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Abstract

We consider the use of high resolution array processing methods for detecting and localizing
near-field extended targets for measurement geometries in which an array of electromagnetic re-
ceivers observes the fields scattered by the objects in response to a plane wave illumination. The
algorithms presented here modify the conventional direction finding array processing techniques
and use the spatial complexities of fields to determine both the range and the bearing of the
targets in the region of interest. In contrast to previous source localization problems, we employ
electromagnetic scattering models parameterized explicitly in terms of the target positions and
which account for all multiple scattering effects.

These models play an integral role in allowing us to compute explicitly the analytical expres-
sions for the Cramér-Rao bounds (CRB) for position estimates. The Cramér-Rao bound gives
the lower bound for the estimates, and thus, specifies the lowest possible error variance that can
be attained with an unbiased estimator. The theoretical Cramér-Rao bounds are then verified
using Monte-Carlo simulated error variances.

Running title: EM-Based Near-Field Array Processing

*This work was supported in part DOE contract DE-FC07-951D13395 and Army Research Office Demining MURI
under Grant DAAG55-97-1-0013
tCommunicating author



1 Introduction

Non-invasive detection and localization of objects in the near field of a receiver array have been
of interest to many researchers in recent years. Some of the most promising application areas for
this technology include landmine remediation, where relatively small metallic or plastic objects
are located a few centimeters from the sensors, and hazardous waste remediation, where relatively
large metallic objects (eg. steel metal drums) are located on the order of meters from the sensor
array [1-3]. In this paper we consider a form of this problem shown in Fig. 1. A plane wave
illuminates the region of interest assumed to be a homogeneous, possibly lossy medium containing
one or more targets located in the near field of an array of receivers. The goal of the processing is
the localization of objects with known structures.

The inherent array structure of the measurement geometry suggests that high resolution array
processing techniques [4,5] quite popular in the signal processing community would be well suited
for the near-field detection problem. Typically, these techniques assume the targets are in the
far field of the array so that the measured wavefronts are all planar in nature. The goal then
is to determine the directions of arrival (DOA) of these wavefronts to characterize the bearing
angles of the associated targets. In the case of near field target localization however, we must
process scattered field data with distinctly non-planar wavefronts to determine both the range and
the bearing angles of the objects. For far field range and bearing angle estimation problems, the
matched field processing (MFP) approach has been successfully used for localization of typically
point sources in ocean acoustics [6] and stratospherical electromagnetics [7]. MFP is an array
processing technique that uses the spatial complexities of the fields to localize sources, and thus
allows for estimation of both the range and the bearing of the objects.

In terms of near-field source localization, previous work has been concentrated on independently



radiating point sources [8-12] and the localization of a single extended object of unknown size
and material [13]. The coherent source issue in near field localization is also dealt with in [9].
In [8,9], independent, spherical sound and noise sources are located using MUSIC based array
processing methods. In [10] and [11], a similar near-field source localization scenario is considered,
and performance bounds for coordinate estimates were derived for MUSIC and higher order ESPRIT
based algorithms, respectively. Localization of distributed sources is reported in [14] where Valaee
et al. introduced a MUSIC-based algorithm that parametrically localizes far field sources modeled
with bell shaped distributions characterized by their peak position and 3 dB beamwidth. Finally,
in [13] the authors employ a T-matrix type forward model as the basis for a non-linear least squares
parameter estimation approach to determine the location, size, and material properties of a single
object in the field of view of an array.

We present two MI'P-based algorithms that localize multiple, extended scatterers placed in
the near field of a receiver array. FFurthermore, instead of independently radiating point sources,
or sources with predetermined distribution characteristics, the radiators in this paper scatter the
incident plane wave, and the physics of the multiple scattering is exactly accounted for using full
scattering models. We have also determined geometries for which simpler forward scattering models
can be utilized to reduce the computational complexity of the localization algorithm. At the end,
we derive and verify the Cramer-Rao performance bounds for multiple, extended, near field objects.

We begin by describing a simple modification of the MUSIC algorithm in which the electromag-
netic interactions between targets are ignored, and the problem is approached as if a number of
spatially extended objects are independently scattering the incident electromagnetic field. While
the resulting method has relatively low computational complexity, there are two issues in need

of some analysis to characterize its performance. First, there is a signal coherence issue arising



from our frequency domain formulation of the problem. Second, it is necessary to determine in
a quantitative manner conditions under which one may safely ignore the interactions among the
scatterers. Both of these issues are addressed in Section 3.2.

In Section 3.3 we describe a second option for localizing multiple objects in which all multiple
scattering effects are taken into consideration. While this approach is more computationally costly
than the former, by modeling the non-trivial interactions of wavefields among scatterers, we improve
our ability to resolve closely spaced scatterers. We demonstrate that this technique can easily
localize the targets in geometries where the former approach fails to resolve the target positions.

Finally, we derive the Cramér-Rao bounds on variances of estimation errors for multiple object
detection scenario. Our Cramér-Rao bound derivation adapts the results in [15], and accounts for
near field observations. Analytical bounds of estimated object coordinates are then validated by
running Monte-Carlo experiments for the estimator presented in this paper.

While our long term interests are in application of these ideas to the localization of buried
objects (i.e. targets located in a halfspace), in this work, we concentrate on the simpler problem
of localization when the objects are embedded in a homogeneous medium. It is our intent that
the insight and experience gained from studying the homogeneous medium case will be of use
when considering the more complicated half-space problem. Moreover, by considering this simpler
physical problem, we are able to make extensive use of the T-matrix method [16-18] both in the
localization algorithms as well as in the performance analysis. Indeed, the analytical structure
of the T-matrix approach provides for the efficient computation of certain gradient information
required for the method of Section 3.3 and for computing the Cramer-Rao bound in Section 4.
Given the strong results in this paper, an interesting and non-trivial avenue of future research

is the adaptation of the single object, half-space T-matrix approach of [19] to the multi-object



problem of interest here and the use of this forward model in an MFP-type inversion algorithm.
The remainder of the paper is organized as follows. In Section 2, we introduce the problem

geometry and describe plane wave MUSIC. Section 3 is devoted to an exposition of the MFP-

based algorithms. The Cramér-Rao lower bound is derived in Section 4. Numerical examples are

presented in Section 5, and in Section 6, conclusions will be drawn.

2 Background

The measurement scheme depicted in Iig. 1 is considered in this paper. The objects are located
in a background for which the constant electrical characteristics (relative permittivity and conduc-
tivity) are assumed known. A transverse magnetic (TM) polarized plane wave, E;(r), impinges on
the objects, inducing surface and volume currents which in turn radiate a scattered field, E (r) !.
In this work, we are interested only in the object localization problem, thus material properties,
shapes and the number of objects are assumed known.

The scattered electric field from N objects is spatially sampled by a uniformly spaced, linear
array with M isotropic receivers, M > N. When the multiple scattering effects are taken into
consideration, the measured data at the sensor outputs can be written as:

Y = ApsX 4, (1)
where A5 = [Esi(r1,...,rn) Es(r1,...,rn) ... Esxn(r1,... ,ry)] and Eg(r, ..., ry) denotes
the scattered field observed at the array due to the ith object, in the presence of all other (N —
1) scatterers, i = 1,2,...,N. For time domain applications, the vector x contains the narrow
band time variations. Since we do our analysis in the frequency domain and suppress e/*!, x =
[1 1---1]T. The ith column of matrix A,,, depends not only on the position of the ith object,

but also that of (N — 1) other objects. Therefore, we may replace A,,,x in (1) with M X 1 vector

TAll analysis is in the frequency domain, thus the e’“? time dependence will be dropped.



B =E(r1,r2---rx) = Esi(r1,...,r8) + Ego(r1, ... ,rn) + ...+ Esn(r1, ..., ry), which denotes
the total scattered field at the receiver array.

The recursive T matrix algorithm [16-18] is used to calculate the exact scattered field E;; due
to the ith object in the presence of other objects. The algorithm reported in [18] is designed for
the efficient solution of near field scattering problems with heterogeneous collection of metallic and
dielectric objects. In addition, using the recursive T-matrix algorithm the solution to the scattering
problem can be written in a closed form. This property is especially useful in obtaining analytical
expressions for gradients and derivatives in multi-dimensional parameter search in Section 3.3 and
in Cramér-Rao bound analysis in Section 4.

Electromagnetic interactions between the objects may be ignored in favor of reducing the com-
putational complexity of the localization process. For the method presented in Section 3.2, we use
the same data model as in (1), except that the matrix A,,s is replaced by

Ags = [Es(r1) E4(r2) - E(rn)]. (2)
The M x 1 vector E4(rj) denotes the scattered field due to a single object located at ry, i =
1,2,-+-, N, and it is calculated using the Mie series [20]. Therefore, each column of Ay, contains
the scattered field that is a function of position of only one particular object. In fact, in this
definition of matrix A, each column is equivalent to those of A,,s in (1) when all other scatterers
are infinitely far away. The vector x is the same as before, x = [1 1---1]7.
2.1 Review of Plane wave MUSIC

For plane wave MUSIC, the data model is in the following form:

Yy =Apx+n, (3)
where A, = [a(61) a(fy) --- a(fy)],anda(f;) = [1 eikdeosti gi2kdcosti .. oi(M—1)kdcosti|T

Here a(#;) is known as the direction vector, 6; is the direction of arrival (DOA) of the ith plane



wave, k is the wave number in the medium of propagation, and d is the distance between two
sensors. The experiment as represented by the data model in (3) is repeated many times in order
to determine the statistics of y. In particular, if L experiments are performed, then the maximum
likelihood estimate of the spatial autocovariance I]Elatrix R = E{yy"} is given by [4]:

R=- > v (1)
where y; is the data measured at the [th experiment, and superscript 7 denotes the complex
conjugate transpose. The sample covariance matrix R is used in MUSIC algorithm to separate
signal and noise subspaces through the eigenspace decomposition [4]:

R = U,A, U7 4+ O, [621)07 (5)
where U, is the estimated signal subspace matrix and contains the N signal eigenvectors, and U,
is the estimated noise subspace matrix and contains M — N noise eigenvectors of multiple noise

eigenvalue 62. The projection operator onto the noise subspace is defined as [4]:

A

i, = 0,0, (6)

The basic idea behind the planewave MUSIC algorithm is that the reciprocal of the “distance”
between the estimated noise subspace and the true noise subspace has sharp peaks around the
DOAs. Thus, if one plots this quantity versus all possible angles, estimates of DOAs can be
determined by the maxima of the angular spectrum. The spatial spectrum of the MUSIC algorithm

is given by [4]:

a(6)"a(6)
P 0) = ——=—— 7
Music(6) a(0)7TT,a(6) (7)
where a(f) = [1 elkdoosd  gi2kdcost .. oi(M—T)kdcostT i the direction vector that accounts for

a plane wave impinging on the array from the direction 6.
It is important to realize that the formulation of the array processing problem presented in
this section implicitly assumes that the radiator is infinitely distant so that the scattered field has

planar wavefronts at the sensor array. Thus, the elements of the direction vector a(#) are complex



exponentials indicative of plane wave signals. However in many applications, including near field
object detection, the receivers are in the near-field region of the radiating sources, resulting in non-
planar wavefronts. The target localization problem, therefore, not only requires the DOA relative

to the array but also the range of the target from a point on the array.

3 Matched Field Processing for Object Localization

As mentioned in the introduction, matched field processing [6] uses the spatial complexities of
the fields to localize sources in underwater acoustics. In a similar manner, plane wave MUSIC
outlined in Section 2 can be modified so that the direction vector is filled with the type of the
wavefront impinging on the array [2,3,8-10]. We divided this section into three parts. In the
first part we will describe the single object localization. Even though single object localization is a
subset of multiple object localization, we present it separately in order to explain the multiple object
case clearly. The second part will deal with multiple objects, but the electromagnetic interaction
between objects will be ignored. In the last part, we will treat multiple object detection problem
when the multiple scattering effects are taken into account.

3.1 Single Object Localization

By using the spatial distribution of the scattered field, we can fill the direction vector in plane

wave MUSIC with non-planar scattered fields to locate the near field objects. By modifying the

spatial MUSIC spectrum in (7), we form the following spectrum:
E,(r,0)H11,E,(r,0)

where the new “direction” vector (actually, the locus vector in r and 6 space) Es(r,8) is now filled

Pyusro(r,8) =

with the scattered field observed for an object located at r = (r,6). Then, the location (#,8)

maximizing the MUSIC spectrum in (8) is selected as the estimated object center.



Because a two dimensional search requires that the exact scattered field be calculated at each
point of the parameter mesh, this technique is in general computationally intensive. When the
objects to be detected are modeled as simple shapes, computing the exact scattered field can be
relatively simple. Here we consider the case of infinitely long cylinders so that the scattered field

due to a plane wave can be calculated using the Mie series:

o0

Ey(p,g)= Y coHP(kp)en(@tm=dinc) ®

(2)

where H,”’(.) is the Hankel function of the second kind of order n representing cylindrical outgoing
waves, k is the wavenumber in the homogeneous, possibly lossy, background, and ¢;,. is the inci-
dence angle of the plane wave. The coefficients ¢,, are determined from the boundary conditions
when p is equal to the radius of the cylinder. For computer implementations, the infinite sum in
(9) is truncated at a finite value beyond which the coefficients ¢,, are below machine precision. Here
p and ¢ denote the coordinates of the receivers since (9) assumes that the center of the cylinder is
located at the origin. In implementing (8), translations from object-to-receiver coordinate system
(p, ¢) to array-to-object-position coordinate system (r,6) are required. These translations do not
significantly alter the computational load or functional form implied by (9).

Fig. 2(b) shows the MUSIC spectrum for a localization scenario when a small metallic object
in 7.5 cm diameter is placed 15 cm below the array as depicted in Fig. 2(a). The 33-element
linear, uniform receiver array spans an aperture of 1.5 meters. All sensors are assumed to be ideal,
isotropic receivers. The operating frequency is 1.0 GHz and the plane wave is incident with 90
degrees. The lossy, homogeneous background has the same electrical characteristics of 5% moist
San Antonio clay loam or 10% moist Puerto Rico clay loam (e, = 6eg, 05 = 5 X 1072 S/m) at
around 1.0 GHz [21]. The signal to noise ratio (SNR) is fixed at 0 decibels. As Fig. 2(b) depicts,

the location of the object (r = 15¢m, 8 = 90°) is indicated with a very sharp peak. We note that



the prominent peak structure of the spectrum in this example is representative of a wide range of
other cases for which the background electrical properties, target electrical characteristics and the
signal to noise ratios are varied [2].

3.2 Multiple Object Localization: No Interaction

In this section, we describe multiple object localization assuming that the objects are located
sufficiently far apart, so that the interactions among them can be ignored. For this case, multiple
object localization is equivalent to having a superposition of cylindrical waves of the form in (9)
incident on the array. Since the interactions are ignored, the scattered field due to one object is
independent of the positions of the other objects, and thus we can use the single object localization
approach described in previous section to search for multiple peaks in MUSIC spectrum given in
(8) to determine positions of multiple objects. As in Section 3.1, the scattered field due to a single
scatterer is calculated using the Mie series in (9), and a two-dimensional search is carried out to
find N peaks corresponding to estimated target locations (71, él), (72, ég), ooy (P, éN)

The use of MUSIC in this manner raises two issues which are considered in the following
paragraphs. First, because we are operating in the frequency domain, there are signal coherence
difficulties which we address through the use of frequency diversity. The second issue is the need to
develop a quantitative means of understanding the circumstances under which the no-interaction
approximation is valid. In analyzing both of these issues, we present closed form analytical results
valid for near field objects of infinitesimal radius and verify through numerical calculation that the
insight provided by these expressions carries over for objects of finite size.

Because of the structure of x in (1), the rank of P = E{xx'}, is one and so is the rank of R.
Thus, the signals impinging on the array are coherent. To increase the rank of R (i.e. to decorrelate

the signals) we repeat the scattering experiment as represented by (1) at N different frequencies
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where N is the number of objects whose locationsLare to be determined. Thus (4) becomes:

R; = % Z vyl (10)
where y;; is the /th data vector observed at the 12;111 operating frequency, f;, and R, is the spatial
autocovariance matrix at f;, 7 = 1,2,---, N. Then, the rank enhanced autocovariance matrix R,
is obtained by

.1 L.

Ry= Z R;. (11)
In Appendix A, we prove for N = 2 that in the limi‘;i_rig case of infinitesimal object radius, frequency
diversity does, in fact, increase the rank of the autocovariance matrix R, to two. In addition, for
objects with finite radii, we can computationally demonstrate that using frequency diversity we
obtain a full rank autocovariance matrix. Having decorrelated the signals, the projector onto the
noise subspace, I, in (8), is found from eigendecomposition of R,.

While neglecting the interactions reduces the computational demand of localization consider-
ably, it may introduce large estimation errors if the interactions are in fact sizeable. To analyze
this issue we consider a scenario in which two objects are located a fixed distance beneath a re-
ceiver array and separated by a distance d.? We define the following normalized interaction term

to measure the relative import of the multiple scattering between the two objects
2
|ES ~ Bal
@) ; (12)
] ||E51 - Esl”z

is the scattered field vector observed at the array due to the first object in the presence of

§(d) =

maXge[q

min,dmaz
(2)
1

where E;

the second object, Egq is the scattered field from the first object when there are no other scatterers,
and d,,;, and d,,,, are limits over which we want to perform the analysis as dictated by the nature
of the underlying application. In Appendix B we provide a closed form expression for ¢ in the

case of two infinitesimally thin scatterers and show in Section 5.1, that (a) the ¢ for filamentary

2While not the most general setup, this configuration is representative of the types of application of interest in
this paper (eg. mine detection) in which at most a couple of objects are in the array’s field of view at about the same
depth. Moreover, this simplified problem provides insight which may well be of use in more complex situations.
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objects bounds those for the extended objects for a wide range of distances and (b) the error in
the localization procedure tracks closely the value of §. Thus, the expression in Appendix B can be
used to determine the degree of interaction between two scatterers in terms of spacing and electrical
properties of medium of propagation. By selecting a desired interaction level, we may calculate
the minimum distance between scatterers that satisfy this a priori level. If for a given scenario we
suspect that the actual distance is smaller than the minimum distance, then we should not ignore
the interactions, and use the technique in Section 3.3 to localize the objects.
3.3 Multiple Object Localization: With Interaction

In this section, we describe multiple object localization using MUSIC when the electromag-
netic interactions between objects are completely taken into consideration. In a sense, this is the
multi-dimensional equivalent of single object detection where we aggregate all scatterers into one,
large scatterer whose electrical characteristics are defined by the 2N co-ordinates of the individual

objects. For object localization, then, we form the following MUSIC spectrum:

E (ri,r9,...,vn) E (r1,r9,... 0N
Pyusic(r1,01,72,02, ..., 7N, 0n) = JGTLLRE 21 SUTLETEENL) (13)
Es(r1,ra, ..., oen)P1LE (r1, 12, .. ,1N)
where E4(rq,rg, ..., ry) denotes the total scattered field due to objects located at r;, i = 1,2,..., N

and is filled using the recursive T-matrix algorithm [16-18]. In order to find the positions of the
objects, then, we perform a 2N-dimensional search in location space of all objects, (r1,61),(rz,02)
..., (rn,0x). The coordinates (#1,6;),(72,02),...,(7n,0n) at which the spectrum (13) reaches
maximum give us the estimated target locations. Finally we note that since there is only a single
signal vector defined by the position of all the objects, we have no signal coherence issue here.
The computational complexity of this approach is considerably larger than the no interaction
case for two inter-related reasons: the repeated use of the forward scattering model many times for

the 2N-dimensional search, and the extra cost of taking electromagnetic interactions into account
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in the exact forward model. To keep the computational load at reasonable levels, we used the
recursive T-matrix algorithm given in [18] to calculate the scattered fields due to multiple objects.
This variant of T matrix algorithm is specifically designed for the efficient solution of near field
scattering problems involving heterogeneous collections of metallic and dielectric objects. Finally,
to further reduce the computational load, we employ a variable step-size steepest ascent approach
to maximize (13) which, for the problems of interest here typically converges to the neighborhood of
the maximum in 7-10 iterations after which point we use a less costly simplex search [22] to locate
the exact maximum. Explicit, closed form expressions for the gradient of the MUSIC spectrum
with respect to the target coordinates are provided through the use of the T matrix forward model.

The associated long and tedious formulae are provided in [23].

4 Cramér-Rao Performance Bounds on Object Localization

The Cramer-Rao Bound (CRB) provides very valuable information about the lower limit for
the variance of any unbiased estimator. In order to find CRB, however, one should have a closed
form expression of the log-likelihood function. In this section, we will extend the results in [15]
to find the Cramér-Rao bounds for the near field, multiple object detection geometries. Since the

additive noise in (1) is white and Gaussian, the log-likelihood function can be written as [15]:

L
1 H
In £ = constant — 2M Llno — - z[y — AL x|y — AnsX| (14)
=1
where o? is the noise variance, M is the number of receivers and L is the number of data vectors

used for estimating the covariance matrix R in (4).

Given the log-likelihood function, the Fisher Information Matrix (FIM) can be written as:

J = E{ypyT) (15)

dInL 9InL OInL 9InL

I BB B 0 7. The FIM is then expressed in matrix form as:

where ¥ = |
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J = (16)
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| F@]\]Tl F@]\]el e FeNTN FHNHN i
where I'y, = E[agggqﬁ], {p,q} ={r1,01,72,02...7n,0n}. The entries of FIM are [15]:
L
2
Ty =5 Y Re{x"D['D,x}, (17)
=1
where D, = 3%;“ and D, = 3%{’;“. The columns of matrix A,,s contain the scattered fields as

defined in (1), and since the scattered fields are calculated using the recursive T-matrix algorithm,
derivatives of A with respect to object positions, D, and D,, can be easily obtained [23]. Since x

is constant over L experiments, (17) can be further reduced to:
T,, = i—fRe{xHDfqu}. (18)
The Cramér-Rao bound by definition is, then, the inverse of the FIM:
CRB(r1,601,...,7n,0n) = J ", (19)
The ith diagonal entry in the Cramér-Rao bound expression in (19) gives the Cramér-Rao lower

bound for the ith variable in the parameter set {ry,60;,7r9,05...75,0x}. In Section 5, we will verify

the analytical expressions given by (19) with the Monte-Carlo simulated error variances.

5 Examples

In this section, we present numerical examples on localization of multiple objects and verifica-
tion of Cramér-Rao lower bounds with Monte-Carlo simulations. In order to simplify the scattering
phenomenon associated with the detection problem, the targets are modeled as simple, circular ob-
jects with diameters of 7.5 cm. The system parameters are kept constant throughout the examples

to allow meaningful comparisons. The scattered field due to an incident plane wave is observed
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along a 33-element, uniform, linear receiver array which spans an aperture of 1.5 m. The sensors
are assumed to be ideal, isotropic receivers. Unless otherwise noted, the operating frequency is
set to 1.0 GHz. The objects are placed in a lossy, homogeneous background which has the same
electrical characteristics of 5% moist San Antonio clay loam (e, = 6¢g, o5 = 5x 10725 /m) at around
1.0 GHz [21]. In all examples the scattering simulations are repeated 250 times to estimate the
autocovariance matrices, i.e. L = 250 in (4) and (10).

In order to show the performance of the algorithms, we consider two objects geometries. In the
first case (I'ig. 3(a)), the objects are located quite far from each other. For this object geometry,
due to the lossy background, the interactions between the targets are very weak. In the second
case (Fig. 3(b)), the objects are located closely, and the electromagnetic interactions between the
objects are considerably stronger.

For the simulations, the definition of signal to noise ratio (SNR) is not obvious. In practical
problems, SNR is imposed by the nature of the system noise. However, in computer simulations
we want to reference the noise power to a fixed quantity that does not change as the positions of
the objects change. For this purpose SNR is referenced to the scattered field strength of a single,
cylindrical, metallic object placed at the same depth as the objects, in the same lossy medium.
The radius of the reference scatterer is the same as the radii of the targets. With this definition,
the noise power is always proportional to the power of reference scattered field.

5.1 Multiple Object Localization: No Interaction

As described in Section 3.2, all scatterers are assumed to be scattering the incident plane wave
independently. Therefore, we used the Mie series to generate the MUSIC spectrum in (8). The
issue of signal coherence is solved by using two operating frequencies, 1.0 and 1.2 GHz. The

autocovariance matrix at each frequency is estimated using (10), and the full rank autocovariance
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matrix is calculated using (11). For a wide range of target locations, we have verified that the
autocovariance matrix Ry has two distinct signal eigenvalues that are quite different from the noise
eigenvalues. The order of magnitude difference, of course, depends on the signal-to-noise ratio.
At the 20 dB SNR level used in this example, the smallest signal eigenvalue is approximately two
orders of magnitude larger than the largest noise eigenvalue.

In Fig. 4, we plot the MUSIC spectrum in (8) for the case of well separated objects. As the
figure depicts, the target locations are indicated by two peaks that are easy to distinguish from the
background. The spectrum for the closely packed object case is shown in Fig. 5. It is clear from the
figure that the no-interaction approach fails for this case. This is expected, since the no interaction
model ignores the multiscattering effects that are very strong for closely spaced scatterers.

Since ignoring electromagnetic interactions may result in estimation errors, or even prevent
resolution of targets as in Fig. 5, we investigated the interaction between two extended objects and
compared the results with filamentary objects. Consider a problem where two objects are located
15 cm below the array. The position of one is kept fixed at (125, -15) cm (i.e. about 1/4 of the
way from the right edge of the array) while the second is moved from left to right such that the
inter-object distance, d, varies from eight centimeters to one meter. The interaction term given by
(12) for both extended objects (computed using the T matrix method) and the filamentary objects
(obtained from (28)) are shown as a function of d in Fig. 6(a). It is clear from this figure that for
both extended and infinitesimally thin objects, the interaction terms decay very similarly.

The link between estimation error and object separation is shown in Fig. 6(b). A comparison
of Figs. 6(a) and (b) reveals the expected result that both estimation errors and interaction terms
decay as the objects are located farther apart. Figs. 6(c) and (d) show the same comparisons

in (a) and (b) when the objects are located 25 cm below the array, further indicating that the
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simple interaction term of Appendix B clearly provides a good measure of the level of interaction
between extended objects, and one may use this simple interaction criterion to decide whether the
no-interaction case would result in acceptable estimation errors. In fact, we can use Figs. 6(a) and
(b) to estimate how the no-interaction case would perform for geometries given in Fig. 3. When
the objects are 1 meter apart, Fig. 6 indicates that the interaction term is insignificant, so is the
estimation error. As seen from Fig. 4, for this case the object centers are clearly defined by two
peaks around the true center coordinates. When the objects are separated by 10 cm, however,
there is a considerable electromagnetic coupling between objects, and the estimation errors are so

large that the objects centers cannot be resolved as verified in Fig. 5.
5.2 Multiple Object Localization: With Interaction

We have applied the algorithm given in Section 3.3 to localize the targets for the two geometries:
well separated and closely spaced objects. The signal to noise ratio is fixed at 20 dB and the
autocovariance matrix, and the projection operator onto the noise subspace is calculated.

To determine the positions of the two targets, we searched for the maximum of the spectrum
Prrosic(ry, 01, 72,02) given by (13) in (rq,6q,72,62) space. To find this maximum we use the
steepest descend algorithm described in Section 3.3. Fig. 7 shows the intermediate object positions
at each iteration during the multi-dimensional search. The objects are located 1 meter apart,
and the initial guesses are denoted with *’s 3. Large circles indicate the support of the objects.
Although not clear from this figure, as the number of iterations increase, the location estimates

get closer to the true estimates at (25, —15) and (125, —15) cm. Fig. 8 shows the object positions

at each iteration during the multi-dimensional search when the objects are closely spaced. The

9Here we have initialized the search method by hand to illustrate the manner in which the search process functions.
As described below, to verify the Cramer-Rao bound analysis, we employ an automatic method for initializing the
nonlinear optimization.
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distance between the targets for this case is 10 cm. Again the initial guesses are indicated with *’s,
and as the number of iterations increase, the location estimates get closer to the true estimates at
(70,—15) and (80, —15) cm. For both cases, we observed that this approach quickly converges to
the general maximum area in 7-10 iterations using the steepest decent algorithm. After the initial
quick convergence, we switch to a simplex search [22] to locate the precise maximum.

5.3 Verification of Cramér-Rao bounds

In this section, we will compare the analytical Cramér-Rao bound results obtained in Section 4
with the Monte-Carlo simulated error variances. For this purpose, the algorithms described in
Sections 3.1 and 3.3 are repeated 500 times at different signal to noise ratios. For each Monte-
Carlo simulation, the multi-dimensional search routine requires initial values for the positions of the
targets. Thus, to supply the algorithm with an initial value, we used the subarray processing method
described in [1]. This approach can efficiently provide rough estimates of the object locations. Once
we initialize the object positions with subarray processing, we perform the multi-dimensional search
described in the previous section. The position vector maximizing the spectrum is declared as the
position estimates and the error variances are calculated from the estimates.

Fig. 9 shows the comparison of analytical CRB calculated for single object geometry of Fig. 2
using (19) with 500 Monte-Carlo simulations of the algorithm described in Section 3.1. The solid line
is the CRB for the radial position of the object and measured in squared meters. The dashed line
denotes the CRB for the angular position and measured in squared radians. The radial and angular
positions are referenced to the center point of the array. Monte-Carlo simulated error variances for
range and bearing variables are shown on the same plot with o and ¢ symbols, respectively.

Fig. 10 compares the Cramér-Rao bounds with simulated error variances for multiple object

geometries of I'ig. 3 using the algorithm of Section 3.3. Fig. 10(a) shows the comparison for two
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objects located one meter from each other, and Fig. 10(b) show the comparison when the objects
are 10 centimeters apart. Again, the solid and dashed lines are the CRBs for radial and angular
positions of the objects, respectively. The range variables have the unit of squared meters, and the
bearing variables have the unit of squared radians. As before, both coordinate variables are defined
with respect to the center point of the array. The symbols o and ¢ show the Monte-Carlo simulated
error variances for the range and bearing variables, respectively. For this case, since there are two
targets present in the region, there are two symbols at each SNR value. The problem geometry
is symmetric, thus, one would expect that the error variances should be the same. Indeed, for
analytical Cramér-Rao bounds calculated from (19), the bounds for coordinates of both objects
are the same. For the simulated error variances, however, we can notice the different values for
the range variables in Fig. 10(a) and for the bearing variables in Fig. 10(b). The difference in
simulated variances pronounced for low signal to noise ratios, which, we believe, implies that more
Monte-Carlo simulations are needed at those SNR values.

In both Fig. 9 and Fig. 10, we observe that the simulated error variances approach the lower
limit provided by the Cramér-Rao bounds as the signal to noise ratio increases. This is expected
by the results reported in [15] which states that MUSIC is an efficient estimator for large SNR
values. The results presented here, therefore, reveal that at high signal to noise ratios MUSIC is

an efficient estimator for near field object localization problems, too.

6 Conclusions

In this paper we presented a matched field based high resolution array processing technique
for localization of near field targets. The algorithm is presented in three parts: single object
localization, multiple object localization ignoring the interactions between objects, and multiple

object localization taking multiple scattering into account. When the interactions are ignored,
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the computational load is alleviated since the electromagnetic model is a simple Mie series, and a
two-dimensional search in parameter space suffices to localize all objects. The drawbacks, on the
other hand, are the necessity to take care of the coherent signal issue, and the failure to resolve
and localize closely spaced targets. When the electromagnetic interactions are accounted for, these
drawbacks are remedied, but the computational load due to multi-dimensional search, and complex,
multiple scattering forward model increases.

We have also calculated the analytical Cramér-Rao bound expressions for coordinates of multiple
objects when the interactions are taken into consideration. These lower bounds are then verified
with Monte-Carlo simulated error variances. We have shown that as the signal to noise ratio
increases, simulated error variances approach the lower limit set by the Cramér-Rao bounds.

In terms of future work, our primary interest is the extension of this method to three dimensional
buried objects for problems in which the halfspace between the air and the earth is explicitly
modeled. This will require the generalization of the single object, half-space T matrix method
of Kristensson and Strom [19] to the multi-object case as well as the development of MFP-type

methods which are built around this new forward model.
Appendices

A Frequency Diversity

In this appendix, we will show that under simplifying assumptions the frequency diversity
described by (10) and (11) increases the rank of the autocovariance matrix. Consider the data
model y; = s; + n; where s; is the noise-free scattered field due to a scatterer at frequency f;,
n; is the white, Gaussian noise as before, and y; is the observed data vector at frequency f;,

1=1,2,---,N. To simplify the problem, we will assume that the number of scatterers is limited
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to two (N = 2), and the scatterers are infinitesimally thin.
The exact expression for the rank enhanced autocovariance matrix, Ry is:
Ry = %E {yiyt' +yy3'} = % [sist’ + sys8 +20°1] (20)
For two scatterers, the frequency diversity should ensure that the signal subspace of Ry is two
dimensional. To see the conditions for which the signal subspace of R, is two dimensional, we

rewrite (20) as:

1 10 sH )
R, = 3 [s85] +0°1. (21)
0 1 si

For the signal subspace of Ry to be two dimensi‘(s)nal, the matrix S should have rank two which is
possible if vectors s; and sy are linearly independent. Since the maximum likelihood estimate of
the rank enhanced autocovariance matrix Ry in (11) is asymptotically equal to Ry, the proof for
R, is valid for R, for large snapshots, i.e. I — oco. In the rest of the appendix, we show that Ry
has a two dimensional signal subspace, by proving that s; and s; are independent.

For this purpose, we show that the scattered fields due to the filament scatterers observed at
two points, A and B, in space at two distinct frequencies, f; and fy, are independent. Thus, the
data vectors measured over an array at more than two points will also be independent. The general
Mie scattering series given in (9), is reduced to the following expressions for filament scatterers:

EA = coHSP (kyra) EA = doH{P (kyry) o)
EB = coH P (kyrp) EB = doH? (kyrp)
where r4 and rp denote the observation points, coefficients ¢y and dy are dependent on the fre-
quency and object properties, H(gQ)(.) is the zeroth order outgoing Hankel function, and k; is the
wavenumber at f;, 2 = 1,2. We will show that the vectors
E4 £

s1 = and sy = (23)
E§ E
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are independent, i.e. equations
EA =abE4 and EB =aEB (24)
cannot be satisfied as long as fi # fs.
Equations (22) and (24) imply that:

COH(SZ)(ker) = adOHéz)(kgrA) and COHSZ)(ker) = adoHéz)(kQTB) (25)
which can be written as
ady  HP(kira)  H
o  HO(kya) H

(26)

Properties of Hankel functions require that |H52)(k:17‘)| and |Héz)(k‘2r)| are monotonically de-
creasing, and do not intersect at any r. These two properties and the fact that H(gZ)(le)/HéQ)(kQT)
is not a constant imply that if we choose a v such that HéQ)(kl TA)= 7Héz)(k27‘A), then there would

(2)

be no rp which satisfies Hy™ (k1rp) = "/HéZ)(kgrB) unless k1 = kg and v = 1. Therefore, the vectors

in (23) are mutually dependent only when k1 = ko, ie. fi = fa.

B Bound on Electromagnetic Interactions

In this appendix, we derive the interaction terms between two infinitesimally thin scatterers.
Using the definition of the interaction term in (12), we calculate the electromagnetic interactions
between two infinitesimal scatterers here, and then compare these simple interaction terms with
those of extended objects in Section 5.1.

First we derive the scattered field from two filamentary objects separated by a distance d, when
they are excited with a plane wave, e/%*. With a simple approach, schematically shown in Fig. 11,
we account for the multiple scattering between these objects iteratively. The field scattered from
the first object due to the plane wave is obtained by setting n = 0 in (9) and is Eg; = COHéQ)(k|r|)

where ¢g depends on the object radius, and |r| is the distance between the scatterer and the receivers
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in the array. Thus, the value of Eg; at the location of the second object is CoHéQ)(k‘d), where d is
the distance between the two objects.

Still assuming no interaction, we use C()H(gQ)(kd) as incident field on the second object, and
find the scattered field due to the wave scattered from the first object as: Eg12 = dOH(gQ)(k‘|r|)
where dy = 60[60Hé2)(kd)]. When this field arrives at the location of the first object, it becomes
dOHéQ)(kd). Using this as the incident field on the first object, we calculate the third term in
our scattering series as Egy21 = eoﬂéz)(k|r|) with eg = co[dOHéz)(kd)]. By carrying no-interaction
scattered fields between scatterers in this manner, the scattered field due to the first object, in the
presence of the second is given in the form of an infinite sum:

Eq® = Eq +Eas+ B2 + Eaziz + ...
= o {1+ col{P (k) + [co HS kD) + [co B (RDP + ..} HP([]). (27)
The difference between with-interaction and no-interaction fields can now be expressed as:

Eq® — Eq = co{coH P (kd) + [coHP (kd)]? + [co H P (k)P + .. Y H P (K|x)),

which can be written concisely as:

B HP (kd
Ba® - B = 00 D), (25)
1 - C()HO (kd)
Expression in (28) is warranted since |COH(§2)(kd)| < 1, where ¢g = ;(02()]:2)) and a is the radius of
0 a

the object, a < d. Evaluation of (28) for r equal to the positions of the receivers then provides the

means of determining 6(d) in (12).
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Figure 1: Problem geometry
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Figure 2: MFP localization example: single metallic object in a lossy, homogeneous background
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Figure 3: Example geometries used in multiple object localization
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Figure 4: Localization of two targets located 1 meter apart, electromagnetic interactions are ignored
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Figure 5: Localization fails when the target centers are 10cm apart in the no interaction case
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Figure 6: Electromagnetic interaction between scatterers, and its effect on estimated object coordi-
nates when the objects are 15 cm away from the receiver array (top plots) and 25 cm away (bottom

plots)
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Figure 7: Convergence of four-dimensional search into the true object coordinates when the objects
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Figure 8: Convergence of four-dimensional search into the true object coordinates when the objects
are 10 cm apart. *’s indicate the initial guess, and large circles indicate the support of the objects
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Figure 9: Comparison of analytical CRB with Monte-Carlo simulations for single object geometry
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Figure 10: Comparison of analytical CRB with Monte-Carlo simulations for multiple object ge-
ometries given in Fig. 3
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Figure 11: Finding the scattered field due to a filamentary object by incorporating the electromag-

netic interactions between two scatterers step by step. Steps 2 and 3 are repeated infinitely many
times successively to account for all interactions
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