
 1

Parallel-Beam Backprojection: an FPGA Implementation
Optimized for Medical Imaging

Miriam Leeser, Srdjan Coric, Eric Miller, Haiqian Yu
Department of Electrical and Computer Engineering

Northeastern University
Boston, MA 02115

{mel, scoric, elmiller,hyu}@ece.neu.edu
Marc Trepanier

Mercury Computer Systems, Inc.
Chelmsford, MA 01824
mtrepanier@mc.com

ABSTRACT

Medical image processing in general and computerized tomography (CT) in particular can benefit
greatly from hardware acceleration. This application domain is marked by computationally
intensive algorithms requiring the rapid processing of large amounts of data. To date,
reconfigurable hardware has not been applied to the important area of image reconstruction. For
efficient implementation and maximum speedup, fixed-point implementations are required. The
associated quantization errors must be carefully balanced against the requirements of the medical
community. Specifically, care must be taken so that very little error is introduced compared to
floating-point implementations and the visual quality of the images is not compromised. In this
paper, we present an FPGA implementation of the parallel-beam backprojection algorithm used
in CT for which all of these requirements are met. We explore a number of quantization issues
arising in backprojection and concentrate on minimizing error while maximizing efficiency. Our
implementation shows approximately 100 times speedup over software versions of the same
algorithm running on a 1GHz Pentium, and is more flexible than an ASIC implementation. Our
FPGA implementation can easily be adapted to both medical sensors with different dynamic
ranges as well as tomographic scanners employed in a wider range of application areas including
nondestructive evaluation and baggage inspection in airport terminals.

Keywords:

Backprojection, Medical Imaging, Tomography, FPGA, Fixed Point Arithmetic

 2

1. INTRODUCTION

Reconfigurable hardware offers significant potential for the efficient implementation of a wide range of

computationally intensive signal and image processing algorithms. The advantages of utilizing Field

Programmable Gate Arrays (FPGAs) instead of DSPs include reductions in the size, weight, performance and

power required to implement the computational platform. FPGA implementations are also preferred over ASIC

implementations because FPGAs have more flexibility and lower cost. To date, the full utility of this class of

hardware has gone largely unexplored and unexploited for many mainstream applications. In this paper, we

consider a detailed implementation and comprehensive analysis of one of the most fundamental tomographic

image reconstruction steps, backprojection, on reconfigurable hardware. While we concentrate our analysis on

issues arising in the use of backprojection for medical imaging applications, both the implementation and the

analysis we provide can be applied directly or easily extended to a wide range of other fields where this task

needs to be performed. This includes remote sensing and surveillance using synthetic aperture radar and non-

destructive evaluation.

Tomography refers to the process that generates a cross-sectional or volumetric image of an object from a series

of projections collected by scanning the object from many different directions [1]. Projection data acquisition can

utilize X-rays, magnetic resonance, radioisotopes, or ultrasound. The discussion presented here pertains to the

case of two-dimensional X-ray absorption tomography. In this type of tomography, projections are obtained by a

number of sensors that measure the intensity of X-rays travelling through a slice of the scanned object. The

radiation source and the sensor array rotate around the object in small increments. One projection is taken for each

rotational angle. The image reconstruction process uses these projections to calculate the average X-ray

attenuation coefficient in cross-sections of a scanned slice. If different structures inside the object induce different

levels of X-ray attenuation, they are discernible in the reconstructed image.

 3

The most commonly used approach for image reconstruction from dense projection data (many projections, many

samples per projection) is filtered backprojection (FBP). Depending on the type of X-ray source, FBP comes in

parallel-beam and fan-beam variations [1]. In this paper, we focus on parallel-beam backprojection, but methods

and results presented here can be extended to the fan-beam case with modifications.

FBP is a computationally intensive process. For an image of size n × n being reconstructed with n projections, the

complexity of the backprojection algorithm is O(n3). Image reconstruction through backprojection is a highly

parallelizable process. Such applications are good candidates for implementation in Field Programmable Gate

Array (FPGA) devices since they provide fine-grained parallelism and the ability to be customized to the needs of

a particular implementation. We have implemented backprojection by making use of these principles and shown

approximately 100 times speedup over a software implementation on a 1GHz Pentium. Our architecture can

easily be expanded to newer and larger FPGA devices, further accelerating image generation by extracting more

data parallelism.

A difficulty of implementing FBP is that producing high-resolution images with good resemblance to internal

characteristics of the scanned object requires that both the density of each projection and their total number be

large. This represents a considerable challenge for hardware implementations, which attempt to maximize the

parallelism in the implementation. Therefore, it can be beneficial to use fixed-point implementations and to

optimize the bit-width of a projection sample to the specific needs of the targeted application domain. We show

this for medical imaging, which exhibits distinctive properties in terms of required fixed-point precision.

In addition, medical imaging requires high precision reconstructions since visual quality of images must not be

compromised. We have paid special attention to this requirement by carefully analyzing the effects of

quantization on the quality of reconstructed images. We have found that a fixed-point implementation with

properly chosen bit-widths can give high quality reconstructions and, at the same time, make hardware

implementation fast and area efficient. Our quantization analysis investigates algorithm specific and also general

 4

data quantization issues that pertain to input data. Algorithm specific quantization deals with the precision of

spatial address generation including the interpolation factor, and also investigates bit reduction of intermediate

results for different rounding schemes.

In this paper, we focus on both FPGA implementation performance and medical image quality. In previous work

in the area of hardware implementations of tomographic processing algorithms, Wu[2] gives a brief overview of

all major subsystems in a computed tomography (CT) scanner and proposes locations where ASICs and FPGAs

can be utilized. According to the author, semi-custom digital ASICs were the most appropriate due to the level of

sophistication that FPGA technology had in 1991. Agi et al.[3] present the first description of a hardware solution

for computerized tomography of which we are aware. It is a unified architecture that implements forward Radon

transform, parallel- and fan-beam backprojection in an ASIC based multi-processor system. Our FPGA

implementation focuses on backprojection. Agi et al. [4] present a similar investigation of quantization effects;

however their results do not demonstrate the suitability of their implementation for medical applications.

Although their filtered sinogram data are quantized with 12-bit precision, extensive bit truncation on functional

unit outputs and low accuracy of the interpolation factor (absolute error of up to 2) render this implementation

significantly less accurate than ours, which is based on 9-bit projections and the maximal interpolation factor

absolute error of 2-4. An alternative to using specially designed processors for the implementation of filtered

backprojection (FBP) is presented in [5]. In this work, a fast and direct FBP algorithm is implemented using

texture-mapping hardware. It can perform parallel-beam backprojection of a 512-by-512-pixel image from 804

projections in 2.1 seconds, while our implementation takes 0.25 seconds from 1024 projections. Luiz et. al.[6]

investigated residue number systems (RNS) for the implementation of convolution based backprojection to

speedup the processing. Unfortunately, extra binary-to-RNS and RNS-to-binary conversions are introduced. Other

approaches to accelerating the backprojection algorithm have been investigated [7, 8]. One approach [7] presents

an order O(n2log n) and merits further study. The suitability to medical image quality and hardware

implementation of these approaches[7,8] needs to be demonstrated. There are also a lot of interests in the area of

fan-beam and cone-beam reconstruction using hardware implementation. An FPGA-based fan-beam

 5

reconstruction module [9] is proposed and simulated using MAX+PLUS2, version 9.1, but no actual FPGA

implementation is mentioned. Moreover, the authors did not explore the potential parallelism for different

projections as we do, which is essential for speed-up. More data and computation is needed for 3D cone-beam

FBP. Yu’s PC based system [10] can reconstruct the 512^3 data from 288*512^2 projections takes 15.03 minutes,

which is not suitable for real-time. The embedded system described in [11] can do 3D reconstruction in 38.7

seconds with the fastest time reported in the literature. However, it is based on a Mercury RACE++ AdapDev

1120 development workstation and need many modifications for a different platform. Bins et. al.[12] have

investigated precision vs. error in JPEG compression. The goals of this research are very similar to ours: to

implement designs in fixed-point in order to maximize parallelism and area utilization. However, JPEG

compression is an application that can tolerate a great deal more error than medical imaging.

In the next section, we present the backprojection algorithm in more detail. In section 3 we present our

quantization studies and analysis of error introduced. Section 4 presents the hardware implementation in detail.

Finally we present results and discuss future directions. An earlier version of this research was presented [16].

This paper provides a fuller discussion of the project and updated results.

2. PARALLEL-BEAM FILTERED BACKPROJECTION

A parallel-beam CT scanning system uses an array of equally spaced unidirectional sources of focused X-ray

beams. Generated radiation not absorbed by the object’s internal structure reaches a collinear array of detectors

(Figure 1a). Spatial variation of the absorbed energy in the two-dimensional plane through the object is expressed

by the attenuation coefficient µ(x, y). The logarithm of the measured radiation intensity is proportional to the

integral of the attenuation coefficient along the straight line traversed by the X-ray beam. A set of values given by

all detectors in the array comprises a one-dimensional projection of the attenuation coefficient, P(t, θ), where t is

the detector distance from the origin of the array, and θ is the angle at which the measurement is taken. A

collection of projections for different angles over 180° can be visualized in the form of an image in which one

 6

axis is position t and the other is angle θ. This is called a sinogram or Radon transform of the two-dimensional

function µ, and it contains information needed for the reconstruction of an image µ(x, y). The Radon transform can

be formulated as

() () ()!!!"µ ,sincos,log 0 tPdxdytyxyx
I

I

d

e #$+= %% (1)

where Io is the source intensity, Id is the detected intensity, and δ(·) is the Dirac delta function. Equation (1) is

actually a line integral along the path of the X-ray beam, which is perpendicular to the t axis (see Figure 1a) at

location t = xcos θ + ysin θ. The Radon transform represents an operator that maps an image µ(x, y) to a sinogram

P(t, θ). Its inverse mapping, the inverse Radon transform, when applied to a sinogram results in an image. The

filtered backprojection (FBP) algorithm performs this mapping [1].

FBP begins by high-pass filtering all projections before they are fed to hardware using the Ram-Lak or ramp

filter, whose frequency response is | f |. The discrete formulation of backprojection is

 (a) (b)
Figure 1: a) Illustration of the coordinate system used in parallel-beam backprojection, and

b) geometric explanation of the incremental spatial address calculation

 7

(), sin cos) ,(

1

ii

K

i

yx
K

yx
i

!!"µ ! +
#

= $
=

 (2)

where Πθ(t) is a filtered projection at angle θ, and K is the number of projections taken during CT scanning at

angles θi over a 180° range. The number of values in Πθ(t) depends on the image size. In the case of n × n pixel

images, nDN 2= detectors are required. The ratio D = d/τ, where d is the distance between adjacent pixels and τ is

the detector spacing, is a critical factor for the quality of the reconstructed image and it obviously should satisfy D

> 1. In our implementation, we utilize values of D ≈ 1.4 and N = 1024, which are typical for real systems. Higher

values do not significantly increase the image quality.

Algorithmically, Eq. (2) is implemented as a triple nested “for” loop. The outermost loop is over projection angle,

θ. For each θ, we update every pixel in the image in raster-scan order: starting in the upper left corner and looping

first over columns, c, and next over rows, r. Thus, from (2), the pixel at location (r,c) is incremented by the value

of Πθ(t) where t is a function of r and c. The issue here is that the X-ray going through the currently reconstructed

pixel, in general, intersects the detector array between detectors. This is solved by linear interpolation. The point

of intersection is calculated as an address corresponding to detectors numbered from 0 to 1023. The fractional part

of this address is the interpolation factor. The equation that performs linear interpolation is given by

() () ()[] (), 1
int

iIFiii
!!!!

"""" +#$+= (3)

where IF denotes the interpolation factor, Πθ(t) is the 1024 element array containing filtered projection data at

angle θ, and i is the integer part of the calculated address. The interpolation can be performed beforehand in

software, or it can be a part of the backprojection hardware itself. We implement interpolation in hardware

because it substantially reduces the amount of data that must be transmitted to the reconfigurable hardware board.

The key to an efficient implementation of Equation (2) is shown in Figure 1b. It shows how a distance d between

square areas that correspond to adjacent pixels can be converted to a distance Δt between locations where X-ray

 8

beams that go through the centers of these areas hit the detector array. This is also derived from the equation t =

xcos θ + ysin θ. Assuming that pixels are processed in raster-scan fashion, then Δt = dcos θ for two adjacent

pixels in the same row (x2 = x1 + d) and similarly Δt = dsin θ for two adjacent pixels in the same column (y2 = y1

- d). Our implementation is based on pre-computing and storing these deltas in look-up tables(LUTs). Three

LUTs are used corresponding to the nested “for” loop structure of the backprojection algorithm. LUT 1 stores the

initial address along the detector axis (i.e. along t) for a given θ required to update the pixel at row 1, column 1.

LUT 2 stores the increment in t required as we increment across a row. LUT 3 stores the increment for columns.

3. QUANTIZATION

Mapping the algorithm directly to hardware will not produce an efficient implementation. Several modifications

must be made to obtain a good hardware realization. The most significant modification is using fixed-point

arithmetic. For hardware implementation, narrow bit widths are preferred for more parallelism which translates to

higher overall processing speed. However, medical imaging requires high precision which may require wider bit

widths. We did extensive analysis to optimize this tradeoff. We quantize all data and all calculations to increase

the speed and decrease the resources required for implementation. Determining allowable quantization is based on

a software simulation of the tomographic process.

Figure 2 shows the major blocks of the simulation. An input image is first fed to the software implementation of

the Radon transform, also known as reprojection [13], which generates the sinogram of 1024 projections and 1024

samples per projection. The filtering block convolves sinogram data with the impulse response of the ramp filter

generating a filtered sinogram, which is then backprojected to give a reconstructed image.

Figure 2: Major simulation steps

 9

All values in the backprojection algorithm are real numbers. These can be implemented as either floating-point or

fixed-point values. Floating-point representation gives increased dynamic range, but is significantly more

expensive to implement in reconfigurable hardware, both in terms of area and speed. For these reasons we have

chosen to use fixed-point arithmetic. An important issue, especially in medical imaging, is how much numerical

accuracy is sacrificed when fixed-point values are used. Here, we present the methods used to find appropriate

bit-widths for maintaining sufficient numerical accuracy. In addition, we investigate possibilities for bit reduction

on the outputs of certain functional units in the datapath for different rounding schemes, and what influence that

has on the error introduced in reconstructed images. Our analysis shows that medical images display distinctive

properties with respect to how different quantization choices affect their reconstruction. We exploit this and

customize quantization to best fit medical images. We compute the quantization error by comparing a fixed-point

image reconstruction with a floating-point one.

Fixed-point variables in our design use a general slope/bias-encoding, meaning that they are represented as

, BQSVV a +=! (4)

where V is an arbitrary real number, Va is its fixed-point approximation, Q is an integer that encodes V, S is the

slope, and B is the bias. Fixed-point versions of the sinogram and the filtered sinogram use slope/bias scaling

where the slope and bias are calculated to give maximal precision. The quantization of these two variables is

calculated as:

() ()
() ()

() ()
,

12

minmax

minmax

minmax

!

!
=

!

!
=

ws

VV

QQ

VV
S (5)

() () () (),minminor maxmax QSVBQSVB !"=!"= (6)

, !
"
#

$
%
& '

=
S

BV
roundQ (7)

where ws is the word size in bits of integer Q. Here, max(V) and min(V) are the maximum and minimum values

that V will take, respectively. max(V) was determined based on analysis of data. Since sinogram data are

unsigned numbers, in this case min(V) = min(Q) = B = 0. The interpolation factor is an unsigned fractional

 10

number and uses radix point-only scaling. Thus, the quantized interpolation factor is calculated as in Eq. (7), with

saturation on overflow, with S = 2-E where E is the number of fractional bits, and with B = 0.

For a given sinogram, S and B are constants and they do not show up in the hardware – only the quantized value

Q is part of the hardware implementation. Note that in Eq. (3), two data samples are subtracted from each other

before multiplication with the interpolation factor takes place. Thus, in general, the bias B is eliminated from the

multiplication, which makes quantization of filtered sinogram data with maximal precision scaling easily

implementable in hardware.

The next important issue is the metric used for evaluating of the error introduced by quantization. Our goal was to

find a metric that would accurately describe visual differences between compared images regardless of their

dynamic range. If 8-bit and 16-bit versions of a single image are reconstructed so that there is no visible

difference between the original and reconstructed images, the proper metric should give a comparable estimate of

the error for both bit-widths. The proper metric should also be insensitive to the shift of pixel value range that can

emerge for different quantization and rounding schemes. Absolute values of single pixels do not effect visual

image quality as long as their relative value is preserved, because pixel values are mapped to a set of grayscale

values. The error metric we use that meets these criteria is the Relative Error (RE):

() ()[]

()
,

1

2

1

2

!

!

=

=

"

"""

=
M

i

FPFP

i

M

i

FPFP

ii

yy

yyxx

RE (8)

Here, M is the total number of pixels, xi and yi
FP are the values of the i-th pixel in the quantized and floating-point

reconstructions respectively, and x , FP
y are their means. The mean value is subtracted because we only care about

the relative pixel values.

Figure 3 shows some characteristic images from a larger set of 512-by-512-pixel images used as inputs to the

simulation process. All images are monochrome 8-bit images, but 16-bit versions are also used in simulations.

 11

Each image was chosen for a certain reason. For example, the Shepp-Logan phantom is well known and widely

used in testing the ability of algorithms to accurately reconstruct cross sections of the human head. It is believed

that cross-sectional images of the human head are the most sensitive to numerical inaccuracies and the presence of

artifacts induced by a reconstruction algorithm [1]. Other medical images were Female, Head, and Heart obtained

from the visible human web site[14]. The Random image (a white noise image) should result in the upper bound

on bit-widths required for a precise reconstruction. The Artificial image is unique because it contains all values in

the 8-bit grayscale range. This image also contains straight edges of rectangles, which induce more artifacts in the

reconstructed image. This is also characteristic of the Head image, which contains a rectangular border around the

head slice.

Figure 3: Some of the images used as inputs to the simulation process

Figure 4: Detailed flowchart of the simulation process

 12

Figure 4 shows the detailed flowchart of the simulated CT process. In addition to the major blocks designated as

Reproject, Filter and Backproject, Figure 4 also includes the different quantization steps that we have

investigated. Each path in this flowchart represents a separate simulation cycle. Cycle 1 gives a floating-point

(FP) reconstruction of an input image. All other cycles perform one or more type of quantization and their

resulting images are compared to the corresponding FP reconstruction by computing the Relative Error. The first

quantization step converts FP projection data obtained by the reprojection step to a fixed-point representation.

Simulation cycle 2 is used to determine how different bit-widths for quantized sinogram data affect the quality of

a reconstructed image. Our research was based on a prototype system that used 12-bit accurate detectors for the

acquisition of sinogram data. Simulations showed that this bit-width is a good choice since worst case introduced

error amounts to 0.001%. The second quantization step performs the conversion of filtered sinogram data from FP

to fixed-point representation. Simulation cycle 3 is used to find the appropriate bit-width of the words

representing a filtered sinogram. Figure 5 shows the results for this cycle. Since we use linear interpolation of

projection values corresponding to adjacent detectors, the interpolation factor in Equation (3) also has to be

quantized. Figure 6 summarizes results obtained from simulation cycle 4, which is used to evaluate the error

induced by this quantization.

Figures 5 and 6 show the Relative Error metric for different word length values and for different simulation cycles

for a number of input images. Some input images were used in both 8-bit and 16-bit versions. Figure 5

corresponds to the quantization of filtered sinogram data (path 3 in Figure 4). The conclusion here is that 9-bit

quantization is the best choice since it gives considerably smaller error than 8-bit quantization, which for some

images induces visible artifacts. At the same time, 10-bit quantization does not give visible improvement. The

exceptions are images 2 and 3, which require 13 bits. From Figure 6 (path 4 in Figure 4), we conclude that 3 bits

for the interpolation factor (meaning the maximum error for the spatial address is 2-4) is sufficiently accurate. As

expected, image 1 is more sensitive to the precision of the linear interpolation because of its randomness. Figure

7 shows that combining these quantization schemes results in a very small error for image “Head” in Figure 3.

 13

We also investigated whether it is feasible to discard some of the least significant bits (LSBs) on outputs of

functional units (FUs) in the datapath and still not introduce any visible artifacts. The goal is for the reconstructed

pixel values to have the smallest possible bit-widths. This is based on the intuition that bit reduction done further

down the datapath will introduce a smaller amount of error in the result. If the same bit-width were obtained by

simply quantizing filtered projection data with fewer bits, the error would be magnified by the operations

performed in the datapath, especially by the multiplication. Path number 5 in Figure 4 depicts the simulation

cycles that investigates bit reduction at the outputs of three of the FUs. These FUs implement subtraction,

Figure 5: Simulation results for the quantization of
filtered sinogram data

Figure 6: Simulation results for the quantization of the
interpolation factor

Before filtering: 12 bits

After filtering: 9 bits

Interpolation factor: 3 bits

Relative error: 0.00502%

Figure 7: Relative error between fixed-point and floating-point reconstruction

 14

multiplication and addition that are all part of the linear interpolation from Equation (3). When some LSBs are

discarded, the remaining part of a binary word can be rounded in different ways. We investigate two different

rounding schemes, specifically rounding to nearest and truncation (or rounding to floor). Rounding to nearest is

expected to introduce the smallest error, but requires additional logic resources. Truncation has no resource

requirements, but introduces a negative shift of values representing reconstructed pixels. Bit reduction effectively

optimizes bit-widths of FUs that are downstream in the data flow.

Figure 8 shows tradeoffs of bit reduction and the two rounding schemes after multiplication for medical images. It

should be noted that sinogram data are quantized to 12 bits, filtered sinogram to 9 bits, and the interpolation factor

is quantized to 3 bits (2-4 precision). Similar studies were done for the subtraction and addition operations and on a

broader set of images. It was determined that medical images suffer the least amount of error introduced by

combining quantizations and bit reduction. For medical images, in case of rounding to nearest, there is very little

difference in the introduced error between 1 and 3 discarded bits after multiplication and addition. This difference

is higher in the case of bit reduction after addition because the multiplication that follows magnifies the error. For

all three FUs, when only medical images are considered, there is a fixed relationship between rounding to nearest

and truncation. Two least-significant bits discarded with rounding to nearest introduce an error that is lower than

Figure 8: Bit reduction on the output of the interpolation multiplier

 15

or close to the error of 1 bit discarded with truncation. Although rounding to nearest requires logic resources, even

when only one LSB is discarded with rounding to nearest after each of three FUs, the overall resource

consumption is reduced because of savings provided by smaller FUs and pipeline registers (see Figure 11 and 12).

Figure 9 shows that discarding LSBs introduces additional error on medical images for this combination of

quantizations. In our case there was no need for using bit reduction to achieve smaller resource consumption

because the targeted FPGA chip (Xilinx Virtex1000) provided sufficient logic resources.

There is one more quantization issue we considered. It pertains to data needed for the generation of the address

into a projection array (spatial address addr) and to the interpolation factor. As described in the introduction,

there are three different sets of data stored in look-up tables (LUTs) that can be quantized. Since pixels are being

processed in raster-scan order, the spatial address addr is generated by accumulating entries from LUTs 2 and 3 to

the corresponding entry in LUT 1. The 10-bit integer part of the address addr is the index into the projection array

Πθ(·), while its fractional part is the interpolation factor. By using radix point-only scaling for the quantization of

data in LUTs 1, 2 and 3, the interpolation factor is the lower part of the word that represents the generated

address. Thus, it can conveniently be extracted and fed to the multiplier that implements linear interpolation. In

software simulations we are using a 3-bit interpolation factor quantized by rounding to nearest. This results in a

Figure 9: Relative error between fixed-point and floating-point reconstruction
 (With LSB discarding)

Before filtering: 12 bits

After filtering: 9 bits

Interpolation factor: 3 bits

Bits discarded after

 Subtraction: 1 bit(round)

 Multiplication: 1 bit(round)

 Addition: 1 bit(floor)
Relative error: 0.05497%

 16

maximum error of 2-4, since the interpolation factor is fractional. The goal is to keep the calculation of the spatial

address addr in hardware to the same precision. The quantization error of the data from the LUTs is accumulated

as pixels are traversed. The critical path for error accumulation is 512 pixels in the vertical and 512 pixels in the

horizontal direction, which corresponds to the longest path from one image corner to the opposite one. This

results in entries in the first LUT requiring 10 integer and 5 fractional bits, entries in the second LUT having 1

integer bit and 15 fractional bits, and the third LUT having 2 integer and 15 fractional bits. Values stored in LUT

2 are all positive; their representation does not need a sign bit. The MSB of an entry from the third LUT is a sign

bit. The address generated will have 15 fractional bits, which can be rounded to 4 bits (the interpolation factor) by

rounding to nearest. The total accumulated error in the worst case is 2-6 + 512·2-16 + 512·2-16 + 2-5 which is equal to

2-4. Another option is to discard the 10 least significant fractional bits from the address to get 5 bits. This

introduces the same maximal error of 2-5
 as rounding to 4 bits, but the multiplier and all other FUs in the datapath

have to be wider and consume more logic resources. It is thus more area effective to implement rounding to

nearest. It is important to note that the worst case quantization error 2-4 for the interpolation factor used in

simulations was the same for all pixels, while in hardware it linearly increases from the starting pixel and amounts

to 2-4 for the last pixel, so the hardware generates a more accurate spatial address.

4. HARDWARE ORGANIZATION

Hardware acceleration in reconfigurable hardware comes from parallel processing. There are two basic sources of

parallelism in the backprojection algorithm. Pixel parallelism means that the image can be divided into

subsections (for example quadrants), which can be reconstructed simultaneously. Projection parallelism calculates

the summation from Equation (2) by simultaneously processing individual projections. If the number of pixels

reconstructed in parallel is n, then the memory bandwidth required for the accumulation of reconstructions from

different projections is n times the bandwidth required for one pixel. Thus, utilization of pixel parallelism is

limited by the available memory bandwidth. On the other hand, projection parallelism does not require higher

memory bandwidth than what is needed for the non-parallel implementation. In addition, as larger FPGAs become

 17

available, more parallelism can easily be extracted. Therefore, we decided to base our architecture primarily on

projection parallelism.

Figure 10 shows a functional view of our hardware implementation. There are two simultaneous flows of data that

can be identified from this diagram: the pixel reconstruction flow, and the sinogram data feeding flow.

The reconstruction flow, which is horizontal in Fig. 10, consists of seven pipeline stages and an accumulation

stage. The spatial address generation (SAG) is separated into two stages: the first produces a spatial address for

each pixel located outside of the image and next to the leftmost image column. This is done incrementally starting

from the top pixel. For the spatial address of the first pixel in each row to be obtained, the result of the first SAG

stage is passed to the second, which accumulates the necessary horizontal (row) component of the address. Spatial

addresses for other pixels in the same row are then generated incrementally in successive clock cycles. In the next

stage, the integer part of a spatial address is used to form memory addresses of two adjacent sinogram values

needed for linear interpolation, and the fractional part is rounded to give the interpolation factor. The fourth stage

retrieves sinogram data from the on-chip memory banks and aligns them to proper inputs of the subtractor in the

next stage, which starts performing linear interpolation. Because the pipeline stages are balanced, the resources

that implement linear interpolation have been distributed into two stages. Stage six completes the interpolation

and accumulates the result to the value for the same pixel reconstructed from previous projections. The

Figure 10: Data flow of the backprojection hardware

 18

accumulation part has to be synchronized with the data read part so that in each clock cycle in stage six, they

correspond to the same pixel. The last stage stores this updated reconstruction into an off-chip memory bank.

The sinogram data feeding flow originates in one of the off-chip memory banks, where projections are stored, and

prefetches them into on-chip memory banks. This flow of data always prefetches the next projection to be

processed and does that simultaneously with processing the current projection in the pipeline flow.

Figure 11 shows the datapath of the non-parallel backprojection hardware. In this figure, the long narrow

rectangles represent pipeline registers; they separate pipeline stages. Here, one pixel is reconstructed from one

projection every clock cycle. After reconstructing all pixels from one projection, the next projection has already

been loaded and the reconstruction process continues. The first stage of the pipeline stores a new value in the

pipeline register once every 512 cycles, i.e. when processing of the next image row commences. During the next

cycle, the second stage passes the result of the first SAG stage through its multiplexer to be accumulated with a

value from LUT 3 pointed to by the projection number.

A double buffering scheme is used for storing projections; this means processing and data fetch are overlapped in

time. In Figure 11, there are two sets of Even RAM and Odd RAM. One set of Even and Odd RAM is called

Figure 11: Datapath implementation of the non-parallel backprojection hardware

Stage 1

Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Input
RAM

Accum
RAM

Accum
RAM

 19

foreground RAM, and is used for the current projection processing, while the other, background RAM, is loading

the next projection data. With every new projection, the buffers switch their roles. Each buffer is comprised of

two blocks of on-chip RAM, one storing odd addressed projection data, and the other storing even addressed data.

By this means, we can easily implement linear interpolation with one clock cycle data access.

When the reconstruction process is initiated, the first 512 cycles are used to load the first projection that

corresponds to the first rotational angle of the source-detector system. Each cycle loads two 9-bit sinograms to

Even and Odd RAM simultaneously. After that, processing and fetching are overlapped. The filtered and

quantized sinogram is stored in one off-chip memory bank. Each memory word contains two consecutive

projection samples.

For the purpose of performing linear interpolation, two projection values with indices ! "addr and ! "addr , where

addr is the spatial address, have to be available from the processed projection in a single clock cycle. Having

separate odd and even on-chip RAM blocks, which can be read at the same time, makes this possible. If ! "addr is

an odd number, the projection value that corresponds to this number is located in the odd RAM block at address

! "addr -1, and the next adjacent projection value is in the even block at address ! "addr . If ! "addr is an even

number, the corresponding projection data are at address ! "addr -1 in both even and odd memory blocks, except

for ! "addr = 0 when both addresses are also 0. The formation of these addresses and their distribution to memory

blocks is implemented in the functional unit designated demux. Out of two adjacent projection values that are

linearly interpolated, the higher address (! "addr) should always be fed to the in1 input of the subtracter, which

performs the operation in1 – in2. This projection value can come from either the even or the odd memory block.

The unit swap takes care of this in stage 4.

 20

Stage 5 and the first adder from stage 6 implement linear interpolation. The second adder in stage 6 accumulates

the value of the same pixel reconstructed from previously processed projections with the interpolation result. The

result is then stored for future accumulation.

Two off-chip memory banks (Accum RAMs in Figure 11) store intermediate results of the accumulation for each

pixel. Both are used interchangeably as sources and destinations. Every time a new projection is processed, the

accumulation RAM that was a destination for the last addition in stage 6 switches its role to a source, and the one

that was a source becomes a destination. Thus, a pixel’s current reconstruction can be read and a new one stored

at the same address in a single clock cycle.

Since accumulation RAM responds to the initial read request with a delay of several clock cycles, every time

processing of a new projection starts, the pipeline has to be stalled until the data and the pixel reconstruction stage

are synchronized. The two pipeline registers at the bottom of Figure 11 enable detection of valid data coming

from the source accumulation RAM and give enough time for the control unit to stall or reactivate the pipeline.

ROUND

ROUND

ROUND

LUT 3.1
LUT 3.2

LUT 2.1
LUT 2.2

LUT 1.1
LUT 1.2

LUT 4.1
LUT 4.2

ODD
RAM ODD

RAM

EVEN
RAM EVEN

RAM

ODD
RAM ODD

RAM

EVEN
RAM EVEN

RAM

ODD
RAM ODD

RAM

EVEN
RAM EVEN

RAM

ODD
RAM ODD

RAM

EVEN
RAM EVEN

RAM

PROJECTION
COUNTER

LUT 1.3

LUT 2.3

LUT 3.3

LUT 4.3

ROUND
25

8

Figure 12: Datapath of the implemented 4-way parallel backprojection hardware

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

15
16

25
25

25
25

17

5 4

9

9
10

9

9

10

14

13 15

16

17
25

25

9
9

4*9

4*9

EVEN
WRITE

COUNTER ODD
WRITE

COUNTER

M
U

X

AD
D

DE
MU

X
DE

MU
X

DE
MU

X
DE

MU
X

M
U

X

M
U

LT

AD
D

M
U

X
M

U
X

M
U

X

SU
B

SU
B

SU
B

M
U

LT

M
U

LT

M
U

LT
 AD

D

AD
D

AD
D

SU
B

M
U

X
M

U
X

M
U

X
M

U
X

AD
D

AD

D

AD
D

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

SW
AP

SW

AP

SW
AP

SW

AP

M
U

X

SU
B

SU
B

SU
B

SU
B

AD
D

AD

D

AD
D

AD

D

Input
RAM

Input
RAM

Accum
RAM

Accum
RAM

 21

The architecture described can be extended to n-way parallel processing. The main difference is that n projections

are processed simultaneously in the parallel structure. Figure 12 gives the datapath for a 4-way parallel

architecture, which is used as an example to explain the basic idea. Parallel processing requires replication of

most pipeline resources. In this case, the pipeline flow is quadrupled. The LUTs are reorganized into 4 smaller

units that together store the same data. The addition tree in stage 6 sums the reconstructions from each of 4

projections and the last adder in this stage accumulates this value with previous results for the same pixel. Since 4

projections are being loaded in parallel for 512 cycles, two input RAM banks are required to store sinogram data

to achieve the required bandwidth. From each bank, 4 projection samples are loaded separately into even and odd

on-chip buffer banks. This makes the bandwidth of the sinogram data flow 4 times higher than in the non-parallel

case. However, if instead of loading all 4 projections in 512 cycles, this task is extended to last 2048 cycles, the

required bandwidth would not need to be increased. The processing of one set of projections takes 5122 cycles,

which gives as many cycles for the prefetch of the next set to be completed. Only the loading of the first set of

projections, which is not overlapped with processing, would affect the total execution time.

More projection parallelism can be extracted by processing more than four projections at the same time as long as

we have enough hardware resource such as on-chip RAM, logic resources, on-board memory etc. We have

PCI

Connector

CLK

PCI

Controller

Flash

VIRTEXTME

XCVE2000

ZBT

SRAM

8MB

ZBT

SRAM

8MB

ZBT

SRAM

8MB

ZBT

SRAM

8MB

ZBT

SRAM

4MB

PCI Bus

(64 bits)

LAD Bus

66MHz, 64 bits

6
4

 b
it
s

6
4

 b
it
s

3
2

 b
i t
s

6
4

 b
it
s

6
4

 b
it
s

Figure 13: Firebird Diagram

 22

implemented parallel-beam backprojection on an Annapolis Micro Systems Firebird board using a Xilinx Virtex

2000E FPGA chip. The block diagram of Firebird board is showed in Figure 13. It has five independent on-board

memory banks, containing 36 Mbytes of synchronous ZBT SRAM. Two SRAM banks are used for sinogram

data and two more are used for reconstructed image data. The fifth SRAM, which has smaller bandwidth to the

FGPA than the others, is not used in our design.

Non-parallel processing, 8-way and 16-way parallel processing have been implemented using this board.

Compared to 4-way, two modifications are needed for 16-way processing. First, further replication of functional

units and two more level of accumulation is needed. The addition tree does not fit in stage 6, so we put the last

two level of accumulation adders into stage 7 which is almost empty (see Figure 12). Second, more clock cycles

are needed to prefetch the sinogram data. Due to the memory bandwidth limitation, we can not load all 16

projections in 512 clock cycles, instead, we use 2048 clock cycles. As mentioned before, the processing of one set

of projections takes 512*512 cycles, thus we have enough time to load the projections for the next round of

processing. The main limiting factor for extracting further parallelism is the amount of on-chip RAM. Our

implementation uses 90% of the RAM available on the targeted FPGA chip (Xilinx Virtex2000E), and 29% of

logic resources. By migrating to newer FPGAs, such as the Xilinx VC2V6000 with larger on-chip RAM capacity,

more than 16-way parallel implementations can be accommodated.

5. RESULTS AND PERFORMANCE

We have implemented parallel-beam backprojection on an Annapolis Micro Systems Firebird board using one

Xilinx Virtex2000E FPGA chip.

Figure 14: Performance results – Software vs. Hardware

A. Software – 1 GHz Pentium (Fixed Point): 28s

B. Hardware (non-parallel) – 75MHz: 3.6s

C. Hardware (8-way parallel) – 65MHz: 0.5s

D. Hardware (16-way parallel) – 65MHz: 0.25s
1024*1024 projection values; 512*512 pixel image

0 5 10 15 20 25 30

D

C

B

A

 23

Figure 14 summarizes our performance results by comparing backprojection execution times in seconds for

software and hardware implementations. The software is run on a 1GHz Pentium PC with 256KB of cache. The

software implementation performs all calculations on integer values obtained after the quantizations have been

performed (to be similar to the hardware implementation). The computation numbers are the time to compute the

reconstruction of an image from sinogram data. In hardware, this includes the time to compute and store the

reconstructed image on the FPGA hardware. The time to transmit sinogram data and image data between the host

PC and the FPGA board are not included. The hardware implementation labeled as test case D is the 16-way

parallel version (extended structure of Figure 12), while B denotes the non-parallel version shown in Figure 11.

Note that, despite its relatively slow clock speed, the FPGA implementation significantly outperforms the

software implementation. Application clock speeds of 60 MHz or more are fast for FPGA implementations. The

performance improvement over the software implementation is due mainly to parallelism in the implementation

as well as other factors [15].

Figure 15 shows a section from the test image Heart on the left-hand side and the same section from its hardware

reconstruction on the right hand side. The mapping between the grayscale range and the pixel value range was

manually adjusted to show the image in more detail. This illustrates the high quality medical image reconstructed

by our approach.

 Original image Hardware output image

Figure 12: Image comparison – grayscale range mapped to a part of the pixel value range Figure 15: Performance results – Software vs. Hardware

 24

6. CONCLUSION

We have presented an FPGA implementation of the parallel-beam backprojection algorithm optimized for

medical imaging. We have based our implementation on the analysis of quantization effects caused by finite bit-

widths, and paid special attention not to compromise the high precision requirements of medical imaging. Our

quantization analysis results were used by Mercury Computer Systems, Inc. for their cone-beam reconstruction

[11]. Our solution shows a 100 times speed-up over a similar software implementation. The combined effect of

our quantizations results in a worst case relative error of 0.015% compared to a floating-point implementation.

Our approach was developed with future expansions in mind. Real-time image reconstruction is easily attainable

by exploiting the inherent parallelism of our solution to utilize the resources of larger FPGA devices. The

hardware architecture presented can easily be modified to different bit-widths in order to accommodate different

sensors and applications. In the future we plan to investigate the application of this approach to fan-beam

reconstruction. We also plan to investigate the applicability of our hardware implementation to SAR image

formation and to cone beam reconstruction.

ACKNOWLEDGEMENTS

We would like to thank Mercury Computer Systems who contributed to the funding of this research. This work

was affiliated with CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering

Research Centers Program of the National Science Foundation (award number EEC-9986821).

REFERENCES

[1] Kak, A.C., and Slaney, M., Principles of Computerized Tomographic Imaging, New York, IEEE
Press, 1988.

[2] Wu. M.A., “ASIC Applications in Computed Tomography Systems,” Proceedings of Fourth Annual
IEEE International ASIC Conference and Exhibit, Rochester, NY, USA 1991, pp.P1-3/1-4.

 25

[3] Agi, I., Hurst, P.J., and Current, K.W., “An image processing IC for backprojection and spatial
histogramming in a pipelined array,” IEEE Journal of Solid-state Circuits, vol. 28, no. 3, 1993, pp.
210-221.

[4] Agi, I., Hurst, P.J., and Current, K.W., “A VLSI architecture for high-speed image reconstruction:
considerations for a fixed-point architecture,” Proceedings of SPIE, Parallel Architectures for Image
Processing, vol. 1246, 1990, pp. 11-24.

[5] Stephen G. Azevedo, Brian K. Cabral and J. Foran, “Tomographic image reconstruction and
rendering with texture-mapping hardware,” Proceedings of Mathematical Methods in Medical
Imaging III, SPIE, vol. 2299, 1994, pp. 280-289

[6] Luiz Maltar C.B., Felipe M.G. Franca, Vladimir C. Alves, Claudio L, Amorim, “Reconfigurable
Hardware for Tomographic Processing,” Proceedings of the XI Brazilian Symposium on Integrated
Circuit Design, IEEE Computer Society Press, Rio de Janeiro/RJ, 1998, pp. 19-24.

[7] Basu, S., and Bresler, Y., “O(N2log2N) filtered backprojection reconstruction algorithm for
tomography,” IEEE Transactions on Image Processing, vol. 9, no. 10, Oct 2000, pp. 1760-1773.

[8] Chen, Chung-Ming, Cho, Zang-Hee, and Wang, Cheng-Yi, “A Fast Implementation of the
Incremental Backprojection Algorithms for Parallel Beam Geometries,” IEEE Transactions on
Nuclear Science, vol. 43, no. 6, Dec 1996, pp. 3328-3334.

[9] Luiz Maltar C.B., Felipe M.G. Franca, Vladimir C. Alves, Claudio L. Amorim, “An FPGA-Based
Fan Beam Image Reconstruction Module”, Proceedings of the Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, Napa, CA, USA, April 1999, pp. 331-332.

[10] R. Yu, R. Ning, B. Chen, “High Speed Cone Beam Reconstruction on PC”, SPIE Medical Imaging
2001, San Diego, CA, Feb. 17-22, 2001, pp. 964-973.

[11] Iain Goddard, Marc Trepanier, “High-Speed Cone-Beam Reconstruction: an Embedded Systems
Approach”, SPIE Medical Imaging 2002, San Diego, CA, Feb 24-26, 2002, pp.483-491.

[12] Bins, J., Draper, B., Bohm, W., and Najjar, W., “Precision vs. Error in JPEG Compression,”
Parrallel and Distributed Methods for Image Processing III (SPIE), Denver CO, Jul 22, 1999, pp.
76-87.

[13] Joseph, P.M. “An improved algorithm for reprojecting rays through pixel images,” IEEE
Transactions on Medical Imaging, vol. MI-1, no. 3, Nov 1982, pp.192-196.

[14] http://www.nlm.nih.gov/research/visible/fresh_ct.html, last accessed Nov 14, 2002
[15] Guo, Z. Najjar, W., Vahid, F., Vissers, K. “A Quantitative Analysis of the Speedup Factors of

FPGAs over processors,” Twelfth ACM International Symposium on Field-Programmable Gate
Arrays (FPGA04), February, 2004, pp. 162-170.

[16] Srdjan Coric, Miriam Leeser, Eric Miller, and Marc Trepanier, “Parallel-Beam Backprojection: an
FPGA Implementation Optimized for Medical Imaging” Tenth ACM International Symposium on
Field-Programmable Gate Arrays (FPGA02), February, 2002, pp. 217-226.

