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Abstract

A common problem in signal processing is to estimate the structure of an object

from noisy indirect measurements linearly related to the desired image. These prob-

lems are broadly known as inverse problems. A key feature which complicates the

solution to such problems is their ill-posedness. That is, small perturbations in the

data arising e.g. from noise can and do lead to severe, non-physical artifacts in the

recovered image. The process of stabilizing these problems is known as regularization

of which Tikhonov regularization is one of the most common. While this approach

leads to a simple linear least squares problem to solve for generating the reconstruc-

tion, it has the unfortunate side e�ect of producing smooth images thereby obscuring

important features such as edges. Therefore, over the past decade there has been

much work in the development of edge-preserving regularizers. This technique leads

to image estimates in which the important features are retained, but computationally

they require the solution of a nonlinear least squares problem, a daunting task in

many practical multi-dimensional applications.

In this thesis we explore low-order models for reducing the complexity of the re-

construction process. Speci�cally, B-Splines are used to approximate the object. If a

"proper" collection B-Splines are chosen so that the object can be eÆciently repre-

sented using a few basis functions, the dimensionality of the underlying problem will

be signi�cantly decreased. Consequently, an optimum distribution of splines needs

to be determined. Here, an adaptive re�ning and pruning algorithm is developed to
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solve the problem. The re�ning part is based on curvature information, in which

the intuition is that a relatively dense set of �ne scale basis elements should cluster

near regions of high curvature while a sparse collection of basis vectors are required

to adequately represent the object over spatially smooth areas. The pruning part

is a greedy search algorithm to �nd and delete redundant knots based on the esti-

mation of a weight associated with each basis vector. The overall algorithm iterates

by inserting and deleting knots and end up with much fewer knots than pixels to

represent the object, while the estimation error is within a certain tolerance. Thus,

an eÆcient reconstruction can be obtained which signi�cantly reduces the complexity

of the problem.

In this thesis, the adaptive B-Spline method is applied to a cross-well tomography

problem. The problem comes from the application of �nding underground pollution

plumes. Cross-well tomography method is applied by placing arrays of electromag-

netic transmitters and receivers along the boundaries of the interested region. By

utilizing inverse scattering method, a linear inverse model is set up and furthermore

the adaptive B-Spline method described above is applied. The simulation results

show that the B-Spline method reduces the dimensional complexity by 90%, com-

pared with that of the pixel-based method, and decreases time complexity by 50%,

without signi�cantly degrading the estimation.



Chapter 1

Introduction

A common problem in signal processing is to estimate the structure of an object

from noisy indirect measurements. These problems are broadly known as inverse

problems with many applications such as radar/medical imaging, mine detecting and

image reconstruction [1] [2] [3] [4]. Among these, a common application is the cross-

well tomography problem, where we need to locate and estimate the buried objects

by observations of scattered electromagnetics radiation taken along the boundaries

[6] [7] .

In this thesis, we will �rst introduce the cross-well tomography problem, then set

up the linear inverse model based on inverse scattering theory [8] [18]. The diÆculty of

solving the linear inverse problem lies in the ill-posed nature of the degradation kernel.

The classical solutions tend to have large high-frequency artifacts which contaminate

the solution. To make the solution more stable, i.e. smooth out those high-frequency

components, a smoothing constraint is added to the underlying optimization problem,

a procedure called regularization. Many regularization methods have been widely

explored [19] [20], among which the Tikhonov regularization is the most common

[21].

Tikhonov regularization actually adds a smoothing constraint on the solution so
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that the high-frequency artifacts are �ltered out. However, at the same time, it

also blurs the edges of the object, which are frequently the most interesting areas

to us. Therefore, more speci�c constraint should be added to preserve the edges.

Edge-preserving regularization using non-quadratic regularizers is such an idea [24]

[25] [26] [27] . The assumption is that, in the reconstruction, large changes in the

parameters we are estimating are likely to be true edges which we want to preserve,

while smaller ones are mostly artifacts which we want to smooth out. Use of such

a regularizer leads to non-linear least squares problem, which can be solved by the

Gauss-Newton method [28] or other iterative methods.

In practical multi-dimensional cases, the Gauss-Newton method needs to produce

an estimate of all the pixels at each iteration, thus the complexity is very large. One

idea is to represent the object by eÆciently using some basis functions to aggregate

the pixels. A straightforward solution is to use shape-based template if the shape

of the objects are known [29]. However, in most cases, the structure of the object

is complex and unknown to us, so a general basis which can be suitable to a wide

variety of objects should be used.

B-Splines have been thoroughly explored and proved to be very useful in approx-

imation and have been widely used in computer aided designs [30] [32] [31]. The

B-Spline basis has several good properties and can be easily manipulated by dealing

with knots. Furthermore, some eÆcient algorithms of construction, evaluation, and

knot insertion/deletion exist [36] [37] [38] [39], so that not too much e�ort is needed

to deal with B-Splines themselves.

If proper B-Splines are chosen so that the object can be eÆciently represented

using few basis functions, the dimension of the problem will be signi�cantly decreased.

To select those proper B-Splines, we should �nd an appropriate number of B-Splines to

be used and a suitable distribution of these B-Splines. The number of basis functions

to be used is the number of unknowns in the revised problem, thus determining the
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complexity of the B-Spline-based problem. The placements of these knot represent

where to put those B-Splines, which a�ects how close the object can be approximated

by using these �xed number of knots. The intuition is to place few knots at at regions

and more knots at rough regions with more details [40] [41] [42]. In this thesis, an

adaptive knot re�ning and pruning algorithm is developed to solve the problem. The

knot re�ning part eÆciently inserts knots based on curvature information. The knot

pruning part is a greedy search algorithm to �nd and delete redundant knots based

on an estimate of the weight of each knot. The overall e�ect is to select proper

number of knots to be used and, at the same time, relocate these knots to �nd a

suitable distribution. And as the algorithm converges, the �nal result uses many

fewer knots than pixels to represent the object while keeping the error of estimate

within certain tolerance. A 2D cross-well tomography example will be provided to

test the algorithm. The simulation results show that the B-Spline method reduces the

dimensional complexity by 90%, compared with that of the pixel-based method, and

decreases time complexity by 50%, without signi�cantly degrading the estimation.

1.1 Contribution

In this thesis, we propose using B-Splines to represent the object to be reconstructed.

The goal is to decrease the large complexity brought by the edge-preserving regular-

izer, and adaptively �nd the solution. Our contributions are mainly in the following

aspects:

� We make a thorough analysis of the edge-preserving regularizer, especially the

CRB(Cram�er-Rao Bound) analysis. The result is very interesting. The edge-

preserving regularizer does preserve edges better compared with Tikhonov reg-

ularization. As to the variance of estimate, however, the edge-preserving reg-

ularizer performs worse than Tikhonov one. This partly reects the di�erence
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between the two regularization methods. Tikhonov regularization add equally

constraint on all areas, while an edge-preserving regularizer puts more e�ort on

locating the edges. The price is that the variance of estimate is increased.

� We use B-Splines to represent the object and remodel the inverse problem. By

�nding the optimum knot distribution, the result has a signi�cant decreasing in

dimension. More e�orts are made on how to adaptively �nd the optimum knot

distribution. A knot re�ning and pruning algorithm is developed to automati-

cally �nd the edges as well as select proper B-Splines.

� For knot re�ning, a curvature based knot insertion method is developed to

intelligently insert knots. The intuition is that the optimum knot distribution

should reect the underlying smoothness structure of the object. Speci�cally,

more knots should cluster at regions with large curvatures, while fewer knots

are needed for at regions. Therefore, simply doubling the number of knots will

bring overhead for the insertion, i.e. most knots inserted in at regions will have

to be deleted later. Assuming a current coarse estimate is a good hint for further

re�ned structures, we can use the curvature information as a guide to only insert

new knots in areas of potential edges. By doing so, the knots inserted will be

mostly useful and need not to delete them later. In the 2D case, the idea can be

further re�ned by using principle directions used in computing curvatures. The

principle directions are directions where the minimal and maximal curvature lie

on a surface. If at a point, the large curvature only happens along x dimension,

and in the y dimension, the curvature is very small, we will only want to increase

resolution along the x dimension. By using the principle directions, we will be

able to determine whether to insert knot in one dimension or both.

� For knot pruning, we should �nd which knots need to be deleted. A greedy
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search algorithm is developed using the estimate of the weight of each knot. The

weight of each knot is measured as the change in reconstruction when deleting

the knot. The more the change, the larger the weight. Knots with small weight

are considered redundant, i.e. they were previously placed in regions where

enough knots had already been assigned. With the weight information, we will

be able to sort knots in the order of their importance and delete them one at a

time until the error of resulting reconstruction (computed by the cost function

of the edge-preserving regularizer) exceeds a certain tolerance. We also notice

the vicinity e�ects of each knot, i.e. deleting a knot changes the actual weight

of adjacent knots. An eÆcient solution is to avoid deleting adjacent knots.

1.2 Organization

This thesis is organized into �ve chapters; the main body is Chapter 2, 3 and

4. Chapter 2 introduces related background of the problem, including linear inverse

problem and Tikhonov regularization, B-Splines basis and geometric computations.

Chapter 3 investigates the edge-preserving regularization method and makes some

analysis. Chapter 4 presents the developments of the adaptive B-Splines methods

incorporated with edge-preserving regularizer solving the image reconstruction prob-

lem.

Chapter 2 introduces some related background knowledge of this thesis. Firstly,

the cross-well tomography problem is set up. The electromagnetic inverse scattering

theory is introduced to solve the problem, and the Born approximation is used to

get the linear inverse problem model. Secondly, the Tikhonov regularization method

is introduced to solve the problem. The idea of edge-preserving regularization is

proposed after analyzing the smoothing e�ects of Tikhonov regularization. Thirdly,

we introduce the basics of B-Spline basis. With the good properties it possesses, we
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propose using it to decrease the complexity of the problem. Lastly, some advanced

geometric computation of B-Splines are introduced. The most important is computing

the curvature of B-Spline surfaces, which will be helpful to our knot re�ning algorithm

developed in Chapter 4.

Chapter 3 analyzes the de�ciency of Tikhonov regularization. It then introduces

the edge-preserving regularizer using non-quadratic regularization functions. The

common properties of regularization functions are introduced. Furthermore, a CRB

analysis is provided to examine the estimation properties of the edge-preserving reg-

ularizer. Finally, we apply the edge-preserving regularizer to solve the cross-well

tomography problem.

Chapter 4 �rst points out the large complexity the edge-preserving regularization

brings, then B-Spline basis is proposed to be used. By representing the object by

B-Splines, the inverse problem is remodeled. It is shown that if the B-Splines are

carefully selected, we can obtain a good reconstruction while signi�cantly decreasing

the dimension of the problem. An adaptive knot re�ning and pruning algorithm

is developed to automatically �nd a suitable knot distribution. The knot re�ning

part involves knot insertion under the guidance of curvature information; the knot

pruning part involves knot deletion based on the estimate of weight of each knot. As

the algorithm converges, which is generally within 10 iterations, the result will be

the fewest possible number of knots that can be used to make an estimate within a

certain error. Also, the 2D example used in Chapter 3 is revisited here to illustrate

the algorithm.

Chapter 5 discusses some conclusions of this thesis and some possible ideas for

the future work.



Chapter 2

Background

2.1 Cross-well Tomography Problem

In this section, we will set up the cross-well tomography problem which is the

motivation of this thesis. We will revisit the problem as an example later in the

following chapters to examine our approach.

2.1.1 Problem Setup

The problem comes from the application of �nding underground pollution plumes.

It is proposed to use a cross-well tomography method: one array of electromagnetic

transmitters and one array of receivers are placed in two wells along the boundaries of

the region of interest(Fig. 2.1). By measuring the scattered electromagnetic waves at

receivers, we can determine the physical properties, such as conductivity, permittivity

and permeability, of the medium in the region. Since the pollution plumes will have

di�erent electromagnetic properties than common soils, we will be able to determine

the existence and shape of the plumes.

14
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Soil

Pollution
Plume

x

y

10m

10m

21 Sources 21 Receivers
(equally-spaced)(equally-spaced)

Figure 2.1: Cross-well tomography problem.

For the work in this thesis, as shown in Fig. 2.1, 21 equally-spaced dipole trans-

mitters and receivers are placed along the boundaries respectively. The frequency

of electromagnetic transmitted is ! = 5 � 107Hz. To represent the electromagnetic

properties of the region, we use typical settings for wet soils, where electric permit-

tivity " = 20, magnetic permeability � = �0 is the permeability of free space, and

electric conductivity � = 0:01s=m.

2.1.2 Electromagnetic Inverse Scattering

Electromagnetic scattering theory has played an important role in many appli-

cations, which are concerned with the e�ect an inhomogeneous medium has on an

incident wave. More speci�cally, it involves two aspects of the problem, one is direct

scattering problem, which is to determine the scattered �eld from the incident �eld;

another is inverse scattering problem we will be focusing on, which is to determine the
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nature of the inhomogeneity from the knowledge of the scattered �eld. Lots of work

has been done in this region and many di�erent approaches exist [8] [9] [10]. The

inverse scattering problem is important in cases where details about the structure or

composition of an object are required but can not be measured directly, instead, the

measurements are often taken remotely without a�ecting the object. Thus, inverse

scattering has been applied in many areas such as radar/sonar, medical diagnostics,

and nondeconstructive testing [11] [12] [13].

The cross-well tomography problem we have set up can be shown, from the wave

scattering point of view, in Fig. 2.2.

Incident

Scattering
Potential

Wave
Scattering

Receiver
Array

Wave

Source

V(x)

Figure 2.2: Cross-well tomography problem.

where we consider a �nite scattering region mathematically described by a scattering

potential V (x) embedded in a homogeneous medium of permittivity "1. Thus the

distribution of permittivity through the scatterer can be written as:
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"(x) = "1 +4"(x) (2.1)

where 4"(x) = 0 outside the scatterer. With k2 represents the wave number, we have

the non-homogeneous Helmholtz equation [8]:

r2	+ k2("1 +4"(x))	 = 0 (2.2)

where � is the incident angle of the plane wave and r2 is the square of the gradient

operator:

r2 = r � r =
@2

@x2
+

@2

@y2
+

@2

@z2
(2.3)

Now we introduce the Green's function which will translate equation (2.2) into

an integral form. The Green's function g(x j x0) is de�ned as the solution to the

following equation [14]:

r2g(x;x0) + k2"1g(x;x
0) = �Æ(x� x0) (2.4)

where x0 is the coordinate of source and x is the position to be measured with respect

to x0. And it has been proved [8] if the Green's function satis�es certain boundary

conditions, it possesses an important property:

g(x0;x00) = g(x00;x0) (2.5)

Thus, equation (2.2) can be rewritten as:

8><
>:
	(x) = 	inc(x) +

R
k24"(x0)g(x;x0)	(x0)dx0 (a)

	scat(x) = k2
R
g(x;x0)4"(x0)	(x0)dx0 = data (b)

(2.6)
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The above equation can be solved provided all the boundary conditions are sat-

is�ed by both 	(x0) and g(x;x0) are given. And the �eld 	 here is actually the

combination of the local incident �eld 	inc and 	scat, i.e.

	 = 	inc +	scat (2.7)

2.1.3 Born Approximation

In practice the integral equations in (2.6) bring into a non-linear structure, be-

cause 	 in (2.6)(b) depends on 4" in (2.6)(a). It usually does not have close form

solution. Thus, some approximate solution should be considered, among which the

Born approximation [15] [16] has become the prevalent technique because of its easy

implementation and simple physical interpretation. It replaces 	(x) in (2.6)(b) with

	inc(x) which yields to:

	scat(x) =

Z
� 0

k2g(x;x0)4"(x0)	inc(x0)d� 0 (2.8)

The approximation has been proved to be good if 4"(x) is small. So the Born

approximation results in the form of a �rst-kind Fredholm integral equation, which

can be discretized furthermore to a �nite dimension matrix problem of the form [5]:

y = Af + n (2.9)

where each element of vector y is the scattered �eld observations obtained along the

receiver array; A is a matrix associated with the integral kernel; f corresponds to the

conductivity perturbation and n represents additive noise.

Therefore, the cross-well tomography problem has been translated into the form

of a typical linear inverse model. Further details of such model will be discussed in

the following section.
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2.2 Regularization of Linear Inverse Problems

In this section, we will investigate the ill-posed property of discretized linear in-

verse problems and the energy-based regularization method as a solution. Based

on these discussions, we will be able to address the edge-preserving regularization

techniques in Chapter 5.

2.2.1 Linear Inverse Problems

Generally, we can describe a linear inverse problem as a linear process with a

certain distortion model which has the following form:

y = Af + n; (2.10)

where A is a known degradation process; n is additive, Gaussion noise; y is the

degraded signal. Our problem is to obtain an estimate of the real object f , which is

usually mapping of some physical properties, from the data vector y.

2.2.2 Nature of Ill-posed Problems

A �rst and obvious solution to the equation (2.10) we established above would be

least squares solution:

fLSQ =
�
ATA

��1
ATy =

�
ATA

��1
AAT f +

�
ATA

��1
ATn (2.11)

but for practical problems, the above approach does not make sense, i.e. fLSQ tends

to be contaminated by large amplitude high-frequency artifacts, and this is much

di�erent from the true object. Those non-physical artifacts of the solution fLSQ

comes from the ill-conditioned nature of degradation kernel A, i.e. the condition
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number of A is always very large in practice which means the columns of A are nearly

linearly dependent. Though we can replace A by a well-conditioned matrix derived

from A, we still can not get a useful solution. In another word, we need to �lter out

the high-frequency artifacts to get useful solution. While in practice, generally A is

a degradation process which is a kind of lowpass process, thus
�
ATA

��1
is a highpass

�lter which would only amplify the high-frequency noise in the data.

2.2.3 SVD Analysis

To gain in-depth understanding, we will analyze the ill-posed problems and regu-

larization methods from the SVD (Singular Value Decomposition) point of view.

The Singular Value Decomposition of A is as the following:

A = U�V T =
nX
i=1

ui�iv
T
i (2.12)

where � = diag(�1; :::�n); �1 � �2 � ::: � �n � 0

Thus, the condition number of A is equal to �1=�n. For ill-posed problems, the

singular values �i typically decay gradually to zero, and ui and vi tend to have more

sign changes as �i decreases. This shows the nature of ill-posed problem in two as-

pects: 1. In ill-posed problems, A is highly ill-conditioned, i.e. A has large condition

number �1=�n. The vectors vi associated with the small (close to zero) �i are nu-

merical null-vectors of A and have many sign changes. 2. Af is a smooth process of

f and the inverse problem ampli�es the high-frequency oscillations in the right-hand

side y. It is diÆcult to get an acceptable solution, because small errors in data may

cause large errors in the solution. A simple 1D example is shown in Fig. 2.3.

We can also draw the same conclusion from the following mathematical analysis:
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Figure 2.3: A simple 1-d inverse problem, with a Gaussian function as the kernel.

Consider linear least-squares problems:

min
f
kAf � yk2 ; A 2 Rm�nm > n (2.13)

from the SVD of A in equation (2.12), the least-squares solution will be:

fLSQ =
nX
i=1

uTi y

�i
vi (2.14)

Apparently, since ui, vi has many sign changes with �i degrades to zero, the solu-

tion fLSQ has many large components of high-frequencies. Therefore, fLSQ appears

to be random and is not acceptable.

From the above analysis, the idea of regularization can be naturally induced.
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Speci�cally, the purpose of regularization would be to �lter out the contributions of

the small singular values to the solution. One well-known regularization method is

Tikhonov regularization [21]. The idea is to de�ne the regularized solution f� as the

minimizer of the following combination of the residual norm and the side constraint:

fT ik = argmin
f

kAf � yk22 + �2kL(f � f �)k22; (2.15)

where the regularization parameter � controls the weight of compromise of �delity of

solution to the residual norm and to the side constraint norm. Generally, if L = In

and f � = 0,

fT ik =
nX
i=1

gi
uTi y

�i
vi (2.16)

where, gi = �2i =(�
2
i + �2) . Hence the �lter factor gi counters the contributions of

small �i.

2.2.4 L-Curve

In 2.15, the regularization parameter � is critical and need to be wisely chosen.

L-curve is an convenient way to �nd proper � [23]. Given 2.15, we can draw out a

L-curve as shown in Fig. 2.4.

The vertical part of the L-curve corresponds to solutions where jjLfT ikjj2 is very

sensitive to changes in the regularization parameter �. The horizontal part of the

L-curve corresponds to solutions where it is the residual norm jjAfT ik � bjj2 that

is most sensitive to the regularization parameter �. Thus, we can �nd the optimal

regularization parameter by locating the corner of this L-curve. This is the general

procedure of solving the Tikhonov regularization problem. Using the previous 1D

example, some results corresponding to di�erent regularization parameters are shown

in Fig. 2.5.
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Figure 2.4: Illustration of L-curve

2.2.5 General Regularizations

In general, regularization method can be written as the following:

freg = argmin
f

kAf � yk22 + �
(f) (2.17)

In Tikhonov regularization, 
(f) is of the form of 2-norm or derivative of it. This

quadratic regularization function adds large constraint on large frequency components

of the solution, thus leads to a 'smooth' solution. Therefore, Tikhonov regularization

is not good for reconstruction of objects with sharp edges which are critical to describe

the shape and internal structures of the objects for our cross-well problem. Since in

practice sharp edges of an object usually have very large frequency components, it is

natural to think of applying non-quadratic regularization functions which can smooth

out relatively small perturbations while preserving larger ones, thus preserve edges.

In Chapter 5, we will discuss the edge-preserving regularization in details.
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Figure 2.5: Tikhonov regularization e�ects for the 1-d problem.

2.3 Introduction to B-Spline Functions

In this section, we will introduce some background material about B-Spline func-

tions. First, we will de�ne the B-Spline basis to represent a certain function or object.

Then we will talk about how the knot distribution a�ect the properties of the repre-

sentation, which is the motivation of using B-Splines in this problem. Also we will

expand it to 2D case by introducing tensor-product B-Splines to �t in our application.

Lastly, we will discuss the geometries of B-Splines, which are required in calculating

the di�erentials and curvatures.
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2.3.1 B-Spline Basics

B-Splines are widely used in many aspects of numerical analysis (statistical data

interpolation, data smoothing, numerical solution of inverse problem with integral

model, computer aided geometric design, etc. [32] [33] [34]). There exists a set

of well-developed theories on B-Splines, their properties and applications, including

some eÆcient algorithms for computation using B-Splines [36] [37] [38] [39]. Also, B-

Splines are a strong candidate for use in our inverse problem, especially considering

their local support and smoothness property which we will discuss later.

De�nition 1 [32] A function s(x), de�ned on a �nite interval [a; b], is called a

spline function of degree k > 0 (order k + 1), having knots as the strictly increasing

sequence �j; j = 0; 1; :::; n(�0 = a; �n = b), if the following conditions are satis�ed:

1. s(x) 2 Pk; for x 2 [�j; �j+1]; j = 0; 1; :::; n:

2. s(x) 2 Ck�1[a; b]:

where Pk is the set of all polynomial functions of k orders, Ck�1 is the set of all k� 1

continuous functions.

De�nition 2 The B-Spline Ni;k+1 of degree k with knots �i; :::; �i+k+1 is de�ned

as :

Ni;k+1(x) = (�i+k+1 � �i)
k+1X
j=0

(�i+j � x)k+Qk+1

l=0;l 6=j
�i+j � �i+l

(2.18)

where

(�� x)k+ =

8><
>:
(�� x)k; if � > x;

0; otherwise.

(2.19)

Based on the above de�nition, B-Splines have the following important properties:

1. Positivity and Local Support :

Ni;k+1(x) � 0 for all x:

Ni;k+1(x) = 0 if x =2 [�i; �i+k+1]:
(2.20)
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2. Boundary values :

N
(l)
i;k+1(�i) = N

(l)
i;k+1(�i+k+1) = 0; l = 0; :::; k � 1: (2.21)

where (�)(l) stands for the l order derivative of the function.

3. Minimal support : If a piecewise polynomial with the same smoothness

property over the same knot vector has less support than Nk+1
i , it must be the zero

function.

4. Linear Independence :

n�1X
i=0

ciNi;k+1(x) = 0 implies ci = 0 for all i: (2.22)

Some simple examples of B-Splines are shown in Fig. 2.6

The B-Splines form a basis for the space consist of piecewise polynomial functions;

every piecewise polynomial function s(x) over [a; b] has a unique representation:

s(x) =
n�1X
i=�k

ciNi;k+1(x); (2.23)

where Ni;k+1(x) for i = �k; :::;�1 and i = n � k; :::n � 1 are generated as before by

introducing `arbitrary' additional knots ��k � ��k+1 � ::: � �0 = a; and b = �n �

�n+1 � ::: � �n+k. The reason of using these additional knots is that each B-Spline

has support on several adjacent knots (As shown in Fig. 2.6). Thus, the B-Splines

de�ned on these additional knots also have support on the knots at or near the ends.

Di�erent choices of these additional knots will bring di�erent ending e�ects on the

curves/surfaces[32].

As we shall see in the next chapter, these basic properties make B-Splines a good
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Figure 2.6: B-Splines Ni;k+1 with di�erent order (k + 1) and their �rst and second
derivatives. (i = 3, knots sequence � = [0123456])

candidate to be used in our inverse problem to obtain multiscale solutions. Further-

more, there are eÆcient algorithms [36] for evaluating the values and derivatives of

B-Splines.

To �t into our 2D problem, we need to de�ne Bivariate B-Splines. There are

di�erent ways in extending the univariate splines to 2D case. Tensor product B-

Splines are the most widely used due to their simplicity.

De�nition 3 Having strictly increasing sequences :

a = �0 < �1 < ::: < �m = b;

c = �0 < �1 < ::: < �n = d;
(2.24)
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The function s(x; y) on R = [a; b] � [c; d] , of degree k > 0 in x and l > 0 in

y, with knots �i; i = 0; 1; :::; m in the x-direction and knots �j; j = 0; 1; :::; n in the

y-direction, is called a Tensor Product Spline, if the following conditions are satis�ed:

1: s(�i; �j) 2 Pk 
 Pl; i = 0; 1; :::; m; j = 0; 1; :::; n:

2:
@i+js(x; y)

@xiyj
2 C(R); i = 0; 1; :::; k � 1; j = 0; 1; :::; l� 1:

(2.25)

Similarly, let the Ni;k+1 andMj;l+1 are the normalized univariate B-Splines de�ned

as before, on the knot sequences � and � respectively, we can uniquely represent every

spline s(x; y) 2 (�0; :::; �m;�0; :::; �n) as the following :

s(x; y) =
m�1X
i=�k

n�1X
j=�l

ci;jNi;k+1(x)Mj;l+1(y); (2.26)

Some examples of tensor product B-Splines are shown in Fig. 2.7.

Tensor product B-Splines retain all the good properties of univariate B-Splines.

Especially, since the basis corresponding to x -direction and y-direction are separable,

it can be easily handled and the eÆcient algorithms in 1D case can be directly em-

ployed. A certain drawback would be that only rectangular approximation patches

can be applied thus the re�nement procedure are tied to existing rectangular grid.

There are other approaches using triangular patches which bring more freedom and

adaptation [49] [50]. We will leave this e�ort to future work.

2.3.2 Knots Distribution and Smoothness

As stated before, given a certain knot sequence, we can uniquely de�ne a set of

B-Spline basis which are piecewise polynomials of degree k. We can combine the B-

Spline curves/surfaces to approximate a wanted curve/surface. It can be proved [35]
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Figure 2.7: Examples of tensor product B-Splines and corresponding knots distribu-
tion.

that if suÆciently many knots are inserted into the knot sequence, the resulted ap-

proximation will be arbitrarily close to the curve/surface. Thus instead of describing

the curve/surface directly, a set of knots would be suÆcient. This is the whole basis

of using B-Splines to approximate curves/surfaces. In practice, we are interested in

�nding the 'best' approximation which uses as few knots as possible within a certain

error tolerance. A simple example is given in Fig. 2.8.

The sample data are Titanium Heat data which gives a certain property of tita-

nium as a function of temperature. It has been used extensively as test data for Spline

�tting. As the number of knots increases, the resulted Spline curves are closer to real

data in the means of Mean Square Error(MSE). In 2.8(d), 12 non-equally-spaced and

well-selected knots are used which leads to a less MSE than that of Fig. 2.8(c) where
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Figure 2.8: Illustration of using cubic B-Splines to approximate Titanium Heat data.
(a)5 equally-spaced knots; (b)10 equally- spaced knots; (c)20 equally-spaced knots.
(d)12 selected knots.

20 equally-spaced knots were used. This is a very interesting and helpful property

of B-Splines approximation and is the motivation of using B-Splines in our adaptive

reconstruction approach to solve the inverse problems.

Another important property of B-Splines is their local support. It allows the

easy alteration of a complex curve/surface in one region without a�ecting the remote

portion of the curve. Since each B-Spline is de�ned over a certain knot sequence

�0; :::; �n, it is natural to see that if the knots are set apart, the B-Spline support will

be large, consequently we will get relatively at basis. On the contrary, if we set the

knots to be very near to each other, the B-Spline will have very narrow support which

lead to more local details (Fig. 2.9). Since the knots alteration will only locally a�ect

the approximated function and remote part of the curve will remain the same, it is

natural to assign a large density of knots to areas with signi�cant �ne scale variations.
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Only a 'sparse' distribution of knots are needed to well approximate the at part of

the curve.
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Figure 2.9: Distant knots leads to B-Spline of large support (at) and vice versa;
Certain multiple knots leads to discontinuity.

In Fig. 2.9, we also note that to construct cubic B-Splines, additional knots have

been added at end points. At one end, we use multiple knots ([0 0 0]), which brings

high-order discontinuity there; at the other end, we extend knots out of the interested

region, i.e. add one knot at position 5, which makes the reconstruction at that end

point more smooth. But the shortcoming is that we will have leakage outside the

focused region.

As stated before, we are interested in eÆciently representing a surface, i.e. a

function of two variables. Our approach will be to use B-Splines with the fewest

possible knots to best approximate the surface within a certain error tolerance. In

this case, the approximation will essentially be adapted to the smoothness of the

surface. Thus, the problem can be stated as to �nd a suitable set of knots based on
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which the B-Splines can approximate the surface eÆciently.

To �nd an adaptive procedure of achieving this goal, we will need to reallocate

the knots to better reect the underlying smoothness of the curve/surface. Curvature

information will be a good hint to this further redistribution of knots. Speci�cally,

if the knots is equally spaced, then, given a certain error tolerance, we will need to

insert more knots to the regions of large curvatures and delete redundant knots at

regions of small curvatures. The computation of knot insertion and deletion have

been thoroughly discussed in many papers [37] [38] [39]. And in the following section

we will focus on the geometries needed to compute spline curvature.

2.4 Geometries of Splines

As stated before, we will need to measure the smoothness of a reconstructed B-

Spline curve/surface, then use it as a guide in further re�nement. Speci�cally, we

want to redistribute the knots in such a way that large density of knots are assigned

to regions of large curvatures, and fewer knots to relative at regions. In this section,

we will introduce the curvature computing of B-Spline curves/ surfaces.

2.4.1 Curvature of Space Curves

Before discussing surface curvature, we introduce the geometric properties of

curves.

In general, it is helpful to represent a space curve (in R3 ) by the following

parametric form:

x = x(t) =

2
6664
x(t)

y(t)

z(t)

3
7775 ; t 2 [a; b] � R (2.27)
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Furthermore, we can reparametrize the curve by:

s(t) =

tZ
t0

ds =

tZ
t0

( _x2 + _y2 + _z2)1=2dt =

tZ
t0

k _x(t)kdt (2.28)

where the dots denote derivatives with respect to t, and s is called arc length reparam-

eterization of the curve [44](an example is shown in Fig. 2.10). From 2.28, we have

_s(t) = k _x(t)k, which is called arc element of the curve. Furthermore, it indicates that

the variation rate of arc length with respect to curve parameter is the speed of the

curve parameterization. For B-spline curves, where the parameterization is regular,

i.e. k _x(t)k 6= 0 [44], we may write dt=ds = 1=k _x(t)k. Let �(s) = x(t(s)) be the arc

length parameterized curve, we have:

k
d�

ds
k = k

d

dt
(x(t(s)))

dt

ds
k = k _x(t(s))

1

k _x(t(s))k
k = 1 (2.29)

Hence, arc length reparameterization has unit speed for regular curves.

Now, we introduce a local orthonormal coordinate system, the Frenet Frame

t;m;b[44], which is very helpful to provide the local behavior of curves. By ob-

serving the changes of the Frenet Frame as a function of parameter t, we can get

the curvature information of space curves. The Frenet Frame is the frame formed by

tangent vector t, main normal vector m and binormal vector b, where :

t =
_x

k _xk
; b =

_x� �x

k _x� �xk
; m = b� t: (2.30)

Given the Frenet Frame, we can construct the osculating circle [45] which lies in

the osculation plane formed by t andm, and has the same �rst and second derivative

vectors as the curve. The inverse of the osculating circle radius � is called curvature

�.
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By applying the arc length reparametrization, we have the following results:

� = �(s) = kx00k (2.31)

where the prime denotes derivative with respect to arc length s. In terms of the

actual parameter t, we have:

� = �(t) =
1

�
=
k _x� �xk

k _xk3
(2.32)

The geometric interpretation of curvature is straightforward: consider the angle

4� between two tangent vectors t and t(s+4s), thus � = d�=ds.

2.4.2 Curvature of Surface Curves

The above discussion can be extended to surfaces. Assume a regular parametric

surface:

x = x(u) =

2
6664
x(u; v)

y(u; v)

z(u; v)

3
7775 ; u =

2
4u
v

3
5 2 [a;b] � R2 (2.33)

with

xu � xv 6= 0 for u 2 [a;b] (2.34)

Consider a regular curve x(u(t)) on the surface, the squared arc element (�rst

fundamental form) is de�ned as the following [44]:

ds2 = Edu2 + 2Fdudv +Gdv2 (2.35)

where

E = xu � xu; F = xu � xv; G = xv � vv (2.36)



36

Analogous to the space curves, we can also de�ne a frame xu;xv;n for the surface.

The partial xu and xv at a point x span the tangent plane to the surface. The

normalized normal n [45] to the surface is:

n =
xu � xv

kxu � xvk
(2.37)

Let u(t) be a curve on the surface x(u) in the direction of t as de�ned in 2.30. In

2D case, consider xu = dx=du;xv = dx=dv, the direction of t can be represented by

� = dv=du) (Fig. 2.12), applying the above de�nition of space curve curvature to the

surface curve, the normal curvature at point x is given by:

�(�) =
L + 2M�+N�2

E + 2F�+G�2
(2.38)

where

L = n � xuu; M = n � xuv; N = n � xvv (2.39)

Generally, � always changes as � changes, thus for a given point x on the surface,

the normal curvatures corresponding to di�erent surface curves which pass the same

point x are di�erent. This result provides useful information on the smoothness of

surface along di�erent directions.

2.4.3 Gaussian and Absolute Curvature

The de�nition of normal curvature of a surface, �(�) is of rational quadratic form.

Thus the extreme values �1 and �2 of � = �(�), which are called principal curvatures

of the surface, are the roots of

det

2
4 �E � L �F �M

�F �M �G�N

3
5 = 0 (2.40)
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And the corresponding quantities �1 and �2 de�ne the principal directions, which are

the surface curve directions in the tangent plane.

Having the principal curvatures, we have two important de�nitions of the surface

curvatures on point x. One is Gaussian Curvature, which is

KGaussian = �1�2 =
LN �M2

EG� F 2
(2.41)

The other is absolute curvature:

Kabs = j�1j+ j�2j (2.42)

In our approach to the 2D inverse problem, we want to add new knots at places

of large curvatures and remove knots at places of small curvatures. By using tensor-

product B-Splines, we can add or remove knots independently in two directions. To



38

n

x

xv

u

t

t 1

2

Figure 2.13: Example of only need to add knots in one direction

make the knot insertion/deletion procedure more eÆcient, we should decide whether

to add or remove knots on a speci�c direction. For example, if we have a surface

bending along u-direction and is relatively at along v-direction (Fig. 2.13), the

Gaussian or absolute curvature maybe large so that we would be tempted to add

new knots in both u and v-directions. Apparently, there will be a waste for all the

knots inserted on u-direction. To solve the problem, we think of using the principal

directions, which are two directions correspond to the largest and smallest curvature

respectively. If the principal direction of the largest curvature �1 is almost along the

u-direction (t1 in Fig. 2.13), we will only consider adding knots in the u-direction.

Because it can be induced from the principal direction information that the measured

surface is relatively at at v-direction, thus no knots need to be added there. Further

details will be discussed in Chapter 4.



Chapter 3

Edge-preserving Regularizer

In this chapter, we will continue the discussion on regularization methods in Chapter

2. A thorough discussion will show that the Tikhonov regularization tends to bring

smoothing e�ects to the reconstruction thus is not good at preserving the edges. Then

the idea of edge-preserving regularization will be introduced and analyzed. Some

examples and comparisons will be provided at the end of this chapter.

3.1 De�ciency of Tikhonov Regularization

As introduced in Chapter 2, the general regularization method can be written in

the following form:

freg = argmin
f

kAf � bk22 + �
(f) (3.1)

In Tikhonov regularization, 
(f) is of the 2-norm form : 
(f) = kLfk22, where L is

a derivative operator. Thus the regularization term is de�ned as a sum of derivatives

to the object f , which is a quadratic function (Fig. 3.1(a)) of Lf . In some cases, L is

the �rst order derivative operator to f [19]. The idea is to counter the high-frequency

artifacts by adding large constraint on them. The resulting reconstruction will be a
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rather smooth one. The problem is that in many applications, the objects always

have sharp edges which are very important for accurately determining the location

and precisely describing the shape of discrete structures in the overall scene. In this

case, the Tikhonov reconstruction will not be satisfying in that the smoothing e�ect

blurs the edges as well as �lters out the high-frequency artifacts. Note the di�erent

scales used in the four plots of Fig. 3.1, we can see the quadratic function brings

signi�cantly more constraints on large components of Lf , which usually correspond

to sharp edges of the object. Therefore, we need to �nd other methods preserving

edges better than Tikhonov regularization.

−20 −10 0 10 20
0

100

200

300

400

D
x

||
D

x
||

22

−20 −10 0 10 20
0

5

10

15

20

D
x

|D
x
|

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

Φ
(D

x
)

D
x

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

D
x

φ(
D

x
)/

2
D

x

Figure 3.1: Illustrations of regularization functions (a)Quadratic (Tikhonov) (b)1-

norm (c)Edge-preserving ('(t) = t2

1+t2
) (d)Edge-preserving ('

0(t)
2t

= 1
(1+t2)2

)



41

3.2 Regularization Functions

A natural thought is to preserve larger uctuations which are more likely to be edges

of the object, and eliminate the smaller ones which are mostly to be high-frequency

artifacts. To achieve this goal, we may want to apply 1-norm (Fig. 3.1(b)) instead

of 2-norm to the regularization term, which will bring relatively smaller constrains

on large components of Lf . A even better approach would be using the function

as shown in Fig. 3.1(c) as the regularization term. In this case, only those regions

with uctuations exceeding a certain threshold will be considered to be edges and

relatively little constraint will be applied there. The edge-preserving regularization

can be written as:


ep(f) =
X
i;j

'[(Dxf)i;j] +
X
i;j

'[(Dyf)i;j] (3.2)

where Dx and Dy are �rst derivatives:

(Dxf)i;j = (fi;j+1 � fi;j)

(Dyf)i;j = (fi+1;j � fi;j):
(3.3)

It has been shown [24] that '(t) should have the following special properties in

order to preserve the edges:

i) '0(t)=2t continuous and strictly decreasing on[0;+1):

ii) lim
t!+1

'0(t)

2t
= 0

iii) lim
t!0+

'0(t)

2t
= M; 0 < M < +1:

(3.4)

And a group of candidates of function ' have been given in [24], in our application,

we use '(t) = t2=(1 + t2) (Fig. 3.1(c)).
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3.3 Edge-preserving Regularizer

Given the edge-preserving regularization function '(t) = t2

1+t2
, we can rewrite the

inverse problem in a new form with the following procedure.

First, for simplicity, we represent the 2D object in a 1D vector form by stacking

all the elements column by column, i.e.

f = [f11; :::; fm1; f12; :::; fm2; ::::::; f1n; :::; fmn]
T (3.5)

Then, in 3.2 let g = Dxf and �T (g)�(g) =
P

i;j '[gi;j], thus

[�(g)]i =
p
'(gi) (3.6)

We can rewrite the problem as:

fep = argmin
f

kAf � bk22 + �2xk�
T (Dxf)�(Dxf)k

2
2 + �2yk�

T (Df)�(Dyf)k
2
2: (3.7)

Then we can deem it as a non-linear least squares problem which has the following

form:

minkF (f)k22 = eT (f)e(f): (3.8)

Our edge-preserving regularizer can be �tted into this form by de�ning:

e(f) = [(y � Af); �x�(Dxf); �y�(Dyf)]
T : (3.9)

We can use the Tikhonov reconstruction as an initial guess then �nd the local mini-

mum of the non-linear least squares problem by Gauss-Newton method [28].

In the above approach, two regularization parameters �x and �y are used instead

of one. It is because in most applications, the degradation e�ects brought by kernel
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A can vary sharply in di�erent directions. And by speci�cally tune the regularization

on both x and y directions, we can reconstruct the object more precisely.

3.4 Example

In this section, a 2D example will be used to compare Tikhonov and edge-preserving

regularization methods. Further analysis about the complexity and the error of esti-

mate(Cram�er-Rao bound) will also be provided.

The examples are from the simulation of the cross-well tomography problem we set

up in Chapter 2. Two ideal objects, one `+' shaped and one rectangular shaped (Fig.

3.4(a),(b)), are given and white Gaussian noise (SNR=20) is assumed. The Tikhonov

reconstructions are shown in Fig. 3.4(c)(d), which have lots of small uctuations in

`at' area and smoothing e�ects on edges.

Now we apply the edge-preserving regularization to the problem. Firstly, notice

that the Tikhonov reconstructions reect the di�erent properties of kernel A in x and

y directions. Speci�cally, edges in x direction tends to be more diÆcult to restore

than those in y direction because the transmitters and receivers are placed along y

direction. Therefore, di�erent regularization parameters �x and �y should be used in

the two dimensions respectively. And intuitively, �x should greater that �y to add

more regularization in the x direction. Secondly, by using Gauss-Newton method

to solve the non-linear least squares problem, a initial guess of the object should be

decided. Here, it is natural to apply the Tikhonov result as the initial value. The

remaining diÆculty would be to �nd the best regularization parameters.

For 1D problem, it has been shown in Chapter 2 that a L-curve can be used to

determine the best regularization parameter �. For the 2D problem here, though

we have 2 distinct regularization parameters �x and �y, analogously they can be

determined by �nding the corner of the L-surface. The process is shown in Fig. 3.4.
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The x and y dimension of a L-surface are the two regularization terms �x'(Dxf̂ep))

and �y'(Dy(f̂ep)) respectively. The z dimension is the residue ky�Af̂epk
2
2. The best

set of �x and �y would correspond to the corner of the L-surface, which has the largest

curvature. In Fig. 3.4(c)(d), the curvature of the L-surface are computed, thus the

optimum regularization parameters are determined by locating the largest curvature

[22]. As what we expected, �x is greater than �y.

Then we can get the edge-preserving regularization result (Fig. 3.4(e)(f)). Com-

pared with the Tikhonov result, it �lters out the small high-frequency artifacts and at

the same time preserves the edges well. As stated before, we have placed transmitters

and receivers along y direction, thus we can get better resolution along y dimension

which brings the asymmetry of the reconstructions between x and y directions.

However, the edge-preserving regularizer has one major backdrawing. By applying

non-quadratic regularization functions, it turns into a non-linear least squares problem

which signi�cantly increases the complexity of the problem. Since the algorithm is

pixel-based, and most applications have huge amount of pixels, in each iteration of

the Gauss-Newton method all the pixel values need to be evaluated, the whole process

will be very slow. Further discussions will be provided in Chapter 5 and a B-Spline

basis solution will be given there.

Another interesting analysis is the Cram�er-Rao Bound(CRB) evaluation. If the

reconstruction is considered to be an estimate of the object, the CRB analysis in

detection and estimation theory can be applied. Given the cost function as the esti-

mation function G(f), we can get the CRB for both Tikhonov and edge-preserving

regularizer. (Appendix A). For our example, the CRB of Tikhonov regularizer is

shown in Fig. 3.4(a)(b), the CRB of edge-preserving regularizer is shown in Fig.

3.4(c)(d). The CRB represents the upper bound on the variance of the estimation

error for di�erent cross-well regions(pixels). Comparing the results, Tikhonov regu-

larizer put relatively equal e�orts to the estimation of edges and other `at' areas.
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Edge-preserving regularizer preserves the edges better, which means it locates the

edges more accurately; thus as a compensation, the variance of the estimation error

in such areas increases.



46

0

5

10

15

0

5

10

15
0

0.2

0.4

0.6

0.8

1

X (meter)Y (meter)

(a)

0

5

10

15

0

5

10

15
0

0.2

0.4

0.6

0.8

1

X (meter)Y (meter)

(b)

0

5

10

15

0

5

10

15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X (meter)Y (meter)

(c)

0

5

10

15

0

5

10

15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

X (meter)Y (meter)

(d)

0

5

10

15

0

5

10

15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X (meter)Y (meter)

(e)

0

5

10

15

0

5

10

15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

X (meter)Y (meter)

(f)

Figure 3.2: Example: (a),(b) objects; (c),(d) Tikhonov reconstructions; (e),(f) Edge-
preserving reconstructions. Transmitters and receivers are placed along y dimension
(x = 0 and x = 15).
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Figure 3.3: Example: (a),(b) L-surfaces; (c),(d) Curvature of the L-surfaces.
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Figure 3.4: Example: (a),(b) CRB of Tikhonov regularizer; (c),(d) CRB of edge-
preserving regularizer.



Chapter 4

Adaptive B-Spline Reconstruction

In Chapter 3, the edge-preserving regularization method was discussed and one major

de�ciency brought by solving the corresponding non-linear least squares problem is

the signi�cant complexity in applications. To solve the problem, a B-Spline based

adaptive algorithm is developed. The cross-well 2D example will be revisited to show

the improvement at the end of this chapter.

4.1 Motivation

For reconstruction methods previous introduced, both Tikhonov and edge-preserving

regularization, are based on pixel-by-pixel estimate. In practical cases, especially in

2D or even 3D problems, the total number of pixels is always very large. Thus the

reconstruction problems will need signi�cant time and e�ort to obtain a solution.

The situation will be even worse for edge-preserving regularizer, because the Gauss-

Newton method used to solve the corresponding non-linear least squares problem

requires evaluation of estimations of all the pixels in each iteration.

To solve the problem, a natural thought is that if we know the shape of the

object, a proper shape-base template would be eÆcient to precisely describe the
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object and signi�cantly reduce complexities [29]. However, in practice, we don't have

prior knowledge of the object shape and size, so a compromised way would to �nd a

set of proper basis to represent the object. The basis should have the properties that

at regions can be represented by one or few coarse scale functions while more �ne

scale functions can be used to represent details of regions of interests , e.g. edges.

Based on the discussions in chapter 2, B-Spline basis would be a good candidate.

First, it is natural to represent an unknown object by a set of k-order piecewise

polynomial functions. Second, the multiscale property of B-Splines can be utilized to

eÆciently represent the object hence decrease the complexity of the problem. Third,

eÆcient algorithms of evaluating and manipulating B-Splines exist which will not

bring much extra e�orts in dealing with the basis itself. Fourth, the smoothness and

scale of B-Splines can be easily manipulated by knots distribution, which means an

adaptive algorithm may exist for choosing a suitable set of B-Splines.

4.2 Inverse Model using B-Splines Basis

Using B-Spline basis instead of pixels to represent object f , the inverse problem

can be remodeled as:

y = Af + n = ANa + n = Ba + n; (4.1)

where N is the B-Splines basis and a is a vector of expansion coeÆcients for the B-

Splines. Thus the problem can be replaced by a new inverse model whose degradation

kernel will be B = AN , and the new object to be reconstructed is a. If proper

B-Splines basis are chosen to represent f , i.e. the representation is eÆcient, the

dimension would be signi�cantly decreased compared with that of f . Furthermore,

the edge-preserving regularization method can be used to solve the new problem.
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In the 2D example, tensor-product B-Splines can be utilized because it is a simple

extension of 1D B-Splines, and knots in x and y direction can be manipulated sepa-

rately. The drawback is that the rectangular patches may lose some exibility. Two

examples of tensor-product B-Splines and corresponding knot distribution have been

shown in Fig. 2.7.

4.3 Optimum Knots Distribution

Many sets of B-Spline basis can be chosen to represent a certain object, the best

would be the one that yields the most eÆcient representation. In another word,

the B-Spline basis needs to be distributed in the way that at regions are covered

by few coarse B-splines while a larger density of B-Splines cluster at rough regions.

By utilizing such a set of B-Splines, the complexity of the inverse process can be

decreased.

From the discussions of B-Splines in Chapter 2, the number of knots corresponds

to the number of B-Splines being used, thus the number of unknowns in the revised

model (4.1). The knot locations directly a�ect the support(scale) and distribution

of B-Splines. Therefore, the problem is to �nd an optimum knots distribution of the

B-Splines. It has two aspects: 1. How many B-Splines are suÆcient to represent

the object? 2. Given a �xed number of knots (B-Splines), what is the optimum

distribution of those knots?

The second problem is straightforward that the knots distribution should reect

the shape/smoothness of the object. Speci�cally, large density of knots should cluster

at rough regions, i.e. regions with large curvature. And only few knots would be

enough to represent the remaining at regions.

The �rst problem can be interpreted as the following: Given a certain tolerance of

estimation error, what is the fewest number of knots/B-Splines can be used to make
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the reconstruction? Roughly the process involves inserting new knots where the

estimate is poor and deleting redundant knots where the estimate is over accurate

than needed which will unnecessarily increase the complexity of the problem.

Based on the above discussions, an ideal solution would be able to �nd the opti-

mum set of B-Splines, including the number of B-Splines and the placement of each

B-Spline. It is diÆcult to accomplish because the searching e�ort will be signi�cant,

and even if we can �nd such solutions, the computational cost may be not worth

the improvement gained compared with the pixel-based solutions. An alternate way

would be to eÆciently �nd a suitable set of B-Splines instead of an optimum one.

The desired algorithm will be able to end up with a highly suitable knot distribution

in the sense that the number of knots is much fewer than that of pixels, while the

reconstruction does not degrade much.

Our processing approach can be represented in a tree structure [46] [47]. As

shown in 4.1, for simplicity we use binary tree to show the cases of 1D problem,

each level of the tree corresponds to di�erent number of knots being used. Then,

we can think of using an adaptive algorithm to automatically �nd the suitable knot

distribution. First, the algorithm should be able to iterate between coarser and �ner

level of reconstruction to determine the most suitable number of knots to be used.

If one knot is not good enough to cover a certain region, the algorithm should be

able to split it into 2 knots on the next �ner level and vice versa. Second, at the

same time, the algorithm should be able to intelligently alter the locations of knots

to make better reconstruction in a certain resolution level. Therefore, the placement

of each knot is not �xed but varies during the iteration of the algorithm. The overall

algorithm is to �nd a set of knots with much fewer knots than pixels based on which

the estimate is within a certain error.
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4.4 Knots Re�ning

Given a coarser level of reconstruction, one may want to add more details in some

interesting areas, e.g. edges. A simple way is to double the knots/B-Splines used in

reconstruction. The process is to insert new knots in between all existing knots, thus

the resolution of all areas are doubled. The drawback is that the total complexity

is at least doubled. For example, in the 1D problem showed in Fig. 2.8, notice

that many knots are inserted in uninteresting areas, e.g. at areas where existing

knots are suÆcient to have an acceptable estimation Fig. 2.8(c). Therefore, a more

adaptive way should be found to insert new knots. Speci�cally, knots should only be

inserted as necessary, i.e. the algorithm should automatically know where the areas
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of interests{ potential edges are and only inserts new knots in such areas.

In 2.8(a), notice that though the coarser level(with only 5 knots) reconstruction is

rough, we can still get some information of the object shape/smoothness. In another

word, the coarser level reconstruction gives a hint to the shape/smoothness of the �ner

level reconstruction. Since we are interested in edges which have large roughness or

discontinuity, we can use this hint as a guide of inserting new knots. The process is

called knot re�ning because it is not a simple knot insertion procedure[41][43]. It also

involves curvature computing (Chapter 3.3) based on current estimate. The knots

re�ning process is described as the following:

Algorithm 1: Knot Re�ning

Input: Knot sequence Pi; i = 1; 2; :::; m

Corresponding reconstruction f̂(P )

Threshold K0

Output: New knot sequence Qj; j = 1; 2; :::; n

Begin:

K = CurvatureComputing(P; f(P ));

for i = 1 to m,

if (Ki > K0) then

KnotInsertion(Ki);

(Ki is the curvature at knot Pi)

end if

end for;

End

Speci�cally, in the above algorithm, the knot insertion function splits one knots

into two equally space knots to cover the same region.
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In the above algorithm, an important assumption is that coarser level reconstruc-

tions will provide correct guide to get �ner resolutions. But the reconstruction may

not be good enough to show the rough structure of the object if only too few B-Splines

are used. It can be avoided, in practice, by always starting from a relatively �ne level

guess, and the knot deletion algorithm proposed in next section will guarantee not

too many knots will be deleted.

Another important issue is to choose a proper thresholdK0 for inserting new knots.

If K0 is too large, i.e. only few knots will be inserted to the areas with very large

curvature, the resulted reconstruction will be only focusing on several large abruptly

changing regions. Another drawback is that the re�ning process may be misled by

some false edges in coarser level. On the other hand, if K0 is too small, too many

knots will be inserted while most of them will bring no good to the reconstruction

and have to be deleted later. How to automatically �nd the proper K0 will need

further investigation. In this thesis, the threshold K0 is determined by experimenting

di�erent values and comparing the results.

4.5 Knot Pruning

After inserting a set of new knots, a re�ned reconstruction can be obtained. The

new reconstruction should have di�erent shape/smoothness and di�erent curvature

structures than the previous coarser one. Since the knots inserted were based on the

coarser reconstruction and it was only a guess of the underlying re�ned details, some

of the knots may be misplaced, i.e. knots were actually inserted in a at region rather

than the expected rough region. On the other hand, the regions considered to be at

may appear to have large curvatures. The Knot Pruning algorithm is used to prune

the new set of knots, �nd and delete those improper and redundant ones.
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4.5.1 Weight of Knots

The most important problem here is how to prune the knot sequence and �nd

those redundant ones. Therefore, a measurement of each knot's importance should

be provided to determine which ones are less important to the reconstruction and can

be deleted.

The most important knot should be the one that contribute the most to the current

reconstruction, i.e. by deleting it, the reconstruction will have the greatest change.

The underlying thought is that only few knots are needed to well approximate a at

region, while a cluster of knots may needed in rough regions with lots of details to

make an equally good approximation. So those knots appear to be less important to

the reconstruction means there are too many of them than needed compared with the

information in these areas, i.e. redundant. A natural measurement of the change in

reconstruction is the underlying cost function for the problem. For edge-preserving

regularizer, the cost function is:

cost = ky � Bak22 + �2x'[Dx(Ba)] + �2y'[Dy(Ba)]: (4.2)

The edge-preserving regularization is to �nd the solution â minimizes the cost

function. And apparently, the more knots used(or the larger dimension the a has),

the better resolution the reconstruction should have. Thus the cost function increases

each time a knot is deleted from current knot sequence. And the knots that cause

the larger increase of the cost function are of the more importance, i.e. have larger

weight in the reconstruction.

An illustration is shown in Fig. 4.2. Here a simple B-Spline approximation prob-

lem is used to get better understanding. The cost of deleting each knot is measured by

Mean Squared Error(MSE). For the cross-well reconstruction problem, the situation

is quite analogous, except that the cost function is measured by the edge-preserving
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regularizer.
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Figure 4.2: Illustration of weight of knot. (a)10 equally-spaced knots to approximate
the data(dotted line); (b)Approximation of deleting the 7th knot; (c)Approximation
of deleting the 3rd knot; (d)Cost(Weight) of each knot.

4.5.2 Knots Deletion

After measuring the weight of each knot, we can start to delete those redundant ones.

First, sort the knots in the descendant order of weight. Then delete knots one by

one in the order of their weights until the resulting reconstruction is coarse enough

but not too much worse. The criteria is set to be that the cost function value after

deletion does not exceed the one at the beginning of each iteration(i.e. before the

knot insertion). The idea is that the whole knot insertion and deletion process is

actually to improve the knot distribution. Thus, for each iteration of such process,

the resulted cost should not exceed the initial one, otherwise, the knot distribution

is not improved but worsened. The speci�c mechanics of deleting a single knot has
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been discussed in many papers [38] [39].

Consider a simple 1D example in Fig. 4.3, notice the knot distribution here is not

the same as of Fig. 4.2. More knots are assigned to the bump area to simulate the

result of inserting cluster of knots in large curvature regions. In this case, the weight

of each knot are shown in Fig. 4.3(b). If we delete knots in the order based on this

weight measurement, we may delete the 12th knot �rst then the 13th knot because

they have the smallest cost. However, as shown in Fig. 4.3(c), after deleting the 12th

knot, the actual weights of some knots change, speci�cally for those adjacent knots.

If we still try to delete the 13th knot obeying the deletion order given by the previous

weight measurement, the resulted approximation error may be too large so that the

deletion process will terminate. The result is far from satisfying, because actually we

can delete more knots than we did without violating the tolerance.
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Figure 4.3: Illustration of vicinity e�ects of weight measurement. (a)Initial knots
distribution and approximation curve; (b)Weight measurement; (c)Weight of each
knot after deleting the 12th knot; (d)Weight of each knot after deleting the 12th and
13th knot.
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The problem arises from the fact that B-Splines have supports leaking into adja-

cent knot intervals, thus we can not ignore their e�ects on vicinity regions. In another

word, deleting a knot does have e�ects on its vicinity regions, and change the actual

weight of adjacent knots. To solve the problem, one solution would be to recompute

the weight of each knot in each step after a knot has been deleted. This will signif-

icantly increase the complexity of the algorithm. Considering the local support of

B-Splines, deleting one knot will not bring much e�ect to remote regions. Thus, an

alternative and much eÆcient way to avoid the vicinity e�ects may be continue using

the weights we get before the deletion but simply not to delete adjacent knots to the

one who has been just deleted. Therefore, we will only need to measure the weight of

each knot once and choose and delete several knots at a time. Since we have avoided

deleting adjacent knots, the measured weight of each knot would be a good estimate

of the actual weight during the knot deletion procedure.

The knot pruning algorithm is described as the following:

Algorithm 2: Knot Pruning

Input: Knot sequence Qi; i = 1; 2; :::; m

Corresponding reconstruction f(Q)

Threshold C0

Output: New knot sequence P �j ; j = 1; 2; :::; n

Begin:

W = Weight(Q); *Compute weights(costs) *

[W; index] = Sort(W ); *Sort in ascending order*

i = 0; cost = 0;

P � = Q;

While cost � C0

f
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i = i + 1

if (Neighbour(Q(index(i)))) 2 P � then f

fP �g = fP �g �Q(index(i)) *Delete one knot at a time*

cost = Weight(P �);

g

g

End

4.6 Overall Algorithm

The knot re�ning and pruning algorithm can be integrated together to form the

overall algorithm to �nd a suitable knot distribution. The ow chart of the overall

algorithm is shown below in Fig. 4.4:

Curvature Computing Knot Insertion EstimationInit.

Exit Estimation Knot Deletion

Refining

Pruning

done?

Yes

No

Weight Computing

Figure 4.4: Flow chart of knot optimization algorithm.

The knot re�ning part is to eÆciently insert new knots according to the curva-

ture information of current coarse reconstruction. The knot pruning part is to �nd
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and delete the redundant knots, either previously exist or newly inserted, based on a

�ner reconstruction. Therefore, the overall e�ect is to insert knots �rstly then make

correction to it by pruning. In each iteration, the resulted knot distribution is guar-

anteed to be better than the previous one in the sense of having less cost. As the

algorithm converges, a more suitable knot distribution can be found, i.e. with much

fewer number of knots than that of pixels and the estimation is within certain error.

The algorithm will terminate while no more improvement has been obtained, i.e. the

current cost function almost equals the last result.

Fig.4.5 shows the result of using our algorithm for the example in previous Chap-

ters using the Titanium data. The resulting knot distribution makes the approxi-

mation with MSE < 0:1. Compared with Fig. 2.8, our algorithm gets a smaller

approximation error while using fewer but well-distributed knots. In Fig. 2.8(d),

12 selected knots were used. Our algorithm only ends up with 10 knots and the

approximate error is less in the means of MSE.
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Figure 4.5: Using knots re�ning and pruning algorithm on the Titanium data �tting
problem.
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4.7 Examples

The 2D cross-well example used in Chapter 3 is revisited here. The previous

Tikhonv reconstruction and edge-preserving recontruction results are shown in Fig.

4.6 as comparisons. The resulting reconstructions and corresponding knot distribu-

tions are shown in Fig. 4.7. The algorithm converges fast (Fig. 4.8). The knot

distributions are what we expected, i.e. cluster around edges and only few on at

areas. The total number of B-Spline basis used are less than 50, compared with

the total pixel number 21 � 21 = 441, approximately a 8 times or more reduction

in complexity is achieved. Consider that the objects are large and have many de-

tails, especially for the `+' shaped one, compared with the total area, the results are

satisfying. For applications with larger dimensions and relatively small objects, the

decrease in complexity will be signi�cant. Although the MSE almost doubled , we

can still state by visionary obervations that the B-Spline based reconstructions do

not degrade much compared with the pixel based ones.

Another example is the 3-layer structure we may be of interest in practice, the

result is shown in Fig. 4.8. The algorithm works well, converges fast and only ends

up with about 30 knots.

The only problem is that the saw shaped parts of the object are not well recon-

structed. Only one knot is assigned in the vertical direction. The problem arises from

the using of tensor-product B-Splines, the approximation patches should always be

rectangular. For the object we have, in the vertical direction, the upper side of it has

one signi�cant edge, while the lower side of it has lots of details(saws). Since we were

using rectangular patches, a compromise should be made for the knots distribution

here. Using few knots will decrease the complexity but sacri�ce the details at lower

part. Using more knots are a waste for the upper side but are needed by the details at

lower part. It's a diÆculty for our approach. Better solutions may be using triangular
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patches instead of tensor-product B-Splines[49] [50]. It will be considered in future

work.

4.8 Monte-Carlo Simulation

To better understand the performance of the algorithm, we will analyze Monte-

Carlo simulations in this section. The process is to repeatedly simulate the test by

applying di�erent noises at the same SNR level. With large number of such tests, we

can get the statistics of how the algorithm performs under such SNR level.

In this section, we use a 3-layer example to simulation the actual situation of the

cross-well problem stated before. The result in Fig. 4.9(b) is obtained by applying the

B-Splines edge-preserving reconstruction method. The algorithm converges fast and

the overall time of achieving the estimate is about half of the time of the pixel-based

reconstruction.

In Fig. 4.9(a), the average pixel-based reconstruction of the 3-layer problem is

shown. The average B-Spline reconstruction is shown in Fig. 4.9(b). The B-Spline

result is quite good and does not degrade much than the pixel-based one, and at

the same time, by utilizing much fewer basis, the complexity has been signi�cant

reduced. To understand the knot distributions of the Monte-Carlo simulations, a 2D

histogram for all the knots ended in the 200 tests is shown in Fig. 4.9(c). It shows the

knot distributions have certain relationship with the object structure as we expected.

Speci�cally, there are higher possibilities for knots being place around edges of the

object, and the density of knots are also larger there. To make it clear, a scaled

version of knot distribution has been shown in Fig. 4.9(d). It only shows those knots

whose frequencies of being chosen are larger than 0.1 during all the 200 tests. In

another word, the knots shown here are essential and most eÆcient to represent the

object.
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To further determine the average knot distribution, since we used tensor-product

B-Splines, separate the 2D histogram into two 1D histograms will be helpful. The

results are shown in �g. Fig. 4.10.

In Fig.4.10(a)(b), the 1D histograms of knot distribution along x and y directions

are shown. Since we use tensor-product B-Splines, the separation of knots in di�erent

dimensions is applicable. By choosing certain threshold, we can determine which

knots are to be used. Here, a threshold of 0.13 has been applied to both x and

y dimensions, and the resulted reconstruction and knot distribution are shown in

4.10(c)(d). Since we use tensor-product B-Splines, the overall knot distribution is

abided by the rectangular grid. The variance of estimates over the 200 reconstructions

are shown in Fig. 4.11.

The Monte-Carlo simulation has shown that the B-Spline algorithm is eÆcient

that it ends up with much fewer knots than that of pixels and the reconstruction

does not degrade much. Generally, the algorithm can lead to a 8-10 times decreasing

in the complexity of the problem.
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Figure 4.6: Example: Reconstruction obtained by Tikhonov regularization and edge-
preserving regularization method. (a)'+' shaped object, Tikhonov regularization
(MSE = 5.7393) (b)rectangular object, Tikhonov regularization (MSE = 5.2943)
(c)'+' shaped object, edge-preserving regularization (MSE = 3.3930) (d)rectangular
object, edge-preserving regularization (MSE = 2.9372)
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Figure 4.7: Example: Reconstruction and knots distribution using B-Spline based
edge-preserving regularizer. (a),(b) '+' shaped object; (MSE = 7.8461) (c),(d) rect-
angular object. (MSE = 5.7867)
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Figure 4.8: Example: B-Spline reconstruction for 3-layer problem (a)Object;
(b)Reconstruction; (c)Knots distribution; (d)Convergence of cost (Each iteration con-
sists of knot inserting and knot pruning procedure.)
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Figure 4.9: Monte-Carlo simulation for the 3-layer problem. (SNR = 20dB)
(a)Average pixel-based reconstruction (MSE = 2.0874); (b)Average B-Spline recon-
struction (MSE = 5.8922); (c)Total knots distribution; (d)Scaled knots distribution.
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Figure 4.10: Knot selection by using separate 1D histograms. (a)Histogram of knot
distribution along x direction. (b)Histogram of knot distribution along y direction.
(c)Reconstruction based on histogram analysis. (d)Corresponding knot distribution.
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Figure 4.11: Variance of the Monte-Carlo simulation (2 di�erent viewpoints)



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis developed an adaptive B-Spline method for solving low order image

reconstruction problems. Also an edge-preserving regularizer was introduced and inte-

grated to make �ne reconstructions. The edge-preserving regularizer has been shown

to be very eÆcient in countering the smoothing e�ects of Tikhonov regularization and

preserving the edges. But for multi-dimensional problems, the edge-preserving regu-

larization leads to signi�cant large complexity. To overcome this de�ciency, B-Spline

basis was chosen to make simple but eÆcient representation of the objects which de-

creased the dimension of the problem. Furthermore, an adaptive knot re�ning and

knot pruning method was developed to automatically �nd a suitable knot distribution

which is critical in solving the problem. Some examples were shown to illustrate the

adaptive algorithm and the results were satisfying.

In Chapter 2, some background knowledge was introduced. First, the linear inverse

problem model was given. The diÆculty in solving the inverse problems lies in the

ill-posed nature of such problems. As a result, the least squares solution always

tends to have large high-frequency artifacts, and small observation errors would bring

71
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large errors in solutions. After analyzing the problem from the SVD(Singular Value

Decomposition) point of view, the regularization methods were introduced to �lter

out the abruptness brought by small singular values �i. The smoothing e�ects of

Tikhonov regularization were investigated and led to the thought of edge-preserving

regularization was introduced. Second, we introduced the basic knowledge of B-

Splines. After giving the de�nition, some interesting properties, such as local support,

minimal support and linear independent of B-Splines were introduced. A further

study in the e�ects of knot distribution to the smoothness of the approximation

showed that we can change the approximation curve/surface by simply manipulating

the knots. An example was shown that proper placement of knots can lead to eÆcient

representation of the object. Third, the geometries of B-Splines were introduced to

compute the B-Spline surface curvatures, which is the guide of our manipulation of

knots distribution. Tensor-product B-Splines was used in 2D case, and Gaussian and

absolute curvatures were introduced.

In Chapter 3, a thorough discussion of edge-preserving regularization was given.

The de�ciency of Tikhonov regularization is that it blurs the edges while �ltering

out high-frequency artifacts. A study on the regularization term showed that a non-

quadratic regularization functions can be used to preserve edges. Some common

properties of such regularization functions were given and a non-linear least squares

solution was proposed to solve the problem. Then a simple 1D example showed the

edge-preserving regularizer did work. While the CRB analysis showed an interesting

fact that with better preserving the edges, the error of estimate of edge-preserving

regularizer actually had larger variance. A major problem of edge-preserving regu-

larizer was its huge complexity, since the Gauss-Newton method need to evaluate all

pixels in each iteration.

In Chapter 4, a B-Spline based adaptive algorithm was developed to decrease

the large complexity of edge-preserving regularizer. The motivation was from that
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the object can be eÆciently represented using B-Splines. Thus after remodeling the

inverse problem we had, we found that the dimension of the problem can be signi�-

cantly decreased if we could �nd a suitable set of B-Splines. The process of �nding

such basis was actually to �nd a good knot distribution. Based on the discussions

in Chapter 3, a knot re�ning and pruning algorithm was developed to adaptively

�nding a suboptimal solution. The re�ning part was to eÆciently insert new knots

according to curvature information. The pruning part was to �nd and delete those

redundant knots. A measurement of the weight of each knot was given to assist the

pruning process. The whole algorithm works to �nd a suitable set of knots with the

reconstruction is within certain error. The 2D cross-well problem was revisited by

using the algorithm, and the result appeared to be satisfying. It was able to decrease

the dimension of the problem to 1/8 compared with the pixel-based approach, and

the iteration process converges in about 10 iterations .

5.2 Future Work

Overall, this thesis has shown that the adaptive B-Spline incorporated with edge-

preserving regularizer is useful and eÆcient in solving image reconstruction problems.

The algorithm can adaptive locate the edges of the object as well as signi�cantly

decrease the complexity. However, there are still many aspects need to be explored

and re�ned.

� The edge-preserving regularizer has been shown to be able to reconstruct the

edges well. However, the CRB analysis in Chapter 3 also showed that the esti-

mation variance at the edges increased compared with Tikhonov solutions. It is

an interesting phenomenon. It seems the edge-preserving regularizer can locate

the edges more accurately, but at the same time the estimation variance has

been sacri�ced. Further analysis in the framework of detection and estimation
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theory may lead to some in-depth understanding of the problem.

� The knot re�ning process used curvature information as a guide, thus it de-

pended much on the selection of threshold K0. We were just using heuristic

values in the examples. One could use a set of di�erent thresholds to provide

multiple results, each focusing on curvatures of di�erent ranges. It'd better if

there is a way to adaptively set the threshold.

� The knot pruning process is currently a greedy search process. An estimation

of the weight of each knot was made �rst, then we tried to delete them one

by one until the error of estimate exceeded a certain value. Though we have

considered the vicinity e�ects and will not delete adjacent knots in the same

iteration, the weight estimation may not be good enough to guide the deletion

process. Actually, we also tried to organize the knots in quad-tree structure

and use Branch-and-Bound method to search it [51]. Unfortunately, it was too

diÆcult to determine the bounding function and we did not get good results.

Further study of the pruning method may be helpful.

� In 2D case, we used tensor-product B-Splines. The advantage is that it is easily

to be manipulated and the knots on di�erent dimensions are separable. The

major disadvantage is that we are bound to use rectangular patches to make the

estimation thus lose some exibility in manipulating the knots. A triangular

patch [49] [50] may be interesting, though the computations are more diÆcult,

the exibility it brings will be worthy of trying.
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Appendix A

Derivation of CRB

In our cross-well tomography problem, we set up the following methods:

1. Tikhonov method:

G(f) =
1

�2
ky � Afk22 + �2xkDxfk

2
2 + �2ykDyfk

2
2 (A.1)

2. Edge preserving method:

G(f) =
1

�2
ky � Afk22 + �2x�

T
x (f)�x(f) + �2y�

T
y (f)�y(f) (A.2)

It will be helpful to learn the nature of the problem if we can �nd the Cramer-Rao

Bound(CRB) evaluated for the given object f, which represent the estimation variance

of data for di�erent cross-well regions.

For this problem we can �nd the CRB by the following way,

Write G(f) as:

G(f) = eT (f)e(f) (A.3)

and Let

J =
@e(f)

@f
(A.4)
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Note here f is a column vector, and the partial derivative is de�ned as:

[J ]i;j =
@ej
@fi

(A.5)

Thus the Fisher's Information is:

F = JT � J (A.6)

and CRB can be found by:

CRB = F�1 = (JT � J)�1 (A.7)

A.1 Tikhonov Method

In this case, it's easily to see that:

e(f) = [
1

�
(y � Af); �xDxf; �yDyf ]

T (A.8)

Where Dx and Dy are derivative matrix such that:

Dx(f) = Dx � f = fi+1;j � fi;j (A.9)

Dy(f) = Dy � f = fi;j+1 � fi;j (A.10)

Here, simply use the de�nition of derivative of matrices and vectors:

d

dx
Ax = AT (A.11)

d

dx
xTA = A (A.12)
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where, A is matrix and x is vector.

We can get:

J =
@e

@f
=

2
6664

1
�
A

�xDx

�yDy

3
7775 (A.13)

and,

CRB = (JT � J)�1 (A.14)

A.2 Edge Preserving Method

In this, we have,

e(f) = [
1

�
(y � Af); �x�(Dxf); �y�(Dyf)]

T (A.15)

where,

�T (g)�(g) =
g2

1 + g2
(A.16)

�(g) =
gp

1 + g2
(A.17)

Thus, we can compute the derivative of e(f) by using the following equation:

[
@�

@f
]i;j =

@�j

@fi
=
X
k

@�j

@gk

@gk
@fi

(A.18)

First, compute @�
@g
, where g = Dxf or g = Dyf :

@�j

@gk
=

@

@gk
(

gjq
1 + g2j

) = (1 + g2j )
� 3

2 Æ(j � k) (A.19)
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Second,
@Dxf

@f
= DT

x (A.20)

@Dyf

@f
= DT

y (A.21)

Therefore, we get,

[
@�

@f
]i;j =

@�j

@fi
=
X
k

1

(1 + g2j )
3

2

Æ(j � k)[Dx]k;i =
1

(1 + g2j )
3

2

[Dx]j;i (A.22)

Write it in matrix form, we get:

@�x

@f
= Gx �Dx;

@�y

@f
= Gy �Dy (A.23)

where

Gx = diag([1 + (Dxf)
2
i ]
� 3

2 ); Gy = diag([1 + (Dxf)
2
i ]
� 3

2 ) (A.24)

Finally, we get:

J =
@e

@f
=

2
6664

1
�
A;

�xGxDx;

�yGyDy

3
7775 (A.25)

and

CRB = (JT � J)�1 (A.26)


