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Abstract

Diffuse optical tomography (DOT) has emerged in the last decade as a new and

exciting tool for functional medical imaging with applications in a range of areas

including breast cancer detection and diagnosis. DOT employs observations of near

infrared (NIR) light that has propagated through tissue to reconstruct the spatial

distribution of various chromophores present in the region of interest. In the case of

breast cancer, oxygenated and de-oxygenated hemoglobin are of particular interest in

identifying and characterizing tumors. It is well known that the DOT reconstruction

process can be quite sensitive to noise and other un-modeled effects due to the

diffusive nature of the underlying physics as well as the limited aperture over which

data can be acquired in many practical systems. While there exist a wide array of

mathematical techniques for stabilizing the reconstruction, ideally one would like a

richer data set. Most DOT instruments employ no more than five NIR wavelengths

to probe the tissue; however recent work in the diffuse optical imaging group in

the Biomedical department has led to the development of a hyperspectral system in

which hundreds of wavelengths can be acquired. With the increase in data however

comes an associated rise in the complexity of the image formation process. In this

thesis, we explore the development and performance of algorithms for hyperspectral

DOT. We detail an efficient method for forming the images based on the use of

iterative algorithms applied to a linearized measurement model. Simulation and

experimental results will be provided which show the advantages of hyperspectral

imaging.



Contents

Acknowledgments iv

List of Tables iv

List of Figures v

Chapter 1 Introduction 1

Chapter 2 Diffuse Optical Tomography 7

2.1 Early Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Pulse oximetry . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Doppler Blood-Flowmetry . . . . . . . . . . . . . . . . . . . . 9

2.1.3 NIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Application of DOT . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Breast Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Optical Based Brain Imaging . . . . . . . . . . . . . . . . . . 22

2.2.3 Optical Based Joint Imaging . . . . . . . . . . . . . . . . . . 24

2.2.4 Fluorescence Imaging . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Hyperspectral and Multispectral . . . . . . . . . . . . . . . . 26

2.3 DOT forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



2.3.1 Discrete model and use of Green’s function . . . . . . . . . . 28

2.3.2 Born Approximation . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 3D computation . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3 The Inverse problem 37

3.1 Inversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 SVD and TSVD methods . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Computational issues . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4 Simulations 47

4.1 Simulated Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Using gradient matrix and two parameters . . . . . . . . . . . . . . . 52

4.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 First set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Second set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Third set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 Physical Measurements 63

5.1 Measurement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.3 Spectrograph . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 First set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Second set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ii



Chapter 6 Conclusion 82

Bibliography 84

iii



List of Tables

5.1 Concentrations of the phantoms used in measurements. The medium

was made out of 2 parts water and 1 part milk. . . . . . . . . . . . . 64

5.2 Value of μa from measurements compared to the value used from

literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iv



List of Figures

1.1 The process of photons passing through tissue [BBM+01]. . . . . . . . . . 4

2.1 An example of the "banana path" encountered in Ultrasound imaging [ZTK07]. 19

2.2 Different z-planes along the z axis. . . . . . . . . . . . . . . . . . . . . . 35

4.1 Molar extinction coefficents used in simulations plotted as a function

of wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Simple concentration images for a single chromophore. Left image is

for HbO2 and right image is for HbR. . . . . . . . . . . . . . . . . . . 50

4.3 Images with concentrations for two chromophores. Left image is for

HbO2 and right image is for HbR. . . . . . . . . . . . . . . . . . . . . 50

4.4 Images with concentrations for two chromophores with different inten-

sities. Left image is for HbO2 and right image is for HbR. . . . . . . 50

4.5 The setup of sources and detectors. . . . . . . . . . . . . . . . . . . . . . 51

4.6 Mean square error as function of regularization parameters for the

first set. Left image is HbO2 and right image is HbR. . . . . . . . . . 54

4.7 Mean square error as function of regularization parameters for the

second set. Left image is HbO2 and right image is HbR. . . . . . . . 54

v



4.8 Reconstruction for first set, low complexity. Middle images is done

with 6 wavelengths and rightmost images is done with 26 wavelengths.

Upper row is for the HbO2 chromophore and the lower for HbR. SNR

is 64.9 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 Reconstruction for first set, low complexity. Middle images is done

with 126 wavelengths and rightmost images is done with 251 wave-

lengths. Upper row is for the HbO2 chromophore and the lower for

HbR. SNR is 63.9 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 MSE plotted as a function of the number of wavelengths for the first set. 58

4.11 Symmetric difference plotted as a function of the number of wave-

lengths for the first set. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.12 Reconstruction for second set, medium complexity. Middle images is

done with 6 wavelengths and rightmost images is done with 26 wave-

lengths. Upper row is for the HbO2 chromophore and the lower for

HbR. SNR is 83.6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.13 Reconstruction for second set, medium complexity. Middle images is

done with 126 wavelengths and rightmost images is done with 251

wavelengths. Upper row is for the HbO2 chromophore and the lower

for HbR. SNR is 90.6 dB. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.14 MSE plotted as a function of the number of wavelengths for the second

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.15 Symmetric difference plotted as a function of the number of wave-

lengths for the second set. . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



4.16 Reconstruction for third set, high complexity. Middle images is done

with 6 wavelengths and rightmost images is done with 26 wavelengths.

Upper row is for the HbO2 chromophore and the lower for HbR. SNR

is 80.7 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.17 Reconstruction for third set, high complexity. Middle images is done

with 126 wavelengths and rightmost images is done with 251 wave-

lengths. Upper row is for the HbO2 chromophore and the lower for

HbR. SNR is 85.5 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.18 MSE plotted as a function of the number of wavelengths for the third

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.19 Symmetric difference plotted as a function of the number of wave-

lengths for the third set. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 (a) Absorption spectra for set #1.(b)Absorption spectra for set #2. . 65

5.2 Target image for the first measurement taken on January 28th 2009.

This is using only a single ink phantom from set #2. Upper image is

for ink and lower image is for dye. . . . . . . . . . . . . . . . . . . . 68

5.3 Target image for the first measurement taken on May 28th 2009. Both

ink and dye phantoms from set #2 were used. Upper image is for ink

and lower image is for dye. . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Reconstruction done for a single ink phantom. 3 wavelengths and 21

z-planes used. Upper image is for ink and lower image is for dye. . . 71

5.5 Reconstruction done for a single ink phantom. 6 wavelengths and 21

z-planes used. Upper image is for ink and lower image is for dye. . . 71

5.6 Reconstruction done for a single ink phantom. 13 wavelengths and 21

z-planes used. Upper image is for ink and lower image is for dye. . . 72

vii



5.7 Reconstruction done for a single ink phantom. 26 wavelengths and 21

z-planes used. Upper image is for ink and lower image is for dye. . . 72

5.8 MSE displayed for second measurement set for ink at every wavelength. 73

5.9 The symmetrical difference of reconstructions for the first set plotted

as a function wavelength. . . . . . . . . . . . . . . . . . . . . . . . . 74

5.10 Localization of reconstruction of the ink for the first set plotted with

respect to the target image. . . . . . . . . . . . . . . . . . . . . . . . . 74

5.11 Reconstruction done for two ink and dye phantoms. 3 wavelengths

and 21 z-planes used. Upper image is for ink and lower image is for

dye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.12 Reconstruction done for two ink and dye phantoms. 6 wavelengths

and 21 z-planes used. Upper image is for ink and lower image is for

dye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.13 Reconstruction done for two ink and dye phantoms. 9 wavelengths

and 21 z-planes used. Upper image is for ink and lower image is for

dye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.14 Reconstruction done for two ink and dye phantoms. 26 wavelengths

and 21 z-planes used. Upper image is for ink and lower image is for

dye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.15 Reconstruction done for two ink and dye phantoms. 251 wavelengths

and 21 z-planes used. Upper image is for ink and lower image is for

dye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.16 MSE displayed for second measurement set for ink and dye at every

wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



5.17 The symmetrical difference of reconstructions for the second set plotted

as a function wavelength. . . . . . . . . . . . . . . . . . . . . . . . . 80

5.18 Localization of reconstruction for the second set plotted with respect to

the target image. Upper image is for ink and lower image is for dye. 81

ix



Chapter 1

Introduction

In the past 10 years there has been increased research into the use of near-infrared

light to image inside the human body. One of the techniques of interest is diffuse

optical tomography(DOT) [GBD+00]. DOT is sensitive to the functional state of

tissue such as the consumption of oxygen which is relevant to processes such as the

growth of tumors as well as the state of brain activity. Specifically, the DOT method

uses near-infrared light at multiple wavelengths, which allows for reconstruction of

the space and time varying profiles of chromophore concentrations (oxy- and deoxy-

hemoglobin, water and lipids etc.) The latter of which convey functional information

about the body [LBZ+05]. Although many applications have been shown for the

DOT method the most promising ones are for breast imaging or brain imaging

[FHP+05, SA99]. This thesis will focus on breast imaging but discussion on brain

imaging and other applications can be found in Chapter 2.2.

Breast imaging researchers have for a long time been dependent on informa-

tion from 3D imaging modalities, such as X-ray computed tomography (CT) and

magnetic resonance imaging (MRI). Still, there are some drawbacks that plague
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these imaging methods. MRI remains a large and fairly expensive system and can

entail a considerable maintenance cost. CT on the other hand exposes the patient to

considerable amount of ionizing radiation which can be harmful. Recently the idea

of detecting breast cancer has shifted from anatomical information, obtained from

CT and MRI, and towards functional imaging modalities.

DOT represents a very strong candidate for providing this type of information

specifically in the context of breast imaging. As was mentioned above, DOT uses

near-infrared light, which in essence is electro-magnetic radiation but is at a signifi-

cantly lower energy level than CT. Operating in the infrared spectrum, 650-900nm,

gives us a range which is sometime called the window of transparency [SGA03]. In

this window light propagates relatively far into the tissue(on the order of centime-

ters) before being absorbed thereby allowing us to probe quite deeply. Additionally,

light is also scattered within the tissue where it interacts with subsurface inhomo-

geneities. This process is illustrated in Figure 1.1. Within the window, light is

absorbed and scattered differently at different wavelengths depending on the space-

varying oxygenation state of the tissue. This relation gives us a way to using multiple

wavelengths when estimating chromophore concentrations which is the basis of this

thesis. Using different wavelengths, performing multi- or hyperspectral measure-

ments, more information is added to the system by using more complete spectral

information to improve the ability to determine the concentrations of chromophores.

With this method it is possible to increase the effectiveness and accuracy of the DOT

method.

Light propagating through tissue is highly scattered but significant advances

have been made in recent years to solve the problem efficiently, both in terms of theo-

retically modeling the physics and developing useful codes for simulating the process
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and thereby setting the DOT method up as the prime candidate for future breast

cancer detection systems. X-ray radiation in CT travels generally in a straight line,

excluding Compton and Rayleigh scattering, resulting in a much simpler problem

than DOT. In the case of diffuse optical tomography the photon’s mean free path

of travel between two scattering events is very short, most often only a fraction of a

millimeter. Because of this, any photon traveling through a human breast undergoes

numerous scattering events. Thus, unlike CT where the physics of the problem is

basically straight line propagation and yields a linear relationship between the quan-

tity of interest tissue density and the observed data, for DOT a far more complex

model is required [SGA03]. More specifically, the physics of light interaction with

the tissue is well modeled using a diffusion equation and, as we discuss in Section 2.3,

yield a complicated, nonlinear relationship between the chromophore concentrations

and the observations of scattered light [SGA03]. This model works well when scat-

tering is stronger than absorption, which is frequently the case for biological tissue

and is certainty justified for the breast imaging problem. Diffuse light propagation

complicates the image reconstruction, an efficient way to model the propagation is

to use the diffusion equation as the model. The diffusion equation expresses the

photon density as a function of absorption coefficient and scattering coefficient and

solving it will always provide the forward model needed to solve the inverse problem

[GBD+00, BBM+01].

In the case of DOT, the goal is to estimate the concentrations of different

chromophores based on the measured photons scattering and absorbing in the tissue.

Depending on the wavelength observed by the detectors different scattering and ab-

sorption can be calculated from the measured data. This dependence of wavelength

encourages the use of hyperspectral information.
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Figure 1.1: The process of photons passing through tissue [BBM+01].

The DOT method is a nonlinear ill-posed inverse scattering problem due to

the physics of the diffusion process just described [BBM+01]. In this thesis, our pri-

mary objective is to explore the utility of hyperspectral data on the DOT problem.

Thus, we simplify the inverse problem by linearizing the physics using a proce-

dure known as the Born approximation [GBD+00]. The ill-posedness poses a more

substantive problem than the non-linearity. Ill-posedness means large changes in pa-

rameters yield fairly small changes in the data. In some sense this is a physics-based

phenomenon, which means there is a lack of sensitivity in the data to the parame-

ters. It also means that in the image formation process(if you do it naively), small

changes in the data from noise and unmodeled effects can cause very large changes

to the estimated profiles. In other words the reconstruction process is highly sen-

sitive to small perturbations in the data. Adding to these difficulties is the fact

that in many cases one seeks to recover more degrees of freedom (voxel values times

number of chromophores) than one has data points [BBM+01]. For the linear prob-

lem we consider, even without noise, the resulting inverse problem has no unique

solution which again is a major problem [LBZ+05, BBM+01]. Taken together, the
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physics-based ill-posedness coupled with the inherent underdetermined nature of the

problem severely complicates our ability to stably recover useful information about

the state of the tissue from DOT data.

These issues are addressed in two ways. First, regularization techniques are

employed to stabilize the reconstructions. When introducing regularization to the

system, we take advantage of a priori information that we know is true for the phys-

ical system. By choosing the right regularization this a priori information is added

to the system, i.e. the smoothness of the system or that the chromophore concen-

trations are small and slowly changing. Therefore, if we have some information on

the true chromophore concentrations, the regularization can be constructed in such

a way that the solution is drawn towards the known distribution by the regulariza-

tion. The other method used to reduce the ill-posedness is to add information to the

system. In this thesis this is done by using hyperspectral information. By recovering

concentrations using multiple wavelengths we take advantage of as much information

as is available to us. Exploring the advantage of adding data to the system in this

way is the aim of thesis. By employing the fact that near-infrared light scatters and

absorbs depending on wavelengths and the chromophores that it is travelling through

it will be possible to create accurate concentration images for multiple chromophores

simultaneously. Efforts have been made in multispectral DOT imaging, using only

3-5 wavelengths. Here we will examine the effects of including more complete spec-

tral information in the reconstructions. By including hyperspectral data we will use

tens to hundreds of wavelengths in order to deal with the ill-posedness of the DOT

problem. We will also examine how hyperspectral data gives way to distinguishing

between different chromophores. A forward model will be constructed and inversion

techniques will be discussed and employed to solve for chromophore concentrations.
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In Chapter 2 we review the history and many applications where DOT can

be employed. In that chapter we also define the forward model for the problem. In

Chapter 3 we discuss the inverse problem and what methods are traditionally used

to solve it along with discussing regularization techniques. In Chapters 4 and 5 we

discuss results from simulations and experiments, respectively.
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Chapter 2

Diffuse Optical Tomography

Throughout history, researchers have devoted significant efforts to the application

of visible and near-infrared light for the detection of breast cancer as well as other

applications. In this chapter we start by reviewing the applications as well as the

early development for DOT, and then move on to introducing the forward model for

the problem.

2.1 Early Development

Research on optical imaging started early as 1920 and a pioneering article from

Max Cutler on optical transillumination images of the breast was released in 1929

[Cut29, LCY+07]. Specifically, light has been used to detect certain information such

as the blood oxygenation level using pulse oximeters since the 1930’s. While this

is not really optical imaging, it illustrates one way where light carries information

about the material through which it travels. Cutler proposed using continuous light

to detect breast lesions but this idea was quickly dropped since the intensity of light

required caused the patient’s skin to overheat. In the 1970’s and the early 1980’s
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significant developments were made that led to commercially available equipment

for optical mammography. [GQH72] introduced a concept named diaphanography,

in which the breast was positioned between a visible or near-infrared light source

and the physician. From this setup the doctor perceived images using his eyes

alone. These advances led to the development of pulse oximetry, laser Doppler blood-

flowmetry and near infrared spectroscopy(NIRS) which then led to progress in the

areas of continuous-wave time-domain, and frequency domain optical mammography

[LCY+07].

2.1.1 Pulse oximetry

Pulse oximetry was originated in the 1930s and is widely used to monitor patient well

being. Pulse oximeters provide accurate information on arterial blood oxygen satu-

ration. The advantage of optical oximeters over oxygen tension monitors, which need

to be a part of the circulation or have a blood sample, is that they provide a rapid

response to changes in blood oxygenation and yet are non-invasive [BBM+01]. The

first oximeter was an ear oximeter which only used a lamp and a photocell [Pet86].

It measured average hemoglobin oxygen saturation across vascular compartments.

Later it evolved into the more robust pulse oximeter, whose mathematical model is

based on an arterial pulse-triggered measurement of the intensity of the light passing

through the tissue. After each heartbeat the arteries expand, increasing the volume

of blood flowing through them. This causes an increase in the absorption of light

in the tissue and therefore the light attenuated by the blood varies as function of

the pumping of the heart. Comparing the maximum and minimum absorption the

difference can be put into a mathematical model which gives the arterial oxygen

saturation [BBM+01].
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2.1.2 Doppler Blood-Flowmetry

The invention of the laser quickly gave rise to its use in medical applications. As

early as the 1970s the laser was being used for laser Doppler studies of blood flow

[BBM+01]. When a beam of laser light with uniform intensity is incident on a rough

surface, the reflection of the beam will not be completely uniform but will include

some dark and light spots [TRBS74]. These dark spots, called speckles, are caused

by light reflected many different times which causes interference at the detector.

This is exactly what occurs when light travels though a highly scattering sample.

Additionally, if the scattering particles, red blood cells in the DOT case, are moving

the speckle pattern will fluctuate with a time scale which depends on the motion.

This was the basis for Laser Doppler Blood Flowmetry in the 1960s.

2.1.3 NIRS

Attempts at applying pulse oximetry and laser Doppler blood flowmetry to measure

hemodynamics in the brain were hindered by the photodetector bandwidth limits

and photon limits. In the 1970s NIRS was developed to monitor baseline changes in

total oxygenation in the brain, as revealed by the average intensity of diffusely re-

flected light [CD88, Job77, Cop91]. Briefly, NIRS quantifies changes in chromophore

concentration within highly scattering tissue by measuring the change in the photon

density of light which is diffusely transported through it. The concentration change

of each chromophore is then computed by relating them to the measured change in

photon density. The measured change in photon density is directly related to the con-

centration change by the extinction coefficient of the chromophores and the effective

pathlength of the tissue. The extinction coefficient is an intrinsic property of each

chromophore, but the effective pathlength must be estimated for each measurement
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as it is heavily dependent upon the measurement setup and the optical properties

of the tissue [BBM+01]. The 1980s brought continuing research into using NIRS

for monitoring cerebral oximetry. It became apparent that the major limitations of

NIRS was it could not measure concentrations of deoxy-hemoglobin and hemoglobin

without calibration of the optical pathlength through tissue. To measure this path

length picosecond pulsed lasers and time-resolved measurements were used in the late

1980s and with that the absorption coefficient and related hemoglobin parameters

could be obtained. Instrumentation and complexity became burdensome and more

expensive, and thus investigators introduced the use of inexpensive and simple radio

frequency modulated laser and measurements of the phase delay of the amplitude

modulated light. This provided a measure of the mean tissue optical pathlength and

subsequently of the hemoglobin parameters.

In the late 1980s and early 1990s it was soon realized that photon migration

spectroscopy measurements could be extended to imaging by solving the inverse

problem as is done with X-Ray computed tomography. Research investigating this

possibility began in the late 1980s and was reviewed by other investigators [Arr93,

BGW+93]. The time domain systems produce illumination by picosecond pulses of

light. This short pulse allows detection of the temporal distribution of photons as

they leave the tissue. The shape obtained from this distribution provides information

about the optical properties of tissue. CW systems emit light at a constant amplitude

or are modulated at a certain frequency. These systems measure the amplitude decay

of the incident light. For frequency domain systems the light is on constantly but is

amplitude-modulated at frequencies on the order of tens to hundreds of megahertz.

This allows the absorption and scattering properties of tissue to be obtained by

recording amplitude decay and phase delay of the detected signal [BBM+01].
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2.2 Application of DOT

Currently the main applications for diffuse optical tomography are breast, brain,

limb, joint and fluorescence/bioluminescence imaging. As discussed in Chapter 1 the

application investigated in this thesis is the imaging of the breast. To demonstrate

the wide array of possibilities for near-infrared imaging this section will review each

applications in addition to discuss the use of DOT with other modalities in the

context of breast imaging.

2.2.1 Breast Imaging

Research on this topic started very early as mentioned in Section 2.1. After efforts

made in the early 20th century, 1980’s investigators for the breast cancer application,

started using video cameras as detectors and explored methods to use something

other than just the eye as detectors. In 1982 Carlsen published a seminal paper

that included a real-time live viewing but more importantly included spectral in-

formation [BBM+01]. These developments led to a number of pilot clinical studies

later in the decade. Some of these studies reported promising data and projected

a positive attitude about the potential of optical mammography, although some re-

searchers raised questions about its clinical viability [LCY+07]. In the late 1980’s a

multi-center clinical study on a population of 2,658 women concluded that optical

mammography was inferior to standard mammography, obviously showing that sig-

nificant advancements were needed before optical imaging of he breast could play a

clinical role [LCY+07].

Around 1990 a Swedish study found that light scanning was inferior to other

modalities, the probability of actual detection was low and the probability of false

alarm was almost three times higher than in breast imaging methods such as CT or
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MRI. This caused a significant departure from research concerning optical mammog-

raphy and it was basically abandoned in the early nineties. Some of the factors that

gave rise to optical mammography after this fall were more quantitative approaches

to describing light propagation inside biological tissue together with the development

of time-resolved experimental techniques[LCY+07]. After pulse oximetry, Doppler

blood-flowmetry and NIRS were established, as discussed in Section 2.1, significant

efforts have been made to develop DOT for breast cancer.

When reconstructing images for concentrations of chromophores in DOT

there generally two ways of using spectral information. In this project these two

methods will be referred to as the direct method and the indirect method. The indi-

rect method has three steps to obtain the concentration images. First, measurements

are taken at two or more wavelengths. Second, images of the absorption and reduced

scattering coefficients at the different wavelengths are reconstructed separately and

finally the concentration of the separate hemoglobin are derived from the optical

properties. On the other hand the direct method skips the step of constructing

the spectral absorption images and directly reconstructs the images for hemoglobin

[LZC+04]. For this project we will examine the direct method.

In DOT three measurement schemes are used for measuring the light trans-

mitted through tissue. They are time domain, frequency domain and continuous

wave, which is essentially zero frequency [FFG+96, BBM+01]. For a case like breast

cancer, detection transmission is measured but for a case of brain imaging reflection

is measured [CCD+05]. In some cases measuring both transmission and reflection

could be useful. Out of these schemes the CW method is the simplest, least expen-

sive, and provides the fastest data collection.

The advantage of functional information obtained from DOT is especially
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encouraging when comparing it to common modalities like X-ray mammography.

Unlike X-ray mammography, which detects microcalcification characteristic of ma-

lignant lesions, optical mammography senses changes in blood perfusion of the tissue

surrounding the tumor. These changes occur early in a tumor’s growth and can affect

a relatively large area [SGA03]. Researchers have developed several instrumentation

types for optical mammography, some are similar to X-ray by compressing the breast

but others use an unconstrained mesh of detectors where sources and detectors are

arranged in planes on the surface [CvdMH+99, LCY+07, ZJ05]. When the compres-

sion technique is used a laser source scans across one plate, which is transparent

while a detector on the opposite plate scans over several measurement locations for

each source position [SGA03]. This arrangement reduces the thickness of the transil-

luminated tissue. This technique has of course been used for several years in X-ray

mammography and has been proven to improve the detectability of deeply embed-

ded objects. One down side of the compression method is that it can cause blood to

drain from the breast, thereby unpredictably altering the optical properties.

The other method, with sources and detectors situated in a plane around an

uncompressed breast, has the patient lying prone on a table with the unsupported

breast suspended in a cavity. The data acquisition might consist of a set of fixed

sources and detectors or a rotating system that scans the breast’s surface. This setup

can provide a more complete sampling data over the boundary, but makes defining

the problem’s geometry more difficult. This also has the advantage that this should

be much more comfortable since numerous patients have felt the compression method

to be uncomfortable and sometimes painful.

Creating a system that makes use of the benefits of DOT with other imaging

modalities could be very useful in the future. To enhance DOT performances, re-
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searchers have proposed fusing optical techniques with other medical imaging modal-

ities. The high contrast benefits of the DOT method can be used with the high

resolution image of and X-ray or MRI image. The high contrast advantages of us-

ing the DOT method sparks interest to use the DOT method with other imaging

techniques because it offers unique functional information(such as tissue, oxy- and

deoxy-hemoglobin concentrations) while high resolution anatomical imaging modali-

ties provide complementary information for disease diagnosis and understanding with

superior localization and spatial resolution. Another factor that stimulates the use

of multi-modality system is that the contrast elements provided by high resolution

imaging modalities correlate with the optical properties.

Use with X-ray

Presently X-rays are widely used for breast cancer detection so pairing them with

the DOT modality should be a promising opportunity. [LMK+03] propose that the

contrast seen in X-ray images should be assumed to be proportional to the DOT

contrast. A linear least-squares type of DOT image formation problem was then

posed to use the information from the X-ray measurements. The image reconstruc-

tion was regularized using the Tikhonov method which is similar to what is tested in

this paper. The regularization in general was based on regions of interest, mainly the

tumor regions and background regions. Additionally, through simulation they were

able to show that their method improved the contrast-to-noise ration and resolution

in the reconstructed image.

[ZBL+05] published the first pilot study of co-registered tomographic X-ray

and optical breast imaging. They used a frequency domain optical imaging system

at 70 MHz RF modulation and homodyne detection for its data collection. That was
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integrated with a prototype 3-D digital mammography system, and both optical and

X-ray measurements were collected for the same subject. Similar to [LMK+03] they

used a Tikhonov regularization with an L-curve regularization parameter selection

technique for the reconstruction[ZBL+05]. Performing clinical tests they determined

that without the help of the co-registered X-ray image, it would have not been

possible to determine which optical contrast derived from breast lesions or if it was

due other tissue structures or an image artifact. The optical contrast might appear

outside the region were X-ray image indicated a lesion. In their system, the image

contrast-to-noise ration was limited by modeling error and measurement noise. They

were also only taking measurements at two wavelengths, where taking multispectral

or even hyperspectral measurements could have benefited their results.

Use with MRI

MRI has achieved high spatial resolution with excellent tissue discrimination, but

has shown poor characterization of functional parameters such as hemoglobin dy-

namics [BDPP03]. Since MRI and NIR signals are independent, a natural medical

imaging development would be to capitalize on the positive aspects of each with a

combined MRI-NIR imaging device. Using MRI systems concurrently with the DOT

method has been examined to some extent. [NYSC00] used a contrast agent, indo-

cyanine green(ICG), to improve the DOT measurement. The ICG is an absorber

and fluorophore in the NIR spectral window. They were investigating its applica-

tions for using DOT to search for breast cancer. Concurrently MRI images, where

gadolinium (Gd) was used as a contrast agent, were acquired. This study showed

that comparing the two modalities helped significantly in determining the location

of breast cancer. Testing for three different cases, infiltrating ductal carcinoma, fi-
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broadenoma and healthy tissue they showed that both the MRI and DOT detected

the carcinoma and fibroadenoma although showing different shapes and intensities.

They also proposed using ICG, although not developed as a cancer targeting dye, as

a promising addition to the DOT method. This is definitely a possibility but this also

carries some drawbacks. This makes the DOT method invasive, compromising one

of its biggest pros, being non-invasive. Adding a targeting dye could also complicate

things if DOT aims to be a quick, bedside imaging modality.

Another group in 2002, [IYYC02], developed multi-channel/multi-wavelength

photon counting instrument that combined DOT with a MR scanner. This was also a

co-registration setup. Considering the heterogeneous diffusion equation for the DOT

reconstruction they achieved good results when comparing the MRI images with

DOT. One thing to take note of in this study is the use of six different wavelengths,

showing the benefit of multispectral data. This is especially evident in the fact

that they announce the ability of their instrument to recover properly two intrinsic

chromophores that were targeted. This encourages our investigation in this thesis.

There have been numerous attempts to use MRI to provide prior information

to the DOT reconstruction process. Some groups, have demonstrated that incorpo-

ration of a correct first estimate of optical properties, determined from MRI data,

can significantly enhance quantitative reconstruction of localized perturbations in

the absorption and scattering coefficients for a complex, multilayered neonatal brain

model. Making the initial guess more accurate has been shown to improve the sta-

bility and speed of convergence of the imaging process [SA99].

The incorporation of high-resolution structural data to assist image recon-

struction for ill-posed inverse problems has also been considered [BDPP03]. They

examined an algorithm that would take advantage of the data available from such
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a composite system. They exploited regional segmentation and the benefits of an

accurate initial estimate. They stressed that the initial MRI structure that guides

the regionization provides a practical approach to starting the problem. In the end

the aim is always to improve the resolution and quantitative accuracy of recon-

structed images of heterogeneous absorption and scattering within complex, layered

distributions. The Brooksby group reported that an exploitation of an MRI a priori

information could provide much more than an initial guess. An optimized recon-

struction algorithm should consider: i) proper spatially variant regularization and

ii) applications of various a priori matrices in the iterative process [BDPP03].

[IMG+04] proposed that MRI is the perfect candidate for optical co-registration.

They wrote that MRI provided high spatial resolution maps of the breast optical

structure that are relevant to the water and lipid distribution. Moreover, MRI can

provide a means to estimate the concentration of the two structural chromophores,

water and lipids as proposed by [MGC+03].

In order to incorporate prior information into the solution of the inverse

problem Intes studied the Bayesian approach. He based his studies on work done

by Guven et al who proposed an algorithm based on the Bayesian framework with a

spatially varying a priori probability density function extracted from MRI anatomical

maps [GYI+04].

The high resolution image obtained from MRI data is segmented into sub-

images that represent three major types of tissue; parenchyma, glandular and tumor.

In order to implement this prior information probability density function of the

image is formulated in such a way that each sub-image is assigned a mean value

and a confidence level is defined in the form of an image variance formulation to

allow local variations within sub-images. The consequence of this is that the overall
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formulation of the prior information becomes spatially varying, which is specific

to the image of interest. Maximum a posteriori (MAP) estimate of the image is

formed based on the formulation of the image’s probability density function. Using

this method resulted in more accurate functional maps, especially better maps of

the blood volume and the relative saturation which are the functional parameters

[IMG+04].

Use with Ultrasound

Ultrasonic imaging is a non-invasive, easily portable, and relatively inexpensive di-

agnostic modality. Operating typically at frequencies between 1 and 10 MHz, it pro-

duces images via the backscattering of mechanical energy from boundaries between

tissues and from small structures within tissue [Web03]. The choice of frequency is a

trade-off between spatial resolution of the image and imaging depth. Lower frequen-

cies produce less resolution but image deeper into the body. US is used to visualize

muscles and internal organs. It can image the size and the structure of the organs

and possible pathologies and lesions. US is most known for its use during pregnancy

(obstetric sonography) to monitor fetal growth. US is frequently used as an adjunct

tool to mammography in differentiating simple cysts from solid lesions and also plays

an important role in guiding interventional procedures such as needle aspiration, core

needle biopsy and pre biopsy needle localization. However, ultrasound features that

occur in solid breast masses are not reliable enough to determine whether invasive

evaluation is needed or non-invasive follow up is indicated. The lack of specificity of

US has prompted radiologists to recommend biopsies on most solid nodules.

Because the US technique is mainly based on reflectance of audio waves, the

NIR methods for co-registration with US discussed in this chapter are also based
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Figure 2.1: An example of the "banana path" encountered in Ultrasound imaging [ZTK07].

on reflectance similar to that of brain imaging. In the context of US and NIR co-

registration a "banana path" is often discussed. Photons that are injected into breast

tissue are then scattered in the breast. Scattered photons that reach the detectors

have travelled the banana path and carry with them the background tissue and the

lesion optical absorption and scattering information [ZTK07]. An example of the

banana path travelled is shown in Figure 2.1.

[ZCK03] reported on using two-step image reconstruction scheme that used

a combined approach and demonstrated its utility in imaging tumor absorption

and hemoglobin distribution. Before [ZDH+99] and [CGY+01] had examined co-

registration of NIR images and US images, in practice similar to the co-registration

of MIR and NIR images discussed above. The device that was designed consisted of

a probe that had a commercial ultrasound one-dimensional array located at the cen-

ter of the probe and optical source and detector fibers distributed at the periphery

and connected to an NIR image. The NIR imager consisted of 12 dual-wavelength

source channels and 8 parallel receiving channels. They only took measurements at

two wavelengths, 780 and 830 nm. Their method was the indirect method discussed
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a the beginning of this chapter. The two-step image reconstruction was designed so

that they first segmented the volume of the tissue being imaged into two regions, L

and B. Region L contained a lesion, as measured from co-registered ultrasound im-

ages and the B region was background tissue. Then the scattered field Ui measured

at source-detector pair i to absorption variations in each volume element of two re-

gions within the sample. The discretization was performed for the whole volume but

smaller voxel sizes were used for the lesion volume than the background volume. The

second step was then to reconstruct total absorption distribution and then divide

the total by different voxel sizes of lesion and background tissue to obtain absorption

variations. This indirect method has some drawbacks as mentioned, but the a priori

use of US is still intriguing. The US probe used acquired two-dimensional images

(as most commonly used US devices) but the NIR probe provided three-dimensional

images, so the co-registration for their research was limited to an interception plane.

They solved this problem by approximating the lesion as being ellipsoid. That way

its center and radii could be estimated from two orthogonal US images and then

derive the lesion volume.

In 2007 [ZTK07] reported on an hand-held probe consisting of a commercial

US transducer and near infrared optical imaging sensors of multiple wavelengths

that was used to simultaneously acquire US images and optical measurements. To

overcome the problem of intense light scattering caused by breast tissue they devised

image scheme to map the US-visible lesions for optical imaging reconstruction. Sim-

ilar to the study in 2003 the system takes measurements at two or three wavelengths.

Also building on the previous research, the optical tomographic reconstruction takes

advantages of US localization of lesions and segments the imaging volume into a

finer grid for possible larger angiogenesis extension of US identified lesions. As a re-
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sult the inverse tomographic mapping is well-defined, and since the lesion absorption

coefficient is higher than that of background tissue in general, the total absorption

of the lesion over a small voxel is of the same scale as the total absorption of the

background over a bigger voxel. Using these methods they were able to improve the

inverse tomographic mapping.

Use with PET

Positron emission tomography (PET) is a fast growing imaging modality in modern

clinical diagnosis. Similar to DOT it is a tomographic technique that is used to

measure physiology and function instead of gross anatomy. PET is used clinically

in oncology, cardiology and neurology [Web03]. Research has been in co-registration

of DOT and PET images showing positive correlations can be found between total

hemoglobin concentration and tissue scattering using both modalities. [KCC+08]

showed that similarities between acquisitions from DOT and PET allowed to co-

register images from the two modalities by deforming the DOT image with a volume

warping algorithm. This allowed them to compare images at specific locations.

Although PET seem to be a good modality for co-registration it has some

significant drawbacks. The biggest disadvantages is that it is very expensive, around

$1.5-2.5 million for a system, and the need to have a cyclotron on-site to produce

positron-emitting nuclides. This is needed because the half-lives of these nuclides are

very short. Currently there are fewer than 200 PET scanners in the United States.

PET is also an invasive modality since it requires injected, or in some cases inhaled,

radiopharmaceuticals.
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2.2.2 Optical Based Brain Imaging

The early application of optical methods for brain imaging concentrated on the de-

tection of hemorrhages and hematomas in the brain. This area of brain imaging

is exactly what DOT can be used for, because hematomas are a localized mass of

extravasated blood, therefore subcranial hematomas can be detected with DOT rela-

tively easily. Since the early 1990s, various groups have reported on the development

of instrumentation to detect these hematomas [FHF+99, TAM+03, FFG+96]. With

computer technology taking leaps forward allowing advanced instrumentation and

image-reconstruction algorithms the focus for DOT in brain imaging has moved to

a significantly challenging problems. These problems are functional imaging and

stroke imaging.

In the area of functional imaging, several investigators have reported on

changes in the optical signals as subjects perform a variety of tasks. As an example

[BHV+00] have studied physiological changes in brain oxygenation in male adults

during mixed motor and sensory cortex activation. [HOW+00] obtained quantitative

images of hemoglobin concentration changes associated with neuronal activation in

the human brain. Both of these efforts are based on multi-wavelength measurements

that allow for calculation of changes in optical properties. By using the method of

assuming that the primary influences on the changes in the absorption coefficients

at each wavelength are a linear combination of oxyhemoglobin and deoxyhemoglobin

it has been established that near-infrared light can be used to probe the brain for

changes in blood oxygenation and blood volume. Although it is unchallenged that

changes in hemodynamic responses to stimuli can be detected, conflicting results

have been reported concerning the detectability of scattering changes due to neural

activity [HBA+02].
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Research has also been done in the field of optical stroke monitoring. NIR

optical systems promise several advantages over current brain-imaging modalities

such as MRI and CT when applied to critically ill stroke patients. Unlike MRI,

CT, or PET, optical systems are portable and can be brought to the bedside to

monitor critically ill patients. Stroke patients frequently are unstable and unable to

tolerate transport to CT or MRI scanner facilities and do not tolerate the repeated

scanning necessary to follow an ongoing or evolving condition. In addition, most

established imaging techniques require the patient to be exposed to harmful agents

such as intravenous contrast, radiation or radioactive emitters. For the case of

the critically ill stroke patient, in whom cerebral blood flow, blood volume and

brain oxygenation constantly are changing, a continuous imaging technology is highly

desirable. Promising research has been published on this subject as early as 1993

[Hir93]. In 1996 [WLO+96] reported on the use of NIR spectroscopy for non-invasive

on-line detection of cortical spreading depression in a pentobarbital treated rat. In

1999, [VRP+99] reported on a study that involved the effects of hypercapnia on the

near-infrared signal in two patients who had suffered strokes three and four months

earlier. Later, in 2000, [CLL+00] performed optical studies using an intracranial

infraction model in rats. Hielscher et. al published a thorough overview of these

studies and others pertaining to this field [HBA+02]. Since most of the work for

optical stroke imaging mentioned here above only provides topographic maps the

focus has now shifted to the development of 3D image-reconstruction schemes that

provide better depth resolution to localize areas of interest inside the brain.
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2.2.3 Optical Based Joint Imaging

Although near-infrared imaging is useful for measuring hemodynamics and changes

in various blood-related parameters, optical techniques are also quite sensitive to

scattering changes in tissue. DOT has been shown to be useful in imaging and

monitoring the progression of rheumatoid arthritis (RA) [GHA04]. RA is an inflam-

matory and chronic disease that primarily attacks peripheral joints, surrounding

tendons and ligaments. Visualization of early stages of the disease has not been

successful and imaging of the joint so far has played a role only in later stages of

the disease. It has long been recognized that radiography is insensitive to the early

manifestation of RA. The application of optical techniques become very promising

in this context and provide a new tool for the early detection of RA. Changes in the

optical properties of the synovium and in the synovial fluid can be observed even in

very early stages of the disease [HBA+02].

In the case for RA DOT is employed to monitor the optical properties of the

synovial fluid and the synovium. Here RA results in changes in the scattering prop-

erties of these quantities as opposed to the absorption profiles. [HBA+02] developed

a device that permits high-accuracy measurement of transmission profiles. Their

results showed that although the spatial resolution was poor, the decrease in value

of the optical properties around the location of the joint, which is filled with the

low-scattering and low-absorbing synovial fluid, is clearly visible. In reconstructions

of the joint affected with RA, this decrease is much less pronounced. The results

illustrated how near-infrared imaging can be useful in diagnosing RA in its early

stages.

[ZJ05] showed, performing direct in vitro and ex vivo measurements, that

DOT was a useful modality image joints. They were able to demonstrate the optical

24



contrast between normal and diseased joint tissue using the DOT method. Along

with [XIJ+02] they showed that a full three dimensional image reconstruction ap-

proach is needed for joint imaging due to the strong 3D scattering nature of light in

the joints. To be able to obtain this full 3D volumetric image reconstruction of joint

tissue they developed a 64x64 channel photodiodes-based DOT imaging system ca-

pable of providing tomographic data for the reconstruction. These laser diodes take

measurements at eight wavelengths ranging from 634 to 974 nm. They also proposed

that one of the key factors in obtaining high quality image reconstruction was to have

a coupling medium between the detector and the medium. The reconstruction al-

gorithm used a regularized Newton method to update the initial optical property

distribution iteratively in order to minimize the object function. Performing phan-

tom experiments the results obtained suggested that the system performed well and

importantly showed that there exists optimum absorption and scattering coefficients

for the coupling medium for good image reconstruction. This proposition of a cou-

pling medium could also be researched to be used in the breast cancer application

[ZJ05].

2.2.4 Fluorescence Imaging

The non-invasive mapping of molecular events in intact tissues using fluorescence

is of significant interest in biomedical imaging. The basis of the development of

the discovery of bio-compatible, specific fluorescent probes and proteins and the de-

velopment of highly sensitive imaging technologies for in vivo fluorescent detection.

Near-infrared imaging comes into play when fluorochromes that emit in the near in-

frared window are of interest [NBW03]. As mentioned in previous sections the reason

of interest in NIR for this application is its ability to penetrate several centimeters of
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tissue. Some investigators have combined the DOT method and fluorescent optical

tomography, but it should be noted that the reconstruction problem for fluorescent

tomography is linear with respect to the source distribution. Since DOT is the main

focus of this paper fluorescent imaging is a bit out of scope but important to realize

that NIR imaging could have possibilities in that field.

2.2.5 Hyperspectral and Multispectral

Research on the DOT has shown that including multiple wavelengths in measure-

ments can increase the accuracy of the measurement. Multispectral measurements

made it possible for [BFC+07] to obtain hemoglobin images of the concentration

and the hemoglobin oxygen saturation. [CCD+05] showed that using multiple wave-

lengths are the key for obtaining physiologically relevant tissue parameters with CW

light. Indeed, a factor in detecting breast cancer is the discrimination of actual cancer

and benign lesions or normal tissue inhomogeneities in the breast. Multi-wavelength

information has been shown to be useful to make this distinction [FHP+05]. This

is due to the fact that determining the level of blood oxygenation in the breast can

show the local supply and demand of oxygen. Since cancer tumors have low-oxygen

levels this information can be extremely useful in making the difference between

harmful objects and benign artifacts [FHP+05]. Because multi-wavelength data can

be used to obtain this kind of information it shows that DOT can be used not only

for anatomic imaging but also functional imaging which distinguishes it from x-ray

mammography and ultrasonography [ZGT+05].

Additionally, it has been shown that using multispectral measurements can

be successfully used along with x-ray tomosynthesis [BFC+07]. This method and

others that combine DOT with other imaging techniques are discussed further in
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Chapter 2.2.1 [CDB+05].

Considering the fact that multiple wavelengths increase the accuracy it is

imperative to discuss how many wavelengths should be included in the measurement.

This is where hyperspectral measurements come into play. Hyperspectral imaging is

the method of using a great number of wavelengths for measurement, but there is

no set number of wavelengths that defines hyperspectral imaging from multispectral

imaging. To give some definition it is stated that hyperspectral imaging resolves the

spectrum of the emitted light into ∼100 spectral bins while multispectral resolves the

spectrum into less than 10 spectral bins [CDB+05]. Hyperspectral imaging has been

used extensively in the fields of remote sensing and geology of natural and man-

made materials that are indistinguishable using standard colour imagery [Lan02,

SM02]. The fundamental basis for space-based remote sensing is that information is

potentially available from the electromagnetic energy field arising from the Earth’s

surface and, in particular, from the spatial, spectral and temporal variations in that

field. Some problems can occur when focusing on spatial variations so researchers

have moved on to look at how the spectral variations might be used. This concept

is not new and has been researched extensively for the past 20 years. In the case of

CW measurements, it has been shown that different sets of absorption and scattering

parameters can yield identical data. Also, inversions can have cross-talk between

absorption and scattering [AL98]. Cross-talk happens when a reconstructed image

of a chromophore shows traces of concentrations from other chromophores. These

"ghost" images greatly reduce accuracy of the overall reconstruction. [CCD+05]

showed how this nonuniqueness problem could be solved by using multispectral data,

provided that it is used with the correct wavelengths. In this thesis, we will explore

the value of hyperspectral data for addressing the many issues associated with ill-
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posedness encountered with DOT. It will be examined how hyperspectral data can

increase resolution and reduce cross-talk. In other words, the ability to localize

small perturbations from individual species and ability to separate multiple species.

A special note will be taken to when a sufficient number of wavelengths has been

reached. That is, should there be an upper limit on how many wavelengths to be

used.

2.3 DOT forward model

2.3.1 Discrete model and use of Green’s function

A model of light propagation in a highly scattering medium is necessary both to

compute the simulated fluence at the detectors and to map the fluence back to the

chromophore concentrations.

One useful and commonly employed model for the photon fluence in a highly

scattering medium is the Helmholtz frequency domain diffusion equation

(
∇2 +

jω − vμ0
a(r, λ)

D(λ)

)
φ(r, λ) =

−v

D(λ)
S(r) (2.1)

This is the homogeneous version of the Helmholtz equation where φ(r, λ) is the

photon fluence at position r, v is the electromagnetic propagation velocity in the

medium, μ0
a(r, λ) is the spatially varying absorption coefficient, ω is the modulation

frequency in rad/s, λ is the wavelength and S(r) is the source function. For the aim

of this thesis the sources are considered to be delta sources S(r) = δ(r). For the

continuous wave case ω = 0. Lastly D(λ) is the diffusion coefficient, given by

D(λ) =
v

3μ′
s(λ)

(2.2)
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where μ′
s is the reduced scattering coefficient.

2.3.2 Born Approximation

Using perturbation approach the spatially varying absorption coefficient, μ0
a(r, λ),

is written as the sum of a constant background absorption, μa(λ), and a spatially

varying perturbation Δμa(r, λ). Then (2.1) takes the form

(
∇2 +

jω − vμa(λ)
D(λ)

− vΔμa(r, λ)
D(λ)

)
(φi(r, λ) + φs(r, λ)) =

−v

D(λ)
S(r). (2.3)

In (2.3) the fluence is written as the sum of the incident field φi(r, λ), due to the

source acting on the background medium and a scattered fluence, φs(r, λ) due to the

imhogeneties. To obtain an equation for the scattered fluence, (2.1) is subtracted

from (2.3) giving

[∇2 + k2
0(λ)]φs(r, λ) = −Δk2(r, λ)(φi(r, λ) + φs(r, λ)) (2.4)

where k2
0(λ) = (jω − vμa(λ))/D(λ) and Δk2(r, λ) = (v/D(λ))Δμa(r, λ). To obtain

a linear relationship we use a Green’s function approach and the assumption that

φi(r, λ) � φs(r, λ). This linearization, which is based on ignoring the contribution of

the scattered field is known as the first Born approximation. Physically it amounts

to treating each point in an inhomogeneity as if it existed in isolation form the rest of

the inhomogeneity ignoring the contributions of perturbations of the scattered field

from one part of an inhomogeneity on the field incident on another part [GBD+00].

Thus, for each delta function source we calculate the incident field everywhere in the

domain using Green’s function and then the scattered field present at each detector
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by the integral equation

φs(rd, λ) ≈
∫

V
G(rd, r

′, λ)φi(r′, rs, λ)Δk2(r′, λ)dr′ (2.5)

providing a linear relationship between the scattered fluence and the absorption per-

turbation. Here rd is the location of detector and rs is the location of the source. This

equation can be discretized by considering only voxel points in the medium. Then

the value ri is defined as the position vector, denoting location in the medium with

ri denoting the location of the ith such point. More formally, we expand Δk2(r′, λ)

using Dirac delta functions

Δk2(r′, λ) =
∑
ri

Δk2(ri, λ)δ(r′ − ri) (2.6)

The kernel of (2.5) is simplified by writing

H(rd, rs, r
′, λ) = G(rd, r

′, λ)φi(r′, rs, λ). (2.7)

Inserting (2.6) into equation (2.5) allows for discretization, by

φs(r, λ) ≈
∫

V
H(rd, rs, r

′, λ)
∑
ri

Δk2(ri, λ)δ(x − ri)dr′ (2.8)

=
∑

i

Δk2(ri, λ)
∫

V
H(rd, rs, r

′, λ)Δ(x − ri)dr′ (2.9)

=
∑

i

Δk2(ri, λ)H(rd, rs, ri, λ) (2.10)

=
∑

i

G(rd, r
′, λ)φi(r′, rs, λ)Δk2(ri, λ) (2.11)
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In this thesis we consider only the free-space problem for which the Green’s function

is [GBD+00]

G(r, r′, λ) =
−1

4π | r − r′ |e
jk0(λ)|r−r′| (2.12)

This form of (2.12) is put into (2.5) to obtain a model, so

φs(r, λ) ∼=
∑
ri

G(rd, ri, λ)G(ri, rs, λ)Δk2(ri, λ) (2.13)

Using these equations with (2.13) the following relation is derived

φs(rd, rs, ri, λ) =
∑
ri

−ejk0(λ)|rd−ri|

4π | rd − ri |
−ejk0(λ)|ri−rs|

4π | ri − rs |
v

D(λ)
Δμa(ri, λ)

=
v

16π2D(λ)

∑
ri

ejk0(λ)(|rd−ri|+|ri−rs|)

| rd − ri || ri − rs | Δμa(ri, λ) (2.14)

Now as mentioned in Chapter 1, DOT is often used to image the concentration

of oxyhemoglobin and deoxy-hemoglobin in tissue. The technique exploits the fact

that oxyhemoglobin, Hb02, and deoxy-hemoglobin, HbR, are dominant absorbers in

the infrared region [LBZ+05]. It can be assumed that the absorption coefficient is

dominated by the hemoglobin [LBZ+05], then for these two chromophores absorption

coefficient would be written as

Δμa(ri, λ) = εHbO2(λ)δ[HbO2] + εHbR(λ)δ[HbR]. (2.15)

where εX are the extinction coefficient of chromophore X and [X] represents the

concentration of X. The dependence of ri in (2.15) comes from the concentration

of each chromophore. Even though the DOT method benefits from the reactions of

hemoglobin to infrared light, it can be extended to image other chromophores, like
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water or lipids for example. For the case of n chromophores (2.15) would become,

Δμa(ri, λ) = εCP1(λ)δ[CP1] + εCP2(λ)δ[CP2] + · · · + εCPn(λ)δ[CPn]. (2.16)

Where CPn represents the nth chromophore. Using (2.16), (2.14) is written as

φs(rd, rs, ri, λ) =
v

16π2D(λ)

∑
ri

ejk0(λ)(|rd−ri|+|ri−rs|)

| rd − ri || ri − rs | (εCP1(λ)δ[CP1]+· · ·+εCPn(λ)δ[CPn]).

(2.17)

The terms | rd − ri | and | ri − rs | represent the distance from the detector

to a certain point, ri, in the medium. In the continuous wave case where w = 0,

k2
0 = vμa/D(λ) so (2.17) becomes

φs(rd, rs, ri, λ) =
v

16π2D(λ)

∑
ri

e−k0(λ)(|rd−ri|+|ri−rs|)

| rd − ri || ri − rs | (εCP1(λ)δ[CP1]+· · ·+εCPn(λ)δ[CPn]).

(2.18)

Because (2.18) provides a linear relationship between chromophore concen-

trations and measurement data we can rewrite it as

⎡
⎢⎢⎢⎢⎣

φs(λ1)

φs(λ2)
...

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

εCP1(λ1)A(λ1) . . . εCPn(λ1)A(λ1)

εCP1(λ2)A(λ2) . . . εCPn(λ2)A(λ2)
...

...

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

δ[CP1]
...

δ[CPn]

⎤
⎥⎥⎥⎥⎦ . (2.19)

Where the column vectors in φs(λi) represent the measurement at wavelengths λi,

each element in those vectors represent a source/detector pairs. As for the dimen-

sions of the weight matrix, A(λl) the number of rows is equal to the number of

source/detectors pairs in the experimental setup and the number of the columns in

the A(λi) is given by the number of pixels in the image. Then each element of the

weight matrix there is the lth wavelength, the mth source/detector pair and the ith
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pixel or image point, which gives

A(λl)m,i =
v

16π2D(λ)
ejk0(λl)(|rm

d −ri|+|ri−rm
s |)

| rm
d − ri || ri − rm

s | .

To simplify notation, (2.19) is written in matrix notation

g = K′f′, (2.20)

where K′ has been defined as an expanded weight matrix, a measurement vector g

and concentration vector f ′ is written as

K′ = EΛ g =

⎡
⎢⎢⎢⎢⎣

φs(λ1)

φs(λ2)
...

⎤
⎥⎥⎥⎥⎦ f′ =

⎡
⎢⎢⎢⎢⎣

δ[CP1]
...

δ[CPn]

⎤
⎥⎥⎥⎥⎦

where ε and Λ is defined as

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A(λ1) 0 . . . 0

0 A(λ2) . . . 0
...

...
. . .

...

0 0 0 A(λl)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εCP1(λ1) . . . εCPn(λ1)

εCP1(λ2) . . . εCPn(λ2)
...

...
...

εCP1(λl) . . . εCPn(λl)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The Kronecker product is used to define

E = ε ⊗ I.
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2.3.3 3D computation

For the case of this thesis the light sources are considered as 3D point sources. A

medium is defined which has a defect which is, for all practical purposes, infinite along

the z-axis. Therefore only a 2D representation of the components of the vector f′ are

really needed for the work in this thesis, thereby greatly lowering the computational

burden.

As an example to illustrate how this simplifies computations, consider three

different 3x3 planes at different locations on the z-axis.

z1 =

⎡
⎢⎢⎢⎢⎣

f′1) f′(2) f′(3)

f′(4) f′(5) f′(6)

f′(7) f′(8) f′(9)

⎤
⎥⎥⎥⎥⎦

z2 =

⎡
⎢⎢⎢⎢⎣

f′(10) f′(11) f′(12)

f′(13) f′(14) f′(15)

f′(16) f′(17) f′(18)

⎤
⎥⎥⎥⎥⎦

z3 =

⎡
⎢⎢⎢⎢⎣

f′(19) f′(20) f′(21)

f′(22) f′(23) f′(24)

f′(25) f′(26) f′(27)

⎤
⎥⎥⎥⎥⎦ .

The ordering of the planes along the axis can be seen in Figure 2.2. Because

the problem and defect is defined as invariant along the z-axis we can state that

the reconstruction for each z-plane should be the same. Mathematically this would
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Figure 2.2: Different z-planes along the z axis.

mean

f′(1) = f′(10) = f′(19)
...

f′(9) = f′(18) = f′(27).

Because of this statement a base matrix can be defined that combines the recon-

struction from the different planes into a solution for a single plane. The location of

that imaging plane is arbitrary since the z-axis is invariant.

Therefore we can write the 3D collection of voxels in terms of the 2D values on any
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plane as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f′(1)

f′(2)
...

f′(9)

f′(10)

f′(11)
...

f′(27)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 1 . . . 0
...

0 0 . . . 1

1 0 . . . 0

0 1 . . . 0
...

0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f(1)

f(2)
...

f(9)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

or simply

f′ = Bf (2.22)

In (2.21) the sparse matrix is the base matrix B and the vector f is the solution to

the inverse problem. Using this, (2.20) is rewritten as

g = K′Bf = Kf, (2.23)

Choosing the number of z -planes to use in the reconstruction is important. Using

a higher number of planes increases the number of variables in the problem and

additionally slows down the process of computing the K matrices. For each problem

the number of z-planes used in the reconstruction are chosen so that a balance is

obtained between the computational intensity and a number of z -planes that give

the best reconstruction. For simulations this decision is made by examining the

reconstructed images and calculating the mean squared error. For measured data

this decision is made only by examining the reconstructed images.
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Chapter 3

The Inverse problem

As discussed in Chapter 1 a number of challenges need to be dealt with when solving

the inverse problem. This chapter shows methods used to solve inverse problems and

regularization techniques that are used to optimize the problem.

3.1 Inversion Methods

When dealing with inverse problems pseudoinverse methods are often employed.

Here we will discuss some of the methods that can be used when calculating the

pseudoinverse.

3.1.1 SVD and TSVD methods

Considering a matrix K, as in (2.20), which is a m×p rectangular matrix with m > p

then the SVD is a factorization takes the form

K = UΣVT =
p∑

i=1

uiσiv
T
i (3.1)
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where U is an m × m unitary matrix, the matrix Σ is m × p diagonal matrix with

nonnegative real numbers on the diagonal, and V is an p × p unitary matrix.

The common convention is to order the diagonal entries Σi,j in non-increasing

fashion. The diagonal entries of Σ are known as the singular values of K. The number

of singular values r is the rank of K. Then Σ is written as:

Σ = diag(σ1, σ2, . . . , σr) (3.2)

The pseudo inverse of K, K+, is defined as

K+ = VΣ+UT (3.3)

where Σ+ is formed by

Σ+ = diag(σ−1
1 , σ−1

2 , . . . , σ−1
r ) (3.4)

This pseudo inverse is then used to obtain f = K+g

f =
r∑

i=1

1
σi

vi〈ui, g〉 = VΣ+UTg (3.5)

When dealing with a matrix, K, where the singular values decay over many or-

ders of magnitude towards zero, like in the DOT case, the problem becomes more

complicated.

To see how the SVD gives insight into the ill-conditioning of K, consider the
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following relations [Han97]:

Kvi = σiui, ‖Kvi‖2 = σi

KTui = σivi, ‖KTui‖2 = σi

(3.6)

where ui, vi are the i th elements in the V and U matrices. It can be seen that

a small singular value σi, relative to σ1 = ‖K‖2, means that there exists a certain

linear combination of the columns of K, characterized by the elements of the right

singular vector vi, such that ‖Kvi‖2 = σi is small. The same holds for ui and the

rows of K. In other words, a situation with one or more small σi implies that K

is nearly rank deficient, and the vectors ui and vi associated with the small σi are

the numerical null vectors of KT and K respectively. From this property it can be

concluded that the matrix corresponding to a discrete ill-posed problem is always

highly ill conditioned.

The SVD is an invaluable tool for analysis of problems with ill-conditioned

matrices and the truncated SVD (described below) has been used successfully to

solve a variety of ill-posed problems of the form (2.20). When g in (2.20) is per-

turbed by errors then the solution to the perturbed problem is very likely to be

dominated by large amplitude, high frequency errors with structure of singular vec-

tors correlated to small singular values [Han90]. It is therefore necessary to use some

sort of regularization to compute a solution that is less sensitive to the perturba-

tions. The Tikhonov method is commonly used in this respect and will be discussed

in detail in Section 3.1.2. An alternative method for regularization of (2.20) is the

Truncated SVD. TSVD uses a reduced rank approximation to K that is obtained

by setting all but the first l largest singular values equal to zero and using only the
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first columns of U and V. Thus the TSVD solution, f l, is defined by

fl ≈
l∑

i=1

vi〈ui, g〉 = VΣ+
l UTg where

Σ+
l = diag(σ−1

1 , σ−1
2 , . . . , σ−1

l , 0, . . . , 0)

The integer l is called the truncation parameter. The TSVD becomes especially

useful when dealing with ill-posed problems such as the forward model matrices for

the DOT problem which are often poorly conditioned with a very wide range of

singular values. The singular value spectrum can have a range of seven orders of

magnitude in the singular values[GBD+00].

3.1.2 Iterative Methods

When solving problems in an optimization, like DOT, iterative methods are com-

monly employed. In Chapter 2 a discretization of the forward model was obtained

with (2.20). Solving this system using a least squares approach amounts to solving

the following error minimization problem:

f̂ = argmin
f

‖g − Kf‖2
2 (3.7)

where ‖X‖2 is the norm 2 of the matrix X. Using (3.7) and assuming that (KTK)

gives a solution of

f̂ = (KTK)−1KTg. (3.8)

In (3.8) (KT K)−1KT is the pseudo inverse of K thereby connecting the least squares

problem to SVD-based inverse methods. In any event, the issues associated with ill-

posedness remain since no regularization has been employed. To overcome these,
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in this thesis we employ a Tikhonov-type regularization method in which (3.7) is

replaced with

f̂ = argmin
f

‖R−1/2(g − Kf)‖2
2 + α‖Lf‖2

2. (3.9)

The addition of the second term in the minimization problem constrains the solution,

depending on how the regularization matrix L, and corresponding α are chosen. Us-

ing this regularization method and assumming that (KTR−1K+αLTL) is invertible,

the solution to (3.9) becomes,

f̂ = (KTR−1K + αLTL)−1KTR−1g. (3.10)

The noise covariance matrix, R, is included in the solution to take in the effect of

the noise that is added into the simulated data. When adding the noise the standard

deviation of the noise is defined, the R matrix is then defined as a diagonal matrix

with the standard deviation on the diagonal elements,

The regularization matrix, L, serves the purpose of regularizing the solution

to increase the quality of the reconstructed image. Different configurations for L

were tested, for example when L is set as the identity matrix the regularization is

purely controlled by the regularization parameter α. Choosing the regularization

matrix to be the identity matrix allows us to take into account prior information

about the quantities being reconstructed. The implicit prior assumptions when the

identity matrix is used is that the concentrations are small, for sufficiently large α.

This reduces non-physical artifacts in the reconstructed images. To take advantage

other types of prior beliefs, such as that the chromophore distributions are spatially

smooth it is reasonable to choose L to be a derivative-like term [KS05]. The gradient

matrix is constructed so that it takes the gradient both along the x-axis and the y-
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axis. Then the regularization matrix is written as follows

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣ ∇x

∇y

⎤
⎥⎦ 0

0

⎡
⎢⎣ ∇x

∇y

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ∇x and ∇y take the gradient in x and y directions, respectively making the

gradient matrix is a first difference operator [GW02].

The challenge lies in how to choose the α parameter. There exist formal

methods for choosing the parameter, such as generalized cross-validation (GCV) or

the L-curve, but it is not necessary to use them in all cases [Hyd02]. The appro-

priate value may be selected by trial and error and visual inspection. Larger α

makes the system better conditioned, but this new system is farther away from the

original system, the system without regularization. Under the no noise condition,

any sufficiently small value of α will produce almost the same result. When noise

is encountered, however, α may need to be made much larger. Furthermore the

effect of having two separate regularization parameters α1 and α2 is explored. It is

shown how the mean square error behaves for reconstruction of two chromophores

and how having separate parameters for each hemoglobin increases the quality of the

reconstruction. For that case the regularization parameters are incorporated into the
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matrix and then L takes the form

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

⎡
⎢⎣ ∇x

∇y

⎤
⎥⎦ 0

0 α2

⎡
⎢⎣ ∇x

∇y

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

To generalize this to n chromophores, one might want to have different regularization

parameters for each chromophore. Then we define a matrix, Πxy, for both directions

of the gradients and a parameter matrix, Υ, for every regularization parameter.

L = diag(Υ ⊗ Πxy)

Πxy =

⎡
⎢⎣ ∇x

∇y

⎤
⎥⎦ Υ =

⎡
⎢⎢⎢⎢⎣

α1

...

αn

⎤
⎥⎥⎥⎥⎦

In this thesis the α parameters are chosen by trial and error. A set of parameters

is selected, and reconstructions done for each pair, then in the case of simulations,

each solution is evaluated by the mean square error and visually. When selecting

regularization parameters for experiment a broad range of pairs is tested and the

best result is chosen visually. The parameters are selected to be as low as possible

to maintain the regularized system closed as close as possible to the original system,

but high enough to counter the ill-posedness of the problem.
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3.1.3 Computational issues

Assembly of normal equations and the use of direct methods (SVD, QR, Gaussian

elimination etc.) for their solution is infeasible for 3D problems with hyperspectral

data, especially when one needs to perform these calculation many times in the

evaluation of regularization parameters.

To reduce these computational issues we use iterative methods, specifically

LSQR [JXS+08]. For the case of LSQR, the problem is solved through a method

similar to the conjugate gradient method [PS82]. An interesting feature of this

algorithm is that it interacts with the matrix K only through the matrix vector

products Kf and KT v, for various vectors f and v. For the case of DOT LSQR

becomes highly attractive for its computational efficiency when compared to a direct

solution of traditional least squares. This is due in part to the fact that computing

KTK can require large amounts of computational overhead. The number of voxels

in a given solution becomes somewhat limited by the necessity of solving the system

defined by KTK or some regularized version thereof. Because of the design of K,

as mentioned in Chapter 2, when the voxels increases, the size of KTK and the

computation required for elimination both increase much more rapidly than with

LSQR [PS82].

Solving the regularized version of the system in (3.9) is equivalent to a least

squares solution to the system:

⎡
⎢⎣ K

αL

⎤
⎥⎦ f =

⎡
⎢⎣ g

0

⎤
⎥⎦ .
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We define the augmented weight matrix and data vector as

K =

⎡
⎢⎣ K

αL

⎤
⎥⎦ g =

⎡
⎢⎣ g

0

⎤
⎥⎦ .

Using this formulation we can write the problem up as

f̂ = argmin
f

‖g − Kf‖2
2. (3.12)

This setup is very attractive for the purpose of this thesis. In this formulation it

is only needed to store one K matrix for each wavelength. This solves the problem

of when using hyperspectral information, the K matrix for all wavelengths would

be too big for computations. The LSQR method allows for using hyperspectral

information meanwhile keeping computations efficient by storing only one K at a

time. This reduces the number of computations immensely. Utilizing the fact that

the iterations compute the matrix vector products KT f and Kf allows us to construct

and store only the K matrix needed for a single wavelength. When the computations

have been done for all wavelengths within each iterations the f vector is updated

when the Kf product is compared to the data vector. This results in working with

very small K matrices at each time compared to if a K matrix would be constructed

for all of the wavelengths wanted in the reconstruction. In the case of hyperspectral

information this becomes very important where the complete K matrix including all

wavelengths would be very big.

Furthermore, sometimes employing a simple LSQR method is not enough.

Because the basic LSQR does not consider any bounds it can sometimes result in

a negative concentrations which are physically impossible. Therefore the NLLS al-

gorithm is used instead of the LSQR method. This is an algorithm included in the
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MATLAB library and allows me to impose upper and lower bounds on the recon-

struction as well as using a Jacobian in the process. When dealing with measurement

data we used the LSQR method to obtain a reasonable initial guess for the concen-

trations to then put into the NLLS algorithm. This is discussed further in Chapter

5.
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Chapter 4

Simulations

Simulations are done to test the effect of hyperspectral information when doing

reconstruction of more than one chromophore. To create simulated measurement

data (data that would have obtained from detectors) the reconstruction model is used

to obtain that data from the simulated images. Normally this would be considered

an inverse crime, where numerically produced simulated data is produced by the

same model that is used to invert the data [KS05], but in this case that will be

ignored.

The reason for ignoring this inverse crime is that it is the general consensus

that creating simulated data with the inverse solver is not damaging to results. As

mentioned before there have been claims that a forward solver (predictor) is needed

to simulate data, i.e. it involves predicting the response of a physical system with the

help of some mathematical model incorporating the parameter one wishes to recover

[KS05], [CK92]. Some have proposed that a separate inverse solver (estimator) is

needed to estimate the response of some physical system with the help of another

mathematical model incorporating a variable usually having the same physical and
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mathematical attributes as the parameter one wishes to recover. It has been shown

that it this separation of predictor and estimator is not necessary to avoid trivial

inversion, in fact it has been derived that might be impossible to obtain a solution,

whose relative error lies below some prescribed threshold, when employing an esti-

mator that is separate to the predictor [Wir08]

.

4.1 Simulated Images

When creating simulated images of two chromophores, images of boxes are created,

a simple one shown in Figure 4.2, to simulate concentration of chromophores. More

complex chromophore images are shown in Figures 4.3 and 4.4.

Information for the background from is taken literature. It is assumed that

the μ′
s follows Mie Scattering theory. A scattering prefactor Ψ depends primarily on

the number and size of scatterers, and a scattering exponent b depends on the size

of scatterers [KCC+08]. This is combined as:

μ′
s = Ψλ−b (4.1)

Values for Ψ and b are obtained from [TPT+03] for the breast. Values for μa are

obtained from [SB81], which are values in the 600-900 nm range in 10 nm intervals.

For wavelengths between those intervals we interpolate between values from the

article.

For the concentration defined in the simulated images it is defined units of

molarity or mol per liter, M. The extinction coefficients for each chromophore are in

the units cm−1/M and are obtained from Scott Prahl of the Oregon Medical Laser
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Figure 4.1: Molar extinction coefficents used in simulations plotted as a function of
wavelength.

Center [Pra]. The extinction coefficients are shown in Figure 4.1.

Three different sets of images are created to test the reconstruction. The

first set is a simple image with only a concentration for HbO2 and none for HbR.

Reconstruction is done for these images to explore effects of adding hyperspectral

information to the problem, i.e. the reduction of crosstalk where a concentration of

one chromophore creates a false concentration in an image for another chromophore.

The second set is a little more complex with concentrations of HbR in different areas

than HbO2. The third set is more complicated with concentrations for HbO2 and

HbR in the same areas. In the third set the intensity of the concentrations are not

the same for the two chromophores. These images are shown in Figures 4.2-4.4.

The alignment of sources and detectors with the respect of the simulated images is

displayed in Figure 4.5.

In simulations the forward model is used to create data from the images. This

is done by doing the following process,

g = K

⎡
⎢⎣ fCP1

fCP2

⎤
⎥⎦ + n (4.2)
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Figure 4.2: Simple concentration images for a single chromophore. Left image is for
HbO2 and right image is for HbR.
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Figure 4.3: Images with concentrations for two chromophores. Left image is for
HbO2 and right image is for HbR.
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Figure 4.4: Images with concentrations for two chromophores with different intensi-
ties. Left image is for HbO2 and right image is for HbR.
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Figure 4.5: The setup of sources and detectors.

where fCP1 and fCP2 are the simulated concentration images for each chromophore.

After this, data vector is created and noise is added to it in the range of 60-120 dB.

The SNR of adding this noise will be calculated by using the following equation

SNR = 10log10

‖g‖2

Nσ2
(4.3)

where N is the number of data points and g is the signal with out additive noise.

Because phantoms are assumed to be infinite in the z -direction, 50 z -planes are used

when creating the simulated data. The images are created to test the inverse solution

with respect to spectral information, regularization, cross-talk and accuracy. To es-

timate the effectiveness of the reconstruction in simulations, for the nth chromophore

the mean square error is computed by using the following equation

MSECPn =
‖fCPn − f̂CPn‖2

‖fCPn‖2
, (4.4)
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Another metric used in evaluating reconstructions is the symmetric difference. This

evaluates how many pixels are correctly identified as a chromophore concentration

in the reconstructed images. This is done by computing for the nth chromophore

ΞCPn =
1
M

(fCPn ⊕ f̂CPn) (4.5)

where M is the number of pixels in the reconstructed image and ⊕ is the XOR

operator. The reconstructed images are thresholded relative to the peak value in

each image, which gives a ’logical’ map of the concentrations. This is compared

to the original images to determine how many pixels are correctly determined as

chromophore concentrations. The reconstructed images are then judged on the basis

of the MSE values, symmetric distance and also by judging them visually. The

results are not only judged on how well they locate the chromophore concentrations

but also it is important that the intensities of each concentration is close to the target

value. All simulations were performed in MATLAB and tested in both Linux and

Windows operating systems. All programs were written from scratch specifically for

this thesis.

4.2 Using gradient matrix and two parameters

For reconstructions shown here the L matrix was chosen to be a gradient matrix,

shown in (3.11). Using an identity matrix was also tested but the gradient matrix

resulted in far better results. By using the gradient matrix and using separate reg-

ularization parameters for each chromophore allows the reconstruction to, in a way,

separate the reconstruction for HbO2 and HbR. In order two examine the effective-

ness of having two parameters the mean square error is plotted as a function of α1
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and α2. Plotting this produces a three dimensional surface which shows the optimal

parameters, where the mean square error is minimized. The MSE is the then com-

puted using (4.4). Plots for the mean square error for the first set is shown in Figure

4.6. From these plots it is possible to determine an optimal value for α1 and α2.

For a simple chromophore concentrations like in the first set, choosing the regular-

ization parameters is an easy problem. The reason for separating the regularization

parameters in this case is that the MSE for HbR reaches a lower value for a higher

α1 than HbO2 and as mentioned in Chapter 3 the best choice for the parameters is

the lowest choice possible. Although keeping the parameters separate is useful for

multiple chromophore, it could be seen from the plot in Figure 4.6 that α1 could

be equal to α2. This is because in this case only one chromophore is being recon-

structed, so it is much easier to find an optimal value for the parameter regularizing

the "missing" chromophore. Examining the results visually shows that separating

them gives better results. The importance of separating the regularization parame-

ters becomes even more visible when regularizing more complex concentration sets.

In Figure 4.7 it shows that the lowest MSE values for HbO2 and HbR occur at two

very different values. For this set the separation of the regularization parameters is

very important. Using only one regularization parameter in this set and more com-

plicated ones, would result in a trade off between reconstructions of chromophores.

To reduce that trade off the separation of the chromophores becomes very important.

This separation becomes even more important when dealing with data sets with low

SNR values such as true measurement data.
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Figure 4.6: Mean square error as function of regularization parameters for the first
set. Left image is HbO2 and right image is HbR.
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Figure 4.7: Mean square error as function of regularization parameters for the second
set. Left image is HbO2 and right image is HbR.

4.3 Reconstruction

The main goal is to show the advantage of hyperspectral information. The in-

creased number of wavelengths should make the inverse problem less ill-posed and
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reduce cross-talk between chromophores. First we will display simple images to show

these advantages and then show examples for more complicated images. Although

crosstalk can in most cases be eliminated completely it is greatly reduced by using

a very high number of wavelengths.

4.3.1 First set

In reconstructions done for the images in Figure 4.8, noticeable crosstalk is present

when few wavelengths are used. Using few wavelengths results in a diffuse recon-

struction of the HbO2 concentration. This result also shows evidence of HbR, which

is a result of cross-talk. Increasing the number of wavelengths to 26 wavelengths

gives somewhat better results. The jump from 6 wavelengths to 26 wavelengths is

not significant but some reduction in cross-talk is evident and better definition of

the HbO2 concentration is obtained.

In Figure 4.9 results are shown for 126 wavelengths and 251 wavelengths.

This shows a significant improvement in reconstructions for both chromophores. In

the 126 wavelengths case the cross-talk is almost vanished and the HbO2 concentra-

tions is better defined and approaching the correct intensity values. Moving to 251

wavelengths shows a very good reconstruction with a good approximation of HbO2

and negligible crosstalk.

In Figure 4.10 the MSE is plotted as a function wavelengths to show how

hyperspectral information results in better reconstructions. The MSE values show

that the accuracy increases greatly when wavelengths are added. The trend for

HbR shows small changes as there is no chromophore to reconstruct, but crosstalk

is shown to be reduced.

Examining the symmetric difference in Figure 4.11 the HbR reconstructions
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are well described. The improvement is not much, no chromophore present, but the

difference decreases a little bit when the cross-talk is eliminated more and more. As

with the MSE the improvement for HbO2 is clear.

4.3.2 Second set

Examining reconstructions at few wavelengths are shown in Figure 4.12. A good

approximation is obtained for HbR but HbO2 results in a blurry reconstruction. It

is noticeable for both the 6 and 26 wavelength cases that noticeable cross-talk is

evident in the HbR images. The effects of the HbO2 concentrations are appearing in

the HbR images, same as what happened in the first set. Increasing the wavelengths

to 26 wavelengths gives a better results for HbO2 but remains blurry.

Using 126 and 251 wavelengths, shown in Figure 4.13, the cross-talk in the

HbR image is reduced. As in the first set the reconstruction for HbO2 is greatly

improved. A very good approximation of both chromophores is shown for 251 wave-

lengths. Even using 126 wavelengths the localization of HbO2 is better and ap-

proaching the correct intensity.

The improvement in using hyperspectral information is shown in the MSE

values, Figure 4.14. The localization of HbR remains good with all wavelengths

resulting in a small increase of the symmetric difference, Figure 4.15, for the HbR.

The decrease in that case is due to the reduction of cross talk. The symmetric

difference significantly decreases when more wavelengths are added as expected when

the images become more accurate.
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Figure 4.8: Reconstruction for first set, low complexity. Middle images is done with
6 wavelengths and rightmost images is done with 26 wavelengths. Upper row is for
the HbO2 chromophore and the lower for HbR. SNR is 64.9 dB.
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Figure 4.9: Reconstruction for first set, low complexity. Middle images is done with
126 wavelengths and rightmost images is done with 251 wavelengths. Upper row is
for the HbO2 chromophore and the lower for HbR. SNR is 63.9 dB.
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Figure 4.10: MSE plotted as a function of the number of wavelengths for the first set.
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Figure 4.11: Symmetric difference plotted as a function of the number of wavelengths
for the first set.

4.3.3 Third set

In Figure 4.16 the reconstruction for the HbO2 fails almost completely. Although

the reconstruction show good results for HbR the HbO2 concentrations are far off

the true values. When increasing number of wavelengths to 26 the localization HbO2

are somewhat better but the intensities are far off.

Using hyperspectral information, Figure 4.17, results in much better recon-

structions. For 126 wavelengths the separation of the two concentrations in the HbO2

case becomes better defined. In the 251 wavelength case a good approximation for
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Figure 4.12: Reconstruction for second set, medium complexity. Middle images is
done with 6 wavelengths and rightmost images is done with 26 wavelengths. Upper
row is for the HbO2 chromophore and the lower for HbR. SNR is 83.6 dB.
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Figure 4.13: Reconstruction for second set, medium complexity. Middle images is
done with 126 wavelengths and rightmost images is done with 251 wavelengths. Upper
row is for the HbO2 chromophore and the lower for HbR. SNR is 90.6 dB.
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Figure 4.14: MSE plotted as a function of the number of wavelengths for the second
set.
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Figure 4.15: Symmetric difference plotted as a function of the number of wavelengths
for the second set.

both chromophore is reached.

This improvement in reconstruction is shown for both chromophores in Figure

4.18 and the improvement of the localization of HbO2 is evident in Figure 4.19. As

in the second set the localization of the HbR is acceptable for all wavelength cases.
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Figure 4.16: Reconstruction for third set, high complexity. Middle images is done
with 6 wavelengths and rightmost images is done with 26 wavelengths. Upper row is
for the HbO2 chromophore and the lower for HbR. SNR is 80.7 dB.
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Figure 4.17: Reconstruction for third set, high complexity. Middle images is done
with 126 wavelengths and rightmost images is done with 251 wavelengths. Upper row
is for the HbO2 chromophore and the lower for HbR. SNR is 85.5 dB
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Figure 4.18: MSE plotted as a function of the number of wavelengths for the third
set.
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Figure 4.19: Symmetric difference plotted as a function of the number of wavelengths
for the third set.
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Chapter 5

Physical Measurements

In order to test the simulation results, physical measurements were performed. The

goal of the measurement were to show how hyperspectral information gives way to

the imaging of two different chromophores by using the direct method.

5.1 Measurement Process

The process can be divided into four parts.

1. Construction and measurement of the actual phantoms,

2. Construction of the medium

3. Measurement of the background

4. Measurement of the phantoms in the medium

Each process will be discussed in this section along with measurement results com-

pared to simulations.
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5.1.1 Phantoms

To simulate two different chromophores black india ink and blue food dye were used.

Two different sets of phantoms were measured for this thesis, each with different

concentration of ink and dye. The first had only one phantom, ink, but the second

two each had two different phantoms. Detailed listing of the concentrations and

configuration of the phantom sets are provided in Table. 5.1.

Set # Concentration Length [cm] Diameter [cm]
1 80mL medium + 1 μL india ink 19 1

80mL medium + 1 μL blue dye 19 1
2 80mL medium + 2 μL india ink 19 1

80mL medium + 2 μL blue dye 19 1

Table 5.1: Concentrations of the phantoms used in measurements. The medium was
made out of 2 parts water and 1 part milk.

Using the first measurement set proved to be difficult since the intensity of

the ink and dye was too low. For the results displayed in this chapter only the second

set was used.

As was discussed in Section 3 the extinction coefficients of the chromophores

are needed in order to do perform the direct method reconstruction. These co-

efficients are obtained by measuring the phantom solutions in a spectrometer. A

measurement in a spectrometer yields the absorption of the solution for multiple

wavelengths, shown in Figure 5.1, which can be used to calculate the extinction

coefficients using the following relation:

Ψ = εc (5.1)

where Ψ is the absorption, ε the extinction coefficient and c is the concentration of
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the subject at hand. It should be noted that when the solutions are measured in

the spectrometer milk is not used. This is due to the fact that absorption cannot

be measured with milk in the medium since the light in the spectrometer would be

fully absorbed by the milk. Because of the similarities in the spectra of milk and

water this does not cause big errors in calculation of the extinction coefficients. In

measurements the unit of the extinction coefficients are 1/cm.
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Figure 5.1: (a) Absorption spectra for set #1.(b)Absorption spectra for set #2.

It should also be noted that the actual intensity of the ink concentration is

relatively small. That is because if too much ink is put into the phantom, it will

absorb all the light passing through it and no spectral information will reach the

detector. So a fine line has to be tread when creating the phantoms, keeping the

intensities low enough so that spectral information can be obtained, but still having

them as strong as possible so that they can be seen reconstructed images.

5.1.2 Background

The medium is constructed using milk and water. Milk, with 2% fat, is used due to

the similarities of the optical properties to human skin. A tank is filled with 7 liters

of milk and 14 liters of water so that the ratio between water and milk is 2:1.

65



Set # μa @ 690 nm
[cm−1]

μa @ 830 nm
[cm−1]

Literature[HQ73] 0.0053 0.031
Set from 26th Jan. ’09 0.0028 0.046
Set from 28th May ’09 0.0088 0.036

Table 5.2: Value of μa from measurements compared to the value used from litera-
ture.

In order to obtain multi- and hyperspectral reconstruction valued for μa, the

absorption coefficient, and μ′
s, the reduced scattering coefficient, have to be known.

This is somewhat tricky due to the fact that the machine used for measurement on

μa and μ′
s only performs measurements at two wavelengths. For the μ′

s coefficient

values at multiple wavelengths can be approximated through Mie Scattering theory

as in (4.1). Using the two measurements from the machine we can solve for the Ψ

and b values and from there obtain values for μ′
s at any wavelength.

Getting values for the absorption coefficient is harder. Since μa does not

follow a law like μ′
s, values from the literature are used. Using data from [HQ73]

gives values for μa in the 400-1200 nm range in 25 nm intervals. Interpolation is

done between these values to obtain values at smaller intervals in that range.

The measurement to obtain values for the μ′
s calculation and to verify that μa

is close to the values used from literature is performed at two wavelengths, 690 nm

and 830 nm. The measurement value for μa is compared to literature in Table 5.2.

The measurement give AC, DC and phase data for a signal travelling in the medium

which can be used to calculated μ′
s and μa for the medium. This information is

obtained by moving a detector away from a light source inside of the medium. Then

the change in both AC amplitude, DC amplitude and phase is plotted as a function

of the position. Then Sϕ, Sα and Sδ are defined as the slopes when the phase,
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ln(DC · r) and ln(AC · r) are plotted respectively as a function of position of r the

source-detector separation. The absorption coefficient and scattering coefficient can

then be calculated from Sα by using

μa =
ω

2υ

(Sϕ

Sα
− Sα

Sϕ

)
μ′

s =
S2

α − S2
ϕ

3μa
.

where ω is the modulation frequency set at 110 MHz, υ is the speed of light divided

by the index of refraction [FFFG94]. Using Sδ these values can be verified by using

these relations

μa = − ω

2υ

(S2
ϕ

S2
δ

+ 1
)− 1

2
μ′

s =
S2

δ

3μa
− μa

The values of μa are then compared to literature values in Table 5.2 and used to

compute μ′
s with (4.1). As can be seen in Table 5.2 the value at 690 nm is not as close

as the one for 830 nm. Although this introduces some error in the reconstruction

it is the only way to obtain hyperspectral information regarding μa since the onsite

machine only takes measurement at two values. Constructing weight matrices for

different μa values showed that the error in μa should not be expected to dominate

the reconstructions.

5.1.3 Spectrograph

When phantoms have been constructed and all the necessary background measure-

ments have been taken of the medium, the final step is to actually perform the

measurement. A single source and a single detector are placed in the medium on

opposite sides of the phantoms. Then the detector takes measurements at multiple
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Figure 5.2: Target image for the first measurement taken on January 28th 2009.
This is using only a single ink phantom from set #2. Upper image is for ink and
lower image is for dye.

points for each location of the source. This gives a tomographic data set that can

be used for reconstruction and source-detector pairs were used in the range from 30

to around 100.

The results displayed are from two data sets. First set was taken on January

28th 2009. A single phantom was used, from set #1 in Table 5.1. A total of 6

sources and 10 detectors were placed 4 cm apart to result in a 60 source/detector

pair tomographic data. The other two sets were taken on May 28th 2009. The second

set has two phantoms, one ink and one dye separated by 4 cm. A total of 9 sources

and 11 detectors were placed 4.5 cm apart resulting in 99 source/detector pairs. For

each measurement set we created target images which show what is expected to get

from the reconstructed images. These images are shown for each set in Figures 5.2
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Figure 5.3: Target image for the first measurement taken on May 28th 2009. Both
ink and dye phantoms from set #2 were used. Upper image is for ink and lower
image is for dye.

to 5.3.

5.2 Results

In this section we will show the reconstructed images obtained from experiment

data. The results will be judged by using the MSE value and visually as before.

Additionally we examine how effective the method is in localizing the concentrations

by examining only the boundary of reconstructed concentrations and the symmetric

difference between the target image and the reconstructed image.
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5.2.1 First set

In this case there is only the ink phantom from set #3, shown in table 5.1. With 2

μL of ink in 80 mL solutions the target concentrations are 2.5 ∗ 10−5%. Initially re-

construction was tried by using zero as an initial guess in the NLLS algorithm. This

proved to be unsuccessful resulting in unusable images. After trying many regular-

ization parameters, an initial guess was obtained by running the LSQR algorithm.

Images obtained from that resulted in some negative values, which is of course not

possible with a physical concentration. This result was then used as an initial guess

for the NLLS algorithm by setting negative values to zero which resulted in better

reconstructions. The NLLS algorithm allows me to put on upper and lower bounds

for the reconstruction since the concentrations should be between zero and 1, since

in the measurement the concentrations are a percentages.

Reconstruction for 3 wavelengths is shown in Figure 5.4. This reconstruction

resulted with some reconstruction for ink and almost none for the dye chromophore.

Although it gives some concentration for the ink, the spread of the ink is considerable

and bigger than expected. Additionally to that, there is noticeable interference

from the outermost sources and detectors. The singularity of the Green’s function,

in (2.12), creates these artifacts. Although regularization parameters were set so

that these interference were as little as possible it is very hard to get rid of them

completely.

Increasing the number of wavelengths results in better reconstructions as

shown in Figure 5.5. This reconstruction is done with 6 wavelengths and locates the

phantom very well. it is noticeable that increasing the wavelengths further than 6

wavelengths results in very similar results. The reconstruction at 13 wavelengths in

Figure 5.6 shows similar results. Increasing the number of wavelengths to 26, Figure
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Figure 5.4: Reconstruction done for a single ink phantom. 3 wavelengths and 21
z-planes used. Upper image is for ink and lower image is for dye.
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Figure 5.5: Reconstruction done for a single ink phantom. 6 wavelengths and 21
z-planes used. Upper image is for ink and lower image is for dye.
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Figure 5.6: Reconstruction done for a single ink phantom. 13 wavelengths and 21
z-planes used. Upper image is for ink and lower image is for dye.
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Figure 5.7: Reconstruction done for a single ink phantom. 26 wavelengths and 21
z-planes used. Upper image is for ink and lower image is for dye.
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5.7, creates a more accurate image where the concentration of ink is more localized to

the expected region. As can be seen the singularities due to the outermost detectors

were somewhat reduced. Although the accuracy is not increase greatly by the adding

of wavelengths it is noticeable that the reconstruction approaches the target value

when the number of wavelengths is increased. This is also reconstruction done for a

single chromophore so the issues of cross-talk is not noticeable.
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Figure 5.8: MSE displayed for second measurement set for ink at every wavelength.

In Figure 5.8 the mean square error is shown for each reconstruction as a

function of wavelength. This gives a good idea how the reconstruction is better

when multiple wavelengths are used. Examining the symmetric difference in Figure

5.9 it is evident that it follows the same trend as the MSE in Figure 5.8, that a

good result is obtained by using 6 wavelengths. It should be emphasized that this is

reconstruction only done for a single chromophore, so there is very little cross-talk to

deal with. The localization of the phantom is also emphasized in Figure 5.10 where

it is shown how effectively the reconstruction located the phantom by drawing the

boundaries of the reconstructed concentrations compared to the target image.
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Figure 5.9: The symmetrical difference of reconstructions for the first set plotted as
a function wavelength.
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Figure 5.10: Localization of reconstruction of the ink for the first set plotted with
respect to the target image.

5.2.2 Second set

In this case there is only phantoms from set #3, shown in table 5.1. Like before

set #3 With 2 μL of ink and dye in 80 mL solutions the target concentrations are
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2.5 ∗ 10−5%. And as before the initial guess was first worked out by trying many

regularization parameters using the LSQR algorithm.

In Figure 5.11 concentrations for both ink and dye are visible in the expected

locations. Cross-talk between the two chromophores is significant but artifacts due

to sources and detectors are minimal. In the ink image the concentration is very

spread out and it is clear that the reconstruction is picking up the ink concentration.

It is noticeable that in this image where only three wavelengths are used, the location

of the dye chromophore is very noticeable in the reconstructed image for the ink.

The dye chromophore completely outweighs the ink in this case.

Doubling the number of wavelengths gives right away somewhat better re-

sults, shown in Figure 5.11. The intensity of the cross-talk is reduced and a better

defined dye concentration is obtained. On the other hand, reconstruction for the

ink concentrations fails in the desired region. Although some is noticeable it is still

dominated by the cross-talk from the dye chromophore. This case is similar in Figure

5.13. As expected when only three more wavelengths are added a similar result is

obtained. The dye cross-talk is prevalent very little accuracy for the ink.
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Figure 5.11: Reconstruction done for two ink and dye phantoms. 3 wavelengths and

21 z-planes used. Upper image is for ink and lower image is for dye.

Increasing the number of wavelengths further gives much better results, as

shown in Figure 5.14. The ink concentration becomes much better defined and the

cross-talk in the right side of the ink image is greatly reduced. As before the dye

concentration is well defined, but using this number of wavelengths gives a closer

estimate to the intensities expected. Using every wavelength available, shown in

Figure 5.15 gives a very good localization of the ink concentration. The cross-talk

from the dye is still observable but is greatly reduced. The dye concentration is

around the area expected and similar to the reconstructed value from Figure 5.14.

Examining the MSE of the reconstructions in Figure 5.16 shows explicitly

how the reconstruction for ink improves as the number of wavelength is increased.

As was discussed the reconstruction of dye is relatively steady, but the elimination

of cross-talk in the ink reconstruction is greatly reduced by adding wavelengths.
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Figure 5.12: Reconstruction done for two ink and dye phantoms. 6 wavelengths and
21 z-planes used. Upper image is for ink and lower image is for dye.
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Figure 5.13: Reconstruction done for two ink and dye phantoms. 9 wavelengths and
21 z-planes used. Upper image is for ink and lower image is for dye.
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Figure 5.14: Reconstruction done for two ink and dye phantoms. 26 wavelengths and
21 z-planes used. Upper image is for ink and lower image is for dye.
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Figure 5.15: Reconstruction done for two ink and dye phantoms. 251 wavelengths
and 21 z-planes used. Upper image is for ink and lower image is for dye.
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Looking at the symmetric difference shown in Figure 5.17 that the use of

hyperspectral information greatly increases the accuracy of the reconstructions. The

symmetrical difference corresponds to the MSE values where the more noticeable

improvements are in the Ink image. As in the MSE values the dye reconstructions

are more consistent but advantage of hyperspectral information is clearly visible.

As before the localization of the phantom is emphasized in Figure 5.18 where it is

clearly shown how the crosstalk is reduced by increased number of wavelengths.

It is noticeable in all the images that the concentrations never reach the

expected intensities. This is expected with the Born Approximation where previous

efforts have shown that it usually underestimates chromophore intensities.
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Figure 5.16: MSE displayed for second measurement set for ink and dye at every
wavelength.
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Figure 5.17: The symmetrical difference of reconstructions for the second set plotted
as a function wavelength.
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Figure 5.18: Localization of reconstruction for the second set plotted with respect to
the target image. Upper image is for ink and lower image is for dye.
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Chapter 6

Conclusion

We have shown through simulations and measurements that using hyperspectral

information for the DOT problem can greatly help in creating concentration images

of multiple chromophores. Not only can images can be created simultaneously for

many chromophores but including data from multiple wavelengths greatly reduces

cross-talk in the images and improves accuracy.

Including information for decades or even hundreds of wavelength informa-

tion results in significantly increased accuracy in the image and reduces cross-talk.

Optimizing the regularization parameter to accent each chromophore are an impor-

tant element to getting a good reconstruction, effects of changing the regularization

constants were examined and chosen to get the best reconstruction. Together these

two factors eliminate artifacts in the image and evoke interest in using this kind of

technique for physical measurements. Simulated reconstructions showed significant

improvements of including hyperspectral data along with the importance of using

multiple regularization parameters for each chromophores.

Physical measurements were also performed to prove this for actual mea-
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surement data. Although cross-talk was not eliminated in reconstructions done for

measured data, it was shown to be reduced and overall accuracy in the image im-

proved. This is especially evident in figures 5.12 and 5.14 where the imaging of two

separate chromophores is made more accurate and effective by using hyperspectral

information. The improvement of adding hyperspectral data was more evident in

the imaging of two chromophores rather than a single ink chromophore. This em-

phasizes the advantage of hyperspectral information when doing reconstructions for

more than one chromophores.

Future work based on this thesis will be focused on obtaining better results

from experimental data. This will entail designing different phantoms and testing

different source/detector setups in the experiment. Using other chromophores in-

stead of ink and dye is a possibility to obtain a stronger signal in the experiment,

resulting in a better reconstructions. Further simulations will also be tested, using

simulated data constructed from different forward models, such as Monte Carlo and

Padé approximations.
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