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Abstract

The term “superresolution” refers to the process of obtaining higher-resolution im-

ages from several lower-resolution ones, i.e. resolution enhancement. The quality

improvement is caused by fractional-pixel displacements between images. Superres-

olution allows to overcome the limitations of the imaging system (resolving limit of

the sensors) without the need for additional hardware.

This thesis presents a unified matrix-based framework that formulates superres-

olution as an inverse problem. We show explicitly how to construct every matrix

involved in the formulation, and reduce the problem to a single matrix equation.

The solution involves matrix inversion via Tikhonov regularization. It is tested on

synthetic data, demonstrating the feasibility of the approach, and then results using

experimental data are presented. We also investigate the problem of image regis-

tration, describing a procedure to measure the shift between images with subpixel

accuracy. The results of this work can be used for object tracking and identification.
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Chapter 1

Introduction and Historical
Overview

1.1 Introduction

The goal of superresolution, as its name suggests, is to increase the resolution of an

image. Resolution is a measure of frequency content in an image: high-resolution

(HR) images are bandlimited to a larger frequency range than low-resolution (LR)

images. In cases where information needs to be extracted from images, the more

details there are in the image the better. However, the hardware for HR images

is expensive and can be hard to obtain. The resolution of digital photographs is

limited by the optics of the imaging device. In conventional cameras, for example,

the resolution depends on CCD sensor density, which may not be sufficiently high.

Infrared and X-ray devices have their own limitations.

Superresolution is an approach that attempts to resolve this problem with soft-

ware rather than hardware. The concept behind this is time-frequency resolution.

Wavelets, filter banks, and the short-time Fourier transform (STFT) all rely on the

relationship between time (or space) and frequency and the fact that there is always

a tradeoff in resolution between the two.
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In the context of superresolution for images, it is assumed that several LR images

(e.g. from a video sequence) can be combined into a single HR image: we are decreas-

ing the time resolution, and increasing the spatial frequency content. The LR images

cannot all be identical, of course. Rather, there must be some variation between them,

such as translational motion parallel to the image plane (most common), some other

type of motion (rotation, moving away or toward the camera), or different viewing

angles. In theory, the information contained about the object in multiple frames, and

the knowledge of transformations between the frames, can enable us to obtain a much

better image of the object. In practice, there are certain limitations: it might some-

times be difficult or impossible to deduce the transformation. For example, the image

of a cube viewed from a different angle will appear distorted or deformed in shape

from the original one, because the camera is projecting a 3-D object onto a plane,

and without a priori knowledge of the transformation, it is impossible to tell whether

the object was actually deformed. In general, however, superresolution can be broken

down into two broad parts: 1) registration of the changes between the LR images, and

2) restoration, or synthesis, of the LR images into a HR image; this is a conceptual

classification only, as sometimes the two steps are performed simultaneously.

A huge number of papers has been published on superresolution and related topics

since Tsai and Huang’s first work in 1984 [2], and it would be impossible to mention

every one of them. Here, we try briefly present some the main developments on the

topic. Some of the material was adapted from [1], which contains an excellent and de-

tailed overview of history of superresolution; it misses some of the new developments,

since the paper was published in 1998. A series of superresolution-related articles

that give a good overview of the field also appears in the May 2003 special issue of
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the IEEE Signal Processing Magazine.

1.2 First Formulation

Tsai and Hunag were the first to consider the problem of obtaining a high-quality

image from several downsampled and translationally displaced images in 1984 [2].

Their data set consisted of terrestrial photographs taken by Landsat satellites. They

modelled the photographs as aliased, translationally displaced versions of a constant

scene. Their approach consisted in formulating a set of equations in the frequency

domain, by using the shift property of the Fourier transform. Optical blur or noise

were not considered. Tekalp, Ozkan and Sezan [3] extended Tsai-Huang formulation

by including the point spread function of the imaging system and observation noise.

1.3 Recursive Least Squares

Kim, Bose, and Valenzuela [4] use the same model as Huang and Tsai (frequency

domain, global translation), but incorporate noise and blur. Their work proposes a

more computationally efficient way to solve the system of equations in the frequency

domain in the presence of noise. A recursive least-squares technique is used. However,

they do not address motion estimation (the displacements are assumed to be known)

or the ill-posedness of the problem due to the presence of zeroes in the PSF. The

authors later extended their work to make the model less sensitive to errors by the total

least squares approach [5], which can be formulated as a constrained minimization

problem. This made the solution more robust with respect to uncertainty of motion

parameters.

Despite their simplicity and ease of implementation, frequency-domain models
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have significant drawbacks. They can only accommodate a global translational model,

due to the need for an equivalent transformation in the Fourier domain. For the same

reason, the noise and degradation models can only be shift-invariant. Finally, since

superresoluton is inherently ill-posed, regularization is almost always required. The

incorporation of a priori knowledge or constraints is often difficult or inconvenient

in the frequency domain. Spatial domain methods, discussed next, address these

shortcomings.

1.4 Spatial Domain Methods

Most of the research done on superresolution today is done on spatial domain meth-

ods. Their advantages include a great flexibility in the choice of motion model, motion

blur and optical blur, and the sampling process. Another important factor is that

the constraints are much easier to formulate, for example, Markov random fields or

projection onto convex sets (POCS) [1].

1.5 Projection and Interpolation

If we assume ideal sampling by the optical system, then the spatial domain formula-

tion reduces essentially to projection on a HR grid and interpolation of non-uniformly

spaced samples (provided motion estimation has already been done). A compari-

son of HR reconstrucion results with different interpolation techniques can be found

in [6] and [7]. Several techniques are given: nearest-neighbor, weighted average,

least-squares plane fitting, normalized convolution using a Gaussian kernel, Papoulis-

Gerchberg algorithm, and iterative reconstruction. It should be noted, however, that

most optical systems cannot be modelled as ideal impulse samplers.
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1.6 Probabilistic Methods

Since superresolution involves estimating data or parameters that are unknown, it is

natural to model images as probability distribution. Schultz and Stevenson [8] de-

scribe discontinuity-preserving prior image model that utilizes Huber Markov Random

fields within a Bayesian framework. MAP estimation is done by the gradient projec-

tion algorithm, and independent object motion (estimated by hierarchical blocks) is

assumed. Motion estimate errors are also modelled in terms of a probability density

function. MAP estimation is used in [11] as well, where the problem of segmentation

is addressed and rigid-body motion is assumed for more accurate motion estimates.

Hardie, Barnard, and Armstrong present a superresolution procedure which is similar

to that of Schultz and Stevenson in [16], however they make a significant contribution

in [17], where they estimate the HR image and the motion parameters simultaneously.

A procedure is suggested where motion and the reconstructed image are estimated

alternately, which offers the advantage of not estimating motion directly from LR im-

ages. Tom and Katsaggelos [9], on the other hand, use the ML (as opposed to MAP)

approach for a degradation model that includes blur and additive noise. Registration

and and restoration is performed simultaneously by the expectation maximization

(EM) algorithm.

1.7 Iterative Methods

Since superresolution is a computationally intensive process, it makes sense to ap-

proach it by starting with a “rough guess” and obtaining successfully more refined

estimates. For example, Elad and Feuer [12] use different approximations to the

Kalman filter and analyze their performance. In particular, recursive least squares
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(RLS), least mean squares (LMS), and steepest descent (SD) are considered. Irani

and Peleg [13] describe a straightforward iterative scheme for both image registration

and restoration, which uses a back-projection kernel. In their later work [14], the

authors modify their method to deal with more complicated motion types, which can

include local motion, partial occlusion, and transparency. The basic back-projection

approach remains the same, which is not very flexible in terms of incorporating a

priori constraints on the solution space. Shah and Zakhor [15] use a reconstruction

method similar to that of Irani and Peleg. They also propose a novel approach to

motion estimation that considers a set of possible motion vectors for each pixel and

eliminate those that are inconsistent with the surrounding pixels.

1.8 Projection Onto Convex Sets (POCS)

In this formulation, constraint sets are defined which limit the solution space for the

HR reconstruction. Usually, these sets represent certain desirable characteristics of

the image, such as smoothness, positivity, bounded energy, fidelity, etc. The solution

is thus reduced to finding the intersection of convex sets. An early work on the

subject was done by Stark and Oskoui [18]. They use closedness and convexity of

the constraint sets to ensure convergence of iteratively projecting the images onto

the sets. However, the solution, in general, is non-unique and dependent on the

initial guess. The proposed model does not incorporate noise. Tekalp, Ozkan, and

Sezan [20] propose a more robust POCS formulation which incorporates noise, a space-

variant PSF of the optical system, and motion blur (due to non-zero aperture time).

In general, POCS has the advantages of simplicity, flexibility and generality in the

choice of observation model, and ease of inclusion of prior information (which could
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be defined as another constraint set). However, drawbacks are also present, notably

non-uniqueness of solution, dependence on the initial guess, and slow convergence.

1.9 Edge-Preserving Methods

While many works formulate superresolution as a quadratic minimization problem of

some kind, Milanfar et al. [19] propose using the L1 norm both for regularization and

for data fusion. This allows better edge preservation, as most quadratic minimization

algorithms produce overly smooth images. The total variation (TV) method for

denoising and deblurring is proposed, and it is shown that L1 norm minimization can

be implemented as median estimation. The proposed method performs especially well

in the presence of non-Gaussian noise (e.g. salt-and-pepper noise), as it eliminates

outliers more efficiently.

1.10 Related Topics

There is a variety of topics related to superresolution. For example, motion estimation

constitutes a field by itself, used in a range of image and video processing tasks, and

it would be impossible to give even a brief overview of related work. However, we will

mention a few papers that are related to motion in the context of superresolution, or

subpixel motion estimation, which is vital for superresolution. In [21] and [22], a com-

putationally effective method for subpixel image registration (employed specifically for

HR restoration), is presented. It is the gradient constraint method, based on Taylor

series expansion, and it is used extensively in this thesis. A novel approach to subpixel

registration is developed in [23] and [24]. It is the extension of the well-known phase

correlation method to subpixel shifts. One technique works in the spatial domain,
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by extracting the information from secondary peaks in the inverse Fourier transform

(IFT) of the phase correlation plot. The other is a frequency-domain method (which

does not require IFT). It requires taking the singular value decomposition (SVD) of

the phase correlation matrix and fitting a line to the phase component of the domi-

nant singular vectors. Robinson and Milanfar [25] point out that there are theoretical

limits to the accuracy of image registration, regardless of the approach used. A few

works focus on the computational aspects of superresolution. For example, Nguyen,

Milanfar, and Golub [26] propose efficient block circulant preconditioners for solving

the Tikhonov-regularized superresolution problem by the conjugate gradient method.

Ng and Bose [27] investigate the convergence rate of iterative methods with different

preconditioners. An important theoretical result was derived by Lin and Shum [28].

While they do not present any novel HR reconstruction technique, they derive the

theoretical and practical performance bounds of superresolution algorithms under

various assumption. The results are based on the perturbation theory of linear sys-

tems, and show that for large magnification factors, reconstruction-based algorithms

are not favorable, and other methods, such as recognition, may be better.

1.11 Thesis Overview

In this thesis, a unified framework was developed that allows to formulate HR image

restoration as essentially a matrix inversion, regardless of how it is implemented

numerically. Superresolution is treated as an inverse problem, where we assume that

LR images are degraded versions of a HR image, even though it may not exist as

such. This allows us to put together the building blocks for the degradation model

into a single matrix, and the available LR data into a single vector. The formation
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of LR images becomes a simple matrix-vector multiplication, and the restoration of

the HR image a matrix inversion. Constraining of the solution space is accomplished

with Tikhonov regularization. The resulting model is intuitively simple (relying on

linear algebra concepts) and can be easily implemented in almost any programming

environment.

In the next section, we present a quantitative description of the image formation

and reconstruction model. In Chapter 3, image registration, which is central to

superresolution, is presented. Chapter 4 briefly discusses a different approach to

superresoltion, which aims to avoid overly smooth images. Finally, in Chapter 5 we

present the practical results obtained by the methods described in this thesis.



Chapter 2

Mathematical Description

2.1 Introduction

In order to apply a superresolution algorithm, a detailed understanding of how images

are captured and of the transformations they undergo is necessary. In this section, we

develop a model that converts an image that could be obtained with a high-resolution

video camera to low-resolution images that are typically captured by a lesser-quality

camera. We then attempt to reverse the process to reconstruct the HR image. Our

approach is matrix-based. The forward model is viewed as essentially construction of

operators and matrix multiplication, and the inverse model as a pseudo-inverse of a

matrix.

2.2 Forward model

Let X be a HR grayscale image of size nx×ny. Suppose that this image translationally

displaced, blurred, and downsampled, in that order. This process is repeated N

14
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times. The displacements may be different each time, but the downsampling factors

and the blur remain the same, which is usually true for real-world image acquisition

equipment. Let d1, d2, . . . dN denote the sequence of shifts and r the downsampling

factor, which may be different in the vertical and horizontal directions, i.e. there is

rx and ry. Thus, we obtain N shifted, blurred, decimated versions (observed images)

Y1, Y2, . . . YN of the original image. Fig. 2.1 shows this process with a sample image.

The “original” image, in the case of real data, may not exist, of course. In that

case, it can be thought of as an image that could be obtained with a very high-quality

video camera which has a (rx, ry) times better resolution and does not have blur, i.e.

its PSF is a delta function.

To be able to represent operations on the image as matrix multiplications, it is

necessary to convert the image matrix into a vector. Then we can form matrices

which operate on each pixel of the image separately. For this purpose, we introduce

the operator vec, which represents the lexicographic ordering of a matrix. Thus, a

vector is formed from vertical concatenation of matrix columns. Let us also define

the inverse operator mat, which converts a vector into a matrix. To simplify the

notation, the dimensions of the matrix are not explicitly specified, but are assumed

to be known.

Let x = vec(X) and yi = vec(Yi), i = 1, . . . N be the vectorized versions of the

original image and the observed images, respectively. We can represent the successive
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Shift (by [3, 5]) 

Blur (uniform 3x3) 

Downsampling (by [4, 4]) 

Figure 2.1: Sequence of steps modelling image acquisition.
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transformations of x—shifting, blurring, and downsampling—separately from each

other.

1) Shift

A shift operator moves all rows or all columns of a matrix up by one or down by

one. The row shift operator is denoted by Sx and the columns shift by Sy. Consider

a sample matrix

Mex =




1 4 7

2 5 8

3 6 9




After a row shift in the upward direction, this matrix becomes

mat(Sxvec(Mex)) =




2 5 8

3 6 9

0 0 0




Note that the last row of the matrix was replaced by zeros. Actually, this depends

on the boundary conditions. In this case, we assume that the matrix is zero-padded

around the boundaries, which corresponds to an image on a black background. Other

boundary conditions are possible, for example the Dirichlet boundary, when there

is no change along the boundaries, i.e. the image’s derivative on the boundary is

zero. Another case is Neumann boundary condition, where the entries outside the

boundary are replicas of those inside. Column shift is defined analogously to the row

shift.

Most operators of interest in this thesis have block diagonal form: the only non-

zero elements are contained in submatrices along the main diagonal. To represent this,
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let us use the notation diag(A,B, C, . . .) to denote the block-diagonal concatenation

of matrices A,B, C, . . .. Furthermore, most operators are composed of the same block

repeated multiple times. Let diag(rep(B, n)) mean that the matrix B is diagonally

concatenated with itself n times. Then the row shift operator can be expressed as a

matrix whose diagonal blocks consist of the same submatrix B:

B =

[
0(nx−1)×1 Inx−1

01×1 01×(nx−1)

]
(2.2.1)

The shift operators have the form:

Sx(1) = diag(rep(B, ny)) (2.2.2)

Sy(1) =

[
0nx(ny−1)×nx Inx(ny−1)

0nx×nx 0nx×nx(ny−1)

]
(2.2.3)

Here and thereafter, In denotes an identity matrix of size n; 0nx×ny denotes a zero

matrix of size nx×ny. The total size of the shift operator is nxny×nxny. The notation

Sx(1), Sy(1) simply means that the shift is by one row or column, to differentiate it

from the multi-pixel shift to be described later.

As an example, consider a 3× 2 matrix M . Its corresponding row shift operators

is:

Sx(1) =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0



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It is apparent that this shift operator consists of diagonal concatenation of a block

B with itself, where

B =




0 1 0

0 0 1

0 0 0




For the column shift operator,

Sy(1) =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




For a shift in the opposite direction (the shifts above were assumed to be down

and to the right), the operators just have to be transposed. So, Sx(−1) = ST
x (1),

Sy(−1) = ST
y (1).

Shift operators for multiple-pixel shifts can be obtained by raising the one-pixel

shift operator to the power equal to the size of the desired shift. Thus, the notation

Sx(i), Sy(i) denotes the shift operator corresponding to the displacement (dix, diy)

between the frames i and i− 1, where Si = Sx(dix)Sy(diy). As an example, consider

the shift operators for the same matrix as before, but now for a 2-pixel shift:

Sx(2) = S2
x(1) =




0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0



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The column shift operator in this case would be an all-zero matrix, since the matrix

it is applied to only has two elements itself. However, it is clear how multiple-shift

operators can be constructed from single-shift ones. It should be noted that simply

raising a matrix to a power may not work for some complicated boundary conditions,

such as the reflexive boundary condition. In such a case, the shift operators need to

be modified for every shift individually, depending on what the elements outside the

boundary are assumed to be.

2) Blur

Blur is a natural property of all image acquisition devices caused by the imper-

fections of their optical systems. Blurring can also be caused by other factors, such

as motion (motion blur) or the presence of air (atmospheric blur), which we do not

consider here. Lens blur can be modeled by convolving the image with a mask (ma-

trix) corresponding to the optical system’s PSF. Many authors assume that blurring

is a simple neighborhood-averaging operation, i.e. the mask consists of identical en-

tries equal to one divided by the size of the mask. Another common blur model is

Gaussian. This corresponds to the image being convolved with a two-dimensional

Gaussian of size Gsize × Gsize and standard deviation σ2. Since blurring takes place

on the vectorized image, convolution is replaced by matrix multiplication. In general,
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to represent convolution as multiplication, consider a Toeplitz matrix of the form

T =




t0 t−1 . . . t2−n t1−n

t1 t0 t−1
. . . t2−n

...
. . . . . . . . .

...

tn−2
. . . t1 t0 t−1

tn−1 tn−2 . . . t1 t0




(2.2.4)

where negative indices were used for convenience of notation.

Now define the operation T = toeplitz(t) as converting a vector

t = [t1−n, . . . , t−1, t0, t1, tn−1] (of length 2n − 1) to the form (2.2.4), with the neg-

ative indices of t corresponding to the first row of T and the positive indices to the

first column, with t0 as the corner element.

Consider a kxky × kxky matrix T of the form

T =




T0 T−1 . . . T1−ky

T1 T0 T−1
...

...
. . . . . . T−1

tky−1 . . . T1 T0




(2.2.5)

where each block Tj is a kx×kx Toeplitz matrix. This matrix is called block Toeplitz

with Toeplitz blocks (BTTB). Finally, two-dimensional convolution can be converted

to an equivalent matrix multiplication form:

t ∗ f = mat(T vec(f)) (2.2.6)

where T is the kxky×kxky BTTB matrix of the form (2.2.5) with Tj = toeplitz(t.,j).

Here t.,j denotes the jth column of the (2kx − 1)× (2ky − 1) matrix t [31].
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The blur operator is denoted by H. Depending on the image source, the assump-

tion of blur can be omitted in certain cases.

3) Downsampling

The two-dimensional downsampling operator discards some elements of a ma-

trix while leaving others unchanged. In the case of downsampling-by-rows operator,

Dx(rx), the first row and all rows whose numbers are one plus a multiple of rx are

preserved, while all others are removed. Similarly, the downsampling-by-columns op-

erator Dy(ry) preserves the first column and columns whose numbers are one plus a

multiple of ry, while removing others. As an example, consider the matrix

Mex =




1 5 9 13 17 21 25

2 6 10 14 18 22 26

3 7 11 15 19 23 27

4 8 12 16 20 24 28




Suppose rx = 2. Then we have the downsampled-by-rows matrix

mat(Dxvec(Mex)) =

[
1 5 9 13 17 21 25

3 7 11 15 19 23 27

]

Suppose ry = 3. Then we have the downsampled-by-columns matrix

mat(Dyvec(Mex)) =




1 13 25

2 14 26

3 15 27

4 16 28




Matrices can be downsampled by both rows and columns. In the above example,

mat(DxDyvec(Mex)) =

[
1 13 25

3 15 27

]
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If we define a block matrix B2,

B2 =

[
1

0(rx−1)×1

]
(2.2.7)

then Dx can be written as

[diag(rep(B2, nxny/rx))]
T (2.2.8)

For Dy,

B3 =

[
Inx/rx

0(nx(ny−ry)/(rxry))×nx/rx

]
(2.2.9)

Dy = [diag(rep(B3, ny/ry))]
T (2.2.10)

It should be noted that the operations of downsampling by rows and columns

commute, however, the downsampling operators themselves do not. This is due to

the requirement that matrices must be compatible in size for multiplication. If the Dx

operator is applied first, its size must be SxSy/rx×SxSy. The size of the Dy operator

then must be SxSy/(rxry)×SxSy/rx. The order of these operators, once constructed,

cannot be reversed. Of course, we could choose to construct any operator first.

As an example, consider a 4 × 4 matrix Mex that is downsampled by 2 in both
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directions. Its downsampling operators are:

Dx =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0




Dy =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0




Notice that the downsampling-by-columns operator (Dy) is much smaller that the

downsampling-by-rows operator (Dx). This is because Dy will be multiplied not with

the original matrix M , but with the smaller matrix Dxvec(Mex), or Mex that has

already been downsampled by rows.

Data Model

The observed images are given by:

yi = DHSix, i = 1, . . . , N (2.2.11)

where D = DxDy and Si = Sx(dix)Sy(diy).

If we define a matrix Ai as the product of downsampling, blurring, and shift

matrices,

Ai = DHSi (2.2.12)
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then the above equation can be written as

yi = Aix, i = 1, . . . , N (2.2.13)

Furthermore, we can obtain all of the observed frames with a single matrix multi-

plication, rather than N multiplications as above. If all of the vectors yi are vertically

concatenated, the result is a vector y that represents all of the LR frames. Now, the

mapping from x to y is also given by the vertical concatenation of all matrices Ai.

The resulting matrix A consists of N block matrices, where each block matrix Ai

operates the same vector x. By property of block matrices, the product Ax is the

same as if all vectors yi were stacked into a single vector. Hence,

y = Ax (2.2.14)

The above model assumes that there is a single image that is shifted by different

amounts. In practical applications, however, that is not the case. Typically, we are

interested in some object that is within the field of view of the video camera. This

object is moving while the background remains fixed. If we consider only a few frames

(which can be recorded in a fraction of a second), we can define a “bounding box”

within which the object will remain for the duration of observation. In this thesis,

this “box” is referred to as the region of interest (ROI). All operations need to be

done only with the ROI, which is much more efficiently computationally. It also poses

the additional problem of determining the object’s initial location and its movement
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within the ROI. These issues will be described in the section dealing with motion

estimation.

Also, although noise is not explicitly included in the model, the inverse model

formulation (described next), assumes that additive white Gaussian (AWGN) noise, if

present, can be attenuated by a regularizer, and the degree of attenuation is controlled

via the regularization parameter.
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2.3 Inverse Model

The goal of the inverse model is to reconstruct a single HR frame given several

LR frames. Since in the forward model the HR to LR tranformation is reduced

to matrix multiplication, it is logical to formulate the restoration problem as matrix

inversion. Indeed, the purpose of vectorizing the image and constructing matrix

operators for image transformations was to represent the HR-to-LR mapping in the

form of Eq. 2.2.14, a system of linear equations.

First, it should be noted that this system may be underdetermined. Typically,

the combination of all available LR frames contains only a part of the information in

the HR frame. Alternatively, some frames may contain redundant information (same

set of pixels). Hence, straightforward solution of the form x̂ = A−1y is not feasible.

Instead, we could define the optimal solution as the one minimizing the discrepancy

between the observed and the reconstructed data in the least squares sense. For

underdetermined systems, we could also define a solution with the minimum norm.

However, it is not practical to do so because it is known not known in advance whether

the system will be underdetermined. The least-squares solution works in all cases.

Let us define a criterion function with respect to x̂:

J(x) = λ||Qx||22 + ||y − Ax||22 (2.3.1)

where Q is the regularizing term and λ its parameter. The solution can then be
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defined as

x̂ = arg min
x

J(x) (2.3.2)

We can set the derivative of the function to optimize equal to the zero vector and

solve the resulting equation:

∂J(x)

∂x
= 0 = 2λQT Qx̂− 2AT (y − Ax̂) (2.3.3)

x̂ = (AT A + λQT Q)−1AT y (2.3.4)

We can now see the role of the regularizing term. Without it, the solution would have a

term (AT A)−1. Multiplication by the downsampling matrix may cause A to have zero

rows or zero columns, making it singular. This is intuitively clear, since downsampling

is an irreversible operation. The above expression would be non-invertible without

the regularizing term, which “fills in” the missing values.

It is reasonable to choose Q to be a derivative-like term. This will ensure smooth

transitions between the known points on the HR grid. If we let ∆x, Deltay to be the

derivative operators, we can write Q as

Q =

[
∆x

∆y

]
(2.3.5)

Then

QT Q =

[
∆x

∆y

]T [
∆x ∆y

]
= ∆2

x + ∆2
y = L (2.3.6)

where L is the discrete Laplacian operator. The Laplacian is a second-derivative

term, but for discrete data, it can be approximated by a single convolution with a
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mask of form 


0 −1 0

−1 4 −1

0 −1 0




The operator L performs this convolution as matrix multiplication. It has the

form (2.3.7) below (blanks represent zeroes). For simplicity, this does not take into

account the boundary conditions. This should only affect pixels that are on the

image’s edges, and if they are relevant, the image can be extended by zero-padding.

L =




4 −1 0 0 . . . −1 0 0 . . . 0

−1 4 −1 0 0 . . . −1 0 0 . . . 0

0 −1 4 −1 0 0 . . . −1 0 0 . . . 0
. . . . . .

−1 −1 4 −1 −1

0 −1 −1 4 −1 −1

0 0 −1 −1 4 −1 −1

0 0 0
. . . . . . . . . . . . . . .




(2.3.7)

The remaining question is how to choose the parameter λ. There exist formal

methods for choosing the parameter, such as generalized cross-validation (GCV) or

the L-curve, but it is not necessary to use them in all cases: the appropriate value

may be selected by trial and error and visual inspection, for example. As noted in

[Milanfar], a larger λ makes the system better conditioned, but this new system is

farther away from the original system (without regularization). Under the no blur, no

noise condition, any sufficiently small value of λ (that makes the matrix numerically

invertible) will produce almost the same result. In fact, the difference will probably be
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lost during round-off, since most grayscale image formats quantize intensity levels to a

maximum of 256. When blur is added to the model, however, λ may need to be made

much larger, in order to avoid high-frequency oscillations (ringing) in the restored

HR image. Since blurring is low-pass filtering, during HR restoration, the inverse

process, namely, high-pass filtering, occurs, which greatly amplifies noise. In general,

deblurring is an ill-posed problem. Meanwhile, without blurring, restoration is in

effect a simple interleaving and interpolation operation, which is not ill-conditioned.

Fig. 2.2 illustrates this. Three HR restoration of the same LR sequences are shown,

with different values of the parameter λ. The magnification is by a factor of 2 in both

dimensions, and the assumed blur kernel is 3x3 uniform. The image on the left was

taken formed with λ = 0.001, and it is apparent that it is underregularized: noise and

motion artefacts have been amplified as a result of deblurring. For the image on the

right, λ = 1 was used. This resulted in an overly smooth image, with few discernible

details. The center image is optimal, with λ = 0.11 as found by GCV. The GCV

curve is shown in Fig. 2.3. With deblurring, there is an inevitable tradeoff between

image sharpness and the level of noise.

Advantages of the proposed solution

Eq. 2.3.4 produces a vector, which after appropriate reshaping, becomes a HR

image. We are interested in how close that restored image resembles the “original”. As

mentioned before, in realistic situations the “original” does not exist. The properties
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Figure 2.2: Underregularized, optimally regularized, and overregularized HR image.
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Figure 2.3: Plot of GCV value as a function of λ.
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of the solution, however, can be investigated with existing HR images and simulated

LR images (formed by shifting, blurring, and downsampling).

Let us define an error metric that formally measures how different the original

and the reconstructed HR images are:

ε =
||x− x̂||2
||x||2 (2.3.8)

A smaller ε corresponds to a reconstruction that is closer to the original. Clearly,

the quality of reconstruction depends on the number of available LR frames and the

relative motion between these frames. Suppose, for example, that the downsampling

factor in one direction is 4 and the object moves strictly in that direction at 4 HR

pixels per frame. Then, in the ideal noiseless case, all frames after the first one will

contain the same set of pixels. In fact, each subsequent frames will contain slightly

less information, because at each frame some pixels slide past the edge. Now supposed

the object’s velocity is 2 HR pixels per frame. Than the first two frames will contain

unique information, and the rest will be duplicates. The reconstruction obtained with

the only the first two frames will be as good as that using many frames.

In the proposed solution, if redundant frames are added, the error as defined

by (2.3.8) will stay approximately constant. In the case of real imagery, has the effect

of reducing noise due to averaging. Generally speaking, best results are obtained

when there are small random movements of the object in both directions (vertically

and horizontally). Even if the object remains in place, such movements can obtained
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by slightly moving the camera.

Under the assumption of no blur and no noise, it can also be shown that there

exists a set of LR frames with which almost perfect reconstruction is possible. LR

frames can be thought of as being mapped onto the HR grid. If all points on the

grid are filled, the image is perfectly reconstructed. Suppose, for example, that the

original HR image is downsampled by (2, 3) (2 by rows and 3 by columns)1. Suppose

the first LR frame is generated by downsampling the HR image with no motion, i.e.

its displacement is (0, 0). Then the set of LR frames with the following displacements

is sufficient for reconstruction:

(0, 0), (0, 1), (0, 2),

(1, 0), (1, 1), (1, 2).

In general, for downsampling by (rx, ry), all combinations of shifts from 0 to rx

and 0 to ry are necessary to fully reconstruct the image. If (2.3.4) is used, the error

defined by (2.3.8) will be almost zero. The very small residual is due to the presence

of the regularization term and boundary effects.

Figs. 2.4 to 2.7 illustrate the proposed restoration algorithm. The original HR

image is an aerial view of a city. The HR-to-LR transformations, with a downsam-

pling factor of (4, 4) and no blur for simplicity, were applied to generate the LR

1The convention for representing downsampling is to list it as (downsampling by rows, downsam-
pling by columns). The convention for representing displacements is to list them as (rows, columns),
where positive values for rows represent a downward motion and positive values for columns rep-
resent a rightward motion; this corresponds to a coordinate system with the origin at the image’s
upper left corner, with axes pointing down and right.



34

images. Introducing different displacements between these images, and using a dif-

ferent number of these images, HR reconstructions with different degrees of accuracy

were created. In Fig. 2.5, the motion is strictly horizontal with a constant velocity of

(0, 3) pixels per frame (all velocities are given in HR pixels). For diagonal motion,

Fig. 2.6, the image was displaced by (-1, 3) pixels in each frame. For zigzag motion,

Fig. 2.7, a motion pattern was selected that eventually covered all points on the HR

grid:

[(-2,-3); (1,2); (-2,-1); (3,-1); (-3,3); (2,-2); (-2,1); (2,-2); (1,2); (-2,-1); (-1,-1); (1,2);

(0,1); (1,0); (1,-2)]

Note that a near-perfect reconstruction is possible when a “good” LR sequence is

available, even though each of the LR images by itself has 16 times less information

than the original.
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Figure 2.4: The original HR image and a LR image obtained by downsampling by (4,
4).

Figure 2.5: Uniform horizontal motion. Left to right: 2 (error 18.7%), 4 (error 16.4%),
and 8 (error 16.4%) LR frames.

Figure 2.6: HR restoration with uniform diagonal motion. Left to right: 2 (error
18.2%), 4 (error 13.9%), and 8 (error 13.9%) LR frames.

   

Figure 2.7: Zigzag motion. Left to right: 4 (error 12.7%), 8 (error 8.2%), and 16
(error 4× 10−10) LR frames.



Chapter 3

Motion Estimation

3.1 Introduction

Accurate image registration is essential in superresolution. As can be seen from the

previous chapter, the matrix A depends on the relative positions of the frames. Motion

estimation constitutes an extensive field of study by itself. Tom and Katsaggelos [10]

state that “It is well-known that motion estimation is a very difficult problem due

to its ill-posedness, the aperture problem, and the presence of covered and uncovered

regions”. In fact, the accuracy of registration is in most cases the limiting factor

in HR reconstruction accuracy. The following are common problems that arise in

estimating interframe displacements:

1. Local vs. global motion (motion field rather than a single motion vector). If

the camera shifts and the scene is stationary, the relative displacement will be

36
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global (the whole frame shifts). Typically, however, there are individual objects

moving within a frame, from leaves of a tree swaying in the wind to people

walking or cars moving. In such situations, it may be necessary to identify and

determine the motion of each object individually.

2. Non-linear motion. Most motion that can be observed under realistic conditions

is non-linear, but the problem is compounded by the fact observed 2-D image

is only a projection of the 3-D world. Depending on the relative position of

the camera and the object, the same object can appear drastically different.

For example, a disc standing parallel to the image plane will appear as a cir-

cle. If it is rotated about a parallel axis, however, it will become an ellipse of

shrinking width, until it finally looks like a line. Moreover, parts of an object

may become invisible due to occlusion, and the rigid-body assumption may not

hold—consider ripples on a person’s shirt due to wind. If simple affine trans-

formations, such as rotations on a plane, can theoretically be accounted for,

there is no way to deal with changes in the object’s shape itself, at least in

non-stereoscopic models.

3. Changes in overall or local brightness of the scene. This commonly happens

in IR cameras with automatic gain adjustment, but can also occur in optical

cameras due to inherent reflectivity of surfaces (e.g. specular reflexes) or non-

uniform illumination.
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4. The “correspondence problem” and the “aperture problem”, described in image

processing literature, e.g. [32]. These arise when there are not features in an

object being observed to uniquely determine motion. The simplest example

would be an object of uniform color moving in front of the camera, so that its

edges are not visible. Since the object is uniform, there is no way to tell how

much it moved. Another example is an object with repetitive patterns, such as

a brick wall. Since all bricks look the same, it might be difficult to estimate

how far the camera actually moved with respect to the wall.

5. The need to estimate motion with subpixel accuracy. It is the subpixel motion

that provides additional information in every frame, yet it has to be estimated

from LR data. The greater the desired magnification factor, the finer the dis-

placements that need to be differentiated (the two are inversely proportional).

6. The presence of noise. Noise is a problem because it changes the graylevel values

randomly. To a motion-estimation algorithm, it might appear as though each

pixel in a frame moves on its own, rather than uniformly as a part of a rigid

object. In feature-based tracking, noise can obscure or hide important features.

Sometimes, noise is particularly difficult to deal with because it affects both

motion estimation and reconstruction.



39

Due to these difficulties, some authors do not consider the problem of registra-

tion at all, assuming the shifts are already know, as in controlled camera motion.

However, this does not work for practical applications. In the next sections, we will

discuss integer- vs. fractional-pixel motion and give a brief overview of the estimation

techniques.

3.2 Integer-pixel Motion

From the HR restoration point of view, it is only the subpixel shifts that may con-

tribute new information. Recall that in the forward model, we assume that LR data

is generated by a series of shifts and subsampling. Fig. 3.1 shows a HR grid (1-D

case is shown for simplicity), where the LR pixels remaining after downsampling by

3 are marked in black. If the data is shifted by 3 HR pixels (corresponding to 1 LR

pixel) and downsampled, it will be no different from the first data set, except for an

edge pixel. Therefore, shifts by an integer number of LR pixels produce redundant

data. In an ideal case, it will simply produce a HR image that does not change with

additional frames. Images taken under real conditions are at least slightly differ-

ent from each, due to noise, even if the estimated displacement between them is an

integer. The resulting HR image will then reduce the noise by averaging (for addi-

tive, shift-invariant noise). However, if the discrepancy is too great, it may produce

objectionable artifacts.
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Figure 3.1: A shift by an exactly one LR pixel.

Despite the fact that we are interested in subpixel shifts, we cannot compute them

in isolation. Image registration techniques designed for subpixel accuracy only work

if the images are displaced by, indeed, a subpixel amount. Therefore, we must align

the images as closely as possible, and this is why we need an integer-pixel estimator.

We describe a few common ones next.

1) Sum of squared differences (SSD). Perhaps the most conceptually simple tech-

nique, it works by defining some distance measure between blocks in two frames

(or, if motion is global, between the frames themselves). One of the blocks is fixed,

while the for the other, the boundaries are shifted within some search region. After

each shift, the distance measure between blocks is computed, and the displacement

is determined by the location where this distance is minimized. Most commonly, the

distance measure is the sum-of-square differences (SSD). For two images f(x, y) and

g(x, y), it is defined as

SSD(d1, d2) =

n1∑
i=−n1

n2∑
j=−n2

(f(x + i, y + j)− g(x + i− d1, y + j − d2))
2 (3.2.1)

where the summation extends over the region of size (2n1 + 1) × (2n2 + 1). Region

matching is sensitive to noise, repetitive patterns, and is computationally expensive.
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2) Spatial cross-correlation. The normalized correlation in the spatial domain is

computed for two regions under consideration. Formally,

C(d1, d2) =

∑n1

i=−n1

∑n2

j=−n2
(f(x + i, y + j)− f̄)(g(x + i + d1, y + j + d2)− ḡ)√∑n1

i=−n1

∑n2

j=−n2
(f(x + i, y + j)− f̄)2

∑n1

i=−n1

∑n2

j=−n2
(g(x + i + d1, y + j + d2)− ḡ)2

(3.2.2)

where f̄ and ḡ are the averages of f and g [33].

Cross-correlation is conceptually similar to SSD. Both are block-matching tech-

niques, only the distance measure is different. However, cross-correlation is not sen-

sitive to overall changes in brightness because of the normalization.

3) Phase correlation. Let g(x, y) = f(x−x0, y− y0), meaning the second image is

obtained by shifting the first one by (x0, y0). Let F (u, v) and G(u, v) be the Fourier

transforms of the images. According to the Fourier shift property,

G(u, v) = F (u, v) exp[−j(ux0 + vy0)] (3.2.3)

Then the cross-power spectrum is given by

C(u, v) =
F (u, v)G∗(u, v)

|F (u, v)G∗(u, v)| = exp[−j(ux0 + vy0)] (3.2.4)

where the asterisks denote conjugation [24]. The easiest way to solve this for (ux0 , vy0)

is to take the inverse Fourier transform of C(u, v), which should produce a Dirac delta

function at (x0, y0).

Fig. 3.2 shows two images displaced by (9, 5) pixels with respect to each other

and downsampled by 2 (both images are downsampled). Fig. 3.3 shows the plots
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Figure 3.2: Two identical but shifted images.

Figure 3.3: Plot of their IFT of phase correlation (left) and of spatial correlation
(right).

of their phase correlation and normalized cross-correlation. The peak obtained with

phase correlation is much sharper and better-defined. It is centered at (4, 2), which

is the equivalent shift (to the nearest integer) in LR pixels after downsampling. Note

also the presence of secondary peaks around the main peak. This is a consequence of

downsampling and can be exploited to obtain fractional-pixel accuracy, as explained

in the subpixel motion estimation section.

4) Variational Methods. This is a class of techniques based on the principles of
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variational calculus. By Hamilton’s principles, motion path is such that the integral

of the Lagrange function L is minimized. For a point mass, this integral is

∫ t2

t1

L(x, ẋ, t)dt (3.2.5)

In the general case, the motion is a vector field v(x), a two-dimensional vector function

of a two dimensional vector variable. The variation integral is

∫

window

L(v,
∂vi

∂xj

,d)d2x (3.2.6)

This problem can be solved by Euler-Lagrange equations. Details can be found in [32].

3.3 Subpixel Motion

In integer-pixel shifts, a pixel in location A in the first frame moves to location B in

the second frame. Except near the image’s edges, all pixels can be matched one-to-one

between frames. In subpixel shifts, there is no one-to-one correspondence. Instead,

the value of each pixel changes. For most pixels, this change is usually small and de-

pends on the values of the neighboring pixels. Subpixel motion can be represented by

a combination of integer-pixel shifts, blur (sometimes), and downsampling. Although

in real images, the image formation process is different, this representation can still

serve as a model of reasonable accuracy.

Subpixel displacement can be determined by methods described in the previous

section, extended by interpolation. For example, spatial cross-correlation can be
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extended by upsampling both images and then computing their cross-correlation.

Multiscale, or pyramid, methods,use resampling and interpolation at several levels.

The results, however, are limited in accuracy and may be highly dependent on the

interpolation used during upsampling (e.g. nearest-neighbor, bilinear, or bicubic).

Here we briefly describe several additional methods for subpixel registration.

Phase correlation. While interpolation can also be used to extend phase corre-

lation to subpixel shifts, there is a more efficient methods proposed by Foroosh and

Zerubia [23]. The derivation can be found in their paper, and here we only present

the final result. For an image pair subsampled by (rx, ry), the phase correlation can

be approximated by

C(x, y) =
sin(π(rxx− x0))

π(rxx− x0)

sin(π(ryy − y0))

π(ryy − y0)
(3.3.1)

By applying this equation to the secondary peaks of phase correlation, the dis-

placement (x0, y0) can be estimated. The authors note that the underlying assumption

is that there is no aliasing during downsampling.

Gradient constraint. Let f(x, y, t) be a time-varying image (i.e. an image se-

quence). By Taylor expansion, dropping the higher-order terms, we obtain

f(x +4x, y +4y,4t) ≈ f(x, y, 0) +∇f(x, y, 0)T4 (3.3.2)

where 4 = [4x,4y,4t]T .
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Therefore, for two consecutive frames, f(x, y) and g(x, y),

g(x, y) ≈ f(x, y) +
∂f(x, y)

∂x
4x +

∂f(x, y)

∂y
4y (3.3.3)

Therefore, to determine the shift (4x,4y), we need to minimize the difference

between the two sides of Eq. 3.3.3.

(4x,4y) = arg min
4x,4y

∑
x

∑
y

(
g(x, y)− f(x, y)− ∂f(x, y)

∂x
4x− ∂f(x, y)

∂y
4y

)2

(3.3.4)

In matrix form, the solution to this is




∑
x

∑
y

(
∂f(x,y)

∂x

)2 ∑
x

∑
y

∂f(x,y)
∂x

∂f(x,y)
∂y

∑
x

∑
y

∂f(x,y)
∂x

∂f(x,y)
∂y

∑
x

∑
y

(
∂f(x,y)

∂y

)2




[
4x

4y

]
=

[ ∑
x

∑
y(g(x, y)− f(x, y))∂f(x,y)

∂x∑
x

∑
y(g(x, y)− f(x, y))∂f(x,y)

∂y

]

(3.3.5)

Eq. 3.3.5 is called the gradient constraint equation because motion is constrained by

the continuity of optical flow. It works well under the assumption that motion is

smooth and less than one pixel.

3.4 Examples of Motion Estimation

The approach used in this project is to estimate the integer-pixel displacement using

phase correlation, then align the images with each other using this estimate, and

finally compute the subpixel shift by the gradient constraint equation. Fig. 3.4 shows

two aerial photographs with a shift of (8, 13), downsampled by 3 in both directions.

The output of the phase-correlation estimator was (3, 4), which is (8, 13)/3 rounded



46

Figure 3.4: Image pair with a relative displacement of (8/3, 13/3) pixels.

to whole numbers. The second image was shifted back by this amount to roughly

coincide with the first one (Fig. 3.5). Note that the images now appear to be aligned,

but not identical, as can be seen from the difference image. Now the relative displace-

ment between them is less than one pixel, and the gradient equation can be used.

It yields (−0.2968, 0.2975). Now, adding the integer and the fractional estimate, we

obtain (3, 4) + (−0.2968, 0.2975) = (2.7032, 4.2975). If this amount is multiplied by

3 and rounded, we obtain (8, 13). Thus we see that the estimate is correct.

3.5 Combinatorial Motion Estimation

Registration of LR images is a difficult task, and its accuracy may be affected by

many factors, as described in the introduction. Moreover, in [25], it is stated that all

motion estimators have inherent mathematic limitations, and in general, all of them

are biased. A possible way to improve the accuracy is introduced in this section. The
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Figure 3.5: Images aligned to the nearest pixel (top) and their difference image (bot-
tom).
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Figure 3.6: Block diagram of combinatorial motion estimation for case k.

idea is to consider different possibilities for the motion vectors, and pick the best one.

Since for real data, we do not know what a “good” HR image should like like, we define

the best possibility as the one that best fits the LR data in the mean-square sense.

So, having computed a HR image with a given set of motion vectors, we generate

synthetic LR images from it and calculate the discrepancy between them and the real

LR images. The same procedure is repeated, but with different motion vectors, and

the motion estimate that yields the minimum discrepancy is chosen. Fig. 3.6 shows

a schematic for evaluating the kth set of motion vectors.

Suppose we have N LR frames and N − 1 corresponding motion vectors—one for

each pair of adjacent frames. The vector for the shift between the first and the second
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frame is d1,k, between the second and the third d2,k, etc. The subscript k indicates

that the motion vectors are not unique and we are considering one of the possibilities.

Based on these vectors, we can generate both the HR image Xk and the LR images

Ŷ1,k, Ŷ2,k, . . . , ŶN,k, where the circumflex is used to distinguish them from the real LR

images Y1,k, Y2,k, . . . , YN,k (it is assumed that the upsampling/downsampling factor is

constant for all k). The LR images can be converted into vector form, yl,k = vec(Yl,k)

and ŷl,k = vec(Ŷl,k). The error (discrepancy) between the real and synthetic data is

defined as

εk =
N−1∑

l=1

‖yl,k − ŷl,k‖2

‖yl,k‖2

(3.5.1)

Evaluating this equation for several motion estimates, we can choose the one that

results in the smallest ε.

The list of different motion possibilities can come from different sources. For

example, if there are several image registration algorithms, they may produce different

outputs. Another way is to start with a coarse estimate and construct a search tree,

where each branch represents a slightly different estimate. For example, consider a

data set consisting of 4 LR frames and 3 associated motion vectors. Suppose that we

know that in each frame, each vector may be off by at most one HR pixel horizontally

and/or vertically. Then the search tree will consist of three levels (one per motion

vector) and each children node will differ from its parent node by one. Part of this

tree is shown in Fig. 3.7. After evaluating each branch, the correct sequence of motion
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Figure 3.7: Part of a motion estimate search tree, with the correct path shown in
bold.

vectors can be chosen, as shown in the figure.

With this approach, it is possible to refine the estimate provided by an image

registration algorithm. For example, consider the aerial photograph used in the pre-

vious section. The following shifts were simulated in the image: d1 = (−2,−3), d2 =

(−4,−2), d3 = (1, 1), with downsampling by 3 in both dimensions after each shift.

Thus 4 LR frames were obtained. Now, suppose those LR images were provided

without a priori knowledge of the shifts. Suppose further that we were unable to de-

termine the interframe displacements precisely and that the best estimate we have is
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given by d1 = (−1,−4), d2 = (−3,−1), d3 = (1, 2). Note that this is slightly different

from the true motion. Constructing a search tree as described and evaluating each

branch, it is possible to recover the true motion, as verified by numerical simulation.

Fig. 3.8 shows the original image, the image reconstructed from LR data using the

correct motion vectors, and the reconstruction using the guess that was used as an

input to the combinatorial algorithm. Although the reconstructed image in the center

is of poorer quality than the original (which is logical, since there is not enough LR

data for full restoration, as is usually the case), it is better than the one on the right.

Quantitatively, the error is 10.7% in the “true motion” image, and 18.4% in the “esti-

mated motion” image, compared to the original and using the Euclidean norm. This

shows that for superresolution restoration, even small registration errors can have a

big and adverse impact on quality.

Generally speaking, the combinatorial algorithm improves the initial guess, even

if it cannot provide the “exact” result. The drawback is a huge increase in compu-

tational time. Instead of computing one HR image, which involves the inversion of a

very large sparse matrix, a separate HR image has to be built for every final node in

the tree. The number of possibilities grows exponentially with the number of initial

motion vectors. In the case of the example described above, the total number of

possibilities is (32)3 = 729. The base 3 is due to the three options for each element

of a vector—leave unchanged, add one, or subtract one. The power 2 is due to each
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Figure 3.8: The original image (top), the restoration made with correct motion in-
formation (center), and the one made with an erroneous guess (bottom).
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vector having two elements, corresponding to the horizontal and the vertical velocity

components. The final power 3 represents the three vectors that we have to consider.

It can thus be seen easily that the size of the tree grows with both the width and

the depth of the search. For instance, if there were 4 motion vectors instead of 3, the

number of possibilities would rise to (32)4 = 6561. If, in addition, true velocity can

differ from initial estimate by up to 2 pixels, it becomes (52)4 = 390625.

It might be possible to reduce the search space by considering a “block of frames”

at a time, i.e. for a 6-frame LR data set, apply the combinatorial algorithm to the first

three and the last three frames independently. Alternatively, we may not consider

the full path from the top to the bottom of the tree, but evaluate intermediate results

at some point and continue tracing only the higher-ranked paths. More efficient

methods, such as the branch-and bound algorithm, exist, but they are beyond the

scope of this thesis.

3.6 Local Motion

Up to now, it has been assumed that the motion is global for the whole frame.

Sometimes this is the case, for example when a camera is shaken randomly and the

scene is static. In most cases, however, we are interested in tracking a moving object

or objects. Even if there is a single object, it is usually moving against a relatively

stationary background. One solution in this case is to extract the part of the frame
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that contains the object, and work with that part only. One problem with that

approach is the boundary conditions. As described in Chapter 2, the model assumes

that as the object shifts and part of it goes out of view, the new pixels at the opposite

end are filled according to some predetermined pattern, e.g. all zeroes or the values

of the previous pixels. In reality, of course, the pixels on the object’s boundary do not

change to zero when it shifts. This discrepancy does not cause serious distortions as

long as the shifts are small relative to the object size. If all shifts are strictly subpixel,

i.e. none exceeds one LR pixel from the reference frame, at most the edge pixels will

be affected. However, as the shifts get larger, a progressively larger area around the

edges of HR image is affected.

One solution is to create a “buffer zone” around the object and process this whole

area. This is the region of interest (ROI) mentioned in the “Mathematical Descrip-

tion” chapter. In this case, when object’s movement is modelled with shift operators,

it is the surrounding area that gets replaced with zeroes, not the object itself. Since

only the object moves, and the area around it is stationary, and we are treating all of

ROI as moving globally, the result will be a distortion in the “buffer zone”. However,

we can disregard this since we are only interested in the object. In effect, the “buffer

zone” serves as a placeholder for the object’s pixels. It needs to be large enough to

contain the object in all frames if the information about the object is to be preserved

in its entirety. The only problem may be distinguishing between the “buffer zone”
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and the object (i.e. the object’s boundaries) in the HR image, but this is usually

apparent visually.

A second approach is to actually treat the background (buffer zone) as stationary,

and only move the pixels in the object. This can then be naturally extended to

the case of several objects, which is impossible with the first approach due to the

assumption of global motion.

Naturally, for the second approach, the global shift operator cannot be used as

before. The operator needs to act on the entire ROI, which consists of a moving

object and stationary background. Instead, we define a “transition operator”, which

maps every pixel in frame A to a new location in frame B. The mapping does not

have to defined by a single vector, and the mapping is one-to-one (this is ensured by

choosing the ROI large enough so that no pixels “slide off the edge”). This mapping

is given by

iT (i, j) = vecind(nxny × nxny, i + dx(i, j), j + dy(i, j))

jT (i, j) = vecind(nxny × nxny, i, j)

T (iT (i, j),∀jT (i, j)) = 0

T (iT (i, j), jT ) = 1

T (jT (i, j),∀jT (i, j)) = 0

(3.6.1)

Here, T is the transition operator, (i, j) is the pixel’s position in the original image,

(dx(i, j), dy(i, j)) is the pixel’s displacement, (i + dx, j + dy) is the pixel’s position in
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the new (displaced) frame, and the subscripts iT , jT are the rows and columns in T .

The function vecind converts a matrix subscript to a vector index. It takes three

arguments—the size of the matrix, the row subscript, and the column subscript. It

returns the equivalent index of a vector that results from a lexicographically ordered

matrix. In explicit form, it can be written as

vecind(M ×N, i, j) = M(j − 1) + i (3.6.2)

The matrix T is of size nxny×nxny, where nx×ny is the size of the image. T can

be first constructed as an identity matrix (no displacement), and then some elements

may be modified, corresponding to the shifted pixels. The notation T (iT ,∀jT ) = 0

and T (jT (i, j),∀jT (i, j)) = 0 in Eq. 3.6.1 means that the entire row of T is replaced

with zeros. This is necessary to remove an existing pixel and replace it with a new

one, in turn deleting the one in the original position. The product Ty of the transition

matrix with a vectorized image gives a new image where each pixel may be in a new

position.

The displacement (dx(i, j), dy(i, j)) is a function of (i, j) and therefore not re-

stricted to be a single vector. Having started by considering a single object and its

ROI, we can now see that the transition matrix can accommodate a more general

model where each pixel can potentially have its own shift vector. Therefore, we can

represent a ROI that contains multiple objects. Obviously, in this case the transition

matrix must be recomputed for each frame. Recall that previously, we could build
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a single one-pixel shift operator and obtain multipixel shifts by raising it to a power

equal to the length of the shift. Aside from that, the model of HR restoration is the

same as for the global motion case. The subpixel shifts in the objects can be exploited

to fill a single HR grid.

The local motion model has several limitations. First, the objects cannot occlude

one another in any frame. If the assigned motion vectors cause objects to overlap,

the transition matrix will preserve only one of the objects fully, and which one will

depend on the order in which T is computed. Second, the objects are assumed to

be of rectangular shape. Otherwise, instead of simply specifying the initial position

of each object, a complete boundary descriptor would be necessary. Third, if the

objects are far apart, or if they move far away from the original position, the ROI

needs to be made large, even if the objects themselves are small. The size of the

transition matrix, as well as other operators, grows as a square of the ROI size.

So, even for a ROI of modest size, e.g. 100 × 100, the operators will be of size

104 × 104, and for, say, 5 LR images the HR restoration will involve the inversion of

a 5 · 104 × 5 · 104 matrix. This is time-consuming even for sparse matrices. In cases

like this, it may more convenient to process different objects separately, rather than

combine them within a single ROI. Fourth, the motion vectors cannot be computed by

simply providing a pair of frames as an input to a motion estimator. The objects have

to be tracked individually for the entire LR sequence, and their initial locations need
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to be specified manually. Some image registration algorithms, for example, as used

in certain types of video compression, partition the image into blocks and compute

the shifts for each one. This is not applicable here, because this can split or merge

individual objects and yield a very low-quality reconstruction. There exist methods

for automatic segmentation, however, we do not consider them here. As a result of

these limitations, superresolution with local motion is sometimes difficult in practice.

Consider, for example, the silhouette of a walking person. The parts of the body that

can be thought of separate blocks, such as head, body, arms, and legs, are neither

rectangular nor occlusion-free. (In addition, human motion may be non-linear as

mentioned before).

Fig. 3.9 shows an example of simulated local motion. It has three rectangular

blocks with different initial positions, different sizes, and moving with different ve-

locities. The two frames show the blocks’ initial and final positions. It shows the

limitations of the local motion model: the blocks have to be rectangular, they must

not overlap, and the ROI needs to bound all objects in all frames (otherwise, it is

impossible to construct a single transition matrix).
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Figure 3.9: An example of local motion: three blocks of different sizes moving in
different directions.



Chapter 4

Edge-Preserving Methods

4.1 Introduction

It has been mentioned before that in the proposed HR reconstruction scheme, there

is a fundamental trade-off between smoothness of the superresolved image and the

amount of noise or visually unappealing artifacts. This occurs because the solution

penalizes discontinuities in the image. Discontinuities can be outlier pixels, restora-

tion artifacts, or noise, but they can also be real edges that are present in the image.

Different methods have been proposed to overcome this drawback. One of them is

based on the L1 norm, instead of the more common quadratic formulation. It is de-

scribed in “Fast and robust multiframe super resolution” [19]. Other authors discuss

the properties that the penalty (potential) functional must have so that it does not

uniformly suppress edges and noise. For example, in [30], the authors propose that

60
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small gradients must be smoothed, while large gradients must be preserved. They

also describe a class of functions that satisfy these conditions.

In the next section, we give a brief overview of an iterative image restoration

algorithm proposed by Curtis Vogel. The reason that this particular algorithm was

chosen is that, to our knowledge, it has not been applied to superresolution before.

The mathematical theory behind the algorithm, including convex analysis, can be

found in Vogel’s text. We are primarily interested in how this method applies to

superresolution and its performance compared to the method described previously in

this thesis.

4.2 Total Variation Minimization by C. Vogel

The Total Variation Regularization by Curtis Vogel [31] is applicable in the general

case of restoration of a degraded image where the degradation model is known.

Vogel defines total variation as

TV(f) =

∫ 1

0

∣∣∣∣
df

dx

∣∣∣∣ dx (4.2.1)

with a generalization to two dimensions,

TV(f) =

∫ 1

0

∫ 1

0

|∇f | dxdy (4.2.2)

This definition is unsuitable in numerical calculations due to the non-differentiability

of the Euclidean norm at the origin. To overcome this, a small parameter β must be
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added to the norm, resulting in an approximation to TV(f):

Jβ(f) =

∫ 1

0

√(
df

dx

)2

+ β2dx (4.2.3)

or, for a 2-D case,

Jβ(f) =

∫ 1

0

∫ 1

0

√(
df

dx

)2

+

(
df

dy

)2

+ β2dxdy (4.2.4)

Then, Vogel formulates the total variation problem in terms of minimizing the

functional

T (f) =
1

2
‖Kf − d‖2 + αJ(f) (4.2.5)

where f is the reconstructed data, d is the original data, and K is the mapping matrix.

This notation, adopted for consistency with Vogel’s work, is analogous to the symbols

A, x, and y used before. Note that this is the general formulation for reconstruction,

with the first term representing discrepancy between the data and the estimate, and

the second term a penalty that is a function of some properties of the estimate. In

the case of Tikhonov regularization, this property is smoothness. In Vogel’s method,

J is a discrete approximation to Eqs. 4.2.3 and 4.2.4. The equation can be viewed as

a cost function of the restored data; the best estimate is the one for which cost will

be minimal.

For one-dimensional data, the discrete approximation to the penalty functional

can be written as

J(f) =
1

2

n∑
i=1

ψ
(
(Dif)2) ∆x (4.2.6)
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where Di is the derivative operator, and ψ is a smooth approximation to twice the

square root function with the property

ψ′(t) > 0 for t > 0 (4.2.7)

In the implementation of Vogel’s algorithm, ψ was defined as

ψ(t) = 2
√

t + β2 (4.2.8)

which is an approximation to Eq. 4.2.3.

The penalty functional is easily extended to two dimensions (assume f is now a

matrix representing a function on a discrete grid):

J(f) =
1

2

nx∑
i=1

ny∑
j=1

ψ
((

Dx
ijf

)2
+

(
Dy

ijf
)2

)
(4.2.9)

where Dx
ij, Dy

ij are the discrete derivative operators in the x and y direction.

Based on total variation and applying methods of convex analysis, Vogel derives

an iterative algorithm that can be applied to image restoration. It is called the primal-

dual Newton’s method for total variation-penalized least squares minimization in thwo

space dimensions. Implementation of the algorithm in pseudo-code can be found in

Algorithm 8.2.4 (Ch. 8) of the text. This algorithm was used to produce several

superresolved images as shown in the next chapter.



Chapter 5

Experimental Results

In this chapter, we are going to present some superresolved images created by the

algorithm described previously. For clarity, and to have a formal metric for compar-

isons, most of the image sequences in previous chapters were synthetic, that is, they

were artificially generated from existing images. Here, we work with real data. The

images are photographs, either infrared (IR) or optical, taken in the field. Since there

is no “HR original”, the reconstruction fidelity cannot be quantified. However, the

difference between LR and HR can be seen visually.

Fig. 5.1 shows a side-by-side comparison of LR and HR images. The HR image

was generated from portions of 9 LR photographs taken with a Kodak LS743 digital

camera with a 4-megapixel resolution. For comparison purposes, the LR photograph

was magnified by upsampling and bicubic interpolation, which produces the most

64
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Figure 5.1: Magnified LR original (left) and HR restoration (right) of a wall of a
house.

visually appealing result. The wood boards and windows are aliased in the LR pho-

tograph. Aliasing is significantly reduced in the HR image, which was computed

with a 3x3 upsampling factor. There are more straight lines instead of broken lines.

The reconstruction is not very good due to a slight shape distortion. This happens

because the camera was handheld and the displacements between frames were gen-

erated manually moving it (in this case, the object, the wall, remains stationary).

The displacements were not strictly translational, as the camera slightly twisted and

turned sideways, and it was impossible to hold it perfectly still with the hands. Even

a small rotation can adversely affect quality when images have to be aligned with

subpixel accuracy. Still, the aliasing reduction demonstrates resolution enhancement

under realistic conditions.
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Fig. 5.2 shows a part of 8 consecutive frames of a video taken with an Indigo IR

camera with a 160x120 array, wavelength of 7.5–13.5 micron, and a 30 mm lens (15x11

deg field of view (FOV)). (Note: this and all subsequent LR images were provided by

Textron Systems). The full images, which show a person walking across the camera’s

FOV, were not necessary for processing since the goal is to obtain an HR image of

the person, the surrounding objects and landscape are irrelevant. The processing was

done only on the ROI. If, in one of the frames, the object slides past the edge of the

ROI, that frame does not contribute to the restoration. In this case, as it can be seen,

the person appears on the right side of the ROI in the first frame and the left side in

the last one.

Fig. 5.3, on the left, shows the magnified version of the first frame for comparison

purposes. On the right, the HR image (upsampling 2x2) obtained from the 8 LR

frames is shown. Note the artifacts in the lower part of the image. This is due to

the legs and arms moving differently from the head. The head was used for motion

estimation, but human motion is not global and not purely translational. Therefore,

the motion model for the lower body is wrong and results in strong distortions for that

part. However, if we are interested in identifying the person, the face is of primary

importance and the outside distortions can be disregarded. The head and shoulders

are much sharper in the superresolved image, with the outline of the face clearly

visible.
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Figure 5.2: Eight frames in the LR sequence used for superresolution of a person.

Figure 5.3: Magnified first LR frame (left) and the HR reconstruction of a walking
person.
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Figure 5.4: IR image of a person facing the camera: one of the original frames,
upsampled (left) and the superresolved frame (right).

Fig. 5.4 shows another example of IR images where superresolution can help in

identification. This time, the person is facing the camera and is relatively stationary

(in the sense of not walking), but small changes in posture still produce subpixel

displacements between frames. A total of 11 frames were processed and upsampled

by 3x3 on a HR grid. The most obvious improvements are in the subject’s head shape

and the glasses.

On Fig. 5.5, an IR image of a parked car in front of a house is presented. As in the

previous example, 11 frames and an upsampling factor of 3x3 were used. The aliasing

present in the LR image is eliminated in HR reconstruction. Note the straight, sharp

lines on the car and the house.

Superresolution processing can be applied to conventional as well as IR imagery.

Fig. 5.6 shows a photograph taken on a highway with an optical Canon G3 camera
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Figure 5.5: Another IR image example: upsampled LR with aliasing (top), higher-
quality superresolved image (bottom).
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Figure 5.6: Full photograph of the scenery taken on a highway.

with 640x480 image size. Five such photographs were taken. Suppose we are inter-

ested in the license plate of the car ahead on the road. Fig. 5.7 shows 4 LR frames

cropped to extract the ROI. At this resolution, the numbers on the plate are indistin-

guishable. Fig. 5.8 shows the superresolved frame with an upsampling factor of 3x3.

The numbers are clearly readable. This example and the previous one demonstrate

how superresolution can be useful in object identification and recognition. It can

applied to areas such as surveillance, security, and tracking.

In the previous chapter, an image restoration method designed to preserve edges

was discussed. Here, we show two examples of side-by-side comparison of the original

(Tikhonov regularization) method and the primal-dual Newton’s method based on

total variation minimization. Fig. 5.9 shows the license plate image presented earlier.
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Figure 5.7: Four cropped frames used in reconstruction.

Figure 5.8: The superresolved image of the license plate.

The left side is the Tikhonov HR restoration and the right side is the HR image

obtained by applying Vogel’s edge-preserving algorithm. It can be seen that Vogel’s

technique offers no apparent improvements in this case. In fact, the letters on the

license plate appear to be less legible. Fig. 5.10 shows another example where the

opposite is true. The outline of the person’s head is slightly sharper using Vogel’s

algorithm. This can be explained if we remember that edge-preserving methods tend
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Figure 5.9: HR image of the license plate using Tikhonov regularization (left) and
Vogel’s total-variation-penalized primal-dual Newton’s method (right).

to produce piecewise-continuous images; that is, images with pixel blocks where the

brightness is constant within each block. This produces images with sharp edges,

but it is poorly suited for images with a lot of grayscale variation. The license plate

image has many shades of gray, while the IR image of a person is essentially black-

and-white. Fig. 5.11 shows the cost function T of the Vogel algorithm. The cost is

plotted as a function of the iteration index, for a total of 10 iterations. The cost is

monotonically decreasing, as expected, and levels off after a few iterations.



73

Figure 5.10: HR image of the person using Tikhonov regularization (left) and Vogel’s
total-variation-penalized primal-dual Newton’s method (right).
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Figure 5.11: Cost function in Vogel’s algorithm (horizontal axis represents the itera-
tion number).



Chapter 6

Conclusions and Future Work

We have developed a matrix-based framework for obtaining high-resolution images

from a low-resolution video clip or a sequence of displaced frames. The model de-

scribes the image degradation process in terms of matrix operations. The basic matrix

blocks are translational shift, downsampling, and blurring operators, although other

linear operations, such as rotation, can also be represented in terms of matrices. It

is shown that the degradation process can be performed as a single matrix-vector

multiplication. Then, the inverse process that reverses the image’s degradation is de-

scribed mathematically with the aid of Tikhonov regularization, which accomplishes

an acceptable compromise between fidelity and sharpness of the image and the pres-

ence of undesirable artifacts. The feasibility of the model is shown theoretically,

experimentally via computer simulation, and experimentally with real data.

The problem of registration, which is crucial for aligning the LR images to fuse
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them into one, is also addressed in this thesis. The method proposed here uses the

well-known techniques of phase correlation and gradient constraint to achieve subpixel

accuracy while being applicable to multipixel shifts. We presented a method for

improving the accuracy of registration by combinatorial search, where the estimates

are adjusted to match the given data.

The method described in the thesis can be applied to objects moving within a

frame as well as whole frames. In the case of moving objects, the way to define a

region of interest within the frame was shown. This allows to obtain a high-quality

image of the object while eliminating the need to process irrelevant areas. The ROI

for processing must be larger than the object, while the ROI for motion estimation is

(typically) smaller, because it must only contain the pixels that are moving and not

the stationary ones that surround the object.

We briefly discussed the primal-dual Newton’s method developed by Curtis Vogel.

This methods has the important advantage of preserving edges better. While this

method was applied to deblurring problems by Vogel, we have shown experimentally

that in certain cases, it produces good results for superresolution.

All methods and algorithms described in the thesis have been tested with both

synthetic and real data. Superresolution can be applied to a great variety of problems,

practically anywhere where imaging or computer vision is involved. However, an

important application for ROI processing, in particular, is for object tracking and
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identification. This is a very common task for automated security and surveillance

systems. For example, the superresolved IR images of a walking person shown in the

Experimental Results chapter allow better recognition based on facial features. The

license plate example shows how the originally unreadable numbers can be identified.

There are several areas in which future research may be performed. One is a more

elaborate motion and degradation model. While non-linear effects, such as arbitrary

rotation, shear, and deformation are difficult to include, rotation parallel to the image

plane and motion blur (as opposed to sensor blur) can be added by forming additional

matrix operators. A more precise blur model can also be obtained if the camera’s

PSF is known. A motion model incorporating multiple moving objects was developed

in this thesis. However, it was not tested on real data due to constraints of rectan-

gular boundaries for the objects and non-overlap. A more sophisticated model could

allow non-rectangular objects, for example, by specifying a geometrical descriptor or

vertices of a polygon. Alternatively, it could use automated segmentation and track-

ing, which would be another line of work. The local motion model could incorporate

overlap during motion, or objects that are a part of another object. For complex

motion patterns, such as a person walking or running, all of these factors need to

be considered: local non-linear motion, complex boundary, and occlusion (e.g. an

arm covering the body). Estimating and parameterizing such motion is a challenging

problem by itself, even without constructing matrix operators for it.
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Another area where a lot of work can be done is automating ROI selection and

object tracking. Under the current scheme, the ROI coordinates for both HR restora-

tion and motion estimation have to be specified manually with reference to the frame.

There could be an algorithm that determines the boundaries of the object and the

ROI based on what parts of the image appear to move consistently. If there are many

non-stationary pixels in the frame, the algorithm might even select a ROI by knowing

roughly what the object or objects look like (for example, if one of the objects re-

sembles a human figure). This connects with the problem of automatic tracking and

identification, where a system would identify possible targets, track them for several

frames, providing an estimate of the position in each frame, then construct an HR

image of the object and identify it or take some action depending on the object.

Finally, the question of edge preservation and reducing artifacts needs to be consid-

ered. Typically, sharper edges mean more details can distinguished in the object. The

only way to sharpen edges in the Tikhonov method is to decrease the regularization

parameter. However, this inevitably amplifies noise. This is particularly problematic

when blur is included in the model, since deblurring is a high-pass filtering operation.

When artifacts become objectionable, we are forced to increase the regularization

parameter. Thus, we are sharpening the image by deblurring while smoothening it

by the regularizer. There may be better ways to achieve a compromise between dis-

tortions and sharpness. While Vogel’s edge-preserving algorithm was explored in this
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thesis, the results are worse compared to Tikhonov regularization for some images

and only marginally better for others. Other edge-preserving methods exist, such

as the one proposed by Farsiu, et. al. [19]. Perhaps a different method could be

selected depending on the type of image; for example, Vogel’s method performs well

for piecewise-continuous IR images.
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