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Abstract

We present a new application of the recursive T-matrix algorithm to calculate the scattered
field from a single or multiple metallic cylinders of arbitrary shapes. Using the equivalence
theorem each metallic object is replaced with small metallic cylinders along its perimeter, then
scattered fields are calculated using the recursive T-matrix algorithm. Results are verified with
those in the literature and analytical calculations.
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1 Introduction

The transition matrix (T-matrix) technique is known to be an efficient electromagnetic for-
ward solver for scattering problems involving objects with simple shapes. Finite difference and
method of moments (MoM) techniques both discretize the entire region of interest resulting in a
large number of unknowns, whereas T-matrix methods replace this discretization with harmonic
expansions of the fields thereby reducing the number of unknowns for numerous problems. Wa-
terman [1] developed the T-matrix technique for single metallic or dielectric scatterers. Peterson
et.al. [2] introduced an iterative algorithm which finds the scattering due to multiple scatterers.
Recently Chew and co-workers have developed a number of fast, recursive T-matrix algorithms for
determining the scattered fields in a variety of scenarios [3-9]. Among this work, in [4], problems
involving electrically large dielectric objects are considered. By tesselating the objects into many
small cylindrical sub-scatterers and using multipole expansions of the fields for each sub-scatterer
the authors arrive at a highly efficient, T-matrix based algorithm for computing the scattered
fields. In [7], Chew et.al. consider a scattering problem involving a group of metallic strips. Here
the method of moments is used to compute the T-matrices for each, individual strip and the same
recursion as in [6] is employed to solve the overall, multi-object scattering problem. In [8] the
scattered field from an ogive shaped scatterer with metallic and dielectric parts is found using the
recursive T-matrix algorithm. In that paper, as in [7], the metallic scatterer is decomposed into
a collection of strips arrayed about the boundary and the T-matrices for the individual strips are
found using the method of moments.

In this letter we consider an alternative sub-scatterer discretization for metallic objects from
that in [7,8]. Instead of using metallic strips to model the perimeter of scatterers, we use metallic

cylinders (similar to the concept in [4]) placed about the perimeter and employ the same recursive



algorithm given in [4] to calculate the scattered field. As a result, we obtained an accurate, efficient
forward solver which does not require the use of method of moments to form the single scatterer T-
matrices. Rather we obtained these quantities by using closed form, low order harmonic expansions
associated with the small metallic cylinders. We apply this method to single electrically large
metallic objects and verify the results with those in literature and analytical results. Additionally we
demonstrate the usefulness of the method for the multi-object case by verifying against previously

published results.

2 Recursive T-matrix Algorithm
The algorithms in [3,4,6,7,9] are order recursive methods for constructing the T-matrix for a
multi-object scattering problem given the T-matrices for each individual object. The algorithm uses
the basic principle of the single scatterer T-matrix formulas in that for each object, the scattered
fields from others are assumed a part of a total incident field. The recursion starts with the T-
matrices of individual scatterers, then one by one scatterers are incorporated into the equation and
the T-matrices are updated until the final form of the T-matrix, including all multiple scattering
effects, is obtained.
Formally, for L scatterers, the harmonic expansion of scattered field can be written as [4]:
L
() = Y (1) Ty1)Bi 00 (1)
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where Ty is the T-matrix for :th object inZthe presence of L scatterers, a is the coefficient vector
used in the expansion of the incident plane wave in terms of cylindrical basis functions and 3, , is the
translation matrix used to translate same type basis functions between reference coordinate systems.
(The translation matrices 3, o contain Bessel functions and complex exponentials. For details about

these matrices see [2,3].) Expansion of the scattered field in (1) is valid if all observation points



are outside the smallest circle enclosing all scatterers. Following Chew’s derivation, the recursive
construction of T;() can be written as [4, eq.10-11] :
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where n = 1,2,...,L,1 = 1,2,...,n and a,; is another translation matrix [3].The recursion starts
with the individual T-matrices, T;(1), of the scatterers, i.e. the T-matrix of the ith scatterer when
there are no other scatterers in the medium.

Theoretically the matrices e, 3, T are of infinite dimension. The T-matrix algorithms truncate
these matrices with finite values N and M such that the residual error is below the machine
precision or acceptable levels. Here N represents the number of harmonics used to expand the
fields at the scattering origin and M represents the number of harmonics used to expand the fields
in the objects’ local coordinate systems. Thus, the T-matrix is of size M x M, 3, is of size
M X N and oy 41 is of size M x M. It has been shown that computational complexity of (2)-(3)
is O(L*M?N) for L scatterers [4].

The contribution of this letter is to show that, based on the equivalence theorem, recursive
T-matrix algorithms can be used to calculate the scattered fields from metallic objects by placing
small metallic cylinders on their perimeter. Traditionally, the recursive T-matrix algorithm has
been applied in one of two manners. In the case of dielectric scatterers, the whole object was
decomposed into small cylinders, low order harmonic expansions were used to represent the fields
from each object, and the recursive algorithm was used to solve the scattering problem. For metallic

objects, the equivalence theorem was used to decompose the surface of the scatterer into small



strips, moment methods were then employed to find the individual T-matrices for each strip, and
the same T-matrix recursions were used to solve the overall scattering problem. The objective of
this letter is to show that one may make use of the cylinder approach (Fig.1) as well for the metallic
scattering problem and still obtain highly accurate solutions. In particular, by using cylinders, one
may employ the closed-form harmonic expansion method to find the individual scatterers thereby
avoiding the moment method computation. In the next section, we will give examples of scattering
from circular and rectangular cylinders and the results are verified with those in the literature or

analytical calculations.

3 Examples and Discussions
In this section we verify that replacing metallic objects with small metallic cylinders along their
perimeters actually produces the results reported in the literature or results obtained analytically.

First we define the terms used in this section. The normalized scattering field pattern is defined as:

|¢56a(£)| } ) (4)
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Normalized power density, or the “gain”, is defined as:
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In all examples the cylinders are embedded in free space with an F, polarized plane wave incident
on them. The first example is the scattering from a single circular cylinder of radius 0.8\ (ka = 5).
As seen in Fig. 2(a), the cylinder is approximated by 60 smaller cylinders along its circumference
which corresponds to a sampling 12 cylinders per wavelength. The normalized scattering field
pattern, F'(¢), obtained from the recursive algorithm is plotted against the analytical solution in
Fig. 2(b). The second example is the scattering from two circular cylinders with radii of 0.8\

(ka = 5) and separated by a distance 2.55\ (kd = 16). As in previous example, each cylinder is



approximated by 60 small metallic cylinders with 12 cylinders per wavelength. Fig. 3(a) shows
the scattering geometry and Fig. 3(b) compares the normalized scattering patterns obtained using
the recursive T-matrix algorithm with those given in [10]. The last example shows the normalized
power densities for a slanted rectangular cylinder for two different sizes. The geometry is shown
in Fig. 4(a) and the far field power densities, Gg(¢), for ka = 3 and ka = 5 (¢ = 0.48X and
a = 0.8\, both with @ = 2b) are depicted in Fig. 4(b). For both cases, the perimeter is sampled
at approximately 13 cylinders per wavelength. In this figure, the scattering patterns are compared
with the results reported in [11]. As these plots have shown, the scattered fields from metallic
objects can be found by replacing these objects with smaller cylinders along the perimeter and

then using the recursive T-matrix algorithm of [4].

4 Conclusion
In this letter an alternative discretization along the perimeter of metallic scatterers is used with
recursive T-matrix algorithm to calculate the scattered field. The results are verified with previous

work.
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Figure Captions
Figure 1: Tessellation of metallic cylinders along their perimeters

Figure 2: Comparison of normalized scattering field pattern calculated using the recursive T-
matrix algorithm with the analytically calculated one.

Figure 3: Comparison of normalized scattering field pattern calculated using the recursive T-
matrix algorithm with [10].

Figure 4: Comparison of normalized power density calculated using the recursive T-matrix
algorithm with [11].
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