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Abstract

High Intensity Focused Ultrasound (HIFU) is a cancer treatment technique

where high frequency sound waves (ultrasound) are used to necrose the cancerous

tissue. An important open issue is monitoring the progress of the treatment by

non-invasive imaging techniques. In this work, we propose the use of ultrasound-

based imaging techniques to characterize the geometric structure of the HIFU

lesion.

The computational size of the relevant 3D ultrasound problem renders im-

practical the use of nonlinear methods. Thus we relied on a linearized model,

the well-known first Born approximation, as the basis for determining both the

perturbations in the three acoustic parameters and the background properties

around which the linearization was performed. We demonstrated a novel method

for rapidly constructing the Born kernels for commercial-type transducer based

on a new semi-analytic expression for the impulse response of the cylindrical and

spherical transducers. We introduced a fast semi- analytical method based on

Stepanishen’s formulation (J.Acoust.Soc.Am, V.49, 1971B, 1627-1638) to com-

pute the acoustic field of these transducers in any physically realizable lossy

homogeneous medium. We demonstrated over two orders of magnitude speedup

compared to an optimized numerical routine and validated the accuracy of our

method with laboratory measurements with a tissue phantom.

To obtain quantitatively accurate reconstructions of the HIFU anomaly, one

could invert for the acoustic properties on a densely sampled grid of voxels.

However, the computational size of the problem makes traditional pixel based



inversion methods impractical. Hence, we exploited the fact that the treatment

results in ellipsoidal lesions in which sound speed and attenuation are altered

from their nominal values. We discussed shape-based methods under which we

need to estimate a small number of parameters to describe the geometry of the

lesion. The details of this nonlinear inversion method are provided and its per-

formance and robustness are demonstrated using both simulated and measured

broadband ultrasound backscatter data. Results are provided from data col-

lected using a commercial ultrasonic scanner, AN2300 of Analogic Corporation,

Peabody, MA, and a tissue phantom containing a HIFU-like lesion. [This work is

supported in part by CenSSIS (NSF Award No. EEC-9986821) and NSF Award

No. 0208548.]
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Chapter 1

Introduction

Ultrasound imaging, also known as ultrasound scanning or sonography, is a

widespread noninvasive imaging modality using high frequency sound waves. It

is a low-cost real time diagnostic tool to monitor the abnormalities in the soft

tissues of the human body. With the proper setup of the ultrasound scanner,

the cross-sectional images of the internal organs, such as heart, liver, pancreas,

kidneys, and bladder can be obtained. In the medical area sonography is suc-

cessfully used for diagnostic and therapeutic applications such as: assessment

of fetus health, non-invasive detection and disintegration of kidney stones, and

diagnosis of osteoporosis.

The major advantage of ultrasound compared to the other imaging tech-

niques is the real-time imaging capability. It can show movement of internal

tissues and organs and, combined with the image processing tools, enables physi-

cians to monitor the blood flow in the body [1]. However compared to the other

tomographic techniques such as X-ray Computed Tomography and Magnetic

Resonance Imaging, ultrasound images have poor spatial resolution [1, 2]. Im-

ages are qualitative, do not give information about the physical nature of the

targets and are distorted by spatially varying transducer field. An increasing

1



CHAPTER 1. Introduction 2

number of researchers are working to develop new ultrasound imaging techniques

and transducer types to overcome this problem [1, 3–6].

Conventional diagnostic ultrasound scanners operate in pulse-echo mode

which is similar to the operation of a radar. The imaging process is initiated

when the ultrasound transducer, a piezoelectric element, is excited with a volt-

age spike. The transducer then emits a pressure wave in the form of longitudinal

mechanical vibration [7].

The acoustic wave propagating in the tissue gets reflected at the interfaces

between different acoustic impedances. Some of the reflected wave (echo) returns

to the transducer and is converted to an electrical signal.

The range of the echo signal is determined by the elapsed time, dt, from the

transducer emission to the arrival of the echo by assuming an average velocity

of sound in tissue:

Range = Vtissue
dt

2
(1.1)

where (Vtissue = 1540m/s) [7].

The strength of the pulse-echo mainly depends on two parameters: The

characteristic acoustic impedance across the interface, which is the product of

the mass density of the medium and the velocity of the ultrasound in that

medium, and the angle of incidence of the pressure wave at the tissue interface [7,

8].

The strength of the received echoes are usually displayed as increased bright-

ness in the display screen which is the B-mode (B for Brightness). The highly

reflecting bone surfaces would appear bright, and fluids that contain no scatter-

ers are dark.

Instrumentation for B-mode Imaging: The transmit and the receive
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Figure 1.1: Simplified block diagram of the signal flow. This figure is taken from
the Users’ Guide for Analogic AN2300 Ultrasound Engine, with the permission
of Louis Poulo.

process used to create the ultrasound beam is described as beamformation. Fig-

ure 1.1 shows the block diagram of the beamformation steps required for B-mode

imaging. The actual implementations vary among manufacturers and the figure

shows the implementation for AN2300 of Analogic Corporation [9].

The beamforming stage for AN2300 can be described with five modules:

On the left side, there is a transducer with up to 192 elements connected to a

multiplexer which connects 64 elements to the Time Gain Compensation (TGC)

state. Next the TGC signal is fed into the digital beamformer which sums the

64 channel into a single RF beam. The vector processor converts the RF-signal

to an intensity signal and as the last stage, the scan converter converts the single

scanlines (beams) into a X/Y pixel based picture [9]. The details of these blocks

for a general ultrasound imaging system are described below:

TGC stage: The dynamic range of the echoes vary as much as 50bB due to

the acoustic impedance mismatch across tissue interfaces and the signal attenu-

ation within the tissue. To avoid losing information it is necessary to be able to

display such a range of signal amplitudes. TGC stage supply the gain required
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to compensate for these losses caused by the propagation of ultrasound in the

tissue [8].

Beamformer stage: The transmitted and received signals passing from the

array elements can be individually delayed in time. This step is implemented

electronically to steer and focus each of the sequence of acoustic pulses through

the plane or volume to be imaged.

The Huygens principle states that a wavefront can be decomposed into

a number of point sources, each being the center of an expanding spherical

wave [10]. In other words, any wavefront can be constructed from point sources.

This is the principle used to focus and steer the ultrasound beam to the desired

location in space. The signals that are sent to and received from the elements of

the aperture can be given individual time-delays to create the desired wavefront.

The beam steering can be achieved by either element selection or using a

phased array. Element selection is a low cost beam steering approach which

involves steering of the beam by selecting the center element. In this approach

one does not really change the orientation of the beam but rather change the

location of the origin. The beam will shift to a new location as the center of

the active element group is shifted to a new location. The beam steering can be

also be achieved by phased arrays using the appropriate time delays.

Vector Processing: After the beamformer stage, the received signals are

passed through several signal processing stages. The output of the beamformer

stage is a wide band RF signal. The signal is usually filtered to clean the out-

of-band noise contributions. A wide band image processing algorithm can also

be employed to reduce the impact of speckles. An envelope detection is imple-

mented in this stage to obtain the amplitude information [8].
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Scan Converter: The image data is obtained on a polar coordinate grid for

commercial scanners and it is necessary to convert this image to one of the

standard TV image formats for easier viewing and recording. This stage is

known as the Scan Converter. The major function of the Scan conversion is

interpolation from a polar grid to a video pixel region.

As a summary, a typical ultrasound system uses a transducer made up of

a number of piezoelectric elements to transmit a sound pulse into the tissue.

Normally the same transducer is used to receive the reflected sound from the

scatterers within the body. This process is done in a sequential manner, steering

the emitted sound beam in turns along the lines in the region to be imaged.

The use of ultrasound for diagnostic purposes requires a strict limit to be

set on the applied power density (about 0.1 Watt/cm2) [11]. When used with

a higher intensity, a focused ultrasound beam can damage the tissue and create

lesions. Today, this destructive phenomenon is successfully used as a cancer

treatment technique known as High Intensity Focused Ultrasound (HIFU) ther-

apy [12].

High Intensity Focused Ultrasound: The observations on the destructive

ability of the high intensity ultrasound date back to the time of Paul Langevin.

During his tests with quartz plate transducers, he observed the death of small fish

which exposed to the beam of ultrasound. He also reported the pain felt in one’s

hand when immersed in a water tank insonated by high intensity ultrasound [13].

The idea of using ultrasound for therapeutic purposes is not new. The earliest

therapeutic ultrasound experiment on biological tissues was performed by Lynn

and Putnam (1942) where they necrosed brain tissue in animals using ultrasound

waves. This experiment was carried out even before the use of ultrasound as a
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diagnostic tool. However, due to the lack of efficient imaging techniques to guide

the therapy, it was not until 1960’s that it found a place in medical treatment

world.

Today, there is an intensive research activity in HIFU field to understand

the physics behind the tissue necrosis and lesion formation. Currently, the most

understood mechanisms are the sharp temperature increase linked to the ab-

sorbtion of ultrasound waves and cavitation, which is the formation of collapsing

bubbles.

HIFU uses focused ultrasound waves to raise the temperature of the target

tissue to approximately 60 degrees Celsius in two to three seconds, creating an

ellipsoidal lesion of order 0.2 to 2000mm3 in volume [12, 14]. The dimensions

depend on the operating frequency, geometry and exposure time of the HIFU

transducer. As an example ter Haar GR et al. reported that, at 1.7 MHz the

lesions created in ex vivo beef liver are of ellipsoidal shape, with the long axis

parallel to the ultrasound beam with dimensions 1.5 mm to 15 mm [15]. This

phenomenon, also called as focused ultrasound surgery (FUS), is depicted in

Fig. (1.2). (The figure is obtained from the supplemental video material given

in [16].)

There is a significant amount of clinical experience for cancer treatment with

HIFU applications. The majority of the clinical trials are the treatment of the

prostate cancer and Benign Prostatic Hyperplasia (BHP) [17–22]. HIFU is be-

coming an accepted therapeutic tool for prostate cancer in Europe, where a

long term follow-up data, including over 2000 patients, are reported in 2002 by

Chaussy et al. [23, 24]. China is currently leading the HIFU related clinical ap-

plications, mainly in the ablation of liver tumors, where China based Chongqing
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Figure 1.2: The HIFU lesion formed at 1.1 MHz in a polyacrylamide gel based
phantom.

Hifu Co. Ltd’s HIFU therapeutic system is utilized [25]. Other promising uses

of HIFU are the ablation of the localized breast tumors, and treatment of the

kidney, pancreatic and bladder cancers [24]. Between December 1997 to October

2001, 1038 patients with solid tumors had been treated in China [26].

HIFU Lesion Imaging: The basic limitation of HIFU treatment is the

difficulty of accurately targeting the region to be treated. In current practice, it

is necessary to couple the application with noninvasive monitoring methods to

guide the therapy.

The most effective imaging modality to monitor the HIFU lesions is the Mag-

netic Resonance Imaging (MRI), which can monitor time-dependent tempera-

ture elevation [27–29]. However, it requires MRI compatible HIFU equipment

and is a relatively high cost procedure.
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Being inexpensive and commonly used in prostate imaging, B-scan ultra-

sound appears to be a good candidate to replace MRI. However, it has been

experimentally shown that the lesions does not yield a significant change in the

speckle pattern of a standard B-scan gray scale image, while limited informa-

tion can be extracted using data processing techniques [30]. These techniques

are based on signal energy [31], the non-linear properties of the microbubbles in

the lesion [32] and non-linear compounding [33].

Recent studies have shown that HIFU applications increase the stiffness of

the target area -up to ten times than the healthy tissue- making the lesions

detectable by imaging techniques that depict mechanical properties of the tissue

[34–36]. However this approach suffers from a possible non-uniqueness in the

inversion process [37].

We believe the imaging methods aimed to monitor the changes in the sound

speed and attenuation are the most promising modalities to replace MRI. It

has been reported that HIFU treatments affect both the sound speed and the

attenuation values of the tissue while forming lesions [38–43]. The change in

sound speed is less that 20 m/s (about 1%) and peaks at temperatures between

50◦-70◦ and then decreases with the further increase in the temperature. In most

cases the change is reported to be reversible. On the other hand the attenuation

coefficient significantly increases within the values ranging from 80% to 700%

and the change is irreversible [44].

The reversible characteristic of the sound speed makes the methods aimed to

monitor only the change in this parameter rather impractical. Recently Pernot

et al. [45] presented a very impressive in vitro result, where they estimate the

changes in the temperature from the sound speed measurements. However, the
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lesion will not be visible once the tissue cools down.

The change in the attenuation is irreversible, hence the imaging methods

based on capturing the changes in the attenuation are more robust. Since the

attenuation in the necrosed tissue is much higher than that of a healthy tissue,

the tissue behind the HIFU lesion would appear slightly darker in standard B-

scan images. Processing the B-scan data Baker and Bamber [46] and Annad

and Kaczkowski [47] detected the changes in the ultrasound images behind the

lesion.

Although the common ultrasound wave propagation models depend on the

changes in the density of tissue, the link between density and HIFU lesions has

not yet been established.

Imaging methods that give the quantitative information about the changes in

the all three acoustic properties -attenuation, sound speed and density- should

dramatically improve lesion detection.

Inversion Methods: In this dissertation we propose an inversion method to

determine the spatial distribution of the sound speed, attenuation and density

of the HIFU lesions which uses the standard ultrasound scanners and HIFU

transducers.

Processing the data in this manner, reconstructing the acoustic parameters

from ultrasound measurements, is known as an inverse problem. Reconstruc-

tion problems have a wide range of applications in different disciplines including

acoustics. During the last few decades there has been an avalanche of publica-

tions on different aspects of the inverse problems. No attempt will be made to

present a comprehensive bibliography but the reader is referred to [48–53] for

the principal publications in this area.
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The motive behind the presented inversion problem is to develop quantita-

tive, fully three dimensional ultrasonic imaging methods to determine the spatial

structure of the HIFU lesion. The traditional approach to this problem is to try

to reconstruct the voxelated versions of the sound speed, density and absorp-

tion images. What complicates this approach is the nominal wavelength of the

acoustic fields in tissue (0.3mm) coupled with the physical size of the region of

interest of the HIFU lesion (20mm), which implies that up to a one billion voxels

might be needed to describe the problem accurately.

Our approach to the problem is based on the specification of the parameters

describing the shape of the parameters. We assume the shape of the perturba-

tions are known ellipsoids- but the locations, sizes and orientations are unknown.

This method has been addressed in other fields and successfully used in tomo-

graphic imaging problems [54–56]. To completely characterize the changes in

one acoustic variable, we only need the location of the center, the lengths of the

three axes of the ellipsoid, three angles that orient the ellipsoid in space and the

contrast of the parameter. Thus rather than the millions of voxels defining each

of the three unknown acoustic parameters, we have only 3x10=30 quantities to

estimate from the measured data.

Forward Model: Extracting the quantitative information requires the use

of a well calibrated physical model directly within the processing algorithms.

In this study we examine in detail the acoustic wave behavior in human tissue

and present the equations that describe the propagation of ultrasound in a lossy,

dispersive medium.

A key to the implementation of the ultrasound propagation models is the
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specification of the radiated field generated by the commercially available ul-

trasound transducers. Ultrasound measurements coupled with a computational

physical model of the ultrasonic transducer can be used to determine the spatial

maps of the attenuation, sound speed and density. The distribution of these

mechanical properties can be used to complement the images formed with tradi-

tional ultrasound data acquisition techniques that are based on delay and sum

beamforming.

Conventional ultrasound transducers used for medical diagnosis purposes are

generally the 1D array type transducers which consist of rectangular apertures

placed on either a flat or curved surface. Typically 1D arrays with 32 or more

elements that have natural focus in the elevation plane (either by curvature in

the element or by use of a lens) are used with electronic focusing along the lat-

eral dimension. Ideally, each element of the array can be excited individually to

obtain non-beam formed data. This allows us to collect full tomographic data

where single transmitter is used to probe the tissue and the response is mea-

sured by the full array or collection of elements of the array. Moreover, this type

of tomographic imaging would lead to innovative applications where the array

system can be optimized to classify certain targets based on the shape informa-

tion [57, 58]. To utilize the array transducers for applications beyond traditional

beam focusing and steering, it is necessary to have a precise knowledge of the

radiated fields generated by the cylindrically curved transducers. Once this field

is known, it can be applied to simulate the free diffraction field of the linear

arrays.

A number of different methods have been proposed to compute the ultra-

sonic transient fields. The spatial impulse response (SIR) approach provides
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an effective method to predict the sound field of uniformly excited ultrasound

transducers. A through literature review of the applications of this method to

simulate the pressure fields of the arbitrarily shaped transducers is given in [59].

The impulse response of an ultrasound transducer is defined as the response

to a velocity impulse on the radiating surface of the transducer [60–62]. In the

time domain the SIR is convolved with the time derivative of the normal particle

velocity or the electromechanical response of the transducer to obtain the sound

pressure. For frequency domain applications, the simulated field is described

by the Fourier Transform of the spatial impulse response, that is the spatial

transfer function.

The frequency domain representation of the SIR for ultrasonic transducers

is trivial to state and the time domain response can be obtained via inverse

Fourier transform. However, the frequency domain representation of the re-

sponse presents a task that is too computationally demanding to compute in a

straightforward manner. For most of the cases the integral operator does not

have a closed form solution and has a highly oscillatory kernel. On the other

hand, time domain solutions are not sufficient to describe the behavior in tis-

sue like, frequency dependent lossy media. Due to this limitation, in general

frequency domain methods are preferred.

A number of powerful numerical methods are available to predict the spatial

transfer function of the linear arrays for lossless homogenous media. Wu and

Stepinski [59] proposed an efficient time domain method to compute the SIR for

linear arrays with cylindrically concave elements. In their method each element

is divided into a row of narrow strips which can be considered as planar rectangu-

lar transducers whose exact SIRs are available. However, two type of integrals,
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the convolution and the summation over all the thin strips, should be effectively

done for each element. Moreover, their time-domain solution cannot be used to

simulate the behavior of the field in an attenuating medium. Frequency depen-

dent attenuation has a significant impact on ultrasound propagation in human

body and cannot be ignored. A time domain method which has applications

for attenuating media is the method proposed by Piwakowski and Sbai [63]. In

their method, the discrete representation array modelling (DREAM) procedure

is used to calculate the field radiated from arbitrary structured transducer ar-

rays. Their formulation can be applied to predict the acoustic fields in a power

law type attenuating medium. They presented the solution for the case where

the absorption increases linearly as a function of frequency. However to general-

ize this method, the velocity dispersion should be introduced and the relation for

the complex wave number that guarantees a causal solution should be known.

We seek a more flexible frequency domain method which can predict the spa-

tial response of a cylindrically radiator in any physically realizable lossy medium.

As discussed previously the expression for SIR for the frequency domain appli-

cations is difficult to evaluate in stable and efficient manner. The high frequency

content of the oscillatory kernel is typically handled with high sampling rates

which result in an unacceptable computation time.

Our approach to the problem is significantly different from the existing meth-

ods in the sense that we propose an analytical solution to the problem. The

method we propose in this dissertation complements the methods in the lit-

erature such that, with a new rapid integral formulation, the spatial transfer

response for cylindrical radiators for any type of lossy homogenous media is

obtained almost immediately and has a closed form expression. We follow the
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approach of a relevant time domain work of Theumann et al. with the inspira-

tion of Arditi et al. [60, 64]. Theumann et al. worked with concave cylindrical

transducers and reduced the surface integral of the impulse response into a single

integral for which numerical methods are employed to obtain the result. The

philosophy of our approach is similar to that, but we propose an analytical so-

lution to the problem. The line integral kernels are expanded as a truncated

series of Legendre polynomials which could be integrated exactly term by term.

The resulting response is represented as summation of a few number of Bessel

functions.

Although, our main interest lies in the simulating the forward field from

clinically used phased array transducer, our initial efforts were concentrated on

the modeling of the forward field from spherically focused transducer in a lossy

medium [65]. The computations for this case is easier therefore allowed us to

focus on matching the computation model to the experimental data.

Objective of the Study: The aim in this study is to develop three dimen-

sional ultrasonic imaging methods to determine the spatial changes in all three

acoustic properties -attenuation, sound speed and density- of the HIFU lesion.

For this purpose:

• A well calibrated physical model describing the propagation and scattering

of ultrasound in human tissue should be developed. The effect of the

changes in the acoustic properties -sound speed, attenuation and density-

on the acoustic wave behavior should be described with the model.

• The forward model should be validated with experiments using clinically

used ultrasound transducers.
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• Image reconstruction algorithms should be developed to observe the changes

in the sound speed, attenuation and density in HIFU lesions and the al-

gorithm should be tested with experimental measurements.

1.1 Outline of the Thesis

In this work after a short introduction on HIFU and existing lesion imaging

techniques (Chapter 1), a time domain model describing the propagation and

scattering of ultrasound in a homogeneous medium is given (Chapter 2). The

propagation of ultrasound waves in a dispersive, lossy medium is discussed in

Chapter 3 and a compact linear relation between the measured backscatter data

and the medium parameters (sound speed, attenuation and density) is presented.

In Chapter 4 a new method to compute the forward field from cylindrically

concave transducers is discussed. In Chapter 5 the inverse problem (obtaining

the shape of the HIFU lesion from ultrasonic measurements) is introduced and

the reconstructions with simulated and measured backscatter data are presented.

The thesis is concluded in Chapter 6 and the work that remains to be done in

this area is discussed.



Chapter 2

Propagation of Ultrasound in

Time Domain

Pulse-echo ultrasound imaging is a widespread non-invasive imaging modality

using acoustic waves. Although it is safe, widely available, easy to use, portable,

and provides real-time imaging, the resulting images are subjective and relative,

depend on the properties of the transducer used, and distorted by spatially

varying transducer field.

The physical basis for the problem of interest in this chapter is to calculate

the acoustic field scattered by a localized inhomogeneity embedded in a homoge-

neous background. We consider the case of the received signal for a monostatic

pulse-echo configuration although it is straightforward to generalize our results

to bi-static geometries.

In pulse-echo ultrasound imaging a single transducer is used to both trans-

mit an acoustic pulse and receive acoustic echoes. An electromechanical transfer

function is associated with the transducer for both the transmit process (convert-

ing the electrical excitation into an acoustic disturbance) and the receive process

(converting the acoustic disturbance into an electrical signal). To characterize

16
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the emitted and received acoustic pulse and to accomplish transducer calibra-

tion, the electromechanical response of the transducer must be determined.

In this chapter we present a time domain model which describes the propaga-

tion and scattering of ultrasound in homogeneous medium, under the assumption

of weak scattering. We provide a framework for calibration which consistently

integrates much of the previous literature in this area. We examine in detail the

case of a spherically focused transducer and prove that the electromechanical

response can also be measured by the use of a point target as well as a plate

reflector. We show both theoretically and experimentally that the scattered sig-

nal from a plate and point target are related by double differentiation in time.

In particular, we bring to attention to a possible misinterpretation of data taken

from a flat-plate when applied to scattering from a point target.

The chapter is organized as follows. The following section defines the inho-

mogeneous wave equation and explains the linearity assumptions made to obtain

a solvable equation. It also introduces the concept of calibration and gives the

necessary background to the reader. In Sections 2.2 and 2.3 the scattering of

sound from flat-plates and point targets is discussed. Section 2.4 combines the

ideas introduced in the previous sections and discusses the scattering of sound

in the framework of calibration and underlies the overlook in the literature. The

comparison of predicted and measured pressure fields are given in Section 2.5.

The chapter is concluded in Section 2.6.

2.1 Theory and Background

In this section we discuss the theory of scattering of sound and the relation be-

tween the electromechanical impulse response of a transducer and the measured



CHAPTER 2. Propagation of Ultrasound in Time Domain 18

back scattered signal from specific obstacles.

In his cited work Jensen [66] provided a computationally compact and useful

method for simulating the scattered field from arbitrary shaped weak scatterers.

For completeness of the dissertation the formulas and derivations in [66] will be

summarized here.

2.1.1 Jensen’s Formulation

Let V ′ be an inhomogeneity embedded in a homogeneous fluid medium of con-

stant sound speed co and density ρo. The linear wave equation for acoustic

pressure p(r, t) in time domain can be defined as [67]:

∇2p(r, t)− 1

c2
o

∂2p(r, t)

∂t2
=
−24c(r)

c3
o

∂2p(r, t)

∂t2
+(

1

ρo

∇(4ρ(r))−4ρ(r)

ρ2
o

∇(4ρ))·∇p(r, t)

(2.1)

where

• p is the acoustic pressure and depends on space, r, and time, t.

• 4c and 4ρ are the space dependent perturbations from the mean values

co and ρo :

ρ(r) = ρo +4ρ(r)

c(r) = co +4c(r)

The terms on the right hand side of Eq.(2.1) are the scattering terms (scat-

tering function) that vanish for a homogeneous medium. The scattered field is

calculated by integrating all the spherical waves emanating from the scattering

region V ′ using the time dependent Green’s function for unbounded space. Us-

ing r and r′ for source and scatterer (observation point) coordinates (Fig. (2.1))
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Figure 2.1: Schematic showing the transducer/scatterer arrangement.

and ignoring the second order term in the scattering function the scattered field

can be calculated as [68]:

ps(r, t) =

∫

V ′

∫

T

[
−24c(r′)

c3
o

∂2p(r′, t′)
∂t2

]G(r, r′, t, t′) dt′ d3r′

+

∫

V ′

∫

T

[
1

ρo

∇(4ρ(r′, t′)) · ∇ p(r′, t′)︸ ︷︷ ︸
ps(r,t′)+pi(r,t′)

]G(r, r′, t, t′) dt′ d3r′(2.2)

where G(r, r′, t, t′) is the Green’s function for the Helmholtz equation in a ho-

mogeneous medium. In an unbounded three dimensional medium G(r, r′, t, t′)

is given by

G(r, r′, t, t′) =
δ(t− t′ − |r − r′|/co)

4π|r − r′| (2.3)

The pressure field inside the scattering region V ′ can be defined as p(r, t′) =

ps(r, t
′) + pi(r, t

′) where pi(r, t
′) is the incident pressure field.

At first glance it might appear as if Eq.(2.2) is the solution we seek for the

scattered field, but we have written the integral equation for ps in terms of the

unknown total field. Eq.(2.2) is the Fredholm integral of the second kind and
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cannot be solved directly. The use of numerical methods, such as Finite Element

Method or Method of Moments are required to obtain a solution. To simplify the

equation, Born-Neumann approximation of the first kind is invoked. The con-

trast of the scatterer is assumed to be weak, and total field inside the scattering

region is approximated with the incident field [68, 69], p(r, t′) ∼= pi(r, t
′).

Using the definition of the incident field and the spatial impulse response of

the transducer given in [60] and applying Born-Neumann expansion of the first

kind, Jensen [66] showed that it is possible to write Eq.(2.2) in a closed form

expression.

ps(r, t) = vpe(t) ∗t

∫

V ′
fm(r′)× hpe(r, r

′, t)d3r′ (2.4)

where

vpe(t) =
ρo

2
Em(t) ∗t

∂v(t)

∂t

fm(r′) =
∆ρ(r′)

ρo

− 2∆c(r′)
co

hpe(r, r
′, t) =

1

c2
o

∂2Hpe(r, r
′, t)

∂t2

Here vpe is the pulse echo wavelet which includes the transducer excitation and

the electromechanical impulse response, Em(t), during transmission and recep-

tion of the pulse; fm is the scattering function and stands for the inhomogeneities

in the medium; and hpe is the modified pulse echo impulse response that relates

the transducer geometry to the spatial length of the scattered field. Hpe is the

pulse-echo spatial impulse response obtained by Hpe = h(r, r′, t) ∗r′ h(r′, r, t).

Here h is the impulse response of the transducer which is calculated according

to [60]. The reader is referred to [66] for the full derivation of Eq.(2.4).

In case of a point scatterer fm is a Dirac impulse and Eq.(2.4) reduces to:
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ps(r, t) =
1

c2
o

∂2vpe(t)

∂t2
∗r′ h(r, r′, t) ∗r′ h(r, r′, t) (2.5)

To characterize the scattered field the pulse echo vpe should be accurately

determined. In the next section the details of the calibration process, obtaining

the vpe signal, is explained.

2.1.2 Calibration Process: Obtaining the vpe signal

The common practice to calibrate a transducer is to place a large flat-plate in

the focal plane of a focusing transducer ([70–72]). A waveform measured under

these conditions, can, in principle, be used to aid in the removal or compensation

of transducer response and field effects on the measurement of tissue properties

([70–73]).

Following the notation in ([66]) the model for the scattering process, Eq.(2.2),

can also be summarized by the following equation:

υo(t) = υi(t) ∗t eT (t) ∗t hT (r, t) ∗t s(r, t) ∗t hR(r, t) ∗t eR(t) (2.6)

where υi(t) is the excitation voltage, eT (t) is the electromechanical response

that is the ratio of the derivative of the normal particle velocity with respect

to time relative to the transmit voltage, hT (r, t) is the transmit spatial impulse

response, hR(r, t) is the receive spatial impulse response of the transducer located

at position vector r, s(r, t) is a scattering term located at r which accounts for

perturbations or inhomogeneities in the medium that give rise to the scattered

signal, v0(t) is the output voltage from the transducer, eR(t) is the receive voltage

to force electromechanical response, and ∗t is convolution with respect to time.
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We define the round-trip pulse-echo electromechanical impulse response of

the transducer, epe(t) as:

epe(t) = υi(t) ∗t eT (t) ∗t eR(t) (2.7)

For the case where υi(t) is a very short electrical impulse (e.g., less than about

1/10th of the characteristic period of the transducer) epe will be proportional to

eT ∗t eR which is the true electromechanical impulse response of the transducer.

Equation (2.6) can now be written as

υo(t) = epe(t) ∗t hT (r, t) ∗t s(r, t) ∗t hR(r, t) (2.8)

where the remaining terms account for propagation and scattering. If one as-

sumes that the absorption of the medium (e.g. de-ionized and de-gassed water

in the low megahertz frequencies) is negligible then analytical expressions exist

for hT and hR for a spherically focused transducer ([60, 74]). The scattering

term s(r, t) depends on the target.

In this study we will discuss scattering from three different obstacles: a flat-

plate, a point target and an arbitrary shaped weak scatterer. The first two

cases will be presented for calibration and the third for imaging applications

that require such calibration.

2.2 Scattering from a flat-plate

In this section, we discuss the conditions under which the focal plane reflec-

tion from a flat-plate is a valid approximation of the electromechanical impulse
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response.

When the flat-plate is an ideal acoustic mirror, and placed at a distance

z from the transmitter, perpendicular to the beam axis, the receiver can be

considered as the mirror image of the transducer. Hence in pulse-echo imaging

of an acoustic mirror, the problem is the same as that of two identical transducers

separated by a distance 2z, as shown by Rhyne (1977), and Chen et al. (1994)

for both nonfocusing and focusing transducers.

In 1977 Rhyne derived a “radiation coupling” function for nonfocusing trans-

ducers where he calculated the reflection from a flat-plate. This result is the same

as the problem of finding diffraction loss, DF , between two identical transducers

at a distance 2z ([75, 76]). In both cases, this loss represents the reduction in

amplitude and change in phase when only a portion of a transmitted beam is

intercepted by a receiving transducer.

For a focusing aperture, Chen et al.([77]) showed that for the mirror placed

in the focal plane, the diffraction loss in the frequency domain is equal to

DF (z = 2F, f) = −{1− exp(jGp)[J0(Gp)− jJ1(Gp)]} (2.9a)

where the pressure focal gain is

Gp =
πfa2

coF
(2.9b)

in which f is frequency, co is the speed of sound in water, a is the aperture

radius, and F is the focal length. Chen et al. ([71]) found that this expression

has only a weak dependency of frequency. If the argument parameter Gp is large,

an asymptotic expression for Bessel functions of large arguments (Eq. 9.2.1 of
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[78]), can be used to approximate Eq.(2.9a) by

DF (z = 2F, f) ≈ −{1−
√

2

πGp

exp

(
jπ

4

)
} = −{1− 1√

πGp

− j√
πGp

} (2.10)

When Gp ≥ 16 the error of either the real or imaginary part of Eq.(2.10) com-

pared to Eq.(2.9a) is less than 0.042. Because the terms involving the square

root are small, the main contribution comes from the real part of Eq.(2.10). Both

Eq.(2.9a) and Eq.(2.10) vary extremely slowly with frequency over a transducer

bandwidth (e.g. 90% fractional bandwidth), so to a good approximation, the

frequency can be set equal to transducer center frequency, f = fc. Physically

the result of this small loss can be interpreted in terms of ray theory as a cone of

energy focused onto a plate and reflected back, almost but not quite perfectly,

along the same cone to the aperture of the transducer.

To use the transfer function defined in Eq.(2.10) in Eq.(2.7), we must account

for propagation delays to and from the plate and for the case where the plate

is not an ideal reflector. Then we can carry out an inverse Fourier transform

to obtain the time domain response. Given that a non-ideal mirror has a plane

wave pressure reflection coefficient,

RF =
Z2 − Z1

Z2 + Z1

(2.11)

where Z2 is the specific acoustic impedance of the reflector and Z1, the char-

acteristic impedance of the fluid, then the three rightmost terms of Eq.(2.8)
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correspond to the following inverse Fourier transform:

hT (r, t) ∗t s(r, t) ∗t hR(r, t) = Real{=−1[DF (r, fc)RF exp (−j2πf(2F )/co) ]}

= RF [
√

1/(πGp)− 1]δ(t− t2F ) (2.12)

From Eq.(2.12) we can see that the acoustic propagation and scattering from

plate at the focus of a transducer (that is, hT (r, t) ∗t s(r, t) ∗t hR(r, t)) is a scaled

impulse response delayed in time by t2F = 2F/co . Under these conditions, the

output voltage is an amplitude scaled delayed replica of the system response epe,

υo(t) ≈ RF [
√

1/(πGp)− 1]epe(t− 2F/co) (2.13)

The round trip reference signal epe can be determined from the measured output

voltage signal, υo(t), and the scaling constant from Eq.(2.13).

2.3 Scattering from a point target

Often it is necessary to determine scattering from an ideal point scatterer rather

than a flat-plate. As an example, determining the spatial impulse response

(hT and hR) experimentally requires the use of a point scatterer. Moreover,

randomly positioned point scatterers form the basis of simulation models for

speckle and phantom-like objects that can be created from organized patterns

of point scatterers with assigned weighting [79]. In this section, we show how the

reflection from a point scatterer can be determined from a flat-plate response.

The starting point for a model of an ideal point scatterer is that of a rigid

(incompressible) sphere with a diameter much smaller than a wavelength, density
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ρ À ρo, and compressibility κ ¿ κo, where c = 1/
√

ρκ and co = 1/
√

ρoκo.

The scattering for this sphere known to be proportional to −k2 ([10]), where

k = ω/co, and a geometrical factor A. Since the inverse Fourier transform

theory of jω is ∂/∂t, −k2 corresponds to the transform (1/c2
o)∂

2/∂t2. For this

type of target at the origin,

s(r, t) =
A

c2
o

∂2

∂t2
∗t δ(t− |r|/co) (2.14a)

where A is a time-independent quantity that is given by (Eq.8.2.19, [10])

A =
a3

3
(1− 3

2
cosθ) (2.14b)

where a is the radius of the scatterer and θ is the scattering angle. For direct

backscatter θ = π and A has the value

A =
5a3

6
. (2.14c)

Real transducers have a finite aperture and collect signals over a range of angles,

however, for 160 < θ < 200, which is appropriate for most ultrasound imaging

scenarios, the variation in A over the surface of the transducer is less than 5% and

the use of Eq.(2.14c) is appropriate. If this target is placed at the focal point,

then each of the spatial impulse responses in Eq.(2.6) reduces to an impulse

function centered at |r|/co [74],

hT (r, t) = hR(r, t) = `δ(t− |r|/co) (2.15a)
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where ([60], Eq. 7)

` = F

[
1−

(
1− a2

F 2

)1/2
]

(2.15b)

Putting these results into Eq.(2.6) for a small spherical target at the focal point,

we find

υo(t) =
A`2

c2
o

∂2epe(t− 2|r|/co)

∂t2
(2.15c)

therefore, the reflected signal from a point target will have the same shape as

the doubly differentiated reference waveform, epe(t) with the respect to time.

Although we derived this in terms of a rigid sphere target we note that other

targets smaller than a wavelength have a similar functional dependency in the

backscattered direction (θ = π) towards the transducer at distances greater than

a few wavelengths ([80, 81]). In particular, Nassiri and Hill [82] have shown that

back scatter from a disc is similar to that of a sphere, differing only in the

constant A. Both the sub-wavelength sphere and disc are practical realizations

of an ideal point target as viewed at moderate to large distances. Because of

the practical difficulties involved in realizing a point target, it may be difficult

to determine the constant A. An alternative approach to calibration described

by Hunt et al. [74] is to redefine the electromechanical response based on a

point target. Their electromechanical response would be the equivalent of epe

convolved with s for a point target from Eq.(2.6) and would include a double

differentiation with time. However, if A is not known it is not possible to apply

the calibration to the problem of quantitative imaging.
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2.4 Scattering from arbitrary shaped weak scat-

terers: Born Approximation

In the previous two sections we showed that the electromechanical impulse re-

sponse of a transducer can be measured using either a plate or a point target.

Once this reference signal is known, it can be applied to simulate the backscat-

tered field from arbitrary shaped targets through the Born approximation ([66]).

Equation 2.4(Equation (44) of ([66]) can be rearranged according to Eq.(2.7):

υo(r, t) = epe(t) ∗t [s(r′) ∗r
∂2Hpe(r

′, r, t)
∂t2

] (2.16)

in which r is the vector to a characteristic position of the transducer and r′

represents a vector to a point within the scatterer (Fig. (2.1)) and, as defined

by Jensen ([66]),

Hpe(r
′, r, t) = h(r′, r, t) ∗t h(r, r′, t) (2.17)

is equivalent to hT ∗t hR in our Eq. (1). More explicitly, Eq.(2.16) is

υo(r, t) = epe(t) ∗t

[∫

V ′

[4ρ(r′)
ρo

− 24c(r′)
co

]
1

c2
o

∂2Hpe(r
′, r, t)

∂t2
d3r′

]

=
1

c2
o

∂2epe(t)

∂t2
∗t

[∫

V ′

[4ρ(r′)
ρo

− 24c(r′)
co

]
Hpe(r

′, r, t)d3r′
]
(2.18)

where 4ρ and 4c are the perturbations in density and sound speed with respect

to background and V ′ is the scattering region.

In the case of a point scatterer Eq.(2.18) reduces to:

υo(r, t) =

[4ρ(r′)
ρo

− 24c(r′)
co

]
1

c2
o

∂2epe(t)

∂t2
∗t h(r′, r, t) ∗t h(r, r′, t) (2.19)
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which is consistent with Eq.(2.5) (Jensen’s Eq. (50)). Specifically in the case

of a point scatterer placed at the focal point Eq.(2.19) reduces to the form of

Eq.(2.15c). This observation reveals a potential area of confusion with respect

to the results in [66], in which Eq.(2.19) is taken to be the response to a flat-plate

at the focal plane. More correctly, as indicated by the results in the previous

two sections of this paper, this flat-plate response is obtained by removing the

double time derivative.

In this work the overall outcome of the Born approximation derived by Jensen

([66]) is unchanged. However, we have used the twice time derivative of the plate

response in our simulations. The method of finding epe(t) described in Sections

2.2 and 2.3 can be applied directly to the more general case of scattering through

the Born approximation as given by Eq.(2.18).

2.5 Experiments

We carried out experiments to verify the fact that the scattered signal from

a plate and a small scatterer are related by double differentiation in time.

We used a spherically focused ultrasonic transducer, 3.5 MHz, 50.8 mm fo-

cal length, 12.8 mm radius (Model V380, Panameterics, Waltham, MA). This

strongly focusing transducer (F number 2 and Gp=24) was placed in a water

tank (0.8 m x 0.8 m x 1.5 m) that was filled with de-ionized de-gassed water at

approximately 21◦C. The transducer was operated in pulse-echo mode using a

pulse-receiver (UA 5052, Panametrics, Waltham, MA). The pulser-receiver ex-

cited the transducer with a short excitation signal that approximated a delta

function and the received echo was acquired on digital scope (LC 334a, LeCroy,
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Chestnut Ridge, NY) and transferred to a computer for later analysis. We in-

vestigated the reflections from two targets. The first was a 12.5 mm thick flat

acrylic plate acoustic mirror. The second target was from the cleaved end of an

optical fiber 110 microns in diameter point scatterer. Figure 2.2(a) shows the

reflected pulse measured from the front surface of the acrylic plate, υo(t). This

is the scaled pulse-echo impulse response, epe(t), according to Eq.(2.12). Here

Gp=24, so the diffraction correction factor is 0.885 and the reflection coefficient

at the water-acrylic interface is RF =0.348. Figure 2.3 compares three normal-

ized waveforms 1) the signal measured from the plate 2) the signal measured

from the optical fiber and 3) the doubly differentiated epe waveform obtained

from Eq.(2.8) (note this equation gives a sign inversion). We see that carrying

out the double-differentiation is crucial to obtaining good agreement between

predictions based on the impulse response of the transducer (epe) and the re-

ceived signal from a point scatterer. Without this operation neither the leading

negative half-cycle nor the details of the ringdown are captured correctly. This

result shows that the time-domain calibration function that is determined from

a flat-plate can be used to predict the waveform from a point scatterer at the

focus. Once this reference signal is known, it can be applied to simulate the

free diffraction field of the transducer or backscattering from other scattering

targets. We used Eq.(2.6) with the point scatterer characteristic, Eq.(2.13), and

the round trip spatial impulse response (Arditi et al.,1981) with 2 GHz sam-

pling frequency in time, to simulate the echoes scattered from a small point-like

target. To confirm our predictions, the optical fiber was mechanically scanned

through the tank and echo waveforms recorded at each location. Figure 2.4

shows the measured and predicted contour maps of the amplitude envelope of
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Figure 2.2: (a) Reference pulse-echo from a large thick acrylic plate placed in
the geometric focal plane of a 3.5 MHz spherically focused transducer. (b)
Amplitude spectrum of pulse-echo.
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optical fiber placed at the geometric spherical focal point of a 3.5 MHz trans-
ducer.
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the scattered fields for the case where the fiber was placed in the focal plane and

translated perpendicular to the acoustic beam axis. Figure 2.5 is a similar scan

but at an axial distance of 53.8 mm (about 3 mm or 10 wavelengths behind of

the focus). In both cases, there is a close agreement between the measured and

predicted scattered field. The slight differences are attributable to imperfections

in both the transducer as an ideal piston source, as determined by extensive hy-

drophone measurements, and the cleaved optical fiber as an isolated ideal point

target. The source transducer was found to have a mildly distorted, asymmetric

transmitted field when compared to simulations based on an ideal uniformly

weighted piston source. Pulse-echo simulations based on the point target wave-

form at the focal point gave slightly better agreement with measurements than

those shown here; however, we believe this result to be a consequence of the

imperfect realization of an ideal spherical scatterer by the cleaved optical fiber

which had it own unique response characteristic, as shown in Fig. (2.3). These

comparisons confirm that the plate-derived calibration waveform can be used to

predict the response of a scatterer anywhere in the field of the transducer.

2.6 Conclusion

We have shown, both theoretically and experimentally, that the pulse-echo im-

pulse response of a spherically focused transducer can be measured using either

a flat-plate or a point scatterer. The reflected waveforms in each case are not

identical but rather related by an operation of double differentiation. Because

of the difficulty of determining the precise geometry of practical realizations of

sub-wavelength point targets and, consequently, the calibration constant A, a

reflection from a flat-plate is recommended for determination of the reference
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Figure 2.4: (a) Amplitude envelope of the pulse-echo field of 3.5 MHz transducer
as measured by scanning an optical probe laterally at an axial distance equal to
the focal length. (b) Amplitude envelope of the simulated pulse-echo field using
Eq. (10c) and differentiated signal from Fig. (2.3).
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Figure 2.5: (a) Amplitude envelope of the pulse-echo field of 3.5 MHz trans-
ducer as measured by scanning an optical probe laterally at an axial distance
z=53.8 mm. (b) Amplitude envelope of the simulated pulse-echo field using
Eq. (10c) and differentiated signal from Fig. (2.3)
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pulse. For values of focal gain greater than or equal to 16, the error in the

approximation (Eq.(2.10)), is less than five percent.

The formulation in Eq.(2.6) and the relation between the flat-plate and point

target echoes can be used to resolve differences among various calibration meth-

ods in the literature ([66, 70, 71, 74, 83, 84]) each of which can be used self-

consistently but may be in conflict with other methods. For example, Hunt et

al. [74] obtained a reference waveform from a point scatterer but their formula-

tion for the scatterer does not include the double differentiation of Eq.(2.15c).

Their waveform is used consistently to simulate speckle as a summation of ran-

dom point scatterers.

The time domain Born approximation of Jensen ([66]) in Eq.(2.18) includes

the double differentiation and shows that the echo signal from an inhomogeneous

medium can be obtained by convolving the point-scattered waveform with the

medium properties in agreement with Eq.’s (2.6) and (2.14a). If one wishes to

use the signal measured from a flat-plate for this Born model, it is necessary to

differentiate the reference signal twice with respect to time first. The wording

in Jensen ([66]) could be misinterpreted to mean that the flat-plate signal was

already differentiated.

In summary, the commonly used reference waveform from a flat-plate target

in the focal plane of a strongly focusing transducer (Gp ≥16) is appropriate to

determine epe(t) without distortion. This reference signal is useful for transducer

calibration and diffraction correction ([71, 72, 85, 86]). However, the waveform

must be used with care for other scattering targets.

In the next chapter the ideas that have been developed in this section will

be applied to the frequency domain.



Chapter 3

Propagation of Ultrasound in the

Frequency Domain

Propagation of ultrasound can accurately be predicted for a non-attenuating

medium e.g. water by using the methods derived in the previous chapter. In

Chapter 2 we presented a time domain model which describes the propagation

and scattering of ultrasound in a homogeneous medium. However, the behavior

of the field cannot be characterized for a lossy, attenuating medium.

Since the human tissue shows a dispersive ultrasound absorbtion, the fre-

quency dependent attenuation plays a prominent role in ultrasound imaging

applications. For most materials including biological tissues, the frequency de-

pendency of attenuation is characterized by a power-law relation: α(ω) = αo|ω|y,
where αo and y (0 < n < 2) are the material-dependent parameters. For quanti-

tative ultrasound imaging, it is important to understand how the pressure field

behaves in such media. The apparent approach would be to carry the time do-

main models of Chapter 2 to the frequency domain and provide a mathematical

derivation of the acoustic Born model for a power law attenuating medium.

In this chapter, we first study the propagation of ultrasound waves in a

37
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homogeneous, lossy medium. Next, we use the derived theory to obtain solutions

in the presence of weak inhomogeneities via Born approximation. We present a

compact linear relation between the measured backscatter data and the medium

parameters (sound speed, attenuation and density). We validate the proposed

model with experimental data.

This chapter is organized as follows. The first section defines the inhomo-

geneous wave equation in frequency domain, characterizes the background and

the scattering wave numbers and introduces the assumptions to obtain a linear

solvable equation. Section 3.2 presents the derivation of the incident field for

commercial spherical ultrasound transducers. Section 3.3 discusses the calcula-

tion of the measured backscatter signal in frequency domain and introduces a

compact relation between the medium parameters and the measured field. In

section 3.4 the spatial transfer function for spherically focused transducers is

formulated and a fast semi-analytical method is introduced to calculate the re-

sponse. The comparison of predicted and measured pressure fields for spherical

transducers is given in Section 3.5. The chapter is concluded in Section 3.6.

3.1 Derivation of the Scattered Field

In this section we introduce the linear time and frequency domain wave equations

which describes the propagation of ultrasound in a homogeneous medium. We

start with the equations derived in the previous chapter and extend them for

lossy, power law attenuating media.

The time domain equations derived in the previous chapter fails to charac-

terize the behavior of the acoustic field in a lossy, attenuating medium. Hence,

we derive the scattered field from an acoustic inhomogeneity of density, sound
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speed and attenuation for a lossy medium and give brief details of the assump-

tions made to linearize the scattering problem.

3.1.1 Acoustic Wave Equation

For a fluid medium with space dependent sound speed and density, the linear

wave equation is defined as [81],(page 432):

∇ · ( 1

ρ(r)
∇p(r, t))− 1

ρ(r)c(r)2

∂2p(r, t)

∂t2
= 0 (3.1)

where r is a point in 3-space and t is the time variable. p(r, t) is the pressure

at r and t, ρ(r) is the density and c(r) is the speed of sound. After algebraic

manipulations this equation can be written as:

∇2p(r, t)−∇p(r, t) · ∇ ln ρ(r)− 1

c(r)2

∂2p(r, t)

∂t2
= 0 (3.2)

The frequency domain wave equation is obtained by taking the Fourier trans-

form of the field with respect to the time at each position r. In this study the

representation form of the time harmonic relations is chosen as ejωt. Specifically

the instantaneous fields are related to their complex time harmonic forms by

p(r, t) = Re[p(r)ejωt]. With this definition the linear wave equation in frequency

domain is defined as:

∇2p(r, ω)−∇ ln ρ(r) · ∇p(r, ω) + k2(r, ω)p(r, ω) = 0 (3.3)

where ω is the angular frequency, p(r, ω) is the pressure at r and ω and k2(r, ω)

is the squared wavenumber at frequency ω and location r.
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For a source distribution q(r, ω) located at r with frequency ω, the right hand

side of Eq.(3.3) is replaced by q(r, ω):

∇2p(r, ω)−∇ ln ρ(r) · ∇p(r, ω) + k2(r, ω)p(r, ω) = q(r, ω) (3.4)

3.1.2 A Model for k2

A key issue to model the wave behavior in frequency domain is the specification

of k2(r, ω). In non-attenuating media, k(r, ω) is a real-valued quantity equal to

ω/c(r). For a dispersive attenuating medium, a frequency dependent imaginary

component is introduced. The form of k(r, ω) to be used in that case is:

k =
ω

c(r, ω)
− jα(r, ω) (3.5)

where c(r, ω) is the dispersive speed of sound and α(r, ω) is the frequency de-

pendent attenuation coefficient.

Under the Born approximation, the scatterer is viewed as a small perturba-

tion to a homogenous background model, and the scattered field is expressed

linearly in terms of this perturbation. Hence we should linearize the problem

and define the changes is the three acoustic parameters, as a perturbation to

the known homogenous background.

Perturbation in Sound Speed and Attenuation

The first step to linearize the problem is to define the perturbations for the

sound speed and attenuation.

We assume the dispersive propagation velocity varies slightly from its mean



CHAPTER 3. Propagation of Ultrasound in the Frequency Domain 41

background value so that, it can be represented in the following form:

c(r, ω) = cb(r, ω) + cp(r, ω) (3.6a)

We linearize the above expression and for each component define dispersion as

perturbation to a slowly varying space dependent part:

c(r, ω) = cb(r) + cbd(r, ω) + cp(r) + cpd(r, ω) (3.6b)

where cb(r) is the slowly varying space dependent background speed, cp(r) is the

scatterer -perturbation- sound speed, cbd(r, ω) and cpd(r, ω) are the background

and perturbation dispersions respectively. If we normalize Eq.(3.6b) by a char-

acteristic sound speed co, which can be an average over space and frequency, we

obtain:

c(r, ω)

co

=
cb(r)

co

+
cbd(r, ω)

co

+
cp(r)

co

+
cpd(r, ω)

co

(3.7)

We assume weak spatial dependency for cb(r) and identify cb(r)/co as being the

order of unity that is cb(r)/co = O(1). Moreover we define:

cbd(r, ω)/co = O(ε) Background dispersion is small. The typical value is 0.01.

cp(r)/co = O(µ) Spatial variation is also small but different than the

size of dispersion. The typical value is 0.1.

cpd(r, ω)/co = O(µε) This term accounts for perturbation dispersion and

spatial variation will be smaller than the other two terms.

Repeating the same procedure for attenuation takes a little more thought.

The frequency dependency of attenuation will be represented with a power law

relation, which is appropriate for the tissue, hence the linearization employed in
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Eq.(3.6b) cannot be applied. In other words, attenuation is inherently dispersive.

Hence, the terms like cb(r) or cp(r) will not appear in the derivation.

We again assume that the attenuation varies slightly from its mean value so

that:

α(r, ω) = αb(r, ω) + αp(r, ω) (3.8)

The form of attenuation for power law dependency is:

αb(r, ω) = αbo(
ω

ωo

)n (3.9a)

αp(r, ω) = αpo(r)(
ω

ωo

)n (3.9b)

where αbo is constant background attenuation and αpo(r) is space dependent per-

turbation value. For tissue like material the exponent is defined as: 0 < n < 2.

With this form Eq.(3.8) can be written as:

α(r, ω) = αbo(
ω

ωo

)n + αpo(r)(
ω

ωo

)n (3.10)

We substitute the sound speed and attenuation in Eq.(3.5) with their lin-

earized expressions (Eq.(3.7) and Eq.(3.8)), and ignore the space and frequency

dependency for simplicity of the notation, to obtain:

k =
ω

cb + cbd + cp + cpd

− j(αb + αp) (3.11a)

We will work with this form of k and neglect the second order terms along the
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way.

k =
ω

cb

(1 +
cbd

cb

+
cp

cb

+
cpd

cb

)−1 − j(αb + αp) (3.11b)

=
ω

cb

(1− cbd

cb

− cp

cb

−»»»»:0
O(µε) )− j(αb + αp) (3.11c)

We take the square of the both sides of Eq.(3.11c) and neglect the small disper-

sion terms:

k2 = (
ω

cb

)2(1−
¶

¶
¶7
O(ε)

cbd

cb

− cp

cb

)2 − j(
2ω

cb

)(1−
¶

¶
¶7
O(ε)

cbd

cb

− cp

cb

)(αb + αp)− j(αb + αp)
2

= k2
br


1− 2

cp

cb

− j2(1− cp

cb

)
(αb + αp)

kbr

− j
(αb + αp)

2

k2
br


 (3.12)

where kbr = ω/cb.

If we assume αb/kbr and αp/kbr are small then the terms with double under-

lining are second order. If we rearrange the terms in Eq.(3.12) and introduce

the space and frequency dependency:

k2 ≈ ω2

cb(r)2
− j

2ωαb(r, ω)

cb(r)
− cp(r)

[
2ω2

cb(r)3

]
− αp(r, ω)

[
j

2ω

cb(r)

]
(3.13)

As described above, we assume weak spatial dependency for cb(r) and identify

cb(r)/co as being the order of unity, that is cb(r) ' co ' cb.

We can decompose k2 into a background k2
b (ω) and a perturbation term

k2
s(ω, r) where k2

s(ω, r) is a linear function of scattering parameters. That is we

write:
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k2
b (ω) =

ω2

c2
b

− j
2ωαb(ω)

cb

(3.14a)

k2
s(r, ω) = cp(r)

[
−2ω2

c3
b

]
+ αp(r, ω)

[
−j

2ω

cb

]
(3.14b)

Perturbation in Density

In the previous part we showed that k2 term can be decomposed into background

and perturbation terms under the assumption that, the propagation velocity

and the attenuation vary slightly from their mean values. We now take our

assumptions one step further and assume the density varies slightly from its

mean value as well.

We define ρ(r) = ρb + ρp(r) where ρb is the constant, space independent,

background density and ρp(r) is the perturbation density, so that:

∇lnρ(r) = ∇ln(ρb + ρp(r)) = ∇ln(ρb(1 +
ρp(r)

ρb

) = ∇ln(ρb) +∇ln(1 +
ρp(r)

ρb

)

Define σ = ln(ρ(r)) = σb + σp(r, ω) then we can rewrite the wave equation

(Eq.(3.4)) in terms of σ as:

∇2p(r, ω)−∇σp(r).∇p(r, ω) + k2(r, ω)p(r, ω) = q(r, ω) (3.15)

where

σp(r) = ln(1 +
ρp(r)

ρb

) (3.16a)

and for ρp(r)/ρb ¿ 1

∇σp(r) ≈ ∇ρp(r)

ρb

(3.16b)
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We now decompose k2(r, ω) into k2
b (ω) and k2

s(r, ω) and reorganize (Eq.(3.15))

as:

∇2p(r, ω) + k2
b (ω)p(r, ω) = q(r, ω) +∇σp(r).∇p(r, ω)− k2

s(r, ω)p(r, ω) (3.17)

Equation Eq.(3.17) is the form of the wave equation that will be used in this

study.

3.1.3 Born Approximation

The scalar Helmholtz equation (Eq.(3.17)) cannot be solved directly for the

scattered field but a solution can be written in terms of the Green’s function [10].

The Green’s function for this case, G(r, r′, ω), is defined as the solution to the

background problem for a δ source located at position r′

∇2G(r, r′, ω) + k2
bG(r, r′, ω) = −δ(r − r′) (3.18)

For the 3D case it is well known that

G(r, r′, ω) =
exp{−jkb|r − r′|}

4π|r − r′|

where kb =
√

k2
b,R − jk2

b,I is implicitly a function of frequency and for which the

sign of the imaginary part is chosen to ensure that the Green’s function decays

as exponentially.

Based on the linearity of the scattering problem, we can use the Green’s

function to obtain p as the solution to the Lippman-Schwinger integral equation:
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p(r, ω) = −
∫

V ′
G(r, r′, ω)q(r′, ω)d3r′

−
∫

V ′
G(r, r′, ω)(−k2

s(r
′, ω) +∇σp(r

′).∇)p(r′, ω)d3r′ (3.19)

To simplify matters, we define the incident pressure field pb(r, ω) as the first

term on the right hand side of (Eq.(3.19)). The Born approximation is invoked

by replacing p with pb in the second term on the right hand side of (Eq.(3.19)).

Assuming the incident field is known and defining the scattered field as ps = p−pb

yields the Born model of interest in this work:

ps(r, ω) = +

∫

V ′
G(r, r′, ω)k2

s(r
′, ω)pb(r

′, ω)d3r′−
∫

V ′
G(r, r′, ω)∇σp(r

′).∇pb(r
′, ω)d3r′.

(3.20)

The first term at the right hand side of the equation accounts for the perturba-

tions of the sound speed and the attenuation and is a linear function of these

quantities. On the other hand the second term, accounting for the density per-

turbation, has a gradient term. To simplify the second term on the right hand

side of Eq.(3.20) the Green’s theorem will be used. For simplicity r and ω

dependencies are dropped. By using the vector identities we can write:

∇.(σpG∇pb) = G∇pb.∇σp + σp∇pb.∇G + Gσp∇2pb (3.21)

Therefore the second term on the right hand side of (Eq.(3.20)) can be written
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as:

∫

V ′
G∇σp.∇pb d3r′ =

∫

V ′
∇.(σpG∇pb)d

3r′−
∫

V ′
σp∇pb.∇Gd3r′−

∫

V ′
Gσp∇2pbd

3r′

(3.22)

By Green’s theorem:

∫

V ′
G∇σp.∇pb d3r′ =

∫

∂V ′
σpG∇pbd

2r′−
∫

V ′
σp∇pb.∇Gd3r′−

∫

∂V ′
Gσp[n̂.∇pb]d

2r′

(3.23)

The left hand side of Eq.(3.23) is a volume integral where integrand is a func-

tion of the gradient of the density perturbation. The right hand side of the

equation involves one volume and two surface integrals, all of which are the

linear functions of density. With the assumption of no scatterers on the bound-

ary (σp|∂V ′ = 0) the surface integrals vanish. As a result, the scattered field is

expressed as a linear function of the all the perturbation values:

ps(r, ω) =

∫

V ′
{G(r, r′, ω)k2

s(r
′, ω)pb(r

′, ω) + σp(r
′)∇pb(r

′, ω).∇G(r, r′, ω)}d3r′.

(3.24)

3.2 Derivation of the Incident Field

The correct characterization of the incident field pb generated by commercially

available transducers is crucial for the solution of Eq.(3.24).

The incident field is generated by the transducer assuming no other sources

exist in the medium. For a focused transducer located at rs with surface area
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S, the incident field is calculated with [60, 66, 87]:

pb(ω, r, kb, rs) =

∫

S

G(r, rs, rt, kb, ω)ρbυ(ω)d2rt (3.25)

where rt represents the vector traversing the transducer surface, and υ(ω) is the

Fourier transform of the particle velocity normal to the transducer surface.

Adapting the notation of the previous chapter, this equation can be written

as:

vb(ω, r, kb, rs) = eT (ω)

∫

S

G(r, rs, rt, kb, ω)d2rt (3.26)

where vb is the measured voltage, and eT (ω) is the Fourier transform of the

transmit electromechanical response of the transducer.

3.3 Derivation of the Received Signal

Having derived the major equations we now calculate the received signal for a

bi-static pulse-echo configuration [66]. The schematic showing the transmitter,

receiver, and the scatterer locations is given in Fig. (3.1).

We rewrite Eq.(3.20) and incident field pb in terms of the vectors defined in

Fig. (3.1):

ps(rto + rt, ω) =

∫

V ′
G(rto + rt, r

′
, ω)(k2

s(r
′
, ω)pb(r

′
, rso, ω)d3r

′
(3.27)

−
∫

V ′
∇σp(r

′
).∇pb(r

′
, rso, ω))d3r

′

pb(r
′
, rso, ω) = eT (ω)

∫

S

e−jk|r′−(rs+rso)|

4π|r′ − (rs + rso)|d
2rs (3.28)
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Transmitter
Receiver

Scatterer

’

Figure 3.1: Transmitter, receiver, and the scatterer location vectors.

The integral in Eq.(3.28) is the spatial transfer function and it relates the trans-

ducer geometry to the acoustic field [60, 83]. By means of this function we can

write

pb(r
′
, rso, ω) = eT (ω) H(r

′
, rso, ω) (3.29)

The received signal is the product of the scattered pressure field integrated

over the receiver transducer surface and the electromechanical response of the

receiver (eR(ω)).

vo(rto, ω) = eR(ω)

∫

S

ps(rto + rt, ω)d2rt (3.30)

Using this definition and integrating Eq.(3.27) with respect to rt one readily
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obtains:

vo(rto, ω) = eT (ω)eR(ω)

∫

V ′
H(rto, r

′
, ω)k2

s(r
′
, ω)H(r

′
, rso, ω)d3r

′
(3.31)

−eT (ω)eR(ω)

∫

V ′
H(rto, r

′
, ω)∇σp(r

′
).∇H(r

′
, rso, ω)d3r

′

Finally using the Green’s theorem (Eq.(3.21)-Eq.(3.24))

vo(rto, ω) = epe

∫

V ′
k2

s(r
′
, ω)H(rto, r

′
, ω)H(r

′
, rso, ω)d3r

′

+epe

∫

V ′
σp(r

′
)∇H(rto, r

′
, ω).∇H(r

′
, rso, ω))d3r

′
(3.32)

The primary characteristic of Eq.(3.32), is that it provides a linear relation

between the real measured backscatter data and the medium parameters.

3.4 Derivation of the Spatial Transfer Function

Key to the implementation of the Born Model is the specification of the spatial

transfer function (H) of the commercially available transducers.

This section gives a detailed derivation of the semi-analytic expression for

the spatial transfer function of the spherically curved resonators in frequency

domain. The time domain formulation of Arditi et al. [60] will be applied to

frequency domain with the help of [87]. According to the definition of the spatial

transfer function we can write:

H(r, ω) =

∫

S

G(r, rt, ω)dS (3.33)

where S corresponds to the transducer surface, rt is the vector to a point within
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the transducer, r is the observation point and G is the Green’s function.

The Green’s function in 3D for an unbounded media is known to be:

G(r, rt, ω) =
e−jk|r−rt|

4π|r − rt| (3.34)

where k is the space invariant wave number.

A conventional approach might be to calculate this integral using numerical

integration techniques. For this type of problems numerical methods are not

attractive since the integral is highly oscillatory in rt.

The beauty of Arditi et al.’s time domain approach is converting the 2D

surface integral into a 1D line integral for which a closed form analytical solution

can be obtained. In frequency domain analytical solution does not exist but it

is convenient to apply numerical integration techniques to the resulting line

integral [87].

In our study we will use a different approach and project the integrand onto

the polynomial space and calculate the integral analytically.

3.4.1 On-axis case

To evaluate Eq.(3.33) Arditi defined three parameters ρ′, φ′ and dβ which are

shown in Fig. (3.2). R is the focal length of the transducer and O represents the

center of curvature. Following his approach and applying the Cosine theorem

on OPdS triangle one obtains:

H(rs, ω) =
1

4π

∫

S

e−jkr′

r′
dS (3.35a)
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Figure 3.2: Geometry of the problem.(On-axis case)

where

dS =
ρ′dρ′

cosφ′
dβ =

R

|rs|r
′dr′dβ (3.35b)

The limits for β and r′ are given in [60]

H(rs, ω) =
1

4π

∫ 2π

0

∫ rj

ri

e−jkr′

r′
R

|rs|r
′dr′dβ (3.35b)

The final form of the function can be written as:

H(rs, ω) =
R

2|rs|(−jk)
{e−jkrj − e−jkri} (3.36)

for z<0 for z>0

ri = R− rs ri =
√

a2 + (R− d + rs)2

rj =
√

a2 + (R− d + rs)2 rj = R + rs

where

d = R(1− (1− a2

R2
)

1
2 )
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Circle of
Intersection

Transducer Edge

Figure 3.3: Geometry of the problem.(Off-axis case)

is the depth of the concave source, and a is the radius of the circular boundary

of the transducer defined in Fig. (3.2).

3.4.2 Off-axis case

To express the transfer function for the off-axis case, the half space in front of

the transducer is divided into two regions. Region I corresponds to the points

inside the cone subtended by the circular boundary of the transducer and its

center of curvature. Region II is defined as the rest of the points in front of the

source. The off axis solution can be written as a summation of two responses:

H(rs, ω) = H1(rs, ω) + H2(rs, ω) where H2 has the same expression for Region

I and II. The geometry associated with this case is given in Fig. (3.3) Here rs

represents the position of the measurement point P.

Region1

As explained before the transfer function is expressed as a summation of two

terms (H1 and H2). To explain the reason behind this segmentation we will



CHAPTER 3. Propagation of Ultrasound in the Frequency Domain 54

express the underlying physics in time domain. In time domain, the first part

represented by (H1) is the measured response before the first arrival of the signal

from the closest edge of the transducer. In other words, if the axial symmetry

around the line OPQ is considered, the on-axis derivation can be applied. In the

time interval between the arrivals from the edges, the axial symmetry no longer

exists which will be represented by H2. Mathematically speaking, H1 has the

same expression as the on-axis case.

Following the same approach as the on-axis derivation for frequency domain,

one may write the expression for H1 as:

H1(rs, ω) =
R

2|rs|(−jk)
{e−jkrj − e−jkri} (3.37)

for z<0 for z>0

ri = R− |rs| ri =
√

(a +
√

r2
sx + r2

sy)
2 + M

rj =
√

(a−√
r2
sx + r2

sy)
2 + M rj = R + |rs|

M = (R− d + rsz)
2

where

rs = rsxx̂ + rsyŷ + rszẑ.

H2 has the same expression for both regions and will be defined in the next part.

Region2

For this region there is no axial symmetry and in the time domain, all the con-

tribution to the transfer function comes from the response between the arrivals

from the edges of the transducers. In the frequency domain this idea can be

expressed as follows:
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From the definition of the impulse response one has:

H2(rs, ω) =
1

4π

∫ r2

r1

∫ β(r′)

0

e−jkr′

r′
R

rs

r′dβdr′ (3.38a)

H2(rs, ω) =
R

4πrs

∫

r1

r2

e−jkr′β(rs, r
′)dr′ (3.38b)

where

r1 = ((a− ry)
2 + (R− d + rz)

2)1/2

r2 = ((a + ry)
2 + (R− d + rz)

2)1/2

In this region β(rs, r
′) is no longer a constant, which was 2π on the axis, but sub-

tends the arc length of points on the radiator equidistant from P. This angle and

the arc it subtends is shown in Fig. (3.3). The β(rs, r
′) can be determined from

the intersection of the spherical transducer with a sphere of radius r′ centered

at P and defined as:

β(rs, r
′) = 2cos−1

(
η(r′)
σ(r′)

)

η(r′) = R

{
1− d

R

sinθ
+

1

tanθ

(
R2 + |rs|2 − (r′)2

2|rs|R
)}

σ(r′) = R

{
1−

(
R2 + |rs|2 − (r′)2

2|rs|R
)2

} 1
2

Equation (3.38b) can not be solved analytically but our observations revealed

that β is smooth in the [r1, r2] interval and can be approximated by up to 10th
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order polynomials with 1.2% error bound. Specifically:

β(rs, r
′) =

m=10∑
m=0

am(r′)m; (3.39a)

H2(rs, ω) =
R

4πrs

m=10∑
m=0

am

∫

r1

r2

e−jkr′(r′)mdr′ (3.39b)

With this approximation H2(rs, ω) can be solved analytically.

At the Focus

The response at the focus of the transducer can be found by taking the Fourier

transform of the time domain impulse response. The impulse response at the

focus of the transducer is [60](eq. 12)

h(0, t) = dδ(t−R/c) (3.40)

taking the Fourier transform:

H(0, ω) = d exp{−jωR/c} = d exp{−jkR} (3.41)

3.5 Wave Propagation Experiment

A wave propagation experiment is performed to validate the Born model and the

spatial transfer function formulation of the spherically focused transducer. The

data acquisition system used in this experiment is located at Physical Acoustics

Laboratory at Boston University. The picture of the system with the water tank
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Figure 3.4: Data acquisition system and the water tank in Boston University.

is given in Fig. (3.4). For this experiment Panametrics V380 PZT transducer

with 3.5 MHz nominal frequency, 50.8 mm focal length, and 12.8 mm radius is

used as the transmitter probe. This strongly focusing transducer (F number 2

and Gp=24) was placed in the water tank (0.8 m × 0.8 m × 1.5 m) that was

filled with de-ionized de-gassed water at approximately 21◦C. The transducer

was operated in transmit mode using a pulser-receiver (UA 5052, Panametrics,

Waltham, MA). The pulser-receiver excited the transducer with a short excita-

tion signal that approximated a delta function and the received echo was mea-

sured by PVDF Hydrophone with 0.1 mm radius. The data observed on digital

scope (LC 334a, LeCroy, Chestnut Ridge, NY) and transferred to a computer for

later analysis. The wave propagation through a 80 mm long cylindrical tissue

mimicking agar phantom with power law attenuation is measured. Figure 3.5

shows the experimental setup with the agar phantom and the transducers. The

nominal properties of the tissue mimicking phantom is given in Table 3.1 with
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Figure 3.5: Experimental setup with the transducers and the phantom.

the real tissue properties for comparison.

To simulate the pressure fields, the electromechanical response of the trans-

ducer, eT (ω), should be obtained. For this purpose, a wave propagation ex-

periment was performed in water. The response at the focus of the spherical

transducer is measured with the PVDF hydrophone. Next, Eq.(3.29) is used

with a simplified Wiener filter and the Fourier transform of the measured water

data at the focal point (pf (ω)):

eT (ω) =
pf (ω)H∗

f (ω)

|Hf (ω)|2 + q
(3.42)

where Hf (ω) is the spatial transfer function at the focus, and q is the inverse of

the signal to noise ratio, and it was chosen to be 0.01max(|Hf (ω)|2) based on

the data measured at the focus.

Figure 3.6(a) shows the measured and predicted incident field for an off axis

measurement (x=-1.2 mm, y=-0.8 mm) where the receiver hydrophone is placed
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Figure 3.6: Predicted and measured waveforms after propagating through a
tissue mimicking phantom
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Figure 3.7: Beam plots of the predicted and measured waveforms.
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Table 3.1: Nominal acoustic properties of the Agar Phantom
Property Agar Phantom Human Tissue

Density (kg/m3) 1045 1000-1100
Sound Speed (m/s) 1551 1450-1640
Attenuation (Np/m/MHz) 10.17 4-17

at z=-6mm (see Fig. (3.5)) about 6 mm or 20 wavelengths behind the focus.

The transducer-receiver axial distance is 44.8 mm. Figure 3.6(b) shows the same

comparison in the frequency domain. To simulate the measured waveforms the

equations derived in the previous section for spatial transfer function of the

spherical transducer are used with the kb model derived in Section 3.1. Using

the approximate nominal values for the tissue mimicking phantom we were able

to get a very good agreement between the model and the experimental data.

The frequency dependency of attenuation is found with an optimization routine

and is characterized by a power of 1.2. Specifically the parameters used in the

simulations are:

k2
b (ω) =

ω2

c2
b

− j
2ωαb(ω)

cb

(3.43a)

where

cb = 1545m/s (3.43b)

ρb = 1045m/s (3.43c)

αb = 54(
ω

ωo

)1.2Np/m (3.43d)
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where ωo is the mean angular frequency (2π3.5MHz) and 54 is obtained by:

12(3.5)1.2 hence for the attenuation instead of the nominal value,10.17, we used

12 and for sound speed we used 1545 m/s.

We also studied the effect of absorbtion on wave propagation and demon-

strated that the effect of attenuation cannot be ignored for tissue. The same

experiment is simulated using a wave number corresponding to lossless water.

The signals that would be measured in this case are plotted in Fig. (3.6)(a)-(b)

and significantly different from those measured and modeled from lossy tissue

phantom. The normalization constant used for water was 8.6.

For further validation of our model, we placed the PVDF hydrophone at

z=-6mm and z=-20mm and mechanically moved the receiver perpendicular to

the acoustic beam axis between -3mm and 3mm. We compared the maximums

of the absolute values of the frequency responses at 1.34 MHz. This particu-

lar frequency is chosen from 3.6(b) where the signals reach their peak values.

Figure 3.7(a)and(b) shows the comparison for z=-6mm and z=-20mm respec-

tively. We again have a very good agrement between the measurements and the

simulations.

3.6 Conclusion

In this chapter we concentrated on the development and validation of the fre-

quency domain Born model for medical ultrasound imaging applications.

There are no direct methods for solving the problem of wave propagation in

inhomogeneous medium. We therefore linearized our problem and defined the

inhomogeneities in the acoustic properties as perturbations to a homogenous,

lossy background model. The scattered acoustic wave is expressed linearly in
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terms of the perturbations in sound speed, attenuation and density. Since our

ultimate interest lies in imaging the human tissue, the frequency dependency of

attenuation is characterized by a power-law relation.

We demonstrated a fast method to solve the incident field of spherically

curved radiators. The approach we proposed to obtain the spatial transfer func-

tion greatly improved the computation time of the Born kernel. To calculate the

incident field of the transducer at 225 observation points and 674 frequency val-

ues takes only 29 seconds with Matlab 6.5.0 on Pentium 4 machine with 3GHz

processor, and 1GByte memory.

We performed a validation experiment where we measured the wave propa-

gation through a tissue mimicking agar phantom with power law attenuation.

We simulated the measured field using the dispersive background wave num-

ber from Section 3.1 and equations from Section 3.2 and 3.4 that we derived

for the spherically focused radiators. The precise match between the measured

and simulated data support the validity of the methods developed in this dis-

sertation. We also observed the effect of absorbtion on ultrasound propagation.

Specifically, we showed the signals that would propagate in lossless water are

significantly different from those measured from lossy tissue mimicking phantom.

The next step will be the application of these methods to the inverse problem

area. The derived compact linear relation between the measured backscatter

data and the medium parameters will provide a basis for inversion.

To apply inversion algorithms to clinically obtained data, we would first need

a method to compute the pressure field of the clinically used phased arrays. The

experience we gained with focused transducers will help us simulate the forward

field from phased array transducers that will be presented in the next chapter.



Chapter 4

Cylindrically Concave

Transducers

Conventional ultrasound transducers used for medical diagnosis purposes are

generally of linear array type, consisting of linearly aligned rectangular apertures

with cylindrically curved surfaces which are focused in one direction. Typically

1D arrays that have natural focus in the elevation plane are used with electronic

focusing along the lateral dimension for beam forming applications. Ideally, each

element of the array can be excited individually to obtain non-beam formed data.

This type of applications allows us to collect full tomographic data where single

transmitter is used to probe the tissue and the response is measured by the

collection of the elements of the array. However, to utilize the array transducers

for applications beyond traditional beam focusing and steering, it is necessary

to have a precise knowledge of the radiated fields generated by the cylindrically

curved transducers.

In this chapter we introduce a fast semi-analytical frequency domain method

to compute the acoustic field of cylindrically concave transducers in a homoge-

nous medium by using the spatial impulse response approach. The method

64
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we propose complements the methods in the literature such that, with a new

rapid integral formulation, the pressure field due to cylindrical radiators for any

type of lossy or lossless media is obtained almost immediately and has a closed

form solution expressed with Bessel functions. The speed performance of the

semi-analytic technique is compared to an optimized numerical routine and the

method is validated with laboratory measurements.

This chapter is organized as follows. Section 4.1, briefly outlines the SIR

method and gives the equations that describe the pressure field produced by

time-harmonic excitations. In Section 4.2, we derive the integrals to compute

the spatial transfer function of the cylindrical radiators. In Section 4.3, we

introduce a semi-analytical method to compute those integrals. In Section 4.4,

we compare our method with numerical integration techniques and present a

comparison of predicted and measured pressure fields.

4.1 Theory: Spatial Impulse Response

For a homogenous fluid medium with a constant sound speed and density, the

acoustic field at frequency ω and position ~rp is calculated with the use of the

velocity potential Φ(~rp, ω) and imposing the appropriate boundary conditions

[61, 88]. For a uniform excitation, where the normal particle velocity υo on the

transducer surface is space invariant, i.e. υo(ω, ~rt) = υo(ω) where ~rt is the vector

traversing the transducer surface, the velocity potential can be expressed as:

Φ(~rp, ω) = υo(ω)

∫

S

e−jk| ~rp−~rt|

2π|~rp − ~rt|dS (4.1a)

= υo(ω)

∫

S

e−jkr

2πr
dS = υo(ω)H(~rp, k) (4.1b)
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where k is the background wave number, r is the distance from the emitting

surface element dS to the observation point P as shown in Fig. (4.1) and H(~rp, k)

is the spatial transfer function of the transducer. IIn lossless dispersive media

k is a real valued quantity equal to ω/co(ω), where co(ω) is the speed of sound.

For a lossy medium, an imaginary component is introduced,

k(ω) =
ω

co(ω)
− jα(ω) (4.2)

where α(ω) is the frequency dependent attenuation coefficient.

The output voltage from the transducer at point ~rp is calculated from Eq.(4.1a)

as:

v(~rp, ω) = jωρoυo(ω)υi(ω)H(~rp, k) (4.3)

or

v(~rp, ω) = eT (ω)H(~rp, k) (4.4)

where ρo is the density, υi(ω) is the Fourier transform of the driving signal of the

transducer and eT (ω) is the density scaled electromechanical transfer function.

4.2 Spatial Transfer Function for the Cylindri-

cal Geometry

In this section the spatial transfer function of a concave rectangular transducer

will be calculated. The source S is a truncated cylinder with lateral dimensions

l × h and a radius R is given in Fig. (4.1). The focal point of the cylindrical

radiator is the origin of the cylindrical coordinates system, and the center of
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Figure 4.1: The geometry of the transducer and the coordinate system.
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the element is at (x = R, φ = 0, z = 0) where the negative x direction is the

propagation direction. r is the distance from the observation point p(rp, φp, zp)

to a point on the transducer surface (R, φ, z). The spatial transfer function for

this geometry can be expressed as:

H(~rp, k) =

∫

S

e−jkr

2πr
ds (4.5)

where S is the radiator surface, and ds = Rdφdz. When the observation point

is close the focal point, the kernel of Eq.(4.5) is a well behaved smooth function.

But as the distance between the observation point and the focal point increases,

the integral shows an oscillatory behavior. The behavior of the kernel at 5MHz

for two observation points, one on the y axis and one close to the transducer

is given in Fig. (4.2). The technique to solve this oscillatory integral can be

summarized as follows: First a change of variable is employed to smooth the

oscillations of the kernel. Specifically, the integral will be expressed in terms of

the distance from the observation point to the points on the transducer. This

transformation requires space be segmented. In detail, the integrals that would

represent the points inside the transducer (Region B in Fig. (4.1)) should have a

different expression than the exterior points (Region A in Fig. (4.1)). This trans-

formation will result in elliptical type integrals in terms of the angle parameter.

The next step will be to introduce smallness approximation for φ, which is ap-

propriate for commercial transducers, and convert the elliptical integrals into

quadratic type where closed form analytical solutions exist. The computation

of φ integrals requires a new segmentation for φp points. To uniquely define the

line integrals, the x− y plane will be divided into five regions (Fig. (4.3)). As a

result, the surface integral for the spatial transfer function will be converted into
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(a)

(b)

Figure 4.2: (a) The oscillations of the real part of the kernel in Eq.(4.5) at 5 MHz
for P(0,10 mm,0)(b) The oscillations of the real part of the kernel in Eq.(4.5) at
5 MHz for P(59 mm,8 mm,0)
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Figure 4.3: Schematic showing the segmentation for φp

line integrals. Having reduced the dimension of the integral, the line integral

kernels will be expanded as truncated series of Legendre polynomials which can

be integrated exactly term by term. The resulting spatial transfer function will

be represented as summation of a few number of Bessel functions. In this section

the initial steps of our algorithm is introduced. Mainly, Eq.(4.5) is presented in

terms of the distance parameter and segmentation for zp is discussed.

Using the cylindrical coordinates representation, the distance r in Eq.(4.5)

can be expressed as:

r2 = (rp cos(φp)−Rcos(φ))2 + (rp sin(φp)−Rsin(φ))2 + (zp − z)2

= M(φ) + (zp − z)2 (4.6)

where M(φ) = r2
p + R2− 2rpR(cos(φ) cos(φp) + sin(φ) sin(φp)) contains all the φ
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dependent terms. Equation (4.5) can be written explicitly as:

H(~rp, k) =
1

2π

∫ φmax

φmin

∫ h
2

−h
2

e−jk
√

M(φ)+(zp−z)2

√
M(φ) + (zp − z)2

Rdzdφ (4.7)

where φmax = arcsin( l
2R

) and φmin = −φmax.

First, to simplify the integral, the element ds = Rdφdz will be expressed as

a function of r by eliminating the z dependence. Taking the derivative of the

both sides of the Eq.(4.6):

dz = − r

(zp − z)
dr (4.8)

The sign of the element dz depends on the value of zp − z at the observation

point. The field point zp can have values between [−∞,∞] but the surface

point z is limited to the width of the transducer, h. Mathematically speaking,

(zp − z) =
√

r2 −M(φ) for zp > z and −
√

r2 −M(φ) for zp < z. Hence the

new surface element ds will be given as:

ds = ± r√
r2 −M(φ)

Rdφdr (4.9)

and the correct sign will be determined from the observation point.

The surface S is now a function of r and φ, and the new integration limits

must be calculated. To express the new integrals, it is convenient to divide the

half space in front of the transducer into two regions. Due to the symmetry in

x−y and x−z planes of the radiator, the spatial impulse response is symmetric

with respect to z and y and the description of H(~rp, k) can be restricted to the

one quadrant of the y− z plane with zp ≥ 0 and y ≥ 0. The two regions will be
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defined as follows:

REGION A (zp ≥ h/2) If zp > h/2 (the maximum value of z), then (zp − z)

will always be positive and ds < 0. The integral limits for r can be found

by substituting the limiting values of z, (−h/2, h/2) in Eq.(4.6). Hence

the integral in Eq.(4.7) can be written in terms of r as:

R

2π

∫ φmax

φmin

∫ √
M(φ)+(zp+h/2)2

√
M(φ)+(zp−h/2)2

e−jkr

√
r2 −M(φ)

drdφ (4.10)

REGION B (0 ≤ zp < h/2) If zp is smaller than the limiting value of z, the

integral should be decomposed into two parts for proper calculation.

• If−h
2
≤ z ≤ zp then (zp−z) ≥ 0 and ds < 0. Substituting the limiting

values of z, (−h/2, zp), in Eq.(4.6), the new integral is expressed as:

R

2π

∫ φmax

φmin

∫ √
M(φ)+(zp+h

2
)2

√
M(φ)

e−jkr

√
r2 −M(φ)

drdφ

• If zp ≤ z ≤ h
2

then (zp − z) ≤ 0 and ds > 0. The limiting values for

z is (zp, h/2) and the new integral is given by:

R

2π

∫ φmax

φmin

∫ √
M(φ)+(zp−h

2
)2

√
M(φ)

e−jkr

√
r2 −M(φ)

drdφ

As a result, for this region the integral in terms of r can be expressed as:

R

2π

∫ φmax

φmin

[∫ √
M(φ)+(zp+h

2
)2

√
M(φ)

E(r, φ)dr +

∫ √
M(φ)+(zp−h

2
)2

√
M(φ)

E(r, φ)dr

]
dφ

(4.11)
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where for the simplicity of the notation:

e−jkr

√
r2 −M(φ)

= E(r, φ)

The type of the integrals that is introduced in this section can be summarized

in a compact form such as:

R

2π

∫ φmax

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ (4.12a)

where

F1(φ) =
√

M(φ) + Azp (4.12b)

F2(φ) =
√

M(φ) + Bzp (4.12c)

here Azp and Bzp represent the region specific constants defined by the zp value

of the observation point.

4.3 Integral Calculation

In the previous section the necessary integrals are derived to compute the spatial

transfer function of a cylindrical radiator and a compact form is introduced

which summarizes the formulae derived for two different regions. In this section,

the mathematical approximations to convert the surface integral presented in

Eq.(4.12a) into line integrals will be presented.

We were unable to find an analytical closed form solution for Eq.(4.12a).

Specifically, due to the r2 term in the denominator and the oscillatory expression
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e−jkr in the numerator, the exact integral with respect to r could not be obtained

analytically. Moreover, the integral is of elliptical type in terms of the angle

parameter. However, using the geometry information of the transducer, it is

possible to obtain a simpler expression for Eq.(4.12a) which would lead to a

closed form solution.

The geometry of the problem given in Fig. (4.1) -the placement of the trans-

ducer on the x axis- has a significant role in our method. Given the 2D side

view of the transducer in Fig. (4.1) one observes that the maximum value of φ

(or φmax) is arcsin( l
2R

). For the most focusing type of transducers, like the one

we use in our experiments, the ratio of l/(2R) is small enough that cos(φ) can

be approximated with (1 − φ2/2) and sin(φ) can be replaced with φ. Specifi-

cally, the parameters that actually define the transducer used in this study are

R = 70 mm and l = 13 mm, hence arcsin( 13
140

) ' 5◦. By means of this smallness

approximation, M(φ) will be described by:

M(φ) ≈ (r2
p + R2 − 2rpRcos(φp))− (2rpRsin(φp))φ (4.13)

+(rpRcos(φp))φ
2

The smallness approximation that is introduced on the way converts the

elliptical integral in Eq.(4.12a) into a quadratic type which has a closed form

solution. Since, the integral with respect to r cannot be obtained analytically,

we should change the order of integral in Eq.(4.12a) and attempt to calculate

the φ integral first. On the other hand, for the observation points on the z

axis (when rp = 0) the kernel will be independent of φ and this transformation
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cannot be employed. Therefore, the points on the z axis should be handled

separately.

In the next sections the mathematical details to reduce the type of integrals in

Eq.(4.12a) into line integrals will be presented where fast analytical integration

techniques can be applied to obtain a computationally efficient solution.

As discussed previously, the first step to obtain the line integrals will be to

employ the change of order of integration for r and φ. The algebraic details of

this alteration depend on the polar angle of the observation point. To uniquely

express the transfer function in terms of the angle parameter, the x− y plane is

divided into five regions as shown in Fig. (4.3). Region II and V correspond to

the points inside the cone subtended by the circular boundary of the transducer

and its center of curvature. Region III corresponds to the cone around the y

axis and Region I and IV are defined as the rest of the points in the first and

second quadrant.

Among all the regions, Region III requires a detailed explanation. The equa-

tions that would be derived are originated from Eq.(4.13) where (rpRcos(φp)) ap-

pears as a multiplication constant of φ2. For the points where cos(φp) = 0, such

as the ones on the y axis, the coefficient of this quadratic term is zero. Moreover,

for the observation points that are close to the y axis this term will be infinitesi-

mally small. Hence, the expansion employed below fails. For these points, which

are close to the y axis, cos(φ) will be approximated as unity and the last term

in Eq.(4.13) with the troublesome cos(φp) term is dropped. To minimize the er-

ror coming from this approximation, a threshold value should be chosen for the

polar angle which minimizes the effect of φ2 on the solution. Specifically the φp

value which satisfies the equation [(2rpRsin(φp)φmax) > 103(rpRcos(φp)φ
2
max)]
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was chosen as the boundary between Regions I and III. For the type of the

transducer used in this experiment, this threshold value, φt, was 69π/140 and

Region III was defined between 69π/140 and (π− φt) = 71π/140 which was the

symmetric interval with respect to the y axis.

The underlying principle to convert Eq.(4.12a) into line integrals is almost

similar for all the regions. In this chapter, we will present the full mathematical

details for all the regions. The introduced algebra covers all the mathematical

tools needed to obtain the response in any observation point in front of the

radiator. The reader is referred to the Appendix A section at the end of the

thesis for the summary of the equations derived in this section.

4.3.1 Case 1: Regions I and II 0 ≤ φp ≤ φt

In Regions I and II, the smallness approximation for φ will be employed and

cos(φ) will be represented with the second order terms in the Taylor series ex-

pansion [78]. M(φ), F1(φ) and F2(φ) are represented by:

M(φ) ≈ (r2
p + R2 − 2rpRcos(φp))− (2rpRsin(φp))φ (4.14a)

+(rpRcos(φp))φ
2

= a + bφ + cφ2 (4.14b)

F1(φ) ≈
√

a + bφ + cφ2 + Azp (4.14c)

F2(φ) ≈
√

a + bφ + cφ2 + Bzp (4.14d)

where to simplify the notation the equations will be represented in terms of

a, b and c throughout this section and Azp and Bzp represent the region spe-

cific constants defined by the zp value of the observation point. We will first
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Figure 4.4: The limit functions with monotonic decreasing φ dependency.

introduce the solution for Region I, as it sets the basis for the other solutions.

The boundaries between the regions are described in terms of tan φp and the

reasoning behind this parameter will be explained in the next section.

Region I: φmax < tanφp ≤ φt

To reduce the order of the integral given in Eq.(4.12a) change of order of inte-

gration will be employed. The region of integration is shown in Fig. (4.4). To

facilitate the change of order it was necessary to divide the integral into three

pieces.
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∫ φmax

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ = (4.15)

∫ F2(φmin)

F1(φmin)

∫ F−1
2 (r)

φmin

E(r, φ)drdφ +

∫ F1(φmin)

F2(φmax)

∫ F−1
2 (r)

F−1
1 (r)

E(r, φ)drdφ+

∫ F2(φmax)

F1(φmax)

∫ φmax

F−1
1 (r)

E(r, φ)drdφ

The mapping functions from r to φ which are denoted with F−1
1 (r) and F−1

2 (r)

are not single valued, e.g. F1(φ)=
√

a + bφ + cφ2 + Azp which is a quadratic with

two roots. To solve the problem uniquely, the correct root must be picked and

this motivates the separation into regions. The derivative of the quadratic term

changes sign at −b/2c = tan(φp). Hence, the boundaries between the regions are

described in terms of tan(φp). For Region I, tan(φp) > φmax and the appropriate

results are:

F−1
1 (r) = φ =

−b−√∆1

2c
(4.16a)

∆1 = b2 − 4c(a + Azp − r2) (4.16b)

F−1
2 (r) = φ =

−b−√∆2

2c
(4.16c)

∆2 = b2 − 4c(a + Bzp − r2) (4.16d)

Moreover in this region c > 0 and the integral with respect to φ is given
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as [89]:

∫
1√

r2 − (a + bφ + cφ2)
dφ = − 1√

c
arcsin

(
−2cφ− b√

b2 + 4c(r2 − a)

)
= G(φ) (4.17)

We now proceed to calculate the actual line integrals in terms of r. If we calculate

the integral in Eq.(4.15) with respect to φ and substitute F−1
1 (r) and F−1

2 (r) we

obtain:

G(F−1
1 ) = Ψ1(r) = − 1√

c
arcsin

(√
1− 4cAzp

b2 + 4r2c− 4ac

)
(4.18a)

G(F−1
2 ) = Ψ2(r) = − 1√

c
arcsin

(√
1− 4cBzp

b2 + 4r2c− 4ac

)
(4.18b)

hence, Eq.(4.15) can be written as:

∫ φmax

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ = (4.19)

∫ F2(φmin)

F1(φmin)

e−jkr[Ψ2(r)−G(φmin)]dr

+

∫ F1(φmin)

F2(φmax)

e−jkr[Ψ2(r)−Ψ1(r)]dr

+

∫ F2(φmax)

F1(φmax)

e−jkr[G(φmax)−Ψ1(r)]dr

We also define

G(φmin) = Ψ3(r) = − 1√
c
arcsin

( −2cφmin − b√
b2 + 4r2c− 4ac

)
(4.20a)

G(φmax) = Ψ4(r) = − 1√
c
arcsin

( −2cφmax − b√
b2 + 4r2c− 4ac

)
(4.20b)
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and present the transfer function in a compact form of four line integrals:

H =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ1(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ2(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ3(r)]dr +

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ4(r)]dr


 (4.21)

where

φmin = −arcsin(l/2R) (4.22)

φmax = arcsin(l/2R)

Region II: tanφp ≤ φmax

When tan(φp) is smaller than the limiting value of φ the inverse mapping func-

tions F−1
1 (r) and F−1

2 (r) change sign in the integral interval. Therefore the

integral in Eq.(4.12a) should be decomposed into two parts for unique represen-

tation.

∫ φmax

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ = H1 + H2 = (4.23)

∫ tan(φp)

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ +

∫ φmax

tan(φp)

∫ F2(φ)

F1(φ)

E(r, φ)drdφ

To obtain H1, the algorithm we used in Region I will be implemented. The limit

functions F1(φ) and F2(φ) are decreasing functions of φ and the inverses of the

functions are represented with the negative roots, hence the resulting integral
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has the similar form with the previous case and can be expressed as:

H1 =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ1(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ2(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ3(r)]dr


 (4.24)

where

φmin = −arcsin(l/2R) (4.25)

φmax = tan(φp)

The Ψ4(r) integral vanishes in this interval.

To calculate H2 the same path will be followed with minor modifications.

For this case M and r are the increasing functions of φ. The behavior of the

limiting functions with respect to φ is given in Fig. (4.5). As in Eq.(4.15), we

have to divide the integral into three parts for proper calculation.

The integral in Eq.(4.12a) will have the form:

∫ F2(φmin)

F1(φmin)

∫ F−1
1 (r)

φmin

E(r, φ)drdφ +

∫ F1(φmax)

F2(φmin)

∫ F−1
1 (r)

F−1
2 (r)

E(r, φ)drdφ+

∫ F2(φmax)

F1(φmax)

∫ φmax

F−1
2 (r)

E(r, φ)drdφ

After algebraic manipulations the resulting integral can be written as:

H2 =
R

2π




∫ F1(φmax)

F1(φmin)
e−jkr[−Ψ1(r)]dr +

∫ F2(φmax)

F2(φmin)
e−jkr[Ψ2(r)]dr+

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ4(r)]dr


 (4.26)
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Figure 4.5: The limiting functions with monotonic increasing φ dependency.

where

φmin = tan(φp) (4.27)

φmax = arcsin(l/2R)

The Ψ3(r) integral vanishes in this interval.

4.3.2 Case 2: Region III, φt < φp ≤ π − φt

The equations we derived in the previous sections are originated from Eq.(4.17)

where we have 1/
√

c or 1/
√

rpRcos(φp) as a multiplication constant. Hence for

a zero rp or cos(φp) value, the derived equations will no longer be valid. As

discussed previously the first order approximation for cos(φ) will be employed
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in this region and the parameters that will be used for this case will be presented

with:

M(φ) ≈ (r2
p + R2 − 2rpRcos(φp))− (2rpRsin(φp))φ (4.28a)

= a + bφ

F1(φ) ≈
√

a + bφ + Azp (4.28b)

F2(φ) ≈
√

a + bφ + Bzp (4.28c)

F−1
1 (r) =

r2 − a− Azp

b
(4.28d)

F−1
2 (r) =

r2 − a−Bzp

b
(4.28e)

In this region, M and r are decreasing functions of φ. The algorithm intro-

duced in the previous section can be applied to this case where we have:

∫ φmax

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ = (4.29)

∫ F2(φmin)

F1(φmin)

∫ F−1
2 (r)

φmin

E(r, φ)drdφ +

∫ F1(φmin)

F2(φmax)

∫ F−1
2 (r)

F−1
1 (r)

E(r, φ)drdφ+

∫ F2(φmax)

F1(φmax)

∫ φmax

F−1
1 (r)

E(r, φ)drdφ

Moreover for this region:

∫
1√

r2 − (a + bφ)
dφ =

2
√

r2 − (a + bφ)

−b
(4.30)
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We calculate the integral in Eq.(4.29) with respect to φ and substitute the limits

to obtain:

H =
R

π(−b)
{ (4.31)

∫ F2(φmin)

F1(φmin)

e−jkr[
√

Bzp −
√

r2 − (a + bφmin)]dr

+

∫ F1(φmin)

F2(φmax)

e−jkr[
√

Bzp −
√

Azp]dr

+

∫ F2(φmax)

F1(φmax)

e−jkr[
√

r2 − (a + bφmax)−
√

Azp]dr }

with the definition of:

Ψ5(r) =
√

r2 − (a + bφmin) (4.32a)

Ψ6(r) =
√

r2 − (a + bφmax) (4.32b)

the spatial transfer function can be expressed in a compact form as:

H =
R

π(−b)




∫ F2(φmin)

F2(φmax)
e−jkr[

√
Bzp]dr +

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ5(r)]dr

+
∫ F2(φmax)

F1(φmax)
e−jkr[Ψ6(r)]dr +

∫ F1(φmin)

F1(φmax)
e−jkr[−√

Azp]


(4.33)

where φmin and φmax are defined in Eq.(4.22).

4.3.3 Case 3: Regions IV and V (π − φt) ≤ φp ≤ π

The type of the integrals required to describe the transfer function of the points

in Region IV and V can be calculated using the algorithm we introduced in

Section 4.3.1. However, care must be taken since for these regions the integral of

the quadratic form has a different expression than Eq.(4.17). For this part cos(φ)
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will again be represented with the second order terms in series expansion [78]

and M(φ), F1(φ) and F2(φ) have the same forms in Section 4.3.1 as:

M(φ) ≈ (r2
p + R2 − 2rpRcos(φp))− (2rpRsin(φp))φ (4.34a)

+(rpRcos(φp))φ
2

= a + bφ + cφ2 (4.34b)

F1(φ) ≈
√

a + bφ + cφ2 + Azp (4.34c)

F2(φ) ≈
√

a + bφ + cφ2 + Bzp (4.34d)

Region IV: tanφp < φmin

In Region IV the limiting functions F1(φ) and F2(φ) are decreasing functions of

φ and the inverses of the limits should be computed with Eq.(4.16a)-(4.16d).

For this case cos(φ) < 0 and the integral of Eq.(4.12a) is represented by [89]:

∫
1√

r2 − (a + bφ + cφ2)
dφ =

1√−c
ln

(
2
√
−c(r2 − a− bφ− cφ2)− 2cφ− b

)
= G(φ)

(4.35)

To calculate the actual line integrals, we substitute F−1
1 (r) and F−1

2 (r) in Eq.(4.35)

to obtain:

G(F−1
1 ) = Ψ7(r) =

1√−c
ln

(
2
√
−cAzp +

√
b2 − 4c(a + Azp − r2)

)
(4.36a)

G(F−1
2 ) = Ψ8(r) =

1√−c
ln

(
2
√
−cBzp +

√
b2 − 4c(a + Bzp − r2)

)
(4.36b)

G(φmin) = Ψ9(r) =
1√−c

ln

(
2
√
−c(r2 − a− bφmin − cφ2

min)− 2cφmin − b

)

(4.36c)
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G(φmax) = Ψ10(r) =
1√−c

ln
(
2
√
−c(r2 − a− bφmax − cφ2

max)− 2cφmax − b
)

(4.36d)

The resulting equation is given as:

H =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ7(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ8(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ9(r)]dr +

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ10(r)]dr


 (4.37)

where

φmin = −arcsin(l/2R) (4.38a)

φmax = arcsin(l/2R) (4.38b)

Region V: tanφp ≥ φmin

When tan(φp) is larger than the smallest value of φ the integral should be de-

composed into two parts for proper calculation for the same reasons as in Sec-

tion 4.3.1.

∫ φmax

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ = H1 + H2 = (4.39)

∫ tan(φp)

φmin

∫ F2(φ)

F1(φ)

E(r, φ)drdφ +

∫ φmax

tan(φp)

∫ F2(φ)

F1(φ)

E(r, φ)drdφ

To find H2 the same algorithm with the previous section will be used. The

inverses of the functions are represented with the negative roots and the limits

are decreasing functions of φ hence the resulting integral has the similar form
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with the previous case and can be written as:

H2 =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ7(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ8(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ9(r)]dr +

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ10(r)]dr


 (4.40)

where

φmin = −tan(φp) (4.41a)

φmax = arcsin(l/2R) (4.41b)

To find H1 we rewrite Eq.(4.12a) in terms of a, b, and c

H1 =

∫ tan(φp)

φmin

∫ F2(φ)

F1(φ)

e−jkr

√
r2 − (a + bφ + cφ2)

drdφ (4.42a)

and introduce a change of variable to write the integral in terms of the negative

φ to ensure the non-negativity of the logarithm function:

φ∗ = −φ (4.42b)

H1 =

∫ φmax

−tan(φp)

∫ F2(φ∗)

F1(φ∗)

e−jkr

√
r2 − (a− bφ∗ + c(φ∗)2)

drdφ∗ (4.42c)

where

F ∗
1 (φ∗) =

√
(a− bφ∗ + c(φ∗)2 + Azp (4.42d)

F ∗
2 (φ∗) =

√
(a− bφ∗ + c(φ∗)2 + Bzp (4.42e)

With this new variable definition F ∗
1 (φ) and F ∗

2 (φ) are decreasing functions of

φ and Eq.(4.40) can be used to find the final expression. In this region G(φ∗) is
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defined as:

G(φ∗) =
1√−c

ln
(
2
√
−c(r2 − a + bφ∗ − c(φ∗)2)− 2cφ∗ + b

)
(4.43)

and G(φmin) and G(φmax) are expressed as:

G(φmin) = Ψ11(r) =
1√−c

ln

(
2
√
−c(r2 − a + bφmin − cφ2

min)− 2cφmin + b

)

(4.44a)

G(φmax) = Ψ12(r) =
1√−c

ln
(
2
√
−c(r2 − a + bφmax − cφ2

max)− 2cφmax + b
)

(4.44b)

The final form of H1 is given as:

H1 =
R

2π




∫ F ∗1 (φmin)

F ∗1 (φmax)
e−jkr[−Ψ7(r)]dr +

∫ F ∗2 (φmin)

F ∗2 (φmax)
e−jkr[Ψ8(r)]dr+

∫ F ∗2 (φmin)

F ∗1 (φmin)
e−jkr[−Ψ11(r)]dr +

∫ F ∗2 (φmax)

F ∗1 (φmax)
e−jkr[Ψ12(r)]dr


 (4.45)

where

φmin = −tan(φp) (4.46a)

φmax = arcsin(l/2R) (4.46b)

The path that is followed to reduce the dimension of the integral in Eq.(4.12a)

can be summarized as follows: First a region is chosen where r was a monotonic

decreasing or increasing function of φ and change of order of integration was

employed to obtain a solvable integral in terms of φ. The new integration limits

are obtained and the integral is calculated with respect to φ which resulted with

line integrals of non-linear functions of r. For the observation point on the z

axis a different approach will be used as given below.
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4.3.4 Case 4: On the z axis rp = 0

For this case Eq.(4.12a) can be written as:

R

2π

∫ φmax

φmin

∫ F2

F1

e−jkr

√
r2 −M

drdφ (4.47)

where M = R2 for rp = 0. The integrand is independent of φ and Eq.(4.47) can

be expressed as

Rφmax

π

∫ F2

F1

e−jkr

√
r2 −R2

dr (4.48)

To remove the singularity caused by F1 = R, we employ integration by parts

and rewrite Eq.(4.48) as:

Rφmax

π

[
e−jkrln(r +

√
r2 −R2)|F2

F1
−

∫ F2

F1

(−jk)e−jkrln(r +
√

r2 −R2)dr

]

(4.49)

4.3.5 Polynomial Approximation

The compact expressions for the spatial transfer function of the cylindrical ra-

diator involve line integrals, some of which cannot be computed analytically.

The integrals with the nonlinear functions of r can be evaluated using a numer-

ical integration technique such as Gauss quadrature. The drawback of such a

time consuming implementation is for each different frequency value a separate

numerical integral routine must be used.

In this dissertation we introduced a faster approach. The above integrals

are further simplified using Legendre polynomials. The kernels of the line in-

tegrals are expanded as truncated series of Legendre polynomials which could

be integrated exactly term by term. The resulting spatial transfer function is
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represented as summation of a few number of Bessel functions.

The normalized Legendre polynomials P n(x) form a complete orthogonal

system over the interval [-1,1]. Mathematically speaking:

∫ 1

−1

P n(x)Pm(x) = δmn (4.50)

where δmn is the Kronecker delta. Any function f(x) defined in [-1,1] interval

may be expanded in terms of the normalized Legendre polynomials as:

f(x) =
n=∞∑
n=0

anP n(x) (4.51a)

and the coefficients an are obtained from:

an =

∫ 1

−1

P n(x)f(x)dx (4.51b)

If the function is smooth and well behaved, it can be represented with a truncated

series where the upper limit of Eq.(4.51a) is replaced with N .

Using the orthogonality of the Legendre polynomials, Bakhvalov and L .G.

Vasil’eva [90] showed that if the zeros of the Legendre polynomials (i.e. nodes of

the Gaussian-Legendre quadrature) are known, the coefficients of the truncated

Legendre series can be found without the need of an integration routine. In

other words Eq.(4.51b) can also be obtained from

an =
N+1∑
q=1

WqP n(λq)f(λq) (4.52)

where λq are the zeros of the Legendre polynomials and Wq are the weights of
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the Legendre-Gaussian quadrature.

The application of this series expansion to our algorithm will be as follows.

As a general representation, the integrals that we need to compute can be written

as: ∫ b

a

e−jkrΨ(r)dr = Ae−jkB

∫ 1

−1

e−jkAxΨ(Ax + B)dx (4.53a)

with

r = Ax + B (4.53b)

A =
b− a

2
(4.53c)

B =
b + a

2
(4.53d)

We expand Ψ(Ax + B) in terms of the Legendre polynomials

Ψ(Ax + B) =
n=N∑
n=0

anP n(x) (4.54a)

and use the identity [91],(Page 649):

∫ 1

−1

e−jkxP n(x)dx =
√

4n + 2(j)−njn(k) (4.54b)

where jn(k) is the nth order spherical Bessel function, to obtain:

∫ b

a

e−jkrΨ(r)dr = Ae−jkB

N∑
n=0

an

√
4n + 2(j)−njn(Ak) (4.54c)

The resulting summation, Eq.(4.54c), is valid for any wave number and can

predict the acoustic fields in both attenuating and non-attenuating media.
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4.4 Results

We carried out numerical and laboratory experiments to verify the method in-

troduced in this chapter. Using the formulas given in Section 4.3, the spatial

transfer function of the cylindrical transducer is calculated and compared with

the results of a numerical integration routine which computes Eq.(4.7) without

any approximations. The comparison results are validated with experimental

measurements.

4.4.1 Numerical Integration

A number of direct numerical integration techniques were applied to compute

Eq.(4.7). The Gauss-Legendre quadrature produced more accurate results in

less time than the other standard integration techniques such as trapezoidal

rule and Simpson’s rule.

The 2D numerical routine can be summarized with the following equation:

H =
R

2π

N∑
n=1

U∑
u=1

wnwu
e−jk

√
M(φn)+(zp−zu)2

√
M(φn) + (zp − zu)2

(4.55)

where φn and zu denote the abscissas, and wn wu are the weights for φ and z

respectively. The number of terms are determined according to the maximum

frequency component of the signal. In this study 2π terms per minimum wave-

length is found to be sufficient for an accurate integral result. The number of

abscissas for z is computed by U = round(2πfmaxh
co

) and the number of abscissas

for φ are: N = round(2RφmaxU
h

). The routine is implemented in Matlab R14 on

a Pentium 4, 3GHz, 1GB RAM machine. The operating frequency of the trans-

ducer is 3.5MHz. To have a reasonable sized problem the maximum frequency
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of the signals is limited to 10MHz. For the transducer used in this study N=547

and U=21.

4.4.2 Experimental Comparison

A wave propagation experiment was performed to validate the spatial transfer

function formulation of the cylindrically concave transducer. For this exper-

iment, a curved 1-D array transducer (Model 8665, BK Medical, Wilmigton,

MA) consisting of 128 cylindrically curved elements was employed. The linear

array operated at 3.5 MHz and each radiator element had 70.0 mm focal length

with lateral dimensions 13 mm × 0.5 mm. The array was driven with the real

time ultrasound scanner of Analogic Corporation (AN2300). In this study the

wave propagation from a single element is measured. The array transducer was

placed in a water tank (0.8 m × 0.8 m × 1.5 m) that was filled with de-ionized

de-gassed water at approximately 21◦C. The single element radiator was oper-

ated in transmit mode using AN2300 where the system excited the transducer

with a short excitation signal that approximated a delta function and the re-

ceived echo was measured by a PVDF hydrophone with 0.1 mm radius. The data

were recorded on a digital scope (LC 334a, LeCroy, Chestnut Ridge, NY) and

transferred to a computer for later analysis. In this study, the wave propagation

in a lossless medium -in water- was investigated.

A number of experiments were performed to evaluate the performance of our

method. In this study, four comparison results are presented between measured

and simulated data. Figures 4.6 to 4.9 compare three normalized waveforms: (a)

the simulated response calculated with the method introduced in Section 4.3,

SIM1, (b) the simulated response computed with the numerical approach in
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Section 4.4.1 without any approximations, SIM2, and, (c) real measured data

in lossless medium. The error between the two simulated responses ((a) and

(b)) and the speed improvement in computation time are the most important

parameters to assess the performance of our method. The measures that will be

used to compare these two results are defined as follows:

Error% = 100
‖SIM1 − SIM2‖2

‖SIM2‖2

(4.56a)

Speed Improvement Ratio =
Total time required to compute SIM1

Total time required to compute SIM2

(4.56b)

To simulate the pressure fields, the density scaled electromechanical response

of the transducer, eT (ω), should be obtained. For this purpose, Eq.(4.4) is used

with a simplified Wiener filter [59] and the Fourier transform of the measured

data at the focal point (pf (ω)):

eT (ω) =
pf (ω)H∗

f (ω)

|Hf (ω)|2 + q
(4.57)

where Hf (ω) is the spatial transfer function at the focus, and q is the inverse of

the signal to noise ratio, and it was chosen to be 0.01max(|Hf (ω)|2) based on

the data measured at the focus.

When calculating the frequency domain signals, it must be taken into ac-

count that H has an oscillatory behavior and has some abrupt changes in time

domain. Equally sampled 512 frequency values between 0 to 10 MHz proved to

be adequate to simulate the signals. The time domain signals were obtained by

taking the inverse Fourier Transform of the signals acquired from Eq.(4.4). The

real valued wave number used in these simulations was equal to ω/co, where
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co = 1500m/s.

Figure 4.6 shows the acoustic field in Region III, on the y axis, for zp =

−2 mm. The measurements were obtained by scanning the PVDF hydrophone

vertically and recording waveforms at 19 equally spaced locations between -

1.8 mm to 1.8 mm. For this region, the error between two simulated responses

((a) and (b)) was found to be 0.07% and the speed improvement ratio 541. We

have a very close agreement with the measured data (c) and the slight differences

are attributable to the imperfections in the transducer as an ideal piston source,

and the low SNR due to the use of a single isolated element.

Figure 4.7 compares the propagation on the z axis. In this case, the PVDF

hydrophone was scanned laterally and 14 equally spaced measurements recorded

between -26 mm to 26 mm. The error between the two simulated responses

was 7.5x10−5% and the speed improvement ratio 1355. There was a very good

agreement between the measured and the predicted data.

In Figure 4.8 we investigate the off-axis propagation in Region II where a

similar scan with the previous case was performed. For this experiment the

observation points were 6mm behind the focus and parallel to the z axis. 19

equally spaced measurements were observed between -36 mm to 36 mm. The

error between two simulated responses and the speed improvement ratio were

obtained as 0.02% and 145 respectively. The decrease in the speed ratio is due to

the location of the observation points. This experiment shows the performance

of the algorithm for the observation points where two separate line integrals

should be calculated for φ dependency. There was again a very close agreement

with the measured data.

In Figure 4.9 the off-axis propagation in Regions I and II was investigated
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Figure 4.6: (a)Amplitude envelope of the simulated acoustic field on y axis using
the equations derived in Section 4.3 (b)Amplitude envelope of the simulated
acoustic field on y axis using Eq.(4.55) (c) Amplitude envelope of the measured
ultrasound field of a 3.5 MHz transducer.
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Figure 4.7: (a)Amplitude envelope of the simulated acoustic field on z axis using
the equations derived in Section 4.3 (b)Amplitude envelope of the simulated
acoustic field on z axis using Eq.(4.55) (c) Amplitude envelope of the measured
ultrasound field of a 3.5 MHz transducer.
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Figure 4.8: (a)Amplitude envelope of the simulated acoustic field on the x − z
plane using the equations derived in Section 4.3 (b)Amplitude envelope of the
simulated acoustic field on the x−z plane using Eq.(4.55) (c) Amplitude envelope
of the measured ultrasound field of a 3.5 MHz transducer.
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where the approximation for φ had the most significant effect on the results. For

this experiment the observation points were 6 mm behind the focus and parallel

to the y axis. 41 equally spaced measurements were observed between -4 mm to

4 mm. The error was found to be 0.12% and the speed improvement ratio 225

times. The effect of low SNR due to the use of single element can be visually

observed from Fig. (4.9) (c). The measured data is expected to be symmetric

around y=0.

4.4.3 Numerical Comparison

A numerical experiment was performed to assess the performance of our method

in lossy media. The same experiment with Figure 4.9 was simulated with a com-

plex wave number representing a power law attenuating medium. Specifically

the parameters used in this simulation were (Section 3.5):

k2(ω) =
ω2

c2
o

− j
2ωαb(ω)

co

(4.58a)

where

co = 1500m/s (4.58b)

αb = 54(
ω

ωo

)1.2Np/m (4.58c)

where ωo is the mean frequency (2π3.5MHz). The predicted responses obtained

with two different methods are given in Fig. (4.10). We have an excellent agree-

ment between two results. Quantitatively, the speed improvement ratio is ob-

tained as 225 times and the error between two simulations is 0.08%. These

comparisons confirm that the fast semi-analytical method we introduced in this
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Figure 4.9: (a)Amplitude envelope of the simulated acoustic field on the x − y
plane using the equations derived in Section 4.3 (b)Amplitude envelope of the
simulated acoustic field on the x−y plane using Eq.(4.55) (c) Amplitude envelope
of the measured ultrasound field of a 3.5 MHz transducer.
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Figure 4.10: (a)Amplitude envelope of the simulated acoustic field on the x− y
plane for lossy medium using the equations derived in Section 4.3 (b)Amplitude
envelope of the simulated acoustic field for lossy medium on the x−y plane using
Eq.(4.55)
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chapter can be used to predict the field of a cylindrically concave transducer for

any physically realisable lossy homogenous medium.

4.5 Conclusion

In this study, we introduced a fast method to compute the spatial transfer func-

tion of cylindrically concave transducers in lossless and attenuating medium.

For cylindrically focused transducers with low gain, we were able to use geomet-

rical information to transform the 2D surface integral from an elliptic type to a

parabolic type. The integrals could be evaluated by reducing the problem to a

1D line integral. The integrand was expressed as a truncated series of Legendre

polynomials, from which it was possible to evaluate the line integral as a sum of

spherical Bessel functions.

The form of the line integrals is such that the coefficients of the Legendre

polynomials depend only on geometry and not on frequency. They only need to

be calculated once and then the response at any frequency can be determined

by a summation where the number of terms does not depend on frequency. This

contrasts to direct integration approaches which need to employ finer discretiza-

tion for higher frequency components.

The method was compared to an optimized numerical method which evalu-

ated the surface integral directly. The speed of our algorithm depends on the

number of the line integrals that need to be evaluated for an observation point.

For the specific transducer that we used in our study, the speed improvement is

between 40 and 1400 and the maximum error between two simulations was found

to be 0.4%. Speed of evaluation is important because linear arrays employ 32 to

128 elements, each usually with a different phase and amplitude and potentially
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individual waveforms. Hence, the advantage of the method will be revealed for

array applications that requires the repeated computation of the time consum-

ing numerical routines. Moreover, our semi-analytical frequency domain method

can predict the spatial response of a cylindrical radiator in lossy medium simply

by adding an imaginary component to the wave number.

In summary, we present a powerful semi-analytical method which comple-

ments the numerical approaches in the current literature. The approach can

predict the acoustic field for a cylindrical concave transducer in attenuating

homogeneous media. The approach can be applied to determine the fields in

classical beam forming and also for applications such as tomography, that do

not employ delay and sum beamforming. The application of this model to pre-

dict the acoustic properties of the HIFU lesions will be explained in the next

chapter.



Chapter 5

Shape Based Inversion

In the previous chapters, the forward problem of finding the field measurements

from a given acoustic inhomogeneity of density, attenuation and sound speed is

formulated. In this chapter, the inverse problem of reconstructing the perturba-

tion parameters from field measurements will be analyzed and solved.

The motive behind the inversion problem -as explained previously in the

introduction- is to develop and validate quantitative, fully three dimensional

ultrasonic imaging methods to determine the spatial structure of the HIFU le-

sion. It has been reported that the treatment results in an ellipsoidal lesion in

which the acoustic properties of the tissue, sound speed and attenuation, are

significantly altered from their nominal values. An inversion method giving the

quantitative information about the tissue properties can, in principle, be used

to image the HIFU lesions. Complicating this approach is the fact that the

computational size of the most of the relevant 3D problems makes traditional

pixel based inversion methods impractical.

In this study we developed and implemented a shaped based inversion method

to image the HIFU lesions. Rather than trying to reconstruct the thousands of

104
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voxels defining the lesion, we concentrated on specifying the parameters de-

scribing the shape of the perturbation. We demonstrated that the shape based

inversion method can be employed for ultrasound data. The proposed method

is validated using simulated and measured broadband ultrasound backscatter

data.

This chapter is organized as follows: The first section introduces the shape

based inversion problem and describe the model and the formulae describing the

boundary of the ellipsoidal perturbations. In Section 5.2, we give the mathe-

matical details of the optimization routine and discuss the Jacobian calculation.

In Section 5.3 we present the inversion results with simulated and measured

backscattered data. The chapter is concluded in Section 5.4.

5.1 Mathematical Description and Background

5.1.1 Forward Model

To present the forward model, Eq.(3.24) from Chapter 3 is recalled in Eq.(5.1).

By replacing k2
s with its mathematical equivalent, the scattered field can be

described by:

ps(r, ω) = −
∫

V ′
cp(r

′)G(r, r′, ω)

[
2ω2

c3
b

]
pb(r

′, ω)d3r′

−
∫

V ′
αp(r, ω)G(r, r′, ω)

[
j
2ω

cb

]
pb(r

′, ω)d3r′

+

∫

V ′
σp(r

′)∇pb(r
′, ω).∇G(r, r′, ω)d3r′ (5.1)
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This equation can be written in a more compact form

ps(r, ω) =

∫

V ′
K1(r, r

′, ω)cp(r
′)d3r′ +

∫

V ′
K2(r, r

′, ω)αp(r
′)d3r′ +

∫

V ′
K3(r, r

′, ω)σp(r
′)d3r′ (5.2)

where Ki, i = 1, 2, 3 depend only on the background properties. To represent

the forward model in terms of the experimental measurements Eq.(3.32) from

Chapter 3 will be used to obtain Ki.

For the imaging system of interest in this work we assume we have multiple

transmitters and receivers. For the case of NT transmitters and NR receivers

with NS frequency samples the measured data (y) can be written as a column

vector of size NT × NS × NR. Discretizing Eq.(5.2) at any position r′, the

scattered field can be written in a matrix-vector model of the form:

y =

[
K1 K2 K3

]



f1

f2

f3




+ n = Kf + n (5.3)

where

• K is the matrix representation of the integral

• f1 is the column vector containing the voxel values of sound speed pertur-

bation, cp

• f2 is the column vector containing the voxel values of attenuation pertur-

bation, αp
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• f3 is the column vector containing the voxel values of density perturba-

tion, σp

• n is the additive sensor noise.

The ultimate goal is to restore the unknown medium parameters from measured

backscatter data. The traditional approach to this problem is to use linear inver-

sion methods, and try to reconstruct the voxelated versions of the sound speed,

density and absorption images. As discussed previously in the introduction

chapter, the nominal wavelength of the acoustic field in tissue is about 0.3mm

and the physical size of the region that we want to image is about 30mm which

implies an accurate discretization of the problem, 0.1 wavelengths, requires a

billion of voxels. The linear inversion problem is very ill-posed for this case due

to the enormous number of voxels defining each of the three unknown vectors

f1, f2, f3.

Our approach to the problem is based on the specification of the parameters

describing the shape of the perturbations. We assume the shape of the per-

turbations are known to be ellipsoids but the locations, sizes and orientations

are unknown. Specifically, the perturbations in Eq.(5.2), cp, αp, and σp, are

represented by ellipsoidal shapes.

To completely characterize the perturbation in one variable, we only need the

location of the center (xo, yo, zo), the lengths of the three axes of the ellipsoid

(l1, l2, l3), three angles (θ1, θ2, θ3) that orient the ellipsoid in space and (M)

contrast of the perturbation. Thus rather than the billion of voxels defining each

of the three unknown vectors, we have only 3 × 10=30 quantities to estimate

from the measured data. This approach is nonlinear but better posed.
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5.1.2 Ellipsoid Modeling

Exact Model of the Ellipsoid

In mathematical notation a perturbation ellipsoid can be defined with four ele-

ments:

• A length-3 vector, c, denoting the center of the ellipsoid, (xo, yo, zo).

• A diagonal matrix D = Diag(d) whose diagonal entries are the one over

the lengths of the semi-axes, (l1, l2, l3).

• An orthonormal matrix U whose three columns are the coordinates of the

semi-axes defined in therm of the Euler angles, (θ1, θ2, θ3).

• A constant M, defining the contrast of the object.

We begin by defining c, D, U :

c =




xo

yo

zo




(5.4)

D =




1/l1 0 0

0 1/l2 0

0 0 1/l3




(5.5)

U = U1(θ1)U2(θ2)U3(θ3) (5.6a)
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U =




cos(θ1) sin(θ1) 0

−sin(θ1) cos(θ1) 0

0 0 1







cos(θ2) 0 sin(θ2)

0 1 0

−sin(θ2) 0 cos(θ2)







cos(θ3) sin(θ3) 0

−sin(θ3) cos(θ3) 0

0 0 1




(5.6b)

A point r′ = [x′, y′, z′]T is determined to be on or in the ellipsoid if

||DUT (r′ − c)||22 ≤ 1 (5.7)

There are multiple ways to define the rotation matrix from Euler angles [92].

However, it has been reported that the representation of the U makes little

difference on the performance of the algorithm [56]. The representation type we

used here is referred as the ”x-convention” [56].

Having described the boundary of the anomaly, we define a support function

S(r′) which has value (1) on the ellipsoid and (0) outside. Mathematically S(r′)

will be represented as

S(r′) =





1 r′ ε ellipsoid

0 otherwise





(5.8)

Using the ellipsoid representation given above, we can use Eq.(5.7) to de-

termine if the centers of the voxels in the region of interest lies in or on the

ellipsoid. If the observation point is within the ellipsoid, S(r′) will be assigned

to 1. By means of this support function the perturbations will be defined as:

γ(r′) = MS(r′) (5.9)
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The support function that we chose to represent the anomalies, S(r′), is a

step function which gives discontinuity at the boundary of the ellipsoid. For the

performance of the optimization routine we should have a smooth approximation

for the boundary. Specifically, the key to any non-linear minimization technique

is to specify the Jacobian of the objective function with respect to the unknown

parameters. With such a representation, the Jacobian of the function should be

computed numerically which would increase the overall computation time of the

optimization routine. To obtain an analytical representation of the Jacobian we

should have a differentiable expression that maps the parameters describing the

shape to any point r′ in the region of interest.

To improve the performance of the optimization routine that will be used

in this study, we introduced a filter like decision function which approximates

a step function. Specifically, the decision function takes ||DUT (r′ − c)||22 as the

argument, produces zero output for the input values slightly larger than one

and provides a smooth transition from 1 to 0 at the boundary. The type of the

function used in this study will be introduced in the next section.

Approximate Model of the Ellipsoid: Sech

In this section we will introduce a differentiable expression to describe the bound-

ary of the ellipsoid. Specifically such an expression, which will be named as

decision function from now on, should satisfy these three properties:

The decision function

1. should be a function of r′ and ellipsoid parameters,

2. should have value 1 on and inside of the ellipsoid and 0 outside,
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Figure 5.1: Decision function A(x) and its derivative

3. should provide smooth transition from 1 to 0 at the boundary for differ-

entiability.

There are a number of functions which satisfies these properties. In this study

a function of sech is chosen as the decision function for the reasons that will be

explained below. We define the decision function, A(x), and the perturbations

as:

A(x) = exp(sech(1.3x8))− 1 (5.10a)

γ(r′) = exp(M̃sech(1.3||DUT (r′ − c)||16
2 ))− 1 (5.10b)

The decision function A(x), Eq.(5.10a), and its derivative are given in Fig. (5.1).

The function A(x), approximates a box and its derivative estimates an impulse

function. sech(1.3x8) is the main component of the decision function that

characterizes the shape of the box in Fig. (5.1). The coefficient 1.3 is chosen so

that without the scaling from the exponential function, the boundary value of
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the shape is set to 0.5 (the mean value of the change in the boundary). The

exponent of x defines the slope of the change in the boundary. Ideally, any even

number larger than 4 gives a good approximation of a box but on the other hand

the sharp change in the derivative limits the exponent value to 8.

Equation (5.10b) is the function that will be used to represent the pertur-

bations in Eq.(5.2). As explained above, the sech(1.3||DUT (r′ − c)||16
2 ) term

characterizes the shape of the lesion and M̃ defines the change in the magnitude

of the acoustic parameter with respect to the background. Here we should ex-

plain Eq.(5.10b) in detail. We will first explain the decision behavior and then

the contrast value, M̃ .

As it is given in Eq.(5.7), if a point r1 is within the ellipsoid, ||DUT (r1−c)||22
is smaller than 1 and the value of γ(r1) is equal to a constant value (exp(M̃)−1).

On the other hand, if r1 is not within the ellipsoid, the value of Eq.(5.7) is larger

than 1 and γ(r1) = 0. Around the boundary, the function provides a transition

from 1 to 0. Therefore the expression behaves like a decision function, and

classifies the points in the region of interest.

For our inversion problems we assume a uniform contrast for the acoustic

parameters. Therefore the value of γ on the ellipsoid should be equal to the

physical value of the acoustic parameter it represents. Due to the exponential

term in the definition of γ, M̃ is not equal to the actual value of the perturbation

but to the natural logarithm of the contrast value. Mathematically,

M̃ = ln(M + 1) (5.11)

where M is the actual contrast. e.g. for a sound speed perturbation of M =

20 m/s, the value that will be used in γ is M̃ = ln(20 + 1) and equals to 3.05.
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Equation 5.10b is also visualized in 3D in Fig. (5.2). The real and the

approximated ellipsoids are plotted in Fig. (5.2) where the expected shapes

are drawn with the black lines. As predicted from Fig. (5.1), the contrasts

of the estimated ellipsoids gradually decay to zero and the decision function

successfully models the ellipsoids.

5.1.3 Final Problem Statement

The parameters that will be used to characterize the ellipsoids of the three

acoustic properties will be

βi = [xoi, yoi, zoi, l1i, l2i, l3i, θ1i, θ2i, θ3i, Mi]

where the subscripts i = c, a, d will be used to represent the perturbations in

sound speed, attenuation and density respectively. The representation of the

perturbations given in Eq.(5.10b), γ(r′), will be replaced by γi(r
′, βi) to account

for the parameters of each individual ellipsoid. Mathematically speaking,

γi(r
′, βi) = exp(M̃isech(1.3||DiU

T
i (r′ − ci)||16

2 ))− 1 (5.12a)

e.g. the perturbation for the attenuation to be used in Eq.(5.2)

αp(r
′) = γa(r

′, βa) = exp(M̃asech(1.3||DaU
T
a (r′ − ca)||16

2 ))− 1 (5.12b)

The problem we should be solving given data y is the non-linear least squares

problem:

βc,βa,βd

min ||y −Kf(β)||22 (5.13a)
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Figure 5.2: The expected shapes are drawn with black lines on top of the ap-
proximated ellipsoids. The contrasts of the ellipsoids are shown with the color
scales. As predicted from Fig. (5.1) the contrast values gradually decay to zero.
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β =




βc

βa

βd




(5.13b)

5.2 Inversion Approach

We propose to solve the minimization problem in Eq.(5.13a) using Gauss-Newton

method [93]. For this purpose, we first provide an initial guess for the ellipsoid

parameters (β0). Subsequent guesses (βk) for the parameter vectors are then

produced by the recurrence relation:

βk+1 = βk + αktk, 0 ≤ k ≤ kmax (5.14)

where αk is the sense optimal, kmax is the maximum number of iterations and

tk is the search direction and obtained from the solution of:

(JT J)tk = −JT ||y −Kf(βk)||2 (5.15)

Here J is the Jacobian and T is the transpose operator.

Jacobian Calculation

The Jacobian matrix will be obtained from the matrix multiplication defined in

Eq.(5.3).

∂y

∂µ
= −

[
K1 K2 K3

]



∂f1
∂µ

∂f2
∂µ

∂f3
∂µ




(5.16)
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where µ is the unknown geometric parameter of the ellipsoid and as discussed

before, fis are the column vectors containing the voxel values of the perturba-

tions. To obtain Jacobian matrix, the derivatives of Eq.(5.12a) with respect to

the unknown ellipsoid parameters should be obtained. The mathematical details

are explained below.

Using the chain rule:

∂γi(r
′, βi)

∂µ
= −10.4M̃isech(1.3x8)tanh(1.3x8)x7exp(M̃isech(1.3x8))

∂x

∂µ
(5.17a)

∂γi(r
′, βi)

∂Mi

= sech(1.3x8)exp(M̃isech(1.3x8)) (5.17b)

where x = ||DiU
T
i (r − ci)||22. Using matrix algebra x can be written as:

x = (r′ − ci)
T UiD

T
i DiU

T
i (r′ − ci)

The derivative of x with respect to the ellipsoid parameters can be obtained

with matrix calculus.

∂x

∂xoi, yoi, zoi

= 2
∂(r′ − ci)

T

∂xoi, yoi, zoi

UiD
T
i DiU

T
i (r′ − ci) (5.18a)

where

∂(r′−ci)
∂xoi

=




−1

0

0




∂(r′−ci)
∂yoi

=




0

−1

0




∂(r′−ci)
∂zoi

=




0

0

−1




(5.18b)

∂x

∂l1i, l2i, l3i

= 2(r′ − ci)
T UiD

T
i

∂Di

∂l1i, l2i, l3i

UT
i (r′ − ci) (5.19a)
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where

∂Di

∂l1i
=




−1/l21i 0 0

0 0 0

0 0 0




∂Di

∂l2i
=




0 0 0

0 −1/l22i 0

0 0 0




∂Di

∂l3i
=




0 0 0

0 0 0

0 0 −1/l23i




(5.19b)

∂x

∂θ1i, θ2i, θ3i

= 2(r′ − ci)
T ∂Ui

∂θ1i, θ2i, θ3i

DT
i DiU

T
i (r′ − ci) (5.20a)

where

∂Ui

∂θ1i

=




−sin(θ1i) cos(θ1i) 0

−cos(θ1i) −sin(θ1i) 0

0 0 0




U2iU3i (5.20b)

∂Ui

∂θ2i

= U1i




−sin(θ2i) 0 cos(θ2i)

0 0 0

−cos(θ2i) 0 −sin(θ2i)




U3i (5.20c)

∂Ui

∂θ3i

= U1iU2i




−sin(θ3i) cos(θ3i) 0

−cos(θ3i) −sin(θ3i) 0

0 0 0




(5.20d)

5.3 Inversion Examples and Results

In this section we will present the 3D shape based inversion results for HIFU

lesion imaging. Using the model given in Eq.(5.1) and Eq.(5.12a) we estimate

the structure and the contrast of the ellipsoidal shaped perturbations in sound

speed, attenuation and density. The proposed method will be validated using

simulated and measured ultrasound backscatter data.
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Figure 5.3: Experimental Setup

5.3.1 Numerical Experiments and Results

The numerical experiment conditions are given in Fig. (5.3). A linear array of

six point sources are scanned across the anomaly at six different measurement

points. At each stop, a single transmitter emits data into the medium where the

interaction, backscatter data, is measured by the six elements of the array. Six

frequencies equally sampled between 300kHz-425kHz are used in the experiment.

A Gaussian noise was added to the data to set the signal to noise ratio to 25dB.

To reduce the computation size, we used frequency values lower than those

that are used in the medical imaging applications and the overall size of the

problem is reduced to (5 mm × 5 mm × 5 mm) which is smaller than what

we would have in practice. On the other hand, to have a realistic approach to
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the problem, we used the tissue mimicking dispersive model from Chapter 3 to

represent the background. The parameters used in the simulations are: cb =

1551m/s, ρb = 1045kg/m3, αb = 3.6(ω/ωo)
1.2 where ωo = 2π350kHz. The

values of the contrasts for a realistic problem are chosen as explained below.

Total number of voxels in the region of interest is 4096 (16×16×16).

It has been confirmed with many publications that, the heating of tissue

affects both sound speed and attenuation [38–43]. The change in sound speed

is less that 20m/s about (1%) and in most cases reported to be reversible.

The attenuation coefficient has been measured to increase dramatically with

values ranging from 80%-700% which is still in the Born approximation range.

More precisely, for the Born approximation to be valid, the constraint on the

attenuation is defined as the smallness of αp/kb. Mathematically, as previously

discussed in Chapter 3, the nominal attenuation in human tissue is 35.6 Np/m

at 3.5 MHz. For the nominal sound speed of 1551 m/s and 700% perturbation in

attenuation, the ratio of αp/kb is 17x10−3. The change in the density is limited to

1% to validate the Born model of Chapter 3. Thus the bounds for the contrasts,

Mi, are chosen as:

• 0 m/s < Mc < 20 m/s

• 0 Np/m < Ma < 20 Np/m

• 0 kg/m3 < σp < 10 kg/m3, hence 0 < Md < 9.5x10−3

The inversion method described in Section 5.2 is implemented in Matlab where

the ”lsqnonlin” function with Gauss-Newton option is used. The geometric pa-

rameters and the contrasts of the ellipsoids, βi, are scaled to the same order
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Table 5.1: Lower and upper limits for the geometric parameters of the ellipsoid
Lower Limit Upper Limit

xo -2.5 mm 2.5 mm
yo -2.5 mm 2.5 mm
zo -2.5 mm 2.5 mm
l1 5x10−4 2.5 mm
l2 5x10−4 2.5 mm
l3 5x10−4 2.5 mm
θ1 0 2π
θ2 0 π
θ3 0 2π

(between 1 and 2) prior to the optimization routine to maximize the perfor-

mance. The bounds for the geometric parameters are given in Table 5.1. The

lower limits for the lengths of the semi axes is set to small number (different than

0) for proper solution. We set the lower and the upper bounds for the ”lsqnon-

lin” function to 1 and 2 respectively to ensure that the boundary of the ellipsoid

is in the region of interest and the contrasts are within the above defined limits.

Physically, in case of HIFU experiments we have prior knowledge of the rough

location and the approximate contrasts of the HIFU lesion. We basically use

this prior information and limit our search around the HIFU region.

A number of experiments are performed to assess the performance of the

inversion algorithm and to explore its ability to reconstruct the HIFU lesions.

In Fig. (5.4)-Fig. (5.6) we display the true ellipsoid distributions, the initial

guesses provided to our estimation method and the final result. For comparison

purposes, the true shapes are plotted with blue lines on the estimated ellipsoids.

Two measures are introduced to describe the error between real and simulated
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Table 5.2: Contrast and error values for the sound speed, attenuation and density

Real Initial Estimate Errc Errv

Sound (m/s) 3.58 20.00 3.71 3.59 3.00

Case 1 Density (kg/m3) 4.99 10.00 4.87 2.32 2.05
Attenuation (Np/m) 3.58 20.00 3.63 1.20 2.69
Sound (m/s) 7.42 20.00 7.50 0.95 3.19

Case 2 Density (kg/m3) 9.01 10.00 8.93 0.87 5.73
Attenuation (Np/m) 7.42 20.00 8.16 9.88 2.26
Sound (m/s) 13.57 20.00 10.52 22.01 32.94

Case 3 Density (kg/m3) 10.00 10.00 10.00 0 1.41
Attenuation (Np/m) 12.30 19.00 5.92 51.01 1.89

ellipsoids. The estimation error in contrast is defined as:

Percentage error in contrast= Errc = 100

∣∣∣∣
Mi −M i

Mi

∣∣∣∣ (5.21)

where Mi and M i represent the actual and estimated contrasts respectively. The

volumetric estimation error is defined as:

Percentage volumetric error= Errv = 100

(
1− Volume(Ea ∩ Ee)

Volume(Ea ∪ Ee)

)
(5.22)

where Ea and Ee represent the actual and estimated ellipsoids respectively.

For comparison purposes, the real, initial and estimated contrast values for

all the experiments are given in Table 5.2 with the error values.

In Figure 5.4 we have similarly sized and shaped ellipsoids with different

orientations. Given little prior information about the shape and the contrasts

we were able to recover the geometry and the contrasts quite accurately. The

results presented in in this section is is implemented with on a 1GHz Linux

workstation. The number of iterations required is 99 and the total computation
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Figure 5.4: Case 1: Inversion for similarly sized and shaped ellipsoids.
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Figure 5.5: Case 2: Inversion for concentric and overlapping ellipsoids.
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Figure 5.6: Case 3: Inversion for significantly different ellipsoids.
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time is about 14 minutes.

In Figure 5.5 we examine a case in which we have three concentric, over-

lapping ellipsoids. This represents a lesion where the changes of the acoustic

properties confined into a single region of space. At first glance it appears as

if there is a single ellipsoid anomaly. However, we were able to classify three

distinct ellipsoids with our method. Although the initial estimates for the con-

trasts are considerably different than the real values, we obtained a very good

estimate for the contrasts and the geometries. The method we proposed to de-

fine the contrast of the object as a nonlinear parameter of the problem, greatly

improved the contrast detection. The number of iterations required is 98 and

the total computation time is about 14 minutes.

In the third case, Fig. (5.6), we study a scenario where we have three sig-

nificantly different ellipsoids. We again have a quite successful localization of

the perturbations. The slight differences are attributable to the dissimilar ori-

entation angles and the noise in the data. Our observations revealed that, the

rotation angles are the most difficult parameters to estimate for this type of

shape based inversion problems. The number of iterations required is 299 and

the total computation time is about 24 minutes. The same experiment is re-

peated with a noise level that sets the signal-to-noise to 40dB and a better

localization is obtained for the sound anomaly.

5.3.2 Error Analysis

A statistical error analysis was done to assess more thoroughly the performance

of the inversion method presented in this chapter. For this purpose, a Monte

Carlo simulation was performed in which we considered 140 estimation problems
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Figure 5.7: Common initial value for the simulations

where a common initial estimate shown in Fig. (5.7) was used to determine

the structure of a randomly generated, HIFU-type ellipsoid. For each case, a

randomly oriented real ellipsoid was selected so that it had up to 15% deviation

in contrast, volume and direction from common initial ellipsoid. The errors in

estimation for volume and contrast are computed using Eq.(5.21) and Eq.(5.22).

The error distributions in volume and contrast are given in Fig. (5.8). For this

test, Gaussian noise was added to the data to set the signal to noise ratio to

25dB.

Our observations revealed that for all the cases where the error was high the

rotation parameters were significantly different than the actual values. Hence,

rotation parameters are the most difficult parameters to estimate.

We had a very successful localization of the ellipsoidal shapes whereas the

performance of the algorithm was slightly poorer for contrast estimation. How-

ever, for the visualization purposes the localization is more important and even
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Figure 5.8: Distribution of volumetric and contrast errors

the contrast errors were higher, in 75% of the studied cases the error was less

than or equal to 10%.

The results showed that, the method given in this chapter was largely suc-

cessful to estimate the randomly oriented ellipsoids.

5.3.3 Laboratory Experiment and Results

A laboratory experiment was performed to validate the inversion method de-

veloped in this chapter. The ideas presented in Section 5.1 were used with

data obtained from a single agar ellipsoid anomaly, which was volumetrically

homogenous, immersed into a homogenous lossy medium. The backscattering

measurements were obtained by a linear array transducer. The experiment and

the simulation details are presented in the following sections.

Linear Array Transducer

The linear array transducer that is introduced in Chapter 4 is used for a

backscattering experiment. The array (Model 8665, BK Medical, Wilmigton,
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+y

-x
-z

Figure 5.9: Linear array transducer

MA) consisted of 128 cylindrically curved elements, each of which could be con-

trolled individually with the real time ultrasound scanner of Analogic Corpora-

tion (AN2300). The array operated at 3.5 MHz and each radiator element had

70.0 mm focal length with lateral dimensions 13 mm × 0.5 mm. The cylindri-

cally concave elements were located on a curved transducer with 60 mm radius.

The pitch between each element was 0.525 mm and the radial angle was 0.00875

radians. For this experiment the elements [54 59 64 69 74], first transducer was

numbered as 1, were used to take measurements.The angle between each element

used in this study was 0.0438 radians. The real transducer and the schematic

showing the location of the cylindrically concave transducers on the linear array

are given in Figures 5.9 and 5.10.

Experimental Conditions

The laboratory experiment settings are given in Fig. (5.11). The x-y-z coordi-

nates of the ROI were defined in according to the coordinate axis of the trans-

ducer given in Fig. (4.1) and the origin was defined as the focal point of the

64th element. The linear array was scanned across the ellipsoid anomaly at five

different measurement points. At each measurement point, single transducer
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Figure 5.10: Schematic of the locations of the transducers on the transducer
array
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Figure 5.11: Laboratory Experiment Settings

insonified the medium and the interaction was measured by the five elements of

the linear array. The array was scanned across the anomaly between y=-6 mm

to y=6 mm with 3 mm step size.

The array transducer and the phantom was placed in a water tank (35 cm ×
53 cm × 35 cm) that was filled with de-ionized de-gassed water at approximately

21◦C. Each cylindrically concave element was operated in transmit mode using

AN2300 where the system excited the transducer with a short excitation signal

that approximated a delta function. The data were transferred to a computer

for later analysis.



CHAPTER 5. Shape Based Inversion 131

Phantom

An ellipsoidal shaped phantom (20 mm × 5 mm × 6 mm) is carved from an

Agar sample which had the nominal acoustic properties of cp = 1551m/s, ρp =

1045kg/m3, αp = 10.17Np/m/MHz. Our previous experience with this ma-

terial showed that, the actual parameters that should be used in the simula-

tions are: cp = 1545m/s, ρp = 1045kg/m3, αp = 54( ω
ωo

)1.2Np/m where ωo

is the mean angular frequency (2π3.5MHz) [94]. The ellipsoid was immersed

into an optically transparent, cylindrically shaped (radius: 32.5 mm, height:

125 mm), polyacrylamide hydrogel with 7% Bovine Serum Albumin (BSA) pro-

tein concentration. The acoustic properties of the background phantom were:

cb = 1540m/s, ρb = 1045kg/m3, αb = 1.5Np/m/MHz [95]. The polyacrylamide

hydrogel was used because it was optically transparent, and allowed visualizing

of the ellipsoidal anomaly. Moreover, the BSA phantom had the same density

with the Agar phantom which resulted in an experiment environment of which

there was a single ellipsoidal anomaly and altered sound speed and attenuation

values compared to the background. Therefore, this phantom configuration was

a very good approximation to what one would have in real HIFU practice. We

tried to place the ellipsoid so that it only had rotation with respect to the center

axis of the cylinder. The real and the enhanced images of the BSA phantom

are given in Fig. (5.12). A sample image (beamformed pre-scan converted) is

obtained with the Analogic engine when the transducer is aligned with the ellip-

soid (y=0 mm) is given in Fig. (5.13). The data corresponding to the envelope

of the signal from the 64th line of the image is given in Fig. (5.14).
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Figure 5.12: The real and the enhanced images of the BSA phantom.
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Figure 5.13: A sample image of the BSA phantom with Analogic Engine ultra-
sound scanner (B-mode pre-scan converted).
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Figure 5.14: The data corresponding to the envelope of the signal from the 64th

line of the image.
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5.3.4 Simulation Grid and the Choice of Region of Inter-

est

In Section 5.3.1, where we presented the inversion results with point receivers

and transmitters, we had a cube shaped region of interest and we discretized

Eq.(5.1) in similarly shaped sub-voxels. We will follow a different approach in

this section. To make use of the symmetry properties of the cylindrically concave

elements of the linear array, we will define an irregularly shaped ROI which will

coincide with the shape of the transducer.

To present the forward model Eq.(3.32)is recalled in Eq.(5.23). The form of

the equation that will be used in this case will be:

vo(rto, ω) = epe

∫

V ′
cp(r

′
)

[
−2ω2

c3
b

]
H(rto, r

′
, ω)H(r

′
, rso, ω)d3r

′

epe

∫

V ′
αp(r

′
, ω)

[
−j

2ω

cb

]
H(rto, r

′
, ω)H(r

′
, rso, ω)d3r

′
(5.23)

This equation can be written in a compact form as in Eq.(5.2) where K3 is zero.

We shall discretize Eq.(5.23) and write it in the form of Eq.(5.3). For this pur-

pose we first assume that, we have a rectangular shaped ROI (12 mmx20 mmx20 mm)

where we choose to discretize the equation at 3.5 MHz, which is the nominal

frequency, and use 0.5 wavelengths as the grid size (for 1550 m/s 0.2 mm). The

number of voxels that we would have in this case is 600000.

The size of the K matrix would depend on the number of transmitter and

receiver combinations and the frequency values that one wants to use to solve

the inverse problem. We choose to have 5 frequency values and 25×5 transducer

receiver combinations. Using the method described in the previous chapter, to
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compute the spatial transfer function for single frequency, location and trans-

mitter receiver combination takes approximately 0.01 seconds in Matlab R14.

Therefore, the total computation time for K matrix would be approximately

1042 hours. This direct approach is computationally very expensive and not

feasible. We have to use the symmetry properties of the transducer and reduce

the size of the computation domain. For this purpose we will first introduce the

sub-voxel approach.

To reduce the computation domain, the region of interest will be divided into

subcells (12 × 20 × 20 with 1mm side length) where the perturbation values

will be assumed constant in each sub-voxel. Mathematically speaking:

vo(rto, ω) = epecp

[
−2ω2

c3
b

] ∫

Vs

H(rto, r
′
, ω)H(r

′
, rso, ω)d3r

′

epeαp(ω)

[
−j

2ω

cb

] ∫

Vs

H(rto, r
′
, ω)H(r

′
, rso, ω)d3r

′
(5.24)

where Vs represents the sub-voxel. This approach would reduce the number of

voxels needed to represent the anomaly but the spatial transfer function should

be computed individually for each transducer for the complete ROI.

A fast method is introduced to compute the following integral:

∫

Vs

H(rto, r
′
, ω)H(r

′
, rso, ω)d3r

′
(5.25)

where the transfer function for single transducer is calculated and the reciprocity

of the cylindrically concave elements is used to find the response for the other

radiators. Specifically, for a homogeneous medium, the spatial transfer function

takes the absolute value of the distance between the transducer and the obser-

vation point as input. Therefore, the response computed for a transducer at a
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Figure 5.15: Region of Interest in 3D

certain observation point will have the same expression for another transducer,

which has the same relative position with respect to that observation point. e.g.

The response computed at the focus of the 64th transducer can be used to obtain

the response at the focus of the 54th transducer, although the two transducers

are located at different positions in the ROI.

To implement this idea, a new ROI is defined. The ideas presented be-

fore (Eq.(5.23) and Eq.(5.24)) shall stay the same but applied to an irregularly

shaped grid. The shape of the ROI where discretization will be applied is given

in Figures (5.10) and (5.15). The location of the transducers with respect to the

ROI is given in Fig. (5.10).
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The symmetry properties of the transducer and the reasons behind this shape

of ROI can be better understood from a 2D picture. A 2D slice of the ROI

which is defined in polar coordinates with the parameters (ra < r < rb, and,

−θa < θ < θa) is plotted in blue in Fig. (5.16). Now for the center transducer

(64) one computes the spatial transfer function at each pixel of a computation

grid which is twice the size of the original ROI (−2θa < θ < 2θa). This region is

shown in red in Fig. (5.16). For the center transducer one would use the spatial

transfer function values computed in the pixels corresponding to values between

(−θa < θ < θa) and for the transducer on the side (54) one would use the values
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computed at (0 < θ < 2θa). To make sure that the pixels overlap during this

process, the increment in the angle parameter is chosen as the angular pitch size

of the linear array. Moreover, due to the symmetry properties of the cylindrically

concave transducers one will only need to compute the values at the half of the

ROI, between (0 < θ < 2θa).

In each sub-voxel, the Gaussian quadrature approach is used to compute

Eq.(5.25). For this purpose the spatial transfer function of the center transducer

(64) is computed at the Gaussian nodes and stored with the Gaussian weights

and the volume of each sub-voxel. The stored values are recalled to create the

forward matrix that will be used in this study.

The parameters that is used in our simulation will be given here: 5 frequency

values equally sampled between 2.5MHz and 3MHz are used. The computation

grid was described with the parameters 0 ≤ y ≤ 12 mm, 118.6 ≤ r ≤ 141.36

and 0 ≤ θ ≤ 10(degrees). Total number of voxels was 4800 (12 × 20 × 20).

Total time to compute the spatial transfer response of the center transducer was

27.8 hours at 667MHz Unix workstation with 4 processors and 1GB Ram per

processor. Total computation time required to obtain the forward matrix for all

the transducers was 28.1 hours.

The calibration signal for this transducer is previously calculated in Chap-

ter 4 in Eq.(4.57) and, the epe signal is obtained with: epe = eT (ω)2.

5.3.5 Results

The first task to be done is to find the exact location of the ellipsoid with re-

spect to the transducer. Although maximum effort is used to place the ellipsoid
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Figure 5.17: Initial true ellipsoid distribution from different view angles

to align with the transducer, the location of the exact radiators in the trans-

ducer and the positioning errors (on the order of mm) cannot be controlled. In

Fig. (5.17) the ellipsoid, which is provided to the optimization routine as initial

guess to find the true ellipsoid, is displayed from different view angles.

In Fig. (5.18) the true ellipsoid, which is obtained from the optimization

routine is provided. The number of iterations required was 157. The minor

differences are attributable to the experimental errors as discussed before.

Next, the inversion method described in Section 5.2 is used to recover the

ellipsoid from a significantly different initial value. The bounds for the contrasts,

Mi, were chosen as:
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Figure 5.18: True ellipsoid distribution from different view angles
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Figure 5.19: Experimental inversion result
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Table 5.3: Lower and upper limits for the geometric parameters of the ellipsoid
Lower Limit Upper Limit

xo -20 mm 20 mm
yo -20 mm 20 mm
zo -20 mm 20 mm
l1 5x10−4 20 mm
l2 5x10−4 20 mm
l3 5x10−4 20 mm
θ1 0 2π
θ2 0 π
θ3 0 2π

• 0 m/s < Mc < 20 m/s

• 0 Np/m < Ma < 440 Np/m

The bounds for the geometric parameters are given in Table 5.3.

In Fig. (5.19) we display the true ellipsoid, initial guess provided to our es-

timation method and the final result. For comparison purposes, the expected

shape is plotted with blue lines on the estimated ellipsoid. The number of iter-

ations required was 116 and the total computation time was about 26 minutes.

We were able to recover the geometry information quite accurately.

The inversion algorithm is based on a local minimum optimization routine

(Gauss-Newton) and is sensitive to the initial value selection. To select the

geometric parameters of the initial value, a physics based approach is used. In

HIFU problems, there is a significant prior information about the lesion and the

initial estimates of its location and orientation can be determined by the HIFU

transducer. The long axis of the lesion would be parallel to the ultrasound beam.

Therefore, for this problem, it is assumed that the location and the orientation

of the ellipsoid were roughly known but the dimensions were unknown. The

initial estimate obtained with this logic is given in Fig. (5.19).
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Table 5.4: Contrast and error values for the sound speed and attenuation

Real Initial Estimate Errc Errv

Sound (m/s) 5 20 5.80 16.15 5.72
Attenuation (Np/m) 48.7 440 46.34 6.89 5.72

The quantitative acoustic parameters of the ellipsoid is of interest here. The

initial contrast values provided to the optimization routine and the expected

values are given in Table 5.4. Although, the initial values were considerably

different than the real values, an accurate estimate is obtained for the contrast

parameters.

5.4 Conclusion

The use of wave based inversion methods for medical ultrasound imaging is

not common. Primarily, the size of the region of interest makes the traditional

inversion methods rather impractical. However, wave based inversion is well

suited to the application of HIFU lesion detection. There is a significant prior

information about the lesion and the initial estimates of its size, location and

orientation can be determined by the HIFU transducer. Moreover, HIFU lesions

are in well defined geometric shapes and the changes in the acoustic parameters

are well documented.

In this chapter a shape based parametrization method is demonstrated to

determine the acoustic properties and the spatial structure of the HIFU lesion.

This preliminary work indicates that, a linearized physics based model, coupled

with a shape based inversion routine, provides a feasible method to monitor the

progress of image guided therapy.
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We exploited the fact that, the treatment results in an ellipsoidal shaped

region and proposed a differentiable function to describe the boundary and the

contrast of the ellipsoid. The physical size of the region, in which the lesion re-

sides, results in the need to build and manipulate large matrices. We introduced

a reduced order method for synthesizing and manipulating these matrices.

Three numerical experiments were performed with point sources. Two cases

were presented where the ellipsoids describing the shapes were not identical,

and another case in which the spatial changes in the acoustic properties were

enclosed within a single ellipsoid. In all of the cases we were able to reconstruct

the geometry and the contrasts quite accurately. The results presented here were

obtained under 200 iterations using a Matlab implementation on a 1GHz Linux

workstation. The computation time was less than 25 minutes for all results.

A laboratory experiment was performed with a clinically used linear array

transducer. An ellipsoidal phantom was used which had perturbation in sound

speed and attenuation only and the spatial changes in the acoustic properties

were enclosed within a single ellipsoid. We were able to reconstruct the geometry

of the ellipsoid and the contrasts accurately. The results were obtained with

116 iterations using a Matlab implementation on a 667MHz workstation. The

computation time was 26 minutes.

The algorithms and the models presented in this chapter built a foundation

to expand these ideas to in-vitro and ex-vivo applications.

The method can be expanded to the specialization of the models to the

inhomogeneous ellipsoids and the characterization methods beyond ellipsoidal

shapes.
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The method assumes volumetrically homogenous shapes which can be ex-

tended to inhomogeneous ellipsoids [56]. The change in the contrast parameter

can be defined as a smooth function which is approximated with a low order

polynomial. In this case one will only need to determine a few number of addi-

tional parameters per ellipsoid depending on the order of the polynomial.

A more flexible shape based method to parameterize the structure of the

HIFU lesions might also be examined. Moving beyond the ellipsoidal struc-

tures might be required if the shape of the lesions cannot be adequately de-

scribed with the ellipsoids. It has been reported in the literature that, ”tadpole”

shaped lesions are observed for the cases where significant cavitational activity

is present.



Chapter 6

Conclusion and Future Work

6.1 Objectives and Specific Aims

The objective of this dissertation is the development and validation of quanti-

tative, fully three dimensional ultrasonic imaging methods to characterize the

location and the spatial structure of the High Intensity Focused Ultrasound

(HIFU) lesions.

Specific Aim #1 To develop a well calibrated physical forward model

that describes the propagation of ultrasound in human tissue. The forward

model should be sensitive to the changes in the acoustic properties, sound

speed, attenuation and density.

Specific Aim #2 To develop a geometry based inversion method for le-

sion identification.

Specific Aim #3 To validate the inversion algorithm using tissue-mimicking

phantoms with known perturbations in acoustic properties and determine

the accuracy of image reconstruction method.

146
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6.2 Overview and Significance

In this study we focused on developing a geometry based characterization method

to monitor the HIFU lesions. A shape based inversion method which uses ul-

trasound backscatter data was proposed to determine the spatial distribution of

sound speed, attenuation and density of the lesions. Processing the data in this

manner, reconstructing the acoustic parameters from ultrasound measurements,

is known as inverse problem and the method we propose can be used for a wide

range of reconstruction problems. In this dissertation, we focused on cancer

treatment applications.

HIFU is a cancer treatment technique where high frequency sound waves

(ultrasound) are used to necrose the cancerous tissue without damaging the sur-

rounding healthy tissue. An important open issue in developing HIFU methods

for clinical use is monitoring the progress of the treatment by non-invasive imag-

ing techniques. In this work, we exploit the fact that the treatment results in

ellipsoidal (1-20 mm length) lesions in which the acoustic properties of the tissue

sound speed and attenuation - are altered from their nominal values.

Even under the assumption of a linearized scattering model such as that

provided by the Born approximation, the computational size of the most rele-

vant 3D problems makes traditional pixel based inversion methods impractical.

Hence in this work, we introduce a shape-based method under which we need

to estimate a small number of parameters to describe the 3D shape of the le-

sion. More specifically, we consider a number of options for shape estimation

depending on whether one is interested in a single physical unknown or multiple

quantities (sound speed, attenuation, and density) each of which may be altered

by the HIFU treatment.
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The physical size of the region in which the lesion resides results in the need

to build and manipulate large matrices which define the underlying linearized

model. Thus, the second issue we propose to solve is the development of new,

reduced order methods for synthesizing and manipulating these matrices.

Significance:The use of wave based inversion methods for medical ultra-

sound imaging is not common. Primarily, the size of the region of interest

makes the traditional inversion methods rather impractical. However, wave

based inversion is well suited to the application of HIFU lesion detection. There

is a significant prior information about the lesion and the initial estimates of

its size, location and orientation can be determined by the HIFU transducer.

Moreover, HIFU lesions are in well defined geometric shapes and the changes in

the acoustic parameters are well documented.

6.3 Preliminary Studies: A shape-based approach

to the tomographic Ultrasonic imaging prob-

lem

Our initial efforts were focused on developing a time domain propagation model

that describes the scattering of ultrasound in homogenous medium. We pre-

sented a model which computes the acoustic field scattered by localized in-

homogeneities embedded into homogenous lossless background. Our efforts to

validate the forward method with laboratory measurements taken from a spher-

ically focused transducer, presented a need to develop a calibration method for

such transducers. We have shown, both theoretically and experimentally, that
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the calibration signal for these type of radiators can be measured using either

a flat-plate or a point scatterer. The reflected waveforms in each case are not

identical but rather related by an operation of double differentiation.

Next, the ideas that have been developed for time domain propagation of ul-

trasound are applied to the frequency domain where we concentrated on the de-

velopment and validation of the frequency domain Born model for lossy medium.

We linearized our problem and defined the inhomogeneities in the acoustic prop-

erties as perturbations to a homogenous, lossy background model. The scattered

acoustic wave for such a medium is expressed linearly in terms of the pertur-

bations in sound speed, attenuation and density. The frequency dependency

of attenuation is characterized by a power-law relation. Moreover, we demon-

strated a fast method to solve the pressure field of spherically curved radiators

for frequency domain applications.

Our final aim should be to implement these ideas in medical imaging area

and the conventional ultrasound transducers used for medical imaging purposes

are generally of phased array type. Therefore, to apply our methods to more

realistic scenarios, we developed a method to simulate the forward field from

phased array transducers which have cylindrically concave elements.

We introduced a semi-analytic fast method which computes the forward field

from cylindrically concave transducers for any type of attenuating medium. We

compared our method to an optimized numerical integration routine which com-

putes this response numerically. The speed improvement is obtained as 40 to

1400. With our method, for the frequency domain applications where we need

to find the background field for a few frequency values, the response can be

obtained almost immediately.
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Finally, we introduced a shape based inversion method which integrates the

methods that we developed so far. We demonstrated a shape based parame-

trization model to determine the acoustic properties and the spatial structure

of the HIFU lesion. We used the fact that, the treatment results in ellipsoidal

shaped lesions. We proposed a differentiable function to describe the boundary

and the contrast of the ellipsoid.

We performed three numerical experiments with point sources and one lab-

oratory experiment with the linear array transducer. In all of the cases we were

able to reconstruct the geometry and the contrasts quite accurately.

6.4 Future work: Design and Methods

The algorithms and the models presented in this dissertation built a founda-

tion to expand these ideas to in-vitro and ex-vivo applications. The work that

remains to be done in this area are the specialization of the models to the inho-

mogeneous background and expansion of the characterization methods beyond

ellipsoids.

Forward Problem:

Rytov-Model: In HIFU imaging experiments we are able to collect ultra-

sound data before the HIFU is used to create lesions in the tissue. Hence,

the problem we need to solve can be defined as a differential change esti-

mation in acoustic parameters. For this type of problems the Rytov model

is known to be more appropriate than the Born approximation. There-

fore, a new model can be introduced for the inverse problem in which the
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change from Born approximation to Rytov model would require only the

use of different normalization for the data [96].

Inhomogeneous Background: The method that we developed in this

dissertation is valid for homogenous, lossy, power-law attenuating medium.

More complicated methods which are not using Born approximation can

be developed to handle tissue like inhomogeneous media. For many med-

ical applications, we are often interested in determining the propagation

of ultrasound waves due to tissue layers of fat and muscle. A closed form

expression for such media in terms of spherical harmonics is previously pre-

sented in [97]. This idea can be explored for our specific HIFU monitoring

problem.

Inverse Problem:

Inhomogeneous ellipsoids: The method we developed assumes volu-

metrically homogenous shapes which can be easily extended to inhomoge-

neous ellipsoids [56]. The change in the contrast parameter can be defined

as a smooth function which is approximated with a low order polynomial.

In this case one will only need to determine a few number of additional

parameters per ellipsoid depending on the order of the polynomial.

Non-ellipsoidal shapes: A more flexible shape based method to parame-

terize the structure of the HIFU lesions might also be examined. Moving

beyond the ellipsoidal structures might be required if the shape of the

lesions cannot be adequately described with the ellipsoids. It has been

reported in the literature that, ”tadpole” shaped lesions are observed for
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the cases where significant cavitational activity is present.

Background Estimation: The application of the homogenous model to

invert anomalies embedded into inhomogeneous medium can be explored.

However, one should have a good estimate of the background parameters.

In ultrasound images we have speckles. Randomly positioned point scat-

terers can be used to model these speckles and the measurements obtained

before creating the lesions can be used to estimate the optimal background

parameter values.

Laboratory Experiments:

The experiments that we presented in this dissertation may be followed by

ex vivo studies. The imaging data can be collected on AN2300 ultrasound

engine (Analogic Corporation, Peabody MA) which gives an access to

unbeamformed RF data for inversion algorithms. Ex vivo studies can be

carried out using excised tissue samples. The background field can be

measured with backscattering experiments and compared to the predicted

waveforms obtained from our forward models. Next, individual HIFU

lesions can be created in the tissue to validate the reconstruction algorithm

that we presented in this study.



Appendix A

Acoustic Field of the

Cylindrically Concave

Transducers

The type of the integral that we need to solve to obtain the spatial transfer

function of a cylindrical radiator can be represented in a compact form such as:

R

2π

∫ φmax

φmin

∫ F2(φ)

F1(φ)

e−jkr

√
r2 −M(φ)

drdφ (A-1a)

where

F1(φ) =
√

M(φ) + Azp (A-1b)

F2(φ) =
√

M(φ) + Bzp (A-1c)

M(φ) = r2
p + R2 − 2rpRcos(φ− φp) (A-1d)

where Azp and Bzp represent the region specific constants defined by the zp value

of the observation point.
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A.1 Case 1: Regions I and II 0 ≤ φp ≤ φt

In this region M(φ), F1(φ) and F2(φ) are represented by:

M(φ) ≈ (r2
p + R2 − 2rpRcos(φp))− (2rpRsin(φp))φ (A-2a)

+(rpRcos(φp))φ
2 (A-2b)

= a + bφ + cφ2 (A-2c)

F1(φ) ≈
√

a + bφ + cφ2 + Azp (A-2d)

F2(φ) ≈
√

a + bφ + cφ2 + Bzp (A-2e)

A.1.1 Region I: φmax < tanφp ≤ φt

The expression for the spatial transfer function is given by:

H =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ1(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ2(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ3(r)]dr +

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ4(r)]dr


 (A-3)

where

Ψ1(r) = − 1√
c
arcsin

(√
1− 4cAzp

b2 + 4r2c− 4ac

)
(A-4a)

Ψ2(r) = − 1√
c
arcsin

(√
1− 4cBzp

b2 + 4r2c− 4ac

)
(A-4b)

Ψ3(r) = − 1√
c
arcsin

( −2cφmin − b√
b2 + 4r2c− 4ac

)
(A-4c)

Ψ4(r) = − 1√
c
arcsin

( −2cφmax − b√
b2 + 4r2c− 4ac

)
(A-4d)

φmin = −arcsin(l/R) (A-4e)

φmax = arcsin(l/R) (A-4f)
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A.1.2 Region II: tanφp ≤ φmax

The expression is given as the summation of the two responses:

∫ φmax

φmin

∫ F2(φ)

F1(φ)

drdφ = H1 + H2 (A-5)

H1 :

H1 =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ1(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ2(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ3(r)]dr




(A-6)

where

φmin = −arcsin(l/R) (A-7a)

φmax = tan(φp) (A-7b)

The Ψ4(r) integral vanishes in this interval.

H2 :

H2 =
R

2π




∫ F1(φmax)

F1(φmin)
e−jkr[−Ψ1(r)]dr +

∫ F2(φmax)

F2(φmin)
e−jkr[Ψ2(r)]dr+

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ4(r)]dr




(A-8)

where

φmin = tan(φp) (A-9a)

φmax = arcsin(l/R) (A-9b)



Appendix A. Acoustic Field of the Cylindrically Concave Transducers 156

The Ψ3(r) integral vanishes in this interval.

A.2 Case 2: Region III, φt < φp ≤ π − φt

H =
R

π(−b)




∫ F2(φmin)

F2(φmax)
e−jkr[

√
Bzp]dr +

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ5(r)]dr

+
∫ F2(φmax)

F1(φmax)
e−jkr[Ψ6(r)]dr +

∫ F1(φmin)

F1(φmax)
e−jkr[−√

Azp]




(A-10)

Ψ5(r) =
√

r2 − (a + bφmin) (A-11a)

Ψ6(r) =
√

r2 − (a + bφmax) (A-11b)

F1(φ) =
√

a + bφ + Azp (A-11c)

F2(φ) =
√

a + bφ + Bzp (A-11d)

φmin = −arcsin(l/R) (A-11e)

φmax = arcsin(l/R) (A-11f)
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A.3 Case 3: Regions IV and V π − φt ≤ φp ≤ π

M(φ), F1(φ) and F2(φ) have the same forms in Section 4.3.1 as:

M(φ) ≈ (r2
p + R2 − 2rpRcos(φp))− (2rpRsin(φp))φ (A-12a)

+(rpRcos(φp))φ
2 (A-12b)

= a + bφ + cφ2 (A-12c)

F1(φ) ≈
√

a + bφ + cφ2 + Azp (A-12d)

F2(φ) ≈
√

a + bφ + cφ2 + Bzp (A-12e)

A.3.1 Region IV: tanφp < φmin

H =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ7(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ8(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ9(r)]dr +

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ10(r)]dr


 (A-13)

where

φmin = −arcsin(l/R) (A-14a)

φmax = arcsin(l/R) (A-14b)

Ψ7(r) =
1√−c

ln

(
2
√
−cAzp +

√
b2 − 4c(a + Azp − r2)

)
(A-14c)

Ψ8(r) =
1√−c

ln

(
2
√
−cBzp +

√
b2 − 4c(a + Bzp − r2)

)
(A-14d)

Ψ9(r) =
1√−c

ln

(
2
√
−c(r2 − a− bφmin − cφ2

min)− 2cφmin − b

)
(A-14e)

Ψ10(r) =
1√−c

ln
(
2
√
−c(r2 − a− bφmax − cφ2

max)− 2cφmax − b
)

(A-14f)
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A.3.2 Region V: tanφp ≥ φmin

∫ φmax

φmin

∫ F2(φ)

F1(φ)

drdφ = H1 + H2 (A-15)

H1 :

H1 =
R

2π




∫ F ∗1 (φmin)

F ∗1 (φmax)
e−jkr[−Ψ7(r)]dr +

∫ F ∗2 (φmin)

F ∗2 (φmax)
e−jkr[Ψ8(r)]dr+

∫ F ∗2 (φmin)

F ∗1 (φmin)
e−jkr[−Ψ11(r)]dr +

∫ F ∗2 (φmax)

F ∗1 (φmax)
e−jkr[Ψ12(r)]dr




(A-16)

F ∗
1 (φ∗) =

√
(a− bφ∗ + c(φ∗)2 + Azp (A-17a)

F ∗
2 (φ∗) =

√
(a− bφ∗ + c(φ∗)2 + Bzp (A-17b)

Ψ11(r) =
1√−c

ln

(
2
√
−c(r2 − a + bφmin − cφ2

min)− 2cφmin + b

)

(A-17c)

Ψ12(r) =
1√−c

ln
(
2
√
−c(r2 − a + bφmax − cφ2

max)− 2cφmax + b
)

(A-17d)

φmin = −tan(φp) (A-17e)

φmax = φmax (A-17f)
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H2 :

H2 =
R

2π




∫ F1(φmin)

F1(φmax)
e−jkr[−Ψ7(r)]dr +

∫ F2(φmin)

F2(φmax)
e−jkr[Ψ8(r)]dr+

∫ F2(φmin)

F1(φmin)
e−jkr[−Ψ9(r)]dr +

∫ F2(φmax)

F1(φmax)
e−jkr[Ψ10(r)]dr




(A-18)

where

φmin = −tan(φp) (A-19a)

φmax = arcsin(l/R) (A-19b)
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