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Abstract

A wavelet domain, non-linear inverse scattering approach is presented for imag-
ing sub-surface defects in a material sample given observations of scattered thermal
waves. Unlike methods using the Born linearization, our inversion scheme is based on
the full wavefield model describing the propagation of thermal waves. Multiresolu-
tion techniques are employed to regularize and to lower the computational burden of
this ill-posed imaging problem. We use newly developed wavelet-based regularization
methods to resolve better the edge structures of defects relative to reconstructions
obtained with smoothness-type regularizers. A non-linear approximation to the ex-

act forward scattering model is introduced to simplify the inversion with little loss



in accuracy. We demonstrate this approach on cross-section imaging problems using
synthetically generated scattering data from transmission and backprojection geome-

tries.

1. Introduction

Thermal wave slice tomography (TWST) has evolved in recent years as a useful tool for
non-invasively imaging and detecting defects in the bulk properties of a material sample! .
This non-destructive evaluation (NDE) technique makes use of a modulated laser source
illuminating an external surface of the material under test to induce internal thermal waves.
Interaction of the thermal wave field with material inhomogeneities gives rise to scattered
fields which propagate and are ultimately measured at the surface of the material. The
problem of interest in this paper is, given knowledge of the applied thermal wave field and
the observed scattered fields, to produce a reconstruction of the internal structure which
reproduces as faithfully as possible features of interest such as defects.

The techniques we use to solve this inverse problem are based on the results of Mandelis
who has shown that the thermal wavefield obeys a scalar Helmholtz equation with a complex

t4°. The spatial structure of this constant is

valued, space varying propagation constan
related to the thermal diffusivity of the material. Because defects are reflected in changes in
the thermal diffusivity, a reconstruction of the propagation constant, or a normalized form
known as the object function!, yields quantitative information about the material’s bulk
structure.

Mathematically, the TWST inverse problem is equivalent to an inverse electrical conduc-
tivity problem which has been studied extensively in the geophysical and electromagnetics

literature®®.

These ill-posed inverse problems possess a collection of interesting and well
established difficulties not the least of which is that a complicated, non-linear relationship

exists between the observed scattered fields and the object function. The first efforts in em-

ploying the forward scattering model of Ref. [ 4, 5] for TWST inversion have been to consider



a linearized form of the exact physics obtained under the first Born approximation' . This
model takes into account diffractive effects and is most accurate when the thermal diffusivity
perturbation is “small” both in size and amplitude relative to a known background!?. The
initial inversion results using the Born model have been quite encouraging in that images
containing quantitatively useful information concerning the spatial location and magnitude
of defects have been reconstructed using both simulated and experimental data' 3.

Here we extend the use of wavefield inversion methods for the TWST problem in a
number of ways. First, a full, non-linear inverse scattering approach is used to generate
the reconstruction. The resulting inversion method is iterative in nature and may allow
for the more accurate reconstruction of defects whose structure falls outside of the bounds
where the Born approximation is valid. We also make extensive use of wavelet methods
in the formulation and the solution of the problem. Our motivation for employing these
mathematical techniques is based on our previous work in wavelet-based non-linear inverse
scattering!!. First, the wavelet transform is known to make sparse the matrix representations
of many integral operators including those arising in the TWST scattering problem'?. Thus,
a transform domain formulation can build on this sparsity to reduce the computational
burden of generating a reconstruction. Additionally, the TWST inverse problem is highly
ill-posed in the sense discussed in Ref. [ 13]. That is, small perturbations in the data, as would
come from noise, can result in reconstructions with high amplitude, oscillatory structure.
Roughly speaking, these non-physical artifacts arise because the forward scattering process
is highly smoothing so that the data contain very little useful information about the high
frequency structure of the object function. Attempting to extract such information without
some stabilization (also known as regularization) results in distorted reconstructions.

Our previous work has demonstrated that wavelet methods can be employed in two
respects for regularizing these inverse problems'™!4, First, it was shown that traditional

15 could be implemented quite easily in a

Tikhonov-type smoothness regularization schemes
wavelet transform formulation. Second, by exploiting the structure of the wavelet regularizer

we developed an adaptive method for determining those elements in the wavelet transform



of the object function for which the data did and did not provide useful information at each
stage of the inversion. This work provided insight into the manner in which the physics of
the problem along with factors such as source-receiver configuration, noise level, and prior
information determined the finest scale as a function of space which could “reasonably” be
obtained in the reconstruction. Additionally, we used this decomposition to reduce further
the complexity of solving the inverse scattering problem.

Here, we build on these results in a number of ways. First, we introduce and demonstrate
the utility of a class of wavelet regularization schemes which are appropriate for the recon-
struction of objects (defects) with sharply defined boundaries. Tikhonov type regularizers
typically are designed to produce smooth, low-pass reconstructions which blur important
features such as edges in the image'®. By making use of certain mathematical results which
state that wavelets can be used as bases for a wide range of function spaces including spaces
containing “edgy” objects'®, we develop a new scale-space regularization method which pro-
duces significantly sharper reconstructions.

Additionally, we develop a wavelet-based, reduced complexity approximation to the for-
ward TWST problem. As discussed in Section 4, at each stage of the iterative solution
method we must compute explicitly the inverse of a large, dense matrix, a computationally
intensive task. This matrix is related to the solution of the thermal-wave forward scattering
problem for an object function equal to the reconstruction obtained at the previous iteration
plus a small correction. By linearizing the expression for this matrix about this correction,
we obtain a recursive formula in which the inverse matrix at the current iteration is equal to
the one from the last iteration plus an increment due to the change in the material proper-
ties. Construction of this increment requires only the multiplication of three sparse matrices
rather than the inversion of a single, large, dense matrix.

The remainder of this paper is organized as follows. In Section 2 the mathematical
model underlying the TWST problem is defined. Section 3 is devoted to an overview of the
wavelet transform and its application to the thermal-wave tomographic inverse. The non-

linear inverse scattering algorithm is developed in Section 4 with examples of its application
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to synthetic problems provided in Section 5. Finally, in Section 6, conclusions and future

work are discussed.

2. Physical Model for TWST

Asillustrated in Fig. 1, we consider TWST problems in which a modulated laser illuminates a
point at the top of the material sample inducing thermal waves in the bulk. Upon scattering
from inhomogeneities, whose spatial structure is defined by the real-valued object function
g(r), the fields are measured along an array of points either at the top (backpropagation
geometry) or the bottom (transmission mode). The inversion routines are based on K such
scattering experiments. The data for the ¢th experiment form the vector of in-phase and
quadrature components of the scattered thermal-wave field measurements obtained along
one of the arrays due to illumination by the laser at a given point on the top surface. One

such data point for the ith experiment at location ry, denoted y;(rg), is

yi(ry) = AG(rkvr')Ti(r')g(r')dr’ + ni(ry) (1)

where the integral on the right hand side of (1) is the scattered field and n;(ry) is taken to
be additive measurement noise. Region A is the area of space in which the defects might be
found. The quantity G(r,r’) is Green’s function associated with the pseudowave Helmholtz
equation for a homogeneous medium characterized by a complex propagation constant which
is infinite in two dimensions and bounded by two planes in the third*®. Finally, T;(r) is the

thermal wavefield internal to A which satisfies*?®

Ti(r) = Ty(r) + / G(r,x')Ti(r")g(x")dr’ (2)

A

where Tj(r) is the time-harmonic, incident thermal wavefield generated by the laser source
at a given point on the top surface. The detailed expressions for G(r,r’) and T;(r) for the
planar geometry of interest here may be found elsewhere!™.

Our algorithms are based on discrete representations of the integral equations (1) and

(2) obtained using the method of moments'” with a pulse-basis and Dirac testing functions.



That is, region A is pixelated into an N, x N, array of rectangular pixels and the fields
and object function are expanded in a series of flat top functions (i.e. zeroth order splines)
indicating that these quantities are constant over small pixels in region A. After these
expansions are placed into (1) and (2) and integration is performed with respect to r’, the
variable r is discretized in (2) by requiring equality of the left and right hand sides for all
points, r;, located at the center of each pixel. Upon performing this discretization process,

(1) and (2) become

yv: = L;D(T;)g + n; (3)

In (3), y; is the vector of observations along the array for the ith experiment. If we regard
g(r) as an N, x N, pixelated image with the pixel value at row m and column n given
by the flat-top expansion coefficient g, ,, then [g]., the ith component of the vector g, is
related to the pixel values via the index mapping ¢ = Ny(n — 1)+ m for n = 1,2,..., N,
and m = 1,2,..., N,. A similar construction holds for the internal field vector T;. In (4)
T; is the background field vector obtained from point-matching, D(x) is a diagonal matrix
whose entries are the elements of the vector x, and L; and G are the matrices obtained by
discretizing the integral kernels in (1) and (2). n, are taken to be mutually uncorrelated,
zero mean, white Gaussian noise vectors. By solving for T; in (4), and substituting the

result into (3), the data are related to the object function via the non-linear model

yi = hi(g) + n; (5)

hi(g) = LD [(I- GD(g)) ' T} g. (6)

The TWST problem may now be stated as follows: given data from K scattering experi-
ments defined by the physical model in (5), determine g, the vector of expansion coefficients
characterizing the object function.

There are two primary difficulties in recovering g from y;. The first challenge is caused

by the physics of thermal-wave propagation. The strongly lossy nature of the Helmholtz



pseudowave equation underlying (5) causes h; to act essentially as a spatial low-pass filter
when applied to g. The data contain predominantly coarse scale averages (i.e. low frequency)
information about g. Finer scale information is available primarily in the areas close to the

source and receiver locations where Green’s functions are singular®®!'!.

Thus, attempts
to reconstruct a uniform, fine scale pixelated version of the object function are prone to
instabilities resulting in images which are typically characterized by non-physical, oscillatory
artifacts. As described more fully in Ref. [ 13], for linear inverse problems where h(g) = Hg
for a matrix H, such artifacts arise from noise-induced amplification associated with the
inversion of “small” singular values of H. The corresponding singular vectors typically
possess an oscillatory structure. Such difficulties also arise in the non-linear case such as the
TWST problem considered here.

The second problem is computational. The nonlinearity of h; implies that an iterative,
“hill-climbing” approach must be used to generate the reconstruction. As described in
Section 4, such an approach requires the explicit inversion of I — GD(g) at each iteration

with g equal to the current estimate of the object function. Because this matrix is both

large and dense, this operation represents a substantial computational burden.

3. Wavelet Domain Model

We pursue a wavelet-based solution to the TWST problem to address both the computational
and stability problems. The expansion of g in a wavelet basis provides a natural mechanism
for adapting the level of detail in the reconstruction to the information content in the

data thereby stabilizing the solution procedure!!:'4,

For example, near the center of A,
one may only desire a coarse scale estimate of g with added detail near the edges where
the sharply peaked nature of the Green’s functions near the source and receiver locations
provides the additional information. Also, the wavelet domain representations of L; and G

are sparse thereby lowering the computational costs associated with their manipulation. In

the remainder of this section, we provide an overview of the wavelet transform and describe



the scale-space representation of the TWST problem. For simplicity, we limit most of the
the discussion to the one dimensional case. Extensions to multiple dimensions are obtained
through the use of separable transforms!®.

Like the Fourier series, a wavelet series represents a (square integrable) function as the
superposition of a set of orthonormal functions. Whereas the Fourier basis employs complex
exponentials, the wavelet basis is comprised of all dyadic dilations and shifts of a single
wavelet function, (), generally designed to be well localized in space. Thus, the wavelet
expansion for a 1D function a(z) is:

a(z) = Z > ajrtis(z) (7)

j=—00 k=—00

where t; () = 279/2p(277 2 — k) is the wavelet function at scale j and shift & and the wavelet
coefficient v ; is the inner product of a with ¢; ;. Similarly to the complex exponentials, the
wavelet functions form an orthonormal basis of the space of square integrable functions. In
Fig. 2 we plot a number of the Daubechies 4-tap wavelet basis functions at different scales
and positions. This picture illustrates that as j increases, the wavelet coefficients represent
the inner product of a(z) with increasingly compressed basis functions and therefore convey
localized, fine scale/high frequency information about a near the point 277k,

For most problems, we deal with truncated versions of the infinite sums. To truncate
the scale index we introduce the scaling function, ¢(x), which represents the coarse scale
information from j = —oo to some arbitrary, finite, coarse scale which we label 5 = 0.

Because the ¢g  are orthonormal to one another, as well as the wavelets, ¥, x(z), (7) becomes

o) = Y ansbosle) + 32 Y itinla) )

where the scaling coefficients ag are the inner products of ¢gx(x) with a(z) and we have
assumed that a(x) is “scale-limited” to j = F,. Essentially, in this finite scale case, the
scaling functions capture the low frequency behavior (including DC) of a(z). The truncation
of k required for considering functions defined on a bounded subset of the real line is achieved

either though a process of periodization'® or by using special “edge” wavelets built for



multiscale expansion on an interval?. Following our previous work!"!4, here we use the edge
wavelets approach as such an approach avoids any “wrapping” effects caused by linking one
end of the interval to the other.

Like the Fourier case, there is an orthonormal discrete wavelet transform (DWT) which
takes a vector of coefficients representing a function at some fine scale F, into the wavelet
coefficients at all scales 0 < 7 < F, — 1 along with the coarse scale scaling coeflicients, ag .
The initial, fine scale functions could be samples of the function, expansion coefficients, ag, .
in a fine scale, scaling function expansion of a(z) etc. While we will be concerned both with
one- and two-dimensional signals, we describe first the mechanics of the 1D DWT. We define
a, of dimension 27« to be the vector of fine scale coefficient and will denote this vector by
a(M,), indicating that this is a representation of a at the finest scale, M,.

Beginning with a(M, ), a coarser approximation, a(M, — 1), is obtained by passing a(M,)
through a low-pass, finite impulse response filter and decimating the filtered output by a
factor of 2. Thus a(M, — 1) is coarser than a(M,) in that the filtering and downsampling
procedure has removed the high-frequency structure from the original signal, and a(M, — 1)
is half as long as a(M,). The detail lost in moving from a(M,) to a(M, — 1) (denoted
a(M, — 1)) is extracted by a high-pass filter and decimation procedure. The filtering and
decimation process is applied successively to the coarsened versions of a, resulting in a
sequence of scaling coefficient and detail vectors, a(m) and a(m), respectively, each of
dimension 2™, form= M, — 1....,0.

Low and high pass filters, which are closely related to the functions ¢(z) and ¢ (z), can
be constructed so that we may build an unitary matrix, W, relating the finest scale scaling
coefficients to the coarsest scaling coefficients and all detail coefficients*!. We note that not
all wavelet transforms result in unitary DW'T matrices. In particular, so-called bi-orthogonal
DWTs possess a variety of advantages over their orthonormal counterparts®?; however, in
this paper, we consider only the orthonormal DWT. We subscript the wavelet transform
operator as W, to make explicit that this is the transform for a. We will use different

wavelet transforms for the different variables.



The DWT of a two-dimensional function is obtained by considering the image, a(m,n),
as a matrix and applying one orthonormal wavelet transform, W, ;. to the columns and
another, W, . to the rows. If we define & as the physical-space image (that is, [a] = =

m,n

a(m,n)) and & as the 2D DWT of & then the two are related according to
& =W, ,aW’ . (9)

Note that & in (9) may be regarded as a multiscale “image” of a. That is, the columns
and rows of & are independently indexed by scale/shift indices for the x and y variables
respectively. That is, the elements of & represent wavelet coefficients for discrete, separable,
2D basis functions comprised of wavelets at scale/shift (j,, k;) in the horizontal direction
and (jy, ky) in the vertical for all allowable combinations of these four indices. Additionally,
there are components of & corresponding to coarse scale, z-oriented scaling functions with
vertical wavelets and vice versa. Finally, we note that (9) is a linear transformation of a.
Thus, we define vectors a and a obtained by stacking one column on top of another from a

and & respectively and it is easily shown that
a = W,a.

The matrix W, is the linear operator mapping elements of a into elements of a and rep-
resents the composition of W, , and W, ,. As in the 1D case, W, as defined above is
unitary so that a may be obtained from a via multiplication by the transpose of W,:
a=W;'a = Wla. Thus, by following this column-stacking approach, the mechanics and
symbolic manipulation of multidimensional wavelet transforms is identical to the 1D case.
We use the DWT to transform (3) and (4) from physical space to scale space. Defining

W, as the 2D transform for g and W, forz = 1,2,..., K as the 1D transforms for y; yields:

Wy, = [W,L;W!]| [W,D(T;) W] (W,g) + Win;

W, T; = W,T, + [W,GW/| [W,D(g)W/ ] (W,T,)

which, upon making the obvious definitions become

10



n; = AA(6:)y + v, (10)

2

where, for example, A(+) is the standard form'* wavelet transform of D(g) and is a function

of v since A(y) = WgD(Wg'y)WZT. From (10) and (11), the complete model relating the

transform of the object to those of the data is

7, = AA [(I-TA ()7 0] v +v. (12)

Xi(y)
Finally, we aggregate the 1, into a single data vector and define the stacked system

"=+ (13)

with § = [T ...nk%] and Y(v) and v defined accordingly. With (13), the TWST inverse
problem to be solved here is the recovery of =, the DW'T of g, from measurements 7,

knowledge of X, and the statistics of v.

4. Inversion Algorithm

In this paper, the reconstruction of =, denoted by 4, given the data, 1, is defined to be the

solution to the following non-linear least squares type of optimization problem
¥ = argminC(v) (14)
1
Cly) = 5lm = X)llz- + X*p" (7)p() (15)

where ||x||a = xT Ax, R is a diagonal weighting matrix whose entries reflect the noise levels
in the data and pT(5)p(7) is used to regularize the problem. The process of minimizing
the computational cost function, C(+), forces 4 to balance the effects of the two terms
comprising C. The first term enforces fidelity to the data. That is, our choice of 4 should be
such that when put through the forward model, X, it comes “close” to reproducing the data,
1, where closeness is measured in the appropriate norm. Thus, smaller cost is associated

with reconstructions which better explain the data that we have collected.
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Were the first term in (15) the only portion of the cost, the ill-posed nature of the TWST
problem would result in a reconstruction with large amplitude, high frequency components.
To counter this effect, the regularization term, p’p, is included. Generally pTp is used to
constrain the reconstruction to have properties such as small energy (i.e. small Ly norm),
minimal gradient norm, or other smoothness-type of characteristics?>. Hence, vectors corre-
sponding to such oscillatory reconstructions are less desirable and therefore incur a higher
cost. Finally, A\?, the regularization parameter, is specified to balance the relative impact of
the two terms on the reconstruction procedure. To summarize, the overall problem is to find
a vector 4 which minimizes a cost function. This function imposed higher cost (i.e. higher
computational penalty) for 4 which fails to replicate the measured data and which possesses
unfavorable structure, such as oscillatory behavior.

We employ a form of the Levenberg-Marquardt algorithm (LMA)?* for finding 4. This
iterative technique defines a sequence of reconstructions, 4,,, whose costs as measured by (15)

are steadily decreasing. Starting from an initial guess, %, the form of the LMA used here is

Hs1 = F 0 (16)
s, = argmin C(H, +s)
s= [TT(3)RTT(3,) + 02 LT(3,)£(3,)] " x
T HIR = Y(3,)] - £7(3,)L(3,)- (17)

In (17), J(#,,) is the Jacobian matrix of Y evaluated at the vector 4,,. To build the (7, k)th
element of J, the jth component of Y is differentiated with respect to the kth element
of . This scalar function will, in general, depend on all components of «. The Jacobian
is obtained by evaluating each such derivative at the point v = 4. Similarly £(%,,) is
the Jacobian of p evaluated at 4,. Finally, ¢ is a regularization parameter whose value is
determined adaptively at each iteration of the algorithm.

In the remainder of this section, we discuss the choice of p, an approximation to the
forward model designed to reduce the complexity of the LMA including the construction of

J, and overview the computational burden of this inversion approach.

12



A. Edge Preserving Wavelet Regularization

J11.14

In our previous wor , we have concentrated on the use of wavelet domain regularizers

with p(5) = D~ where the matrix D was diagonal with

D], = d;

I ?

_ o (oaieitayiy:) (18)

In (18) j,; and j,; are the horizontal and vertical scale indices for the ith wavelet coefficient
and o, and «, are constants. For this regularization approach, p? (¥, )p(4,) is a weighted
two-norm of 4,. This choice of p enforces smoothness in the reconstruction and functions

11’14. One consequence

in much the same way as traditional Tikhonov type regularizers
of this choice is that edges and other sharp discontinuities which may be of interest in
localizing defects or quantitatively characterizing their structure tend to be blurred in the
final reconstruction.

Recently, there has been considerable work performed in the area of “edge-preserving”
regularizers?>?%, The idea is to construct a physical-space regularization scheme which re-
sults in reconstructions whose discontinuities are better preserved as compared to a Tikhonov
approach. One way of implementing this regularization technique is to choose an expression
for pTp which, instead of being a weighted two-norm of the object, is a norm in a function
space containing “edgy” objects. Adding this as the second term in (15) produces an object
which lies in such a space and therefore retains the desired edge-like structure.

It is the case that, in addition to spanning the space of square integrable functions,
orthonormal wavelets are also bases for these more exotic function spaces'®. Here we make
use of the fact that the norm in such a space may be computed in terms of the wavelet
coefficients via ), d;|v;|” with 1 < p <2 and d; exactly the same as in (18).

The use of p in this range to describe edge characteristics is best described using a one
dimensional example. In Fig. 3, we plot a 1D signal with two edges along with the wavelet

coefficients of this signal over a collection of scales. The original function is the topmost trace

and each box on the subsequent traces represents a single wavelet coefficient at a given scale.
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Finest scale coefficients are closest to the top of the picture. These sequences are basically
zero except for coefficients describing the behavior of the function near the edges of the

" Thus, the wavelet sequences provide localized information

step where there are “spikes.’
about the discontinuity structure (i.e. local smoothness) of the underlying function. If we
were attempting to reconstruct such a signal, the cost of the spikes as measured by the
regularization term, ). d;|y;|?, decreases as p drops from 2 to 1. In other word, a p = 2
regularization scheme seeks smooth reconstructions and thus penalizes the presence of such
spikes thereby resulting in blurry reconstruction. By taking p < 2, the cost of the spikes is

smaller and the reconstruction should more faithfully reproduce the underlying edges.

With this motivation, we make the following choice for p(=)
pT ) = [P Gl (19)
which results in a diagonal £ with

L@ = 4 DAL (20)

I(x) = sign(x) 2]/~ (21)

)

where [4,]; is the 7th element of the vector 4,,.
As seen from the plot of {(x) in Fig. 4, the presence of a singularity at = 0 will lead

to numerical difficulties when implementing this regularization scheme. For the examples in

Section 5, we replace [(z) with the function I(z) defined as

X

(z) = e (22)

where € is a small positive number governing the structure of {(z) for + &~ 0. For example

Fig. 4 shows that for p = 1.2 and € = 1073, [(z) is better behaved around the origin while

still retaining the essential shape of I(x). Also, [(x) possesses the same asymptotic structure

as [(z) for |x| > 0. Taken together, these facts indicate that I(z) should perform comparably
to I(z) in the LMA.
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B. Approximate Physical Model

Two factors related to the forward scattering model dominate the computational complex-
ity of the LMA. The first component is the evaluation of Y(4,) as required by (17).
According to (12), this problem requires the inversion of [I — T'A(%,)]. The quantity
2, = [I - TA(#,)]"! has the interpretation as the wavelet transform of the discretized
resolvent associated with the second kind integral equation (2) with g(r) equal to the esti-
mate of the object function at the nth iteration of the LMA.

The second computationally intensive task is the construction of J(%,). To obtain
an expression for J(%,) we note first that this matrix is built by “stacking” J;(%,,), the

Jacobian matrices for the K scattering experiments. For an arbitrary ~, J;(~) is*”

Ti(v) = AiA(8;) + A; [T-TA(~)] "' TA(6:) (23)

with 8; = [I — TA(5)]7'8;. The construction of J; clearly requires a number of matrix
multiplications and, like the evaluation of X;, the inversion of I—T'A(~). While the matrix-
matrix multiplications can be computationally intensive the relevant matrices are sparse
thereby reducing the time overhead of this task (see Section 4 C). Thus, our primary concern
here is to develop a method which avoids the need to explicitly invert I — TA(+) as such an
approach aids both in evaluating Y and in building the Jacobian.

The method we propose is based on the observation that at the beginning of stage n + 1

of the LMA, we require
—_ . -1 . _
Sntl = [I - ]:‘A(’)Inﬁ—l)] = [I - I‘A(’)In + Sn)] !

where the second equality follows from (16) and where s, is typically a small correction to

%,- Making use of the fact that A is a linear operator

Zis1 = [[-TA(H, +5,)]" = [-TA(4,) - TA(s,)] ™ (24)
=B, [I-TA(s,)E,]” (25)
~Z, + E,TA(s,)E, (26)

15



where (26) follows from (24) under the assumption that T'A(s,)E, is “small” relative to I
and E, is given by [I — TA(4,)]™"

As an approximation to Z,41, (26) possesses some interesting and useful properties.
First, we note that, unlike the Born approximation, this is not a linearization of the physics
about the current estimate of the object function. Indeed, while (26) is linear in the incre-
ment, s,, the presence of the two Z,, in the second terms make it quadratic in 4,,. Second,
because the left hand side of (24) is, by definition, E,41 our approximation provides a
recursive method for updating the resolvent from one iteration of the LMA to the next.

Specifically, we have

[11
[11

n+ E.TA(s,)E, (27)

which states that the new resolvent is equal to the old resolvent plus an increment which is

a function both of E,, as well as s,, the update to the reconstruction at iteration n.

C. Computational Considerations

Each iteration of the LMA defined by (16)-(17) requires first the construction of Y(%,),
J(#,), and L(%,) and then the solution of a sequence of least-squares type problems to
determine s,. According to (20), determining £(%) requires roughly 2N floating point op-
erations. While the need to solve the least squares problems can be intensive, we have
previously developed techniques based on our wavelet representation for g for reducing the
computational overhead of this task!'. As discussed in the previous section the computa-
tional costs of the remaining tasks, evaluating ¥ and building J, are dominated by the
need to compute =,,.

By using (27), we replace the matrix inversion by three matrix-matrix products. The
primary reduction in computational complexity comes from the fact that these matrices
are sparse by construction (e.g. A(4,))'" or can be made so with little loss (eg. T' and

E,) by truncating small elements. While it is not necessarily the case that products of
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sparse matrices are themselves sparse, we ensure sparsity and therefore low complexity by

implementing (27) as
En41 = truncg [2, + truncs [E, ] truncs [A(H,,)E,.]]

where, for a matrix M, truncs(M) is the sparse approximation to M via the method in
Ref. [ 28] with a threshold 6. Under this truncation scheme we set to zero all elements of

the m x n matrix M whose absolute values are less than %HMHOO

5. Examples of Thermal-Wave Tomographic Imaging

To illustrate the inversion algorithm developed in the previous sections, we consider the
imaging of single and multiple defects in a 3 mm by 3 mm block of aluminum (thermal
diffusivity of 0.82 cm?s™!). Depending on the example, the reconstructions are based on the
individual or joint processing of backpropagation and transmission data collected for one or
more locations of the modulated heating laser equally spaced across the top of the material
sample. A given transmission or backpropagation data set consists of measurements of noisy
scattered fields obtained at 32 equally spaced points along either the top or the bottom of
the material. For all cases, the top of the sample is taken to be the line x = 0 while the
bottom is at = 3mm. The angular modulation frequency of the laser for all experiments
is taken to be 8 Hz. Finally, the signal to noise ratio in decibels (dB) for the ith experiment

is defined as

Ih(g)I3

SNR; = 1010g10 N.o?
i4q;

where ¢? is the variance of the ith noise process, N; is the number of data points in the ith

data vector and h(g) = [hT(g) hI(g) ... h%(g)] with h;(g) given by (6).
For purposes of inversion, we seek a reconstruction of g on a 16x 16 grid. A Haar wavelet??
is used to transform both the data vectors as well as g. The parameter A\* in (15) is 10 and

o, = o, = 1 in the regularization method. The value of ¢ used to truncate the operators

is 0.01. These quantities were chosen by trail and error. The quality of the reconstructions
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was relatively insensitive to the choices for «,, o, and 6. Choosing the correct value for the
regularization parameter A? can be a delicate procedure. For the TWST examples presented
here, values between 1 and 100 tended to produce similar results. We leave for future efforts
the development of a more automated procedure for selecting this parameter.

To verity the utility of the edge-preserving regularization method, we examine recon-
structions obtained with both p = 2 and p = 1.2 in (22). The p = 2 case corresponds to
the wavelet-domain smoothness regularization previously employed!!14, while the p = 1.2
selection will be shown to result in more accurately recovered edges. For the p = 2 recon-
structions, the LMA is initialized with 4, = 0. For the p = 1.2 case, we first run the LMA
with p = 2 for 3 iterations and then switch to p = 1.2 for the remainder of the reconstruction
process. This strategy avoids instabilities associated with the sharp transition of the p = 1.2
regularization function which can arise when the LMA is seeded with the zero vector. Fi-
nally, by starting the LMA with zero, the first iteration of the algorithm is mathematically
equivalent to reconstruction under the Born approximation using the p = 2 wavelet domain
regularizer. Thus, we can compare the reconstructions for the non-linear algorithm to those
obtained when a Born model with wavelet regularization is used to process the data.

The first example we consider is the reconstruction of a square air hole centered near
the top of the sample. The object function for this case is shown in Fig. 5(a) and consists
of a square hole of amplitude®® (aa1/@air) — 1 = 3. The SNR for all experiments is 50dB.
The reconstruction obtained under the Born approximation is displayed in Fig. 5(b). For
this case, the Born approximation yields coarse-scale localization of the defect. That is, the
reconstruction is non-zero over a region of space which includes the area of the true defect.
However, the amplitude of the reconstruction is at best a third of the true amplitude and
the shape of the reconstructed defect is in fact larger than that of the true structure. The
execution time for the Born algorithm on a Sparc 20 was about 11 minutes with much of this
time devoted to the search for the optimal regularization parameter o in (17). To summarize,
the Born reconstruction provides relatively fast access to an image which provides a rough

idea as to the location of the defect with little information regarding the amplitude.
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The final results of the of the p = 2 and p = 1.2 LMA are shown in Figs. 5(b), (c),
and (d) respectively. In Fig. 5(e), the value of |4, — |2 is plotted for both regularization
schemes as a function of iteration. It is evident that both regularization schemes produce
reconstructions which are better localized with more accurate amplitude information than
the Born inversion. The p = 1.2 case is slightly better than the p = 2 reconstruction both
from a quantitative and qualitative perspective. Quantitatively, the error in the p = 1.2
estimate is somewhat lower than that of the p = 2 case after 10 iterations. This improvement
is due to the fact that the p = 2 case overestimates the amplitudes in a couple of pixels, while
the amplitude of the p = 1.2 version is quite accurate. Visually, as we expect, the edges on
the p = 1.2 reconstruction are sharper and the overall reconstruction looks much more like
a box than a smoothed blob as is the case in Fig. 5(c). The price paid for the increase in the
accuracy of both reconstructions relative to the Born case is primarily computational. The
processing time for both LMA reconstruction of this 16 x 16 grid of pixels is on the order of
2 hours again using a Sparc 20.

In Fig. 6, the utility of jointly processing both transmission and backpropagation data
is illustrated. In all cases, we use the same object as before and p = 1.2 regularization. The
final reconstructions obtained using only backpropagation data is displayed in Figs. 6(b).
Here we see that the object is relatively well localized and the edges are nicely captured;
however the reconstruction of the rear portion of the defect is clearly inferior to that obtained
when both transmission and backpropagation data are employed (Fig. 6(d)). Indeed, this
result is not unexpected given that the rear of the defect is effectively shadowed for the
backpropagation case.

The transmission only reconstruction is shown in Fig. 6(c). This image is significantly
more blurred than the other two despite the use of edge-preserving regularization. The
longer propagation distances from sources to receivers effectively remove from the data most
all of the fine scale information about the object function resulting in a severely degraded
reconstruction. The results of using both transmission and backpropagation data are seen

in Fig. 6(d). This reconstruction combines the best features of the other two. The object
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and its edges are well localized like the backpropagation reconstruction while the use of the
transmission data aids in improving the resolution of the back side of the defect. These
advantages are seen as well in the error curves of Fig. 6(e). The transmission only inversion
is clearly inferior to both of the others. While the backpropagation produces lower error
reconstructions in the opening iterations, the joint inversion is ultimately superior.

The second example we consider is the reconstruction of a square hole located near the
bottom of the material sample at an SNR of 50dB. As seen in Fig. 7, the structure of this
defect is identical to that of the previous example, except for the location. In Figs. 7(b)—(e)
we again plot the Born reconstructions, the final estimates obtained using the p = 2 and
1.2 regularizations and the error as a function of iteration. As in the previous case, the
Born estimate provides rough localization of the underlying defect with limited quantitative
accuracy. For both regularization schemes, the final reconstructions improve significantly
on the Born inversion. The final results for the p = 1.2 case are however better than the
p = 2 estimate in capturing the sharp edges in the defect and in providing a flat top to the
estimated object function.

As a final test, we demonstrate the performance of our approach in resolving adjacent
sub-surface defects on an example with two square defects located near the center of the
material shown in Fig. 8(a). As seen in panel (b) of this figure, the Born inversion basically
indicates that there is some gross disturbance located near the center of the region. While
the top anomaly (i.e. the structure nearer to the line z = 0) is slightly better captured than
the bottom, in neither case is the amplitude well represented.

Fig. 8(c)—(d) shows that the non-linear inversion routine is quite capable of resolving
both structures and in providing quantitatively accurate contrast information. As was seen
in the previous two examples, the p = 2 reconstruction is smoother than the p = 1.2
case and is slightly less accurate in terms of the amplitudes of the defects. For the p = 1.2
reconstruction, the back defect is quite well localized in space and has a close to flat contrast.
The front structure is well defined in its y variation with less accuracy in . The amplitude

of this reconstruction is again quite flat with sharp, well defined edges. The defects are well
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resolved in both the p = 2 and p = 1.2 reconstructions. Quantitatively, the error in the

p = 1.2 estimate is lower than that that of the p = 2 case after 7 iterations.

6. Conclusions and Future Work

We have presented a new approach to image formation from scattered thermal waves
based on the use of non-linear inverse scattering methods and wavelet-domain techniques.
We build out inversion routine on the full wavefield physics developed by Mandelis in
Ref. [ 4, 5] resulting in a highly non-linear relationship between the data on which a re-
construction is to be based and the desired image of the object function. The reconstruction
problem was formulated as a solution to a non-linear least-squares type optimization prob-
lem in the wavelet transform domain. We chose to work in a multiscale setting for a number
of reasons. First, the matrices comprising the physical model are sparse in this domain
thereby lowering the computational cost of generating a reconstruction. Second, we were
able to make use of a new class of edge-preserving regularization methods which are easily
specified and implemented in the wavelet transform domain. Finally, the computational bur-
den was further reduced by employing the methods of Ref. [ 11] for rapidly solving non-linear
inverse scattering problems in a multiscale domain.

The Levenberg-Marquardt algorithm formed the basis for the inversion procedure. This
approach provided a natural mechanism for the joint processing of data from an arbitrary
number of scattering experiments. Thus, rather than forming separate images for each
source-receiver array combination and then averaging the results, we were able to produce
a single image which was optimal across all data sets.

A key component of this inversion technique was shown to be the explicit inversion of the
resolvent for the forward scattering model at each iteration of the algorithm. This matrix
was required for the calculation of the Jacobian and played a central role in evaluating the
data-misfit at every stage of the reconstruction. We introduced a new approximation to

this resolvent which replaced the need to explicitly invert a generally large matrix with only
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the requirement of multiplying a sequence of three matrices. The complexity of even this
operation was further reduced via our wavelet approach where the sparse matrix structure
could be exploited.

The algorithm was demonstrated for imaging defects in the bulk structure of an aluminum
sample using thermal wave slice tomography. Inversions were considered in which synthetic
transmission and backpropagation scattering data were both input to the algorithm. Our
results indicated that the use of the non-linear approach produces reconstructions which are
significantly more accurate than a Born-based inversion both in terms of localization of the
defects and obtaining quantitative contrast information. Additionally, relative to traditional
Tikhonov-type regularizers, the edge-based regularization scheme produced reconstructions

which better represented the block-like nature of the defects.
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8. Figure Captions

e Fig. 1: Experimental setup for thermal wave slice tomography. Incident thermal
waves originating from a point on the top of the material sample interact with defects
giving rise to scattered fields whose effects are measured by arrays located at the top
and bottom of the sample. The objective of the inverse problem is to image the internal
structure of the material based on these measurements. The incident point is generally

scanned across the top.

e Fig. 2: Plots of Daubechies 4-tap wavelet basis functions. Solid line = 4 (), dash

line = 4 5(x), dot-dash line = 15 13(x), and dotted line = 5 17(z).

e Fig. 3: Wavelet transform of a pulse function. The original function is given by the
top trace and the wavelet coefficients at a variety of scales are shown in the lower
traces. Finer scale information is conveyed in traces closer to the top. The wavelet

coefficients characterize the local discontinuity structure of the function.

e Fig. 4: Plot of I(x)(dashed) and I(z) (solid) used to implement wavelet-domain edge

preserving regularization. Both functions are identical for > 0, but I(x) is better

behaved near the origin thereby aiding in numerical implementation.

e Fig. 5: True object function, inversion results and error vs. iteration for single defect

located near the top of the material. The laser source position is along the line z = 0.

e Fig. 6: True object function, inversion results and error vs. iteration for single defect
located near the top of the material. Here we compare reconstructions obtained using
only backpropagation data (b), only transmission data (c) and a combination of both
(d) in the non-linear inversion algorithm. The laser source position is along the line

xz=0.

e Fig. 7: True object function, inversion results and error vs. iteration for single defect

located near the bottom of the material. The laser source position is along the line
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xz=0.

e Fig. 8 True object function, inversion results and error vs. iteration for two-defect

problem. The laser source position is along the line z = 0.
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