;
* Pruning Rule:
ASchild>ASDarent
CMC,
NP
Fine Scale Processing
Desired | * B & B Strategy to
Match maximize AG ‘
'(j & refined | © Swap-in/Swap-Out
CMC on CMC

. ComputeA chhild
between Q, CMCk child
* Pruning Rule:
AGI(Child <AGparent

Figure 5.2: Block diagram of the proposed point matching algorithm: The preprocessing step
involves the partitioning of the model spadeinto model clustersNICs) and the construction of

a Nearest NeighboNN) graph over theskICs. At the coarse scale, a Branch and Bound (B&B)
optimization scheme for minimization akS allows us to identify theClosest Model Cluster
(CMC). At the fine scale, the desired correspondence is obtained by maximizathad of

Figure 5.2 provides an outline of the proposed algorithm. The preprocessing step involves
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(i) the partitioning of the model spadd into model clustersNICs) (M C;| = |Q]) and, (ii)
the construction of a Nearest Neighb®N) graph over thesdCs. During the coarse scale
processing step, tHdC that minimizesAS is identified as the closeMC (CMC) and its one-
connected neighbors form the neighborhood pbdi#t)( The immediate advantage of identifying
theCMCis that it provides a fraction of correct correspondences. However, since the partitioning
is in a sense blind, it is very unlikely that t&MC will provide the desired correspondence.
This forces a fine scale processing step, wherein, the maximizatidid-pby swapping certain
vertices between theMC andNP, leads to the desired correspondence.

The optimization of the cost functions in both the processing stages is achieved using a Branch
and Bound (B&B) approach, wherein, a thermodynamically inspired pruning strategy reduces the
number of nodes and branches in the search tree that have to be explored. The processing modules

are described below.

5.3.1 Preprocessing

Following [44], then points that comprise BIC (wheren = |)|) are determined by performing
a breadth-first search on a Delaunay triangulation [51] which is constructeiloVére center of
aMC is then identified as the vertex with minimum eccentricity. Another Delaunay triangulation

constructed over these centers servesidsl graph for coarse scale processing.

5.3.2 Coarse Scale B&B Algorithm

The primary objective here is to identify thdC that minimizesAS, i.e., theCMC. For this,

the MC corresponding to the vertex with the smallest degree (typically on the periphery) in the
NN graph is assigned as the root node in the B&B search tree. In the search tree, the connected
neighbors of MC form itschildren, and at any nodeMC), using (5.6) and (5.7)AS is computed
betweerQ and the correspondingC. While traversing the tree down to the leaves\i§.;;;q >

AS,arent, then the sub-tree is automatically pruned off at such parent nodes. This is because an
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®

[0 Q, — NN Graph Edges, ® MC Center, Q
(a) Partitioning ofM into MCs and (b) @ = {¢1,92,93},NP = (c)Coarse scale results:
NN Graph oveMC centers {ni1,...,m9o}, and all vertices In Gp, ¢ is associated

with patternse CMC; Disc on with ¢
q1 Identlflest = {nl,TLQ,TLg}

o 0 O®
O@@ @@ @

(d) G after swapping out;; € (e)Gp after swapping out;; € (f)Gp after swapping
CMC and swapping im;;Compute CMC and swapping inny outc;y; € CMC and

AG1 ;ComputeAG,,o swapping inng ;Com-
puteAG,3
T=3x10’ BQerg
B,
T=2x10" ga: Ain AGp, AGn3

~~~~

T=1X10" qy: AGus AGy AGrs Ay AGy Ay
T=0x10"-0s: AGn;  AGy AGry

(g) Example of Fine Scale B&B;

bold lines: path to maxAG

Figure 5.3: In (a),M (C} is the root in coarse scale B&B tre€MC is identified asM Cy and
NP = {MCy, MCr, MCg, MCy, MChy, MCy2}. (b)-(e) illustrate fine scale processing steps.
Since we need to refine the correspondence for all three vertic@stherefore, in (e) the tem-
perature at root is set t6 = 3 x 107.
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increase iNAS signals an increase in spatial dissimilarity (betwedn@andQ), which further
implies that we are moving away fro@ rather than moving in a direction toward it. Such a
pruning is consistent with the monotonicity property of the B&B approach [64]. The algorithm’s
output is theCMC, which together with its one connected neighbors INP, is used for the

refinement of correspondences at the finer scale.

5.3.3 Fine Scale B&B Algorithm

The objective here is to maximiz&G by determining the best correspondence for every point
¢; € @ that has not already found its desired matcle C' M C'. The coarse scaléeMC forms the
root node in the fine scale B&B search tree. With respect to gathe set,, C (NPUCMC(C)
comprising ofk model points of interest, is identified by centering a disc of radios ¢;. At

any node in the search tre&(%, ., , is computed betwee@ M C* ., , andQ, whereCMC* ., is
obtained byswapping out pointc; € C M C' that was originally associated wiih, andswapping

inV,,(k). Thatis,

CMCE 1 = (CMCpureni \&t) U Vi (k) k=1, ..., | Vi (5.8)

Swapped outertices are returned to the NP. Sub trees are pruned g@nt nodes when
AGF 10 < AGparent (property (c),Section 5.2.3). Using,s7(Q), a connected neighbor of

¢; generates thehildrenin the search tree. Upon termination, the edgeS i associating the
refinedCMC andQ, provide the desired correspondence. The fine scale processing is illustrated

in Figure 5.3(b)-(e).
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5.3.4 Effect of Temperature onAG

By the laws of thermodynamics (Section 5.2.3, property (a)), entropic contributions are dominant
only at high temperatures. This justifies the need to start the matching process at high temper-
atures. At the fine scale, the objective is to determine a one-to-one structural match between
the Scenel) and a subset of thilodel points (identified at the coarse scale). This is possible
by emphasizing\ H, which plays a dominant role only at low temperatures. For these reasons,
we begin the optimization process at a high temperature and progressively decrease it to lower
values, until the desired correspondence is reached.

At the level 0, i.e., at the root of the B&B search tree, the temperafueinitialized as
T = (|Q| — d) x 107, whered is the number of points in the coarse sc@MC that completely
overlap withQ. 7' = (|Q| — d — i) x 107 at the tree’s level, 1 < i < |Q| — d. Different levels in
the tree, along the path leading to maximi@r, contribute to different fractions of the desired
correspondence (due to the refinement of@hC). The desired match betwe€handCMC is

reached at path’s leaf, wh&n= 0.

5.3.5 Missing Data

0 Q, — NN Graph Edges, ® MC Center,

Figure 5.4: Coarse scale optimization for minimization of entropy will not be effective when the
Scene is non-compact
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Due to sensor inaccuracies or due to occlusion,Sbeneis often non-compact, i.e., the
Scenepoint cloud represents more than a single region on the surface of the underlying object.
An example of such a scenario is illustrated in Figure 5.4. Under such circumstances, the coarse
scale pruning strategy described in Section 5.3.2 will not be effective. To address such situations,
we present a variation of the basic matching algorithm.

Given a non-compacscenethe number of compact clustens is identified using the his-
togram of the edge weights ii,,57(Q). Specifically, the histogram of edge weights reveals
the number of peaks and thus the number of inconsistent edgésom a graph-theoretic per-
spective, the inconsistent edges are those edges whose weights are significantly larger than the
average weight of the neighboring edges. Accordingly, the number of clugtessgiven by
n. = n; + 1. The points in the non-compaSten&) are then clustered inte. compact clusters
using k-means technique i.€), is partitioned intoQ,, Qs, ..., @,.. With respect to eacBcene
cluster@);,j = 1...n., the corresponding’M C; and N P; are determined using the approach
described in Section 5.3.2. Prior to the fine scale processing, the Scene(pdims” M/ C' and
N P are aggregated as:

Q=0Q:1UQxU..UQy,,

CMC =CMC,UCMC,U...UCMC,,

NP=NPLUNP,U..UNP,,

The fine scale processing strategy described in Section 5.3.3 is implemented for the determi-

nation of the correspondence.

5.4 Multi-part Point Cloud Matching

The algorithm described in Section 5.3 is useful for establishing a correspondence when all the
points in aSceneare homogeneous in some sense (e.g., geometric sense). For heterogeneous
Scenega part-based approach to point matching is followed whereiStemas segmented into

multiple parts such that each part consists of a set of homogeneous vertices [97]. Thereafter, a
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(a) Segmentation of Scene Q (b) Segmentation of Model M (c) The vertices insided the shaded
region have been misclassified.

Figure 5.5: Need for the refinement of segmentation labels prior to point correspondence

point matching algorithm is used to establish correspondence between the points iS aseey
part and the associatédodel part. Given that th&cenehas fewer points that thiglodel and
that the geometry-based segmentation algorithms are sensitive to noise and the nature of the
triangulation, the segmentation boundaries in$loeneare often inaccurate. Consequently, the
resulting correspondence is unreliable. This is illustrated in Figure 5.5. Intuitively, a good
correspondence between point sets can be obtained by refining the segmentation Bbeteof
vertices prior to matching.

First, using a geometry-based segmentation technique [758déee) is segmented intg
disjoint parts@),, 2, ..., @, Then the labels of the boundary vertices of the various Scene parts
are refined based on the structural and spatial similarity of the undeMuaaigl points. For this,
we derive the support from the thermodynamics of heterogeneous systems. During the coarse
scale processing step, an entropy based minimization is performed to identéothed points
of interest. The fine scale processing, involves the maximizatiah(®fat constant temperature
T'. This is because an optimal partition of a heterogeneous system into homogeneous components
is obtained whem\G reaches its maximum. The resulting correspondence allows us to re-label
the boundary vertices (by using the labels of the associated Model points).

For the ease of understanding, we consider the case wherehcdime has been segmented
into two partsQ,, Q. Here,Q, U Q, = Q while Q, N Q, = 0. Note that the approach presented
here can be trivially generalized to the case when three or more Scene parts share a boundary.

As illustrated in Figure 5.5(c), since it is difficult to identify regions of misclassified vertices in
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the case of 3D point clouds, we first consider only the vertices on the boundaries of the segments
Q., Q. Depending on the fine scale refinement results (explained below), the one-connected
neighbors of the re-labeled vertices are examined and if there exists an inhomogeneity in the

class labels, then the coarse and the fine scale processing steps are repeated.

5.4.1 Coarse Scale Processing

To begin the coarse scale processing, the verfiggsand{ g, } that are located on the boundaries
of ), and@), respectively are identified. Using the point $et}, we determine the correspond-
ing CMC,, N P, from the underlying model. Similarly, we determi6&/C,,, N P, correspond-
ing the point se{q,}. Thus, theClosest Model Clustes given byCMC = {CMC, U CMCy}
and theneighborhood poois given by NP = {NFP, U NR,}. CMC,,CMC,, NP,, NP, are

obtained using the B&B optimization process described in Section 5.3.2.

5.4.2 Fine Scale Processing

The refinement of class labels of vertices is analogous to the change in composition of compo-
nent(s) in a heterogeneous system. As mentioned earlier, an optimal partition of heterogeneous
system into multiple parts can be obtained by maximizix@ with respect to the composition
while keeping the temperatuileand the pressure constant. It is worth mentioning that basic
correspondence problem (described in Section 5.3) is solved by maximiZihgith respect to
the temperaturé’ while keeping the pressure and composition constant and is applicable only
for homogeneous systems.

From an implementation point of view, tli&\/ C' determined during the coarse scale process-
ing step described above forms the root node in the fine scale B&B search tree. We place a disc
of radiusr centered on the vertex € ({¢.} U {¢}) and identify a set of correspondingodel
points of interest say,, C (NP,CMC). The swapping and the B&B optimization strategies

are similar to what is described in Section 5.3.3. Upon termination, the poifits jrand{¢;}
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are re-labeled based on the class labels of the correspolfidgl vertices.

So far, we have considered only the boundary vertices during the coarse scale and the fine
scale processing steps. A delaunay triangulation constructed over the points iBoeaehart
allows us to compare the class labels of the re-labeled vertices with their one-connected neigh-
bors. If there exists an inhomogeneity in the class labels, then the coarse scale and the fine scale
processing steps may be iterated by including the one connected neighbors as well. The point
correspondence for each homogeneous part is then obtained using the algorithm described in

Section 5.3.

5.5 Experiments and Discussion

5.5.1 Point Matching Process: Validation of the Laws of Thermodynamics

The adherence of the graph formulationg\d# andAG to the laws of thermodynamics is exper-
imentally proven by considering random 3D point sets whigpeé= 100 points and M| = 5000
points. UsingM, Q,Qs, Q3, Q4, Q5 Were generated, corresponding to 100%, 80%, 60% 40%
and 0% overlaps respectively. The extent of overlap was decreased by adding white Gaussian
noise to a subset of points ;.

The graphs in Figure 5.6(a)-(c), correspond to the fine scale processing stagenfereT
was initialized at70 x 107, to indicate that 30 vertices from coarse sd@MC overlapped with
@, . For the fine scale processing@f (graphs shown in Figure 5.6(d)-(f)), was initialized at
88 x 107 (since 12 vertices in coarse sca@®C overlapped with)s). Such temperature initial-
izations to large values ensured thet’ < 0 throughout the correspondence process.

With all the point sets , it is observed th&t 7 as well asAS decrease with decrease in tem-
perature, whileAG increases toward zero. F@Qh and@s, this is indicated by the direction of
the arrows in Figure 5.6. As shown in Figure 5.6(a)-(c), for completely overlapping point sets,

the desired correspondence is achieved whéh AS, AG are all zero. For non-overlapping
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or partially overlapping point sets, the correspondence is recovered Avereaches its max-
imum as shown in Figure 5.6(f). In Figure 5.6(f),’At= 0, the value ofAG is dictated only

by AH, implying that, among the possible matches, all with minimiii, the one that mini-
mizes the structural differences (with the leAdt’) provides the desired correspondence. These
results experimentally prove the feasibility of the point matching process based on the laws of

thermodynamics.

5.5.2 Comparison with an Existing State-of-the-art

For comparison purposes, we implemented the SVD+EM [84] as well as the basic SVD algo-
rithm [22], since they incorporate spectral graph theoretic ideas as well. An increasing weighted
proximity matrix and a Gaussian weighted proximity matrix is generated for the SVD+EM [84]
and the SVD approaches [22], respectively. These proximity matrices are then used to obtain cor-
responding modal matrices. In the SVD approach [22], a binary decision on the correspondence
is made on the basis of the similarity of different rows of the modal matrices for the two point
sets. For the SVD+EM approach [84], using the modal matrices, the probabilities are computed
to assess the similarities between the elements of the point sets. The correspondence process is
embedded within the EM framework.

Two sets of experiments on random same-sized 3D point sets were conducted to compare the
algorithms. In the first series of experiments, we added “ex¥tadel points, which in [84] are
termed as outliers. The outlier to data ratio ranged from 0 to 0.8. Although the performance of
the SVD+EM algorithm is better than SVD approach, as Figure 5.7(a) indicates, it still is quite
sensitive to the presence of outliers. Since our algorithm is designed to deal with outliers, a 100%
correspondence is always achieved.

In the second series of experiments, our goal was to analyze the algorithms’ tolerance to noise.
To begin with, we considered completely overlapping, same -sized point sets. The scene point

cloud was then progressively subjected to varying levels of Gaussian noise (standard deviation
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Figure 5.7: Performance comparison between the proposed point matching algorithm and the
existing state-of-the-art
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ranging from O to 0.6). As Figure 5.7(b) indicates our algorithm provides 100% correspondence
while the performance of the spectral correspondence algorithms degrade with increase in noise.
As Figure 5.7(c) indicates, considerable positional jitter (manifested by large standard deviations

of noise) is required for the performance of our algorithm to degrade.

5.5.3 Real Data Sets

We evaluated the performance of our algorithm on 15 real data sets. In Figure 519(a)

4370 points,

Q| = 200 and theNP consists of 4 model clusters (as opposed to 22 clusters that
characterize the entire model space). Prior to the implementation of the fine scale B&B algorithm,
12% of theCMC points overlap with the scene. The desired correspondence be@vaead the
CMCis shown in Figure 5.9(b).

Figure 5.9(c) shows a more challenging example where the point sets are non-overlapping.
The modelM is a tank,| M| = 18,897. The scen& consists of 300 points. Of the ®3Cs that
describe the entire model space, onlME&s constitute théNP. Since none of the coarse scale
CMC points exactly overlapped wit, the temperature at the start of fine scale processing was
set at300 x 107. Figure 5.9(d) shows the desired correspondence obtained beQvaed the
refinedCMC.

5.6 Conclusions

Our results indicate that (i) the newly proposed formulation of graph enthalpy efficiently cap-

tures the structural differences between non-overlapping point sets (ii) the Gibbs’ free energy
based optimization, by combining the spatial and the graph-based structural information, leads
to stable and efficient matches, as opposed to simple graph matching. Additionally, the proposed
approach is highly robust in the presence of noise and can handle missing data effectively. For

|Model| = 5000 points and.Scene| = 100, our algorithm determines the desired correspondence
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Figure 5.8: In (a),(c) the model points are indicated by gray dots while the points in the NP
are shown in black. (b),(d) indicate the desired correspondence, where diamonds and the dots
correspond t& and refinedCMC
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in approximately 1.2 minutes on a Pentium 1V, 256MB memory, 1.5 GHz machine (with the code

implemented in Matlab).
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Chapter 6

Hierarchical Mesh Decimation for

Multi-scale Correspondence

The point clouds of the models used to build the database are in some sense extremely over-
sampled. Due to this, the stored model representations for a nontrivial number of objects require
large amounts of disk space. This can also have a detrimental effect on recognition as one looks
to real-time or close to real-time applications. To alleviate these problems, we are motivated to
consider approximations of these finely sampled models which can be obtained through a process
called mesh decimation.

For the results of mesh decimation to be useful for the recognition, there are two fundamental
issues that need to be addressed. First, the geometric shape information captured by the fine scale
mesh must be preserved at all coarser resolutions as well. Secondly, any graph-based decimation
technique must avoid the computation of eigenvalues of the graph’s Laplacian for such a compu-
tation can be prohibitively expensive for very large (of the ordei0dfvertices) graphs [113, 94].

In Section 6.2 of this chapter, a graph energy based cost function is proposed for minimization
within the framework of hierarchical edge contraction. The shape information is preserved by
performing a curvature based classification of the vertices prior to decimation. In Section 6.4, we

relate hierarchical decimation with multi-scale correspondence and propose a decimation metric

98



Figure 6.1: Vertex Contraction Process. Whegris merged withv, then the following happen
(1) the edge;, contracts, (2) triangular facegs, f> that are now degenerate, are removed, (3) the
edges that were originally incident @n are now incident on,. Vertex contraction affects the
geometry and the topology of a surface

that captures the information about the degradation in correspondence as a result of decimation

at multiple coarser scales.

6.1 Vertex Contraction

As illustrated in Figure 6.1, a vertex pair contraction modifies the surface in three steps [76]:

e A vertexv; is mergedwith vertexvy by replacing all occurrences of vertexwith vertex

()

¢ All the triangular faces that are now degenerate - that no longer have three distinct vertices-

are removed.
e Edges from vertices that were originally incident@rare now incident omy,.

The first step modifies the geometry of the surface. The second step simply removes the
elements of the surface that are no longer needed. The final step modifies the connectivity of the

mesh and in a sense, implicitly modifies the topology of the surface e.g., by closing the holes.

99



Most of iterative contraction algorithms [59, 42, 45, 62, 65], follograedyapproach to select

the sequence of edge contractions. Each vertex pair being considered for merging is assigned a
cost which, typically represents the error induced as a result of a potential merging of the vertex
pair in question. At each iteration, the lowest cost pair is merged. A fundamental advantage of
iterative contraction is the hierarchical structure that it induces on the surface, thus leading to a
multi-resolution surface representation.

Although the literature indicates the existence of general vertex pair contraction algorithms
where the vertices;, v, are not necessarily connected by an edge, in this work we are specifically
interested in merging adjacent vertices with similar shape characteristics. Further we consider
subset placements (whevg v, € V(G)) as opposed to optimal placements (wheye,, are

both moved to another optimal positiomot necessarily itV (G)).

6.2 Graph-based Vertex Contraction Algorithm

6.2.1 Motivation

Toward formulating a cost function for vertex contraction, we are motivated to use ideas from
spectral graph theory, which have been used for dragmglor naturalgraphs and in a different
context, for the construction of stable physical mass models. In a natural graph (stable physical
model), the vertices (masses) are connected by the edges (springs) that are minimally stretched
[92], thus leading to the following theorems.

Theorem6.1: Given a vector and the graph’s Laplaciab, " Lz = 3>, cp(q) ||Tu — 24|?

Theorem 6.2 [92]: The graph energy(G) is defined ag (G) = traceRT LR whereL is the
weighted Laplacian and thepresentation? is a(|V (G)| x m) matrix that provides a mapping
from V' into R™.

In this work, we perform mesh decimation by merging a pair of adjacent vertices that min-

imizes the change in graph energy between the fine scale mesh and its approximation. Clearly,
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/LN

0% . Gj.OO Glz()O oo o0 o GlrE)O
Decimation [(”_11)] [(mz.)] [(Enn)]
| | |
10% GL Gp  sees Geo
Decimation [90%(m,)] [90%(m, )] [90%(m,)]
(100-P) % Gt Gp cee Ge
Decimation  [P%(m,)] [P%(m,)] [P%(m,)]

Figure 6.2: lllustration of the proposed hierarchical vertex contraction process. An input fine
scale 3D mesh is partitioned into various disjoint sub-meshes. At any level in the hierarchy,
every sub-mesh undergoes the same rate of decimation. In any sub-mesh, the vertex pair for
contraction is identified based on the minimization of spectral graph energy. Finally, all the
decimated sub-meshes are merged resulting in a shape preserving coarse scale approximation

such an approach avoids the prohibitively expensive computation of eigenvalues of the very large
(of the order of10°) Laplacian matrices which is followed by some existing graph-based ap-

proaches [76]; only the computation of the eigenvalues of3he 3) matrix R” LR is needed.

6.2.2 Proposed algorithm

Figure 6.2 provides an overview of the proposed algorithm. Let the segmentation of a fine-scale
3D mesh result in multiple, disjoint sub-meshes. At 100% resolution!trseib-mesh is denoted

by SM; - A hierarchical vertex contraction &fAf,, involves:

e Computation of the sub-mesh ene@{5 1/} ,).
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e lterative Step: fof = 99, 98, ..., perform the following:

Step 1: Determination of boundary and interior vertices using Shape index Recall

that the shape inde%(v) [24] at a vertex» € SM/,, is given by

S('U) _ _g tan_l Kmaa:(v) + Hdmin(v)

T Fmaz(V) = Kmin (V)

wherex,,.. andk,,;, are the principal curvatures of the surface at the vertexd de-

scribed in detail in Section 4.1.1, Chapter 4.

Next,the shape thresholds are determined using a shape histogram and the shape scale
illustrated in Figure 4.1. The number of vertices whose shape index value falls jf'the
bin (1 < j <9)isgiven byn, = SV xk(S,,). Here,y is the characteristic function of the
5 bin:
1t <z<t

Xk(z) = { (6.1)

0 otherwise

andt, = —1,t9 = +1 and the other shape thresholgs[24] are indicated on the shape

scale in Figure 4.1.

The region growing approach [100] is implemented to aggregate clusters containing ver-
tices of the same shape type. Two vertiegs,. belong the same shape cluster if (a) their
shape indices$'(v;), S(vx) € [tj-1,t;], and (b) there exists a papifrom v; to v, containing
distinct verticesvy, v1, ..., v, € V(SM/,,), such that condition (a) holds true for every

pair of vertices along the path

Next, the vertices in every shape cluster are labeledoasmdaryor interior depending
on whether they are located on the boundary/interior of the cluster. To ensure that the
resulting approximation is shape preserving, only the similar-labeled adjacent vertices are

considered as candidates for a potential merge during vertex contraction.
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Step 2: Vertex Merge Pair Determinatiornt Given the basic vertex contraction frame-
work (illustrated in Figure 6.1), for every vertex € SM/ ,, k = 1,2,...,|V(SM},,)],

a similar-labeled neighbor (boundary/interior), sayis identified that minimizes the en-
ergy difference betweefi)//, , and the approximation resulting from the potential merge

(vg,v,). The index of such a neighbor of is given by

r=argmin | — Cpg| (6.2)

vn €N (vg)

C,« 1s the energy of the graph obtained by merging the adjacent verteipair, ). Of the
potential vertex merge pai(sy, v,,) determined above, vertex contraction is implemented

by using the pair that provides the closest approximatiosif, ;.

Step 3: Energy Update The energy of the contracted sub-me&l; is given byé&;.

6.3 Evaluating Surface Approximations

Shape differences between a model and its approximation are evaluated using application de-
pendent error metrics such as the Haussdorff distance [60]. In this work, the quality of an ap-

proximation is assessed based on the misclassification error of the vertices involved. For this, the
decimated sub-meshes at any level in the hierarchy are re-triangulated to obtain an approximation
of the input 3D mesh. The approximated mesh is then segmented using the algorithm described

in Chapter 4 and the number of misclassified vertices are accounted for.
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6.4 Relationship between Hierarchical Decimation and Multi-

scale Correspondence

6.4.1 Decimation: A Thermodynamic Viewpoint

In Section 6.2.2, a graph-theoretic approach to mesh decimation was presented. In this section, a
thermodynamic interpretation is provided which is applicable to other iterative vertex contraction
approaches [60, 42, 45, 62, 65] as well.

Let % decimation of the fine scalModel M/* result in the coarse scale approximation given
by M. In order to compute the enthalpy and the Gibbs free energy favithiel at the coarser
scale, we need to determine the change in pressure as a consequence of decimation.

From chemical thermodynamics, at constant volume, and for a constant number of particles

PxT (6.3)

whereP, T are the pressure and the temperature respectively.
For our problem, let us denote the fine scale temperature and pressiifeahy P}, respec-
tively. Specifically, we assumE} = 1 and P}, = 1. The pressure resulting froifi, decimation

can be determined as:
Ty

Pl :Pl
M ]Wle

(6.4)

Here, T} = (1 + (%)T}. Observe that as the rate of decimation (or decimation temperafjre
increases, the pressuf, increases as well. Also, the conclusions drawn about the pressure and
temperature are independent of the decimation approach used. Thus, our definitions for pressure,
volume and temperature are consistent with those provided in classical thermodynamics wherein

these parameters are treated as state variables; the path to the state is immaterial.
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6.4.2 Formulations for Enthalpy, Entropy and Free Energy at Multiple

Scales

The definitions for enthalpy, entropy and Gibbs free energy for point sets at a single scale was
provided in the previous chapter. Here, we extend these definitions to multiple scales. Enthalpy
for a certain model clustet/C' obtained fromA/! is computed at pressuté,,. The pressure

in the Scenepoints is given byP,. We assume thab, = P,,. The pressure for the point set
QU MC'is given byPh,, = PotPy
Given the point set® andM C', the change in enthalpi ' at the level is computed as by

AH'= AH! + AH) where

AH} = H(Gyy) — H(Gusr(Q)) (6.5)

AH, = H(Gyo) — H(Gpsr(MCY))

Here, Gy denotes the union oy s7(Q, Eg) andGp((Q, MCY), Eguct). Gua denotes the
union of Gysr(MCY, Eyer) andGg((Q, MCY), Eqpicn).

The change in entropxS! for the two sets of point® and M C!, is computed as
AS' = AS! + ASL (6.6)
where,

AS = S(QuUMCY) - S(Q)

ASL = S(QuUMCYH — S(MCY (6.7)

The computation of the free enerdyG' for same-sized point se@ and M (! is then straight-

forward.
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6.4.3 Performance Evaluation across Multiple Scales

Using the basic correspondence algorithm described in the previous chapter, one can determine
the correspondence between a subséf band the Scen€. Then, the goal is to evaluate how the
correspondence obtained at a certain coarse scampares with the correspondence obtained
at the finest scale.

Following the thermodynamics of phase partitions and the clapeyron equation, we can say
that the decimation pressure and the correspondence temperatures are related as :

PégM_PclgM_ ApS

— 6.8
=T, AwV (6:8)

where P}, is the pressure in the point sgp U M'). P},, = 1. T is the correspondence

temperature at the levél T} is set to a large constant. In this workl, = 1 x 10% A,S is

the change in entropy computed over the point §et¢C' and@Q and A,V is the associated

change in volume. Here&, M C' c M' is the subset of model points that provides the optimal

correspondence at leveand is determined using the algorithm described in Section 5.3.
Motivated by Carnot’s efficiency metric, in this work, the extent of correspondence degrada-

tion as result of decimation is given by the degradation metwdich is defined as

T6 - T¢

m (6.9)

’]’/:

6.5 Results and Discussion

6.5.1 Graph-based Mesh Decimation

The proposed decimation algorithm was coded in Matlab and tested on a Pentium IV processor
at 1.5GHz and 256MB memory. Decimation results for the fine scale mesh of a horse with

59547 vertices are shown in Figure 6.3. The horse mesh was segmented into 8 sub-meshes
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object Number of| Number of| Time (in minutes) for
vertices sub-meshes | 90% decimation

tea cup 11241 5 30.4

horse 59547 8 189.9

Car 7401 19 21.2

Pickup Truck 4902 15 13.7

Pig 4332 11 12.3

Table 6.1: Timing Performance of the proposed decimation algorithm on various data sets

(a) Horse with 59547 vertices, (b) Mesh rendering of the horse (c) Horse with 44661 vertices,

100% resolution

(d) Horse with 29773 vertices,

50%r esolution

in(a)

25% resolution
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75% resolution

(e) Horse with 14886 vertices, (f) Mesh rendering of the horse

in (e)

Figure 6.3: Horse Data
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Figure 6.4: For horse mesh shown in Figure 6.3, an approximation is obtained by re-triangulating
the decimated meshes at that level. This approximated mesh is segmented into multiple disjoint
sub-meshes and the number of misclassified vertices are determined (relative to the sub-meshes

at the finest scale).

using the segmentation algorithm described in Chapter 4. Each sub-mesh was subjected to the
same rate of decimation. For example, the approximation at 75% resolution was obtained by
decimating all the fine scale sub-meshes by 25%. The coarser approximation was then obtained
by re-triangulating the decimated sub-meshes. Note that from a representation standpoint, such a
re-triangulation is not necessary. The timing performance of the algorithm on various datasets is
shown in Table 6.1. The graph in Figure 6.4 confirms the proposed algorithm’s ability to produce

the desired shape-preserving coarse approximations.

6.5.2 Hierarchical Decimation Vs. Multi-scale Correspondence

At the finest scale, the simulated Model and Scene point clduds £ 5000, |Q| = 100) were

used to identify the model points comprising the neighborhood around the scene. To evaluate

the effect of decimation on correspondence, we performed two separate experiments. In the first

case, the points outside the fine scale model's NP were decimated. In the second case, points
inside the fine scale model's NP were decimated. The graph relating the decimation pressure

with correspondence temperature is shown in Figure 6.5. From the graph, it can be seen that
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decimation outside the model's NP does not affect the correspondence i.e., although the pressure
changes as a result of decimation, the correspondence temperature does not change. On the
other hand, decimation of points inside the model’s NP tends to degrade the correspondence. The
decimation pressure and the correspondence temperatures are related to the rate of decimation and
the % degradation (as captured by the degradation mgtriespectively and the corresponding

graph is provided in Figure 6.6. As shown in this graph, the quality of the desired correspondence

degrades (as manifested by an increase in % degradation) with increase in the rate of decimation.

6.6 Conclusions

In this chapter, a new mesh decimation algorithm is proposed to address the problem of obtaining
shape-preserving coarser approximations of highly detailed 3D surface meshes. The input mesh
is segmented into multiple, disjoint sub-meshes to facilitate decimation. Given a sub-mesh, vari-
ous shape clusters are identified and the vertices in those clusters are labeled as boundary/interior.
Shape is preserved by considering only similar-labeled vertex pairs as candidates for a potential
merge. Sub-mesh decimation is realized by merging a vertex pair that minimizes the proposed
graph energy based cost function. Low misclassification error on various datasets indicate the
algorithm’s ability to produce shape-preserving approximations. De-coupling of the input mesh
into corresponding sub-meshes prior to the hierarchical approach to decimation suggest that par-
allel implementations of the algorithm can provide a significant computational speedup.

A thermodynamic interpretation for hierarchical decimation allows for the analysis of the
relationship between decimation and correspondence. The degradation in the desired correspon-
dence as a result of decimation is captured by the proposed formulation for the degradation met-

ric. Results indicate that % degradation increases with increase in the rate of decimation.
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Chapter 7

Conclusions and Future Work

In the context of object recognition from 3D point cloud data, this dissertation presented solutions
to two fundamental problems (1) segmentation of surface meshes toward deriving an efficient rep-
resentation of the underlying object (2) determination of a one-to-one correspondence between a
partial Scene and a complete Model point cloud. A robust solution to the segmentation problem
was obtained by considering manifold surfaces meshes as input. Typically, the construction of
surface meshes over 3D point clouds using commercially available software induces topological
“bugs” in the triangulation, thereby causing the triangulation to be non-manifold. In this dis-
sertation, a simple approach to converting a non-manifold triangulation into the corresponding
manifold mesh was presented in Chapter 3. In addition, a new mesh decimation algorithm was
presented in Chapter 5 which aided in evaluating the relationship between hierarchical decima-
tion and multi-scale correspondence. The major and the minor contributions of this thesis are

summarized below.

7.1 Major Contributions

e Mesh segmentation: In Chapter 4, in the context of object representation, a graph morphol-

ogy based segmentation algorithm was presented to partition an input 3D manifold surface
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mesh into disjoint sub-meshes corresponding to the different parts of the underlying ob-
ject. Given a manifold mesh, curvedness, a curvature based shape descriptor, is computed
at every vertex in the triangulation and it serves as a similarity metric for segmentation
purposes. A sub-mesh consists of a set of vertices whose curvedness values are in a cer-
tain range as specified by a pair of curvedness thresholds. Such curvedness thresholds are
determined using a robust technique which combines ideas from 2D histogram based pro-
cessing and k-means based clustering. The extraction of a certain sub-mesh is an iterative
two-step morphological process which involves (a) dilation and morphological filtering of

vertices (b) attributed graph matching of tiéated graph with adesiredgraph.

The performance of the algorithm was tested using simulated point clouds as well as using
surface meshes of objects that are well accepted test cases in the fields of machine vision
and computer graphics. Results indicate that graph dilation together with morphological
filtering of outliers can effectively deal with noise, thereby avoiding the need for any pre-
processing step to deal with noisy point clouds. Also, it is observed that the selection of
adaptive curvedness thresholds leads to robust segmentation. The algorithm compares well
with the existing state-of-the art approaches and provides robust segmentations for a wide

variety of objects.

Point cloud matching: In Chapter 5, a thermodynamically-inspired graph theoretic algo-
rithm was presented to address the problem of establishing a one-to-one correspondence
between the scene and the identified model point clouds, when the cardinalities of the two
sets are orders of magnitude different. Such an approach determines a subset of points
from the model that is structurally and spatially as similar as possible to the set of points
in the scene. A new formulation for graph enthalpy characterizes the structural differences
between point sets, which together with the existing notions of graph entropy quantifies the

Gibbs’ Free Energy. A two-scale approach is proposed, wherein, at the coarse scale, a set of
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points that comprise the model neighborhood around the scene is identified by minimiza-
tion of entropy. At the fine scale, the desired correspondence was achieved by a refinement
process, aimed at maximizing the Gibbs’ Free Energy. In order to deal with missing data in
the scene, a variation of the basic matching algorithm is presented. In the context of part-
based correspondence, ideas from thermodynamics of heterogeneous systems were used to

refine segmentation labels prior to correspondence.

The proposed definitions of graph enthalpy and Gibbs free energy were validated using ran-
dom 3D point sets and it was observed that these definitions abide by the laws of classical
thermodynamics. Extensive experiments on real data indicate that (i) the newly proposed
formulation of graph enthalpy efficiently captures the structural differences between non-
overlapping point sets (ii) the Gibbs’ free energy based optimization, by combining the
spatial and the graph-based structural information, leads to stable and efficient matches, as
opposed to simple graph matching. Additionally, the proposed approach is highly robust in

the presence of noise and can efficiently deal with missing data.

7.2 Minor Contributions

e Conversion from non-manifold to manifold surface meshes: In order for a surface mesh
to be used by the proposed segmentation algorithm, it must be void of any topological
singularities, i.e., the surface mesh must be manifold. Often times however, the use of
commercially available software for the triangulation of point clouds induces ‘bugs’ that
cause the triangulation to be non-manifold. In Chapter 3, a greedy surface growing algo-
rithm is presented to convert a three-dimensional non-manifold surface triangulation into
the corresponding manifold surface mesh by employing topology as well as geometry-

based constraints. The algorithm specifically addresses the case when there are a large
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number of singular edges present in the triangulation and does not consider sharply con-
vex/concave surfaces. The singular edges are identified as those edges along which more
than two triangles incident. The region growing process is initialized by identifying a seed
triangle that satisfies certain topological and geometric constraints. The algorithm subse-
guently breaks the non-manifold triangulation into its constituent triangles. A manifold
triangulation is then grown by stitching triangles that minimize a dihedral angle-based cost
function. A number of non-manifold triangulations were converted into the corresponding
manifold surfaces using the proposed algorithm. It was observed that the resulting mani-
fold surface efficiently captured the underlying object’s geometry. Due to the propagating

nature of the algorithm, this mesh repair process needs to be done off-line.

Mesh Decimation: The realization that the derived representations of very finely sampled
models not only require a large amount of storage space but also cause a significant slow
down during recognition, motivated us to propose a graph-theoretic mesh decimation al-
gorithm in order to obtain shape preserving coarser approximations of the given fine scale
input mesh (Chapter 6). For this, the fine scale mesh is segmented into disjoint parts using
the mesh segmentation algorithm proposed in chapter 4. In the proposed hierarchical dec-
imation approach, every sub-mesh undergoes the same rate of decimation and the vertex
pair that minimizes a certain graph energy based cost function is considered as the best
pair for merging/contraction. The shape information is preserved by performing a curva-
ture based classification of the vertices (in a submesh) prior to decimation. At a certain
level in the hierarchy, the quality of an approximation is assessed by re-triangulating the
decimated sub-meshes and by computing the the misclassification error. The performance
of the algorithm was tested using a number of fine scale meshes. A low misclassification
error suggests that the proposed algorithm preserves the shape of the underlying object at

various coarser scales.
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7.3 Ongoing Work

In Chapter 5, Section 5.4, in the context of part-based matching, we described the need for re-
finement of segmentation labels prior to the determination of one-to-one correspondence between
the scene parts and the associated model parts. Inspired by the thermodynamics of heterogeneous
systems, an algorithm was presented to refine segmentation labels of the scene that involved the
maximization of the Gibbs free energy. As part of ongoing work, extensive experiments are being
conducted to understand how misclassification affects the performance of the algorithm in terms
of the accuracy of the correspondence obtained when the scene point cloud is subject to varying
levels of noise. The algorithm is also being tested on scenes containing multiple objects, wherein
each object is characterized as a homogeneous part.

In Chapter 6, we presented a relationship between hierarchical mesh decimation and multi-
scale correspondence by borrowing ideas from classical thermodynamics. A finely sampled
model point cloud was subject to varying rates of decimation. A one-to-one correspondence was
then established between a certain coarse model and the input scene. Although subjective, such
an analysis demonstrates that coarser approximations of an input model are sufficient to obtain
the desired correspondence. From a thermodynamic standpoint,while on the one hand, we estab-
lished a link between different values of pressure and varying rates of decimation, on the other
hand, we established a link between temperature and desired correspondence obtained at multiple
scales. It was observed that with increase in the model pressure (manifested by increasing rates
of decimation), the accuracy of scene-model correspondence decreases. The conclusions drawn
are independent of the decimation algorithm used. As part of ongoing work, sensitivity analyses
are being conducted to evaluate the performance of the algorithm under the conditions of noise.
Also, effect of model decimation on multiscale correspondence for scenes with missing data and

clutter is being evaluated.
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7.4 Future Work

e Selection of shape descriptors: While the segmentation algorithm described in Chapter 4
provides good segmentation results for smooth man-made objects, it tends to over-segment
textured surfaces. Hence, for the mesh segmentation algorithm to work well on a larger
variety of surfaces, textural information needs to be incorporated into the algorithm, in
addition to the existing shape descriptors. Also, while the existing shape descriptors are
useful in distinguishing objects such as a pick-up truck and a horse, they are not as useful
to discriminate two similar objects for example a Toyota Corolla vs. a Honda Civic. For
such problems, additional shape descriptors need to be considered, while keeping in mind

the curse of dimensionality.

e Extension of thermodynamic ideas for many-to-many graph matching and deformable
point matching: Arguably, deformable point matching is a much difficult problem. The
thermodynamic ideas described in this work are useful for rigid point matching. For the
purposes of deformable point matching, the formulation for graph enthalpy needs to utilize
graph structures other than those considered in this dissertation. In this regard, it may be
advantageous to include shape based ideas such as shape context [108]. Many-to-many

graph matching is also a challenging problem of interest to the computer vision community.

e Thermodynamics for computer vision: In this dissertation, ideas from classical thermody-
namics were used to solve the correspondence problem. The formulation for graph en-
thalpy encoded the structural or topological information in the point sets. Physicists have
established a relationship between concepts in differential geometry such as curvature and
the thermodynamics [3]. The question then is: is it possible to apply geometrical ther-
modynamics to computer vision? If yes, to what problems and what are the advantages

thereof?
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e Performance Evaluation: In this dissertation, we considered point cloud matching as an in-
dependent problem by assuming efficient solutions to the classification and the alignment
problems. Results presented in Chapter 6 indicate that robust desired correspondence is
obtained using the proposed thermodynamic formulation to point cloud matching. Toward
designing practical systems, however, the rate of false positives/false negatives, or in gen-
eral the receiver operating characteristic (ROC) curve under various sensitivity conditions,
can best be evaluated by combining the performance of every step of representation and

recognition.

e Algorithm evaluation for efficient implementations: From a practical standpoint, a recog-
nition system must not only provide the desired accuracy but speed is also an important
factor. Thus, from an algorithm development perspective, it is useful to analyze the perfor-
mance of various optimization algorithms and the effect they have on the algorithms’ per-
formance in terms of the speed and accuracy. For instance, a computational speedup may
be obtained by considering variations of the Branch and Bound algorithm [122] rather than
the traditional B&B algorithm for point cloud matching. In a similar way, efficient ways
for computing a minimum weight perfect matching bipartite graph have also been cited
in the literature [108]. A parallel implementation of the proposed graph-based decimation

algorithm can lead to a considerable decrease in the computational complexity.

e Learning System: Our recognition system assumes that the model already exists in the
database prior to recognition. As part of future work, one needs to design a ‘smart’ system
that can learn the description of an unknown object and in addition have the ability to

represent and store such modeling information, not originally present in the database.

117



Bibliography

[1] M. Werthheimer, “Laws of Organization in Perceptual form&”"sourcebook of Gestalt Psychology
71-88, 1950

[2] E. Fermi,ThermodynamicDover Publications Inc., 1956

[3] F. Weinhold, “Metric geometry of equilibrium thermodynamicggurnal of chemical physic$3,

1975
[4] A.T. Balaban (ed)Chemical Applications of graph thegrixcademic Press, 1976

[5] W. H. Tsai and K. S. Fu, “Error-correcting isomorphisms of attributed relational graphs for pattern

analysis” IEEE Transactions on System, Man and Cyberng8i¢k2), 1979
[6] D. Scott, “On optimal and data-based histogranBstmetrikga 66, 605-610. 1979

[7] L. G. Shapiro and R. M. Haralick, “Structural Descriptions and inexact matchiB&E Transactions

on Pattern Analysis and Machine Intelligen®&504-519,1981
[8] D.H. Ballard and C. M. BrownComputer VisionPrentice Hall, 1982

[9] T. H Hong and A. Rosenfeld, "Compact region extraction using weighted pixel linking in a pyra-

mid”,IEEE Transactions on Pattern Analysis and Machine Intellige6¢2), 1984

[10] A. K. C. Wong and M. You, “Entropy and distance of random graphs with application to structural

pattern recognition”|EEE Transactions on Pattern Analysis and Machine Intelligei¢®), 1985

118



[11] P. J. Besl and R. C. Jain, “Three-dimensional object recogniti®@M Computing Survey4d7(1),
1985

[12] S. Umeyama, “An eigen-decomposition approach to weighted graph matching probl&BE’,

Transactions on Pattern Analysis and Machine Intelligeri€¥5), 1988

[13] P.J. BeslSurfaces in Range Image UnderstandiSgringer Verlag, 1988

[14] L. Vincent, “Graphs and mathematical morpholodgyiginal Processing 6,365-388,1989.

[15] P. Parentand S. Zucker, “Trace Inference, Curvature Consistency and Curve detdeE&nTrans-

actions on Pattern Analysis and Machine Intelligent#(8), 1989

[16] T. Fan, G. Medioni and R. Nevatia, “Recognizing 3D Objects using surface descriptl&is,
Transactions on Pattern Analysis and Machine Intelligedd€11), 1140-1157, 1989

[17] 1. Pitas and A.N. Venetsanopoulos, “Morphological Shape Decompositi6RE Transactions on

Pattern Analysis and Machine Intelligent&(1),38-45,1990

[18] W.E.L. GrimsonObject Recognition by Computérhe MIT Press, 1990

[19] J.J. KoenderinkSolid ShapeThe MIT Press, 1990

[20] Y. Shinagawa and T.L. Kunii, “Constructing a Reeb Graph from Cross SectititisEE Computer
Graphics and Applicationsi4-51, 1991.

[21] W. Kim and A. C. Kak, “3D object recognition using bipartite matching embedded in discrete relax-

ation”, IEEE Transactions on Pattern Analysis and Machine Intelliget&¢3), 1991

[22] L.S. Shapiro and J.M. Brady, “Feature based correspondence- an eigenvector appneagh’and
Vision Computing283-288,1992

[23] W. J. Schroeder, J. A. Zarge and W. E. Lorenson, “Decimation of Triangular me$hes&edings
of ACM SIGGRAPH®65-70, 1992

119



[24] J.J. Koenderink and A.J. Van Doorn, “Surface Shape and curvature schiege and Vision
Computing10,557-565,1992

[25] F. Stein and G. Medioni, “Structural Indexing: Efficient 3D Object RecognitileEE Transactions

on Pattern Analysis and Machine Intelligend&(2), 1992

[26] M. Suk and S.M. Bhandarkarhree Dimensional Object Recognition from Range Imag§psnger-
Verlag,1992.

[27] H. Heijmans, P. Nacken, A. Toet and L. Vincent, “Graph Morpholodg(irnal of Visual Communi-
cation and Image RepresentatjB(l),24-38,1992.

[28] E.R. Dougherty,(ed.)Miathematical Morphology in Image Processjigt ed.,1993.

[29] P. Hinker and C. Hansen, “Geometric Optimizatiol2EE Conference on Visualizatiph89-195,
1993

[30] M. Lindenbaum, “On the amount of data required for reliable recognitionérnational Conference

on Pattern Recognitiqr 994

[31] P. Liang and C. H. Taubes, “Orientation-based Differential Geometric Representations for Computer

Vision Applications”,IEEE Transactions on Pattern Analysis and Machine Intelligeé¢3), 1994

[32] P.Flynn and A.K. Jain, “Three Dimensional Object Recognitidn'the handbook of Pattern Recog-
nition and Image Processing:Computer Visid®7-541, 1994

[33] A.VarshneyHierarchical Geometric Approximation®hD Thesis, Dept. of Computer Science, Uni-

versity of North Carolina, Chapel Hill, 1994

[34] T.H. Cormen, C.E. Leiserson and R.L. Rivdstroduction to AlgorithmsMIT Electrical Engineer-

ing and Computer Science, 1994

[35] K. lkeuchi and M. Hebert, “Spherical Representations: From EGI to SBlject Representation in
Computer Vision, Springer-Verla§27-345, 1995

120



[36] C.C. Puand F.Y. Shih, “Threshold Decomposition of Grey-Scale Soft Morphology into Binary Soft
Morphology,” CVGIP-Graphical Models and Image Processbig(6),522-526,1995.

[37] K. Siddigi and B.B. Kimia, “Parts of Visual Form: Computational AspectEEE Transactions on
Pattern Analysis and Machine Intelligencer(3), 239-251, 1995

[38] W. J. Christmas, J. Kittler and M. Petrou, “Structural matching in computer vision using probablistic
relaxation”, IEEE Transactions on Pattern Analysis and Machine Intelligeric&8),pp. 749-764,
1995

[39] P. Kuosmanen and J. Astola, “Soft Morphological Filterintpirnal of Mathematical Imaging and
Vision5 (3),231-262,1995.

[40] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph matdiide , Transac-
tions on Pattern Analysis and Machine Intelligent8(4), 1996

[41] D. B. West,Introduction to Graph Theory1996

[42] R Ronfard and J Rossignac, “Full-range Approximation of triangulated Polyhdguadgraphics:
Computer Graphics Forum5(3), 1996

[43] M. Soucy and D. Laurendeau, “Multiresolution surface modeling based on heirarchical triangula-

tion”, Computer Vision and Image Understandi®@(1), 1-14,1996

[44] M. T. Dickerson and D. Eppstein, “Algorithms for proximity problems in higher dimensi@uwh-
putational Geometry: Theory & Applicatiofig5), 277-291, 1996

[45] H. Hoppe, “Progressive MeshesProceedings of ACM SIGGRARHB9-108, 1996

[46] A. D. Kalvin and R. H. Taylor, “Superfaces: Polygonal mesh simplification with bounded error”,

IEEE Computer Graphics and App]ri6(3), 1996

[47] J.M. Reinhardt and W.E. Higgins, “Efficient Morphological Shape RepresentatlBBE Transac-
tions on Image Processirg(1),89-101,1996.

121



[48] E.C Sherbrooke, N.M. Patrikalakis and E. Brisson, “An algorithm for medial axis transform of 3D

polyhedral solids,IEEE Transactions on Visualization and Computer Grap)ai¢k),1996

[49] S. Takahashi, Y.Shinagawa and T.L. Kunii, “A feature-based approach for smooth surfaces,”
ceedings of Solid Modelin®@7-110,1997

[50] J. Shi and J. Malik, “Normalized cuts and image segmentatiifEE Conference on Computer

Vision and Pattern Recognitipa997

[51] J. E. Goodman and J. O’Rourkdandbook of Discrete and Computational Geome@RC Press,
1997

[52] K. Wu and M. D. Levine, “3D part segmentation using simulated electrical charge distributions”,

IEEE Transactions on Pattern Analysis and Machine Intelliged&¢11), 1997

[53] D.A. McQuarrie and J. D. SimorRhysical Chemistry: A Molecular Approactiniversity Science,
1997

[54] H. Bunke, “On a relation between graph edit distance and maximum common subdrafthtn

Recognition Lettersl8(8),689-694, 1997

[55] C. Doraiand A.K. Jain, “COSMOS: A representation scheme for 3D free-form objHeEE Trans-
actions on Pattern Analysis and Machine Intelligent®(10):1115-1130, 1997

[56] P.Violaand W.M. Wells, “Alignment by maximization of mutual informatioiriternational Journal

of Computer Vision24(2), 137-154, 1997

[57] S. A.Nene and S. K. Nayar, “A simple algorithm for nearest neighbor search in higher dimensions”,

IEEE Transactions on Pattern Analysis and Machine Intelliged&¢9), 999-1013, 1997

[58] W. J. Schroeder, “A topology modifying progressive decimation algoritHEBEE Conference on
Visualization 205-212, 1997

[59] M. Garland and P. S. Heckbert,“Surface simplification using quadric error metAosteedings of
ACM SIGGRAPK?209-216, 1997

122



[60] P.S. Heckbertand M. Garland, “Survey of polygonal surface simplification algorititmsieedings
of ACM-SIGGRAPH1997

[61] G. Barequet and S. Kumar, “Repairing CAD ModelBtpceedings of IEEE Conference on Visual-
ization, 1997

[62] F. P. Preparata and H. Hoppe, “Progressive Simplicial Complexasiceedings of ACM SIG-
GRAPH 217-224, 1997

[63] B. Mohar, “Some applications of Laplace eigenvalues of gragbsph Symmetry: Algebraic Meth-
ods and Applications, Kluwed97, 227-275, 1997

[64] C. H. Papadimitriou and K. SteiglitZZombinatorial Optimization: Algorithms and Complexity

Dover Publications, 1998

[65] P. Lindstrom and G. Turk, “Fast and memory efficient polygonal Simplificatite EE Conf. Visu-
alization 279-286,1998

[66] H. Bunke and K. Shearer, “A graph distance metric based on maximal common subdraipérin

Reconginition Lettersl9(3), 255-259, 1998

[67] P. Atkins,Physical ChemistryOxford University Press, 1998

[68] A. E. Johnson and M. Hebert, “Control of Polygonal Mesh resolution for 3D computer vision”,

Graphics Modeling and Computer Visioh998

[69] A. E. Johnson and M. Hebert, “Using Spin Images for efficient object recognition in cluttered 3D

scenes”]EEE Transactions on Pattern Analysis and Machine Intellige@4€¢5), 433-449, 1999

[70] K. Siddiqgi, A. Shokoufandeh, S. Dickinson and S. Zucker, “Shock Graphs and Shape matching”,

International Journal of Computer VisioB0, 1-24, 1999

[71] M. Pellili, K. Siddigi and S. Zucker, “Matching Hierarchical Structures using association graphs”,

IEEE Transactions on Pattern Analysis and Machine Intellige@d¢11), 1105-1120,1999

123



[72] K. Siddiqi, A. Shokoufandeh, S. Dickinson and S. Zucker, “Shock Graphs and Shape Matching”,

International Journal of Computer Visip85(1), 1999

[73] T. Liu and D. Geiger, “Approximate Tree Matching and Shape Similariceedings of Interna-
tional Conference on Computer Visidb6-462,1999

[74] H. Bunke, “Error Correcting Graph Matching: On the influence of the underlying cost function”,

IEEE Transactions on Pattern Analysis and Machine Intellige2i®), 1999

[75] A.P. Mangan and R.T. Whitaker, “Partitioning 3D surface meshes using watershed segmentation,”

IEEE Transactions on Visualization and Computer Graphigd):308-321, 1999.

[76] , M. Garland, “ Multiresolution Modeling: Survey and Future Opportuniti€sirographics 113-
131, 1999

[77] 1. Guskov and W. Sweldens and P. Sither, “Multiresolution signal processing of mesheBfp-
ceedings of ACM SIGGRARBP25-334, 1999

[78] N.Dyn, K. Hormann, S.J. Kim and D. Levin, “Optimizing 3D triangulations using discrete curvature

analysis,"Mathematical Methods for Curves and Surfad88-146,2000.

[79] P. Rosin, “Shape Partiotioning by ConvexitygEE Trans. Systems, Man, and Cybernetics, part A
30(2),202-210, 2000

[80] K. L. Boyer and S. Sarkar (ed.), “Perceptual Organization for Artificial Vision SysteHKistyer
Academic2000

[81] H. Bunke X. Jiang and A. Kandel, “On the minimum common supergraph of two grappshger
Verlag 65(1),13-25, 2000

[82] H. Chui and A. Rangarajan, “A new algorithm for non-rigid point matchingEE Conference on

Computer Vision and Pattern Recognitj@) 44-51, 2000

[83] C. Rossl, L. Kobbelt and H.P. Seidel, “Extraction of feature lines on triangulated surfaces using

morphological operatorsProceedings of AAAI Symposium on Smart Graphits75, 2000.

124



[84] M. Carcassoni and E.R. Hancock, “Point Pattern Matching with Robust Spectral Correspondence”,

Proceedings of IEEE Conference on Computer Vision and Pattern Recog2ifioa

[85] R.Myers, R. Wilson and E. Hancock, “Bayesian Graph Edit Distar&&E Transactions on Pattern
Analysis and Machine Intelligenc22(6), 628-635, 2000

[86] M. Boshra, B. Bhanu, “Predicting Performance of Object RecognititfZE Transactions on Pat-
tern Analysis and Machine Intelligenc22(9), 956-969, 2000

[87] C.D. Ruberto and A.G. Dempster, “Attributed Skeleton Graphs using mathematical morphology,”
IEEE Electronics Letter87(22),2001.

[88] B. Ma, A. O. Hero, J. Gorman, O. Michel, “Image Registration with minimum spanning tree algo-

rithm”, Proceedings of International Conference on Image Proces&i0g1

[89] B. Luo and E. R. Hancock, “Structural Matching using EM algorithm and Singular Value Decompo-
sition”, IEEE Transactions on Pattern Analysis and Machine Intellige@8¢1120-1136, 2001

[90] A. R. Kelly and E. R. Hancock, “Graph Matching using adjacency matrix markov chatet.
British Machine Vision Conference(BMV,2001

[91] H. Cantzler and R.B. Fisher, “Comparison of HK and SC curvature description metHeagked-
ings of IEEE International Conference on 3D Digital Imaging and ModeR8§-291,2001.

[92] C. Godsil and G. RoyleAlgebraic Graph Theory, Springer-Verlag001

[93] R. O. Duda, P. E. Hart and D. G. Stofattern ClassificationWiley-InterScience, 2001

[94] Z.Karni and C. Gotsman, “3D Mesh Compression Using Fixed Spectral BaBesleedings of
Graphics Interface2001

[95] L. Shams, S. Schaal, “Graph-matching vs. entropy-based methods for object detdtiorail, Net-
works 14(3),345-354, 2001.

125



[96] C. M. Cyr and B. Kimia, “3D object recognition using shape similarity based aspect gaph”’,

ceedings of International Conference on Computer Visi&id-261, 2001

[97] R.J. Campbell and P.J. Flynn, “A survey of free form object representation and recognition tech-

niques,”Computer Vision and Image Understandi®ty2), 2001.

[98] A. Guéziec, G. Taubin, F. Lazarus and B. Horn, “Cutting and Stitching: Converting sets of Polygons

to Manifold Surfaces,JEEE Transactions on Visualization and Computer Grap/7i(2),2001.

[99] G. Hetzel, B. Leibe, P. Levi, B. Schiele, “3D object recognition from range images using local feature

histograms,IEEE Conference on Computer Vision and Pattern Recognition (C\2F3R¥%-399,2001.

[100] R.C.Gonzalez and R.E. Wood3igital Image Processingnd ed., Prentice Hall,2001.

[101] R.J. Campbell and P.J. Flynn, “Recognition of free-form objects in dense range data using local

features,Proceedings of 16th International Conference on Pattern Recogt8tié07-610, 2002.

[102] R. J. Campbell and P.J. Flynn, “Recognition of free-form objects in dense range data using local

features” Proceedings of International Conference on Pattern Recogngj6A7-610, 2002.

[103] S. Kosinov and T. Caelli, “ Inexact Multisubgraph matching using graph eigenspace and clustering

models”,Proceedings of SSPR/SPR, Springer-Ver896, 133-142, 2002

[104] A.R. Ahmadyfard and J. Kittler, “Using Relaxation techniques for region-based object recognition”,

Image and Vision Computing0(11), 769-781, 2002

[105] E. R. Hancock and R. C. Wilson, “Graph based methods for vision: A yorkist manifesto”, SSPR &
SPR, LNCS 2396, 2002

[106] J. Li and A.O. Hero, “A spectral approach to statistical polar shape modelfrgteedings of

International Conference on Image Processi2g02

[107] D. Macrini, A. Shokoufandeh, S. Dickinson, K. Siddigi, S. Zucker, “View-based 3-D object recog-

nition using shock graphdhternational Conference on Pattern Recogniti&24-28, 2002

126



[108] S. Belongie, J. Malik and J. Puzicha, “Shape Matching and object recognition using shape contexts”,

IEEE Transactions on Pattern Analysis and Machine Intellige@d¢24), 509-522, 2002

[109] M. Mortara and G. Patan“Affine invariant skeleton of 3D shapes$?toceedings of Shape Modeling
International1-8, 2002.

[110] D. Bespalov, A. Shokoufandeh, W.C. Regli and W. Sun, “Scale-Space representation of 3D Models
and topological matchingProceedings of Solid Modeling08-215, 2003

[111] D.L. Page, A.F. Koschan and M.A. Abidi, “Perception-based 3D triangle mesh segmentation
using fast marching watersheddEEE Conference on Computer Vision and Pattern Recognition

(CVPR)2,27-32, 2003.

[112] R. Hauge, “Ladar puts the puzzle togeth&RIE OE Magzinel8-20 April 2003

[113] C. Gotsman, “On Graph Partitioning, Spectral Analysis, and Digital Mesh ProcesBiog&edings
of Solid Modeling Internationak003.

[114] M. Kazhdan, T. Funkhouser and S. Rusinkiewicz, “Rotation invariant spherical harmonic represen-
tation of 3D shape descriptorsProceedings of Eurographics symposium on Geometry processing

2003

[115] E. R. Hancock, M. Vento (eds.fzraph based Representations in Pattern Recognitipringer
Verlag, 2003

[116] Y. Keselman, A. Shokoufandeh, M. F. Demirci and S. Dickinson, “Many-to-Many Graph Matching

via Metric Embedding”]EEE Conference on Computer Vision and Pattern Recognifio3

[117] T.S. Caetano, T. Caelli and D.A.C. Barone, “Graphical Models for Graph Matchiirgteedings

of IEEE Conference on Computer Vision and Pattern Recogni2o64

[118] T. Caelliand S. Kosinov, “An eigenspace projection clustering method for inexact graph matching”,

IEEE Transactions on Pattern Analysis and Machine Intellige@6¢4), 515-519, 2004

127



[119] T. Sebastian, P. Klein and B. Kimia, “Recognition of Shapes by editing their Shock GrdpEE,
Transactions on Pattern Analysis and Machine Intelliger2&£5), 550-571, 2004

[120] H. Neemuchwala, A.O. Hero and P. Carson, “Image matching using alpha-entropy measures and
entropic graphs”European Journal of Signal Processif8pecial issue on content-based visual in-

formation retrieval), March 2004

[121] D. Huber, A. Kapuria, R. Donamukkala, M. Hebert, “Parts-based 3D object classificaltiE,

Conference on Computer Vision and Pattern Recognition (CVERS9, 2004

[122] P. Somol, P. Pudil, J. V. Kittler, “Fast Branch & Bound Algorithms for Optimal Feature Selection”,
IEEE Transactions on Pattern Analysis and Machine Intellige@6¢7), 900-912, 2004

[123] A. Jagannathan and E. L. Miller, “Unstructured 3D Point Cloud Matching within Graph-theoretic
and Thermodynamic Framework$toceedings of the IEEE Computer Society’s Conference on Com-

puter Vision and Pattern Recognition (CVRRDO5

[124] A. Jagannathan and E. L. Miller, “Shape-preserving Mesh Decimation within a Graph-theoretic
Framework”,Proceedings of the IEEE Signal Processing Society’s Asilomar Conference on Signals,

Systems and ComputeB05, to appear

[125] A. Jagannathan and E. L. Miller, “Mesh Segmentation: From Triangulations to A&fEE, Trans-

actions on Pattern Analysis and Machine Intelligenaecepted, under revision

[126] http://www.paraform.com/ppd|

128



