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Abstract

In this paper we explore the utility of multiscale and statistical techniques for detecting
and characterizing the structure of localized anomalies in a medium based upon observations
of scattered energy obtained at the boundaries of the region of interest. Wavelet transform
techniques are used to provide an efficient and physically meaningful method for modeling the
non-anomalous structure of the medium under investigation. We employ decision-theoretic
methods both to analyze a variety of difficulties associated with the anomaly detection problem
and as the basis for an algorithm to perform anomaly detection and estimation. These methods
allow for a quantitative evaluation of the manner in which the performance of the algorithms is
impacted by the amplitudes, spatial sizes, and positions of anomalous areas in the overall region
of interest. Given the insight provided by this work, we formulate and analyze an algorithm for
determining the number, location, and magnitudes associated with a set of anomaly structures.
This approach is based upon the use of a Generalized, M-ary Likelihood Ratio Test to succes-
sively subdivide the region as a means of localizing anomalous areas in both space and scale.
Examples of our multiscale inversion algorithm are presented using the Born approximation of
an electrical conductivity problem formulated so as to illustrate many of the features associ-
ated with similar detection problems arising in fields such as geophysical prospecting, ultrasonic
imaging, and medical imaging.
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1 Introduction

The goal of many applied problems is the recovery of information regarding the structure of a
physical medium based upon measurements of scattered radiation collected at the boundaries [8,
15,19,43,48]. For some of these tomographic-type inverse problems, one seeks a complete description
(in the form of an image in two dimensions or a volumetric rendering in 3D) of the structure of
the medium. In other cases, however, the full reconstruction is not needed; rather, the ultimate
objective is to extract the structure of areas in the medium which are, in some sense, anomalous;
that is, regions where the nature of the medium differs from some prior set of expectations. This
anomaly detection problem arises, for example, in geophysical prospecting where in many instances
the fundamental issue is the determination of oil bearing regions in the earth and medical imaging
where tumor detection is of import.

As discussed in [27,29,31,33,34,44,45] for many of the application areas previously cited, meth-
ods for solving the anomaly detection problem typically proceed by initially generating the full,
pixel-by-pixel reconstruction and subsequently post-processing the results to determine the nature
of anomalous structures. The necessity of generating a solution to the so-called “full inverse prob-
lem” however makes these schemes rather unattractive. Indeed, for many interesting applications,
obtaining a full reconstruction of the medium presents a collection of well-known and extensively
studied challenges [2,3,40] which suggest that solving this problem as the first step toward localizing
anomalies should be avoided. In this paper we demonstrate the utility of a multiscale framework
for explicitly solving the spatial anomaly detection problem in the context of linearized inverse
scattering (also known as diffraction tomography [15]) applications.

The basis for solving the anomaly detection problem is the use of wavelet transforms and
the statistical theories of optimal estimation and detection to develop both efficient algorithms
for anomaly detection and localization and analytical insight into the nature of the problem and
the limits of performance that result from the fundamental physics relating the characteristics of
the medium to the observations. In [39,40], we introduced the use of wavelet transforms and
multiresolutional statistical techniques for overcoming many of the challenges associated with the
solution of full reconstruction, linearized inverse electrical conductivity problems. Many of the
results in [39,40] followed from the use of multiscale, statistical regularization methods for the
incorporation of prior knowledge into the inversion routine. The use of such prior statistical models
automatically implies an assumption of some type of statistical regularity on the field and therefore
fails to capture adequately the presence of anomalies or localized inhomogeneities. Thus, roughly
stated, the problem considered in this paper is the detection, localization, and estimation of such
anomalies superimposed on a background of know statistical structure and observed indirectly
through the scattering measurements.

The consideration of the anomaly detection problem raises a variety of questions beyond those
arising in the full reconstruction inverse problem. How many anomalies are there? Where are
they located? What are their sizes? What are their amplitudes? Given answers to the first
three of these problems, the fourth is a variant of the full inverse problem in which we focus our
attention on determining the magnitudes of only the previously identified anomalous regions. The
determination of the number, sizes and locations of the anomalous regions is, however, a potentially
daunting collection of tasks as a result of the vast number of combinations of anomaly structures
which, in principle, must be explored in the generation of a solution.

Over the past decade, significant work has been performed in the area of anomaly detection
from tomographic-type measurements. In [44], Rossi and Willsky were concerned primarily with
the use of estimation-theoretic analysis and algorithmic methods for determining the location of
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a single object of known size and structure given noisy and sparse computed tomography (CT)
measurements. Recently, these results have been extended by Devaney and co-workers [16,17,46]
in consideration of diffraction tomography (DT) and exact scattering applications. More closely
related to the problem of interest in this paper is the work of Bresler, Fessler and Macovski. In [5],
the authors examined a 3D reconstruction problem from CT measurements in which the first step of
their algorithm required the localization of an unknown number of anomalies of unknown structure.
The solution to this problem presented in [5] was to estimate the required parameters for a pre-
determined, maximum number of anomalies knowing that further processing would eliminate falsely
identified anomalous regions.

In this paper, we present a scale-recursive algorithm for anomaly detection and characterization
given DT-type data. Here, the tools of optimal hypothesis testing are used to make a sequence of
anomaly detection and localization decisions starting at coarse scales, thereby allowing for the detec-
tion of spatially large anomaly structures and providing coarse localization of finer scale anomalies,
and then moving to finer ones. This algorithm is significant for two reasons. First, this approach
provides a computationally efficient and accurate means of localizing areas of anomalous behavior.
Second, the anomaly characterization algorithm may be viewed as a highly efficient first stage in a
larger image processing application. Specifically, the output of the algorithm could be refined (for
example via the methods described in [5,44] generalized to the case of diffraction tomography) by
higher level processing stages concerned with issues such as identification, classification, or imaging.
Toward this end, in Section 6.3, we present one way in which knowledge of the anomaly structures
can be used to supplement the information in the prior statistical model in order to improve the
output of a least-squares, pixel-by-pixel reconstruction of the region of interest.

In addition to the development of the scale-recursive processing algorithm, by using these same
statistical techniques, we provide analysis of the anomaly detection problem that not only yields
overall performance limits, but also guides the detection procedure. For example, we are able to
define and determine the statistical distinguishability of a small scale, large amplitude anomaly
from a larger scale, but smaller magnitude structure or a pair of closely spaced anomalies from a
single, broader anomalous region. The use of the results from this analysis can then tell us at what
scale and in which regions to terminate our detection procedure, i.e. when finer scale localization
is unwarranted given the available data.

In Section 2, we present an overview of the particular anomaly detection problem of interest in
this work. The formal definition of the anomaly detection problem as one of optimal hypothesis
testing and a review of results from statistical decision theory is provided in Section 3. In Section
4 we demonstrate the utility of our framework in characterizing the detectability of an anomaly.
Section 5 is devoted to the question of the distinguishability of anomalies as a function of their
relative positions and structures. In Section 6 we develop and analyze a scale-recursive algorithm
for anomaly detection, localization, and estimation, and present the results of its performance under
a variety of experiment conditions. Conclusions reached in this paper and directions for further
work are presented in Section 7.

2 A Multiscale Framework for Inverse Scattering

2.1 The Scattering Problem

The context in which we develop our anomaly detection algorithm is a low-frequency, two-dimen-
sional inverse electrical conductivity problem illustrated in Figure 1 and similar to problems arising
in the field of geophysical prospecting [23,24,48] and medical imaging using electrical impedance
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Figure 1: Configuration of inverse conductivity problem. The electromagnetic sources (indicated by
the black circles) emit time-harmonic waves into a lossy medium which subsequently are scattered
by conductivity inhomogeneities located in the darkly shaded rectangle, A. The secondary fields are
observed at one or both receiver arrays located on either vertical edge of region under investigation.
Based upon these observations, the objective of the inverse problem is the reconstruction of the
conductivity perturbation.

tomography [18-20,22,29-31,43]. Here, we have an array of electromagnetic line-sources oriented
perpendicularly to the page emitting time-harmonic, waves into a lossy medium. The electrical
properties of this environment are assumed to be decomposed into the sum of an infinite, known,
and constant background and a conductivity perturbation, g, with support restricted to region A in
Figure 1. The fields from the transmitters are scattered by ¢, and the secondary fields are observed
at one or both of the receiver arrays positioned on the vertical edges of region A. Based upon these
observations, the objective of the problem is to detect and localize areas in the region of interest
where the structure of ¢ is, in a sense to be defined below, anomalous.

We consider the collection of eighteen scattering experiments defined in Table 1 where each
such experiment produces a vector of measurements comprised of the in-phase and quadrature
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components of the observed scattered field obtained over one of the two receiver arrays due to
energy put into the medium from one of the sources operating at a particular frequency. As
is shown in [9], the use of the first Born approximation yields the following linear relationship
th scattering experiment, ;, and a discrete
representation of the two dimensional conductivity anomaly, g

yy=Tg+n; 1=1,2,...,18 (1)

where the matrices 7; encompass the (linearized) physics and n; is an additive, zero-mean, un-
th

between the vector of observations associated with the 2

correlated, random vector representing the noise in the data. That is, the ¢** noise is modeled
as n; ~ N(0,r;I) where I is an appropriately sized identity matrix.! The discrete representation
of the conductivity ¢ is constructed using the so-called “pulse” set of basis functions where the
conductivity is assumed to be piecewise constant over an N, , X N, . grid of square pixels covering
A [26]. For future reference, we define the “stacked” system of data

y=Tg+n (2)
where yT = [yl yI ...yl] with T and n defined accordingly.

Experiment | Source Frequency Receiver
number Position | of source (Hz) | Array
1-6 0:20:100 | fur = 10,000 Left
7-12 | 0:20:100 | famp = 1,000 | Left
13 - 18 0:20:100 Jfro =100 Right

Table 1: Data set definitions for observation processes of interest in the paper. The notation
x 1y : z indicated that the sources are distributed in y increments along a line from z to z.

2.2 A Multiscale Representation of the Problem
The detection techniques developed in Sections 4 — 6 are based upon a linear model relating mul-
tiresolution representations of ¢ and n; to a multiresolution representation the data, ;. A scale-
space representation of the problem has been chosen for two reasons. First, the matrices T; in
(1) are of the class which are made sparse in the wavelet transform domain [1,4] thereby lowering
the computational complexity of the detection algorithm in Section 6. Although not considered
extensively in this work, such computational benefits are explored in [41]. Second, as we discuss
below, a collection of useful and physically meaningful models for the non-anomalous behavior of
the conductivity field are specified easily in the wavelet domain.
Following the work in [39,40], orthonormal, discrete wavelet transform (DW'T) [14] operators
(matrices) W; and W, are used to move from:lphysical to scale space in the following manner
ni = Wiye = WTTW, Y (Wog) + Win, = O,y + v; (3)
where WEWg = WI'W; = I follows from the orthonormality of the wavelet transformation [14,35].
There are a variety of reasons why we may wish to use different transforms for the data than for
g. First, from Figure 1, each data set is to be collected over a 1D array of receivers. Hence, W;
will act on a one dimensional signal while W, is used to transform the 2D conductivity profile.
Additionally, it may be the case that the lengths of each data record vary from one observation
process to the next. Finally, analogously to the physical space case, we define the stacked systems
n=0y+v (4)
where = [pI nf ...nk]T, © and v are defined analogously and v ~ AN(0,R) with R =
diag(ril ,rol, ..., r18]).

!The notation z ~ N (m, P)indicates that the random vector z has a Gaussian probability distribution with mean
m and covariance matrix P.
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2.3 Multiscale Prior Models

Recently there has been significant work in the use of fractal models for describing the spatial
distribution of geophysical quantities. In [13], Crossley and Jensen explore the propagation of
acoustic radiation in the Farth’s crust using a velocity model composed of the sum of a deterministic
profile and a fractal perturbation. In considering the distribution of hydraulic conductivity, Brewer
and Wheatcraft [6] employ a wavelet-based model very similar to the one described below as a
means of interpolating coarse scale observations of hydraulic conductivity to finer scales. Brown [7]
relates both the electrical and hydraulic conductivities in the earth to a self-similar model for the
height distribution in rock fractures and studies the resulting fluid and current flow patterns though
such a formation. Finally, the propagation of electromagnetic radiation through media with fractal
characteristics has been studied extensively by Jaggard and co-workers [32].

With this work as motivation, we use a stochastic, fractal-type model to describe the spatial
distribution of the electrical conductivity in the absence of anomalies. While there are many self-
similar models which may be used to describe the conductivity, results of Wornell [50], Tewfik [47],
and Chou et al. [10-12] suggest that there exist a wide range of statistical models specified directly in
the wavelet transform domain possessing the desired modeling characteristics and simple structures
thereby making them quite attractive for use in signal and image processing applications.

Under the particular wavelet-based model of interest in this paper, the wavelet coefficients of the
non-anomalous conductivity field, denoted by the vector 4, are taken to be uncorrelated, Gaussian
random variables. That is, 7 is distributed according to

7~ N(0, Po) (5)
where Py is a diagonal matrix whose nonzero entries are the variances of the corresponding wavelet
coefficients. While a detailed description of the internal structure of Fy is presented in [35,50], the
fractal-type behavior of the process is obtained by taking the variance of the wavelet coefficients
to vary exponentially with scale. Coefficients in ¥ governing the coarsest scale behavior of the
conductivity have relatively large variances while fine scale components possess smaller variances.

3 Anomaly Detection as a Hypothesis Testing Problem

3.1 A Model for the Conductivity

The objective of the anomaly detection problem is to determine those areas in A where the behavior
of g is anomalous in that in these regions g differs from some prior set of beliefs regarding the manner
in which the conductivity is expected to behave. Thus, the conductivity ¢g is decomposed as
9=34+9 (6)
where § represent that portion of g consistent with our prior assumptions and g encompasses the
anomalous behavior of the conductivity; that is, the perturbation of the conductivity away from
its non-anomalous structure. In the wavelet transform domain, (6) takes the form
T =Weg =Weg+Wog=7+7. (7)
As will be seen in Sections 4-6, considerable insight into the anomaly detection problem is
obtained through performance analysis carried out using anomaly structures of varying sizes (i.e.
spatial scales) located in different regions of A. Also, the primary intent of the detection algorithm
presented in Section 6 is to localize quickly and efficiently regions where anomalies are suspected to
exist. Asregion A is pixelated into an N, , X N, . grid and because we perform anomaly localization
through a process of spatial subdivision, we are lead naturally to consider a representation in which
anomalous regions are defined to be superpositions of rectangular subsets of A.
Referring to Figure 2, the structure of the i** anomaly in A is defined by its magnitude, a;, its
size, and its location in A. The area of an anomaly defines its scale in that small scale anomalies are
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Region A
Anomaly 1

Anomaly 2

Figure 2: General structure of anomalous regions of interest in this paper. The magnitudes, a; and
ag of the two anomalies shown here are proportional to the color of the corresponding rectangles.

correspondingly small in area and similarly for larger scale anomaly structures. Mathematically,
the form for the anomalous behavior of the conductivity over the region A is

g = Z bjaj = Ba. (8)

=1
Here, N, is the number of anomalous regions located in A, a; is a scalar defining the magnitude of
each anomaly, and b; represents the discrete indicator function over the jt* rectangular region in
g. In (8), the column vector a represents the collection of anomaly amplitude coefficients while B

is the matrix whose j column is b;. In the wavelet transform domain, (8) is written as
Na

7y = Z (ng]) a; = Ba (9)
7=1
where B = W,b1 Wyby ... W,bn,]. Finally, use of (7) and (9) in (4) yields the following relationship
among the anomaly structures, the non-anomalous background § or 7, and the data

n=07y4+054+v=0Ba+05+v (10)
where, because 4 and v are taken to be uncorrelatedf
Py = Elpy’] - ElE[n'] = 0" + R. (11)

Note that the analysis methods and algorithmic techniques presented in this work are based entirely
on an observation model of the form in (10). In particular, the results in this paper are not
dependent upon the assumption of rectangular anomalies; rather structures with arbitrary shapes
and orientations can be employed in principle through the appropriate specification of the matrix B.
Nonetheless, as will be seen in Sections 4-6 of this paper, rectangular structures prove to be highly
useful for obtaining significant insight into the nature of the anomaly characterization problem and
as the basis for an algorithm designed to extract this information from observed scattered fields.
To provide a normalized notion of the overall size of an anomaly, we define an SNR-type
quantity called the anomaly-to-background ratio (ABR) which provides a measure of the energy in
an anomaly relative to that of §. Mathematically, we have for an anomaly g composed of a single

rectangular region defined by the column vector b and with amylitude a
Power in g a® (bTh

ABR? = = _ 19
Expected power in § tr( Po) (12)

where tr(M) is the trace of the matrix M and Py = WEPOWQ is the covariance matrix of g.
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As described in [40], under the Born approximation used to obtain (1), ¢ = Wf’y represents a
perturbation about a known, constant background conductivity, go. From physical principles, the
overall conductivity, go + ¢ = go + § + Ba must be greater than zero. Thus, in theory the elements
of @ may assume both positive as well as negative values so long as the positivity constraint is
satisfied. To simplify matters, in this paper we assume that the a; are strictly greater than zero
corresponding to regions of locally higher conductivity than the background.

3.2 The M-ary Hypothesis Testing Problem

In Section 6, we consider a statistical decision-theoretic methodology for reconstructing ¥ which
is based upon a sequence of M-ary Generalized Likelihood Ratio Tests (GLRT) as a means of
localizing an unknown number of anomalous regions in A. The mathematical description of each

such test begins with the formulation of the following M hypotheses, H; for: =0,1,2,..., M —1,
corresponding to M different configurations of anomalous areas
H: n=0B06; +03+v 1=0,1,2,..., M —1. (13)

Note that from (13) under H; we have, n ~ N(0OB;a;, P,) where P, is given by (11).
The hypothesis test is implemented as a rule which when given the data, indicates which of the
H; is true. Because it will be the case in Section 6 that the a; are taken to be deterministic but
unknown parameters, a standard likelihood ratio test solution to the hypothesis testing problem [49]
cannot be employed in this context. Rather, we use a Generalized Likelihood Ratio Test (GLRT)
[49] for performing the test. This procedure requires first that an estimate of each a; be computed
assuming that H; is correct. As this problem is, in general, ill-posed, we choose here to use the
following regularized, least squares estimate
a; = (BIeTP 0B + ol)' Bl 0T P . (14)
where the parameter « is used to control the degree of regularization.
Given @;, the hypothesis testing rule employed in this paper is
Choose H; with ¢ = {0 max; Lj(n) <0

argmax; L;(n) otherwise

where
and for 7 =0,1,2, ..., M -1 )
li(n)=n"P;'OB;a; — §“JTB]T®TP;1®Bja]-. (17)

3.3 The Binary Hypothesis Testing Case

While the algorithm for extracting anomaly information is based upon the M-ary GLRT, much of
the analysis of the anomaly detection problem is performed in the context of the binary hypothesis
testing (BHT) framework in which two alternatives, 79 = Bpag and 71 = Byaq, are compared.?
Traditionally, the analysis of the BHT centers around the probability of detection, P; and the false
alarm probability, P;. For the linear-Gaussian model considered in this work, it is shown in [49]
that Py and Py are related to the various quantities defining the structure of the problem via

d = erfci' (Py) — erfcd (Py) (18)

2Note that in the contexts where the binary testing scenario is to be explored, the values of ap and a; are assumed
known so that a generalized test is not required.
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where
= (7= 70) O£ (1 ~ 70) (19)
erfex(z) = 24y, (20)

Thus, based upon (18), we see that our abilit;gfg to distinguish between two anomaly structures is
intimately related to the Fisher discriminant, d, which has the interpretation of a “signal-to-noise”
ratio [49]. Note that for a given Py, larger d results in larger P; and therefore better performance.

From (19) we observe that the performance of the binary hypothesis test is a function of both
the geometric configurations, as captured in the matrices B;, and the magnitudes, a;, of the two
candidate anomaly structures. To better understand the role of these two factors, consider the case
in which ¥; corresponds to a single rectangular region so that each B; is a column vector and each

a; is a scalar. Substltumll% ) into (19) and eXpandmg the quadratlc yields
61ai — 261 parag + 85ag — (erfci (Py) — erfci! (Py)) = 0 (21)
where
8 = BIOTp'eB; forj=0,1 (22)
610 = BIOTP10B). (23)

In [37], it is shown that when viewed as a functlon of ag and a1, (21) defines an ellipse the form of
which is illustrated in Figure 3.3 This ellipse indicates that, given the geometry of the candidate
anomalies, By and Bj, there are only certain combinations of ag and a; which will result in per-
formance below that level dictated by a particular P; and Py. In fact, these points are precisely
those that lie inside the plotted ellipse. Also, there exists a minimum level, amm (depending on
the geometric structures of both anomalies) such that for 91 = Biay with a; > a?fé”, the binary
hypothesis test will achieve or exceed the P; and Py performance figures independent of ao.

4 Detectability Analysis

The first issue we address in conjunction with the anomaly detection problem is that of the de-
tectability of an anomaly as a function of location, spatial size, and amplitude. After defining a
particular collection of anomaly structures, a set of binary hypothesis testing problems are explored
in which Hg corresponds to there being no anomaly in the region while under H;, a particular mem-
ber of our anomaly collection is assumed to be present. The objective of the detectability analysis is
to determine the minimum magnitude each such structure must possess to guarantee a prespecified
level of performance from the binary hypothesis test.

Detectability is of interest due to the physics governing the relationship between the observa-
tions, 1, and the conductivity, 7 and the constrained experimental conditions in which data are
collected only along the vertical edges of A. From these facts, it is not expected that arbitrarily
small (in scale and magnitude) anomalies will be detectable with arbitrary precision throughout A.
Rather, we anticipate that small anomalies should be readily detected only close to the observation
points while interior to region A small scale structures would require significantly larger magnitudes
to be as detectable as their counterparts closer to the edges.

With this intuition in mind, we consider a family of anomaly structures generated by a set of
dyadic tesselations of A. For example, with N,, = N, . = N, = 16, we take as [J; the set of N;
indicator functions which are one over single pixels in A and zero elsewhere. Analogously, J5 is the
collection of Ng2/4 characteristic functions over disjoint 2 X 2 sized regions of A. Thus, in general

3For illustrative purposes only, in Figure 3 it is assumed that the major axis of the ellipse is oriented at an angle
less than 90° from the ao axis. While this is not necessarily the case, the analysis which follows is independent of
which axis is the major and which the minor.
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Figure 3: The structure of the ellipse defined by (21). The axes represent the magnitudes of
anomaly structures in a binary hypothesis testing problem. As discussed in Section 2, ag and a;
are taken to be nonnegative so that only the first quadrant is shown in this illustration. Here aj
is the minimum amplitude of 4; required to detect this structure when the alternate hypothesis is
Yo = 0 for a BHT with prespecified P; and P;. The value a{’fé” is the minimum intensity of 74
required to ensure that for any 9o the performance of the resulting BHT meets or exceeds that

defined by P; and Py.

Jm (for m an integral power of 2) is the set of (N,/m)? non-overlapping square regions of size
m X m completely covering A. Finally, we define J as the union of all 7.

To begin our analysis of detectability, for each anomaly structure in 7, we consider a collection
of binary hypothesis testing problems where the two hypotheses in the j** problem correspond to
the situations in which no anomaly is present in A or a scaled version of the j* element of 7 is in
A. Recalling (13), these alternatives take the form

Ho: n = O0y+v 524:1;

Hy;: n = 0OBja; +07+v. 24b

The goal of our detectability analysis then is to determine for each anomaly structure in J, the

minimum value of a;, denoted aj, such that the above hypothesis test attains a certain level of
performance as specified by P; and Py.

The primary quantity used to characterize the performance of the binary hypothesis test in
(24a)—(24b) is the Fisher discriminant discussed in the previous section which here takes the form

d? = a}(BfOTP1OB;) = a36] (25)
where 6]2 is defined in (22) and represents the Fisher discriminant for the unit amplitude anomaly
over the j* member of J. Now, for a given P; and P;, (18) and (25) are combined to give the

*.

following expression for a;

erfcil(Py) — erfcil (P
7 = (Ps) | (Fa) (26)
In Figure 4, a] are plotted for all anomalies n J for the case in which data from the 18
experiments described in Table 1 at an SNR of 10 are available and where P is set to 0.95 and Pf
is 0.05. In this work, the SNR associated with the anomaly-free observation process n; = 0;7 + v;

with v; ~ (0,721) and 7 ~ (0, Py) is defined as
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Figure 4: Value of a] for all anomaly structures in J where the data from the experiments described
in Table 1 at an SNR of 10 are used as input to the likelihood ratio test. Here, we have P; = 0.95
and Py = 0.05. Note that the scales in these images are all different with a* decreasing significantly
as the size of the anomalies increases.

SNR? _ Power per pi?(el i.n(Dw _ tr(@iPo(D,tT). (27)
Power per pixel in v; Nyr?

Thus, each 1 x 1 pixel in Figure 4(a) corresponds to an anomaly in J; with the intensity of that
pixel proportional to a}. In all four cases, we see that near the middle of the region, the magnitude
required to obtain the desired level of performance in the binary hypothesis test is significantly
larger than that required near the vertical edges i.e. where the sources and receivers are located.
For vertical values roughly in the range 40 < z < 60, this effect is somewhat smaller. Also, as the
areas of the anomalies increase, the required magnitudes decrease. This coincides with the intuition
that large scale structures should be easier to detect than their fine scale counterparts. Finally, the
ABR values in Figure 4 are quite small with the median values all less than 0.9. This implies that
our statistical approach toward anomaly detection should prove quite advantageous in detecting
relatively small amplitude conductivity anomalies.

To explain the behavior of @}, we note that as described in [40] the low and medium frequency
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kernels are most sensitive to the conductivity structure over the horizontal range 0 < z < 50 so
that the required magnitude for an anomaly to be “seen” in this area should be relatively low. The
smaller values of a} in the region 40 < z < 60 are due primarily to the combined coverage of this
region by more observation kernels, T;, than is the case for the top and bottom edges.

5 Distinguishability Analysis

In this section, we explore issues associated with our ability to successfully distinguish between
pairs of candidate anomalies in order to obtain quantitative insight into the ambiguity which exists
in attempting to differentiate between anomalous structures of differing sizes, locations, and mag-
nitudes. The results of this work then are used both in the formulation as well as the analysis of
the detection algorithm in Section 6.

Before proceeding with the analysis, we note that the issue of distinguishability has been con-
sidered previously in the context of electrical impedance tomography [18,22,29]. In that work,
distinguishability was examined in a deterministic setting where observation perturbation was mod-
eled as a bounded but otherwise unknown signal. Under such a model, two conductivity profiles
were defined to be distinguishable if the norm of the difference between the data sets produced
by each exceeded the noise level. The notion of distinguishability developed below is rather differ-
ent as it rests upon a statistical model for both the additive measurement noise and background
perturbations in the medium’s conductivity.

The mathematical formulation of the distinguishability problem of interest in this work follows

directly from Section 3.3. We begin by considering the following binary hypothesis testing problem
H;: n = 0OBja;+0y+v 28a
HZ: n = G)BaZ—I—G)'y—I-V ' 528b3
The primary tool for our distinguishability analysis is the quantity ¢;"/" defined in Section 3.3 to
be the smallest value of a; such that the performance of the binary hypothesis test in (28a)-(28b)
meets or exceeds that defined by P;;; and Py;; independent of the amplitude of a;. Finally, for
all experiments and for all + and j of interest in this section, Py ; ; is equal to 0.95 and Py; ; = 0.05.
In Figures 6, amm is shown as a function of j € J in the case where the geometric structure of
anomaly 7; is given in Figure 5(a). Similarly, a ;”]”L is displayed for the anomaly geometry of Figure
5(b) in Figure 7. Essentially these two examples demonstrate the manner in which the ability to
differentiate structures is dependent upon the spatial position of the anomalies in region A. In
both cases, we see that the largest values of amjm are associated with hypothesis tests in which #; is
compared to a second, relatively close-by anomaly structure; however, these amplitudes are roughly
twice as large for the structure located toward the middle of the region than for the anomaly closer
to the source/receiver arrays.
In Table 2, the ABRs corresponding to the largest and smallest values for am]m in Figures 6
and 7 are shown. That is for 7 fixed, the entries in the first column of Table 2 are the anomaly-to-

background ratios generated by

mazr,min

S = maxa/"
2 A ¥

while those of the second column are associated with
min,mn m’tn
a; = mina;
T ] 7]
maxr m’tn

Note that if a; is greater than a; , a BHT with the anomaly 7; given by B;a; will meet the

P;;; and Py;; specification regardless of both the amplitude as well as the location of v;, i.e.

min mzn

the performance will be independent of j. On the other hand if a; is less than a; then for

every j there will be some range of amplitudes a; for which the performance speciﬁcations will
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Figure 5: Anomaly structures to be analyzed in distinguishability problems

not be achieved. Now, from the first row of Table 2, we see that for an anomaly with geometric
structure in Figure 5(a), an ABR of 2.11 ensures that any binary hypothesis test in which this

structure is compared to a member of 7 will meet the performance specifications of P;;; = 0.95
and Pg;; = 0.05. Alternatively, if the ABR falls below 0.56 then for all structures in 7, (i.e. all
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Figure 6: Images of the minimum magnitude of the anomaly in Figure 5(a) to guarantee a P; = 0.95
and Py = 0.05in binary hypothesis tests involving this anomaly structure and elements of 7. Note
that while the scales in these images are different the magnitudes are all less than 2.5.

B;) the performance of the BHT will fail to meet the P;; ; and Py, ; requirements for some range
of a;. Similar results hold for the second anomaly structure located closer to the left side except
that in this case, the required values of the ABR are smaller.

Anomaly Maximum | Minimum
¥i ABR ABR
Rightmost (Figure 5(a)) 0.49 0.24
Leftmost (Figure 5(b)) 2.11 0.56

Table 2: Minimum and maximum anomaly-to-background ratio associated with the smallest and

largest values for a?j” for the anomaly structures in Figure 5(a) and 5(b).
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Figure 7: Images of the minimum magnitude of the anomaly in Figure 5(b) to guarantee a P; = 0.95
and Py = 0.05in binary hypothesis tests involving this anomaly structure and elements of 7. Again,
the scales in (a) through (d) are all different; however the overall range of values is between 0.9
and 1.3.

6 A Multiscale Algorithm for Anomaly Characterization

In this section we describe and analyze a multiscale, decision-theoretic algorithm to determine
the positions, sizes and magnitudes of an unknown number of anomalous structures in region A.
We begin with a small collection of relatively large rectangular areas in which anomalies may be
located. FEach region represents a top-level node in a tree of finer-scale subdivisions of A. We
next use a decision-directed procedure for determining how best to move from one level of the
tree, corresponding to a collection of coarse-scale hypotheses, to the next level in which anomalies
are better localized using smaller-scale rectangles. The result of this procedure is a collection of
rectangular areas of varying sizes and positions where we believe anomalies exist. To limit the
number of targeted areas which contain no anomalies, the algorithm concludes with a pruning step
where we also estimate the magnitudes of the final group of chosen anomaly structures.
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6.1 A Scale Recursive, Decision Driven Detection Algorithm

The first step in our detection algorithm involves an M-ary Hypothesis test in which we consider
10 ways to subdivide A in order to better localize anomalous structures. As seen in Figure 8 the
first configuration corresponds to the presence of a coarse scale anomaly with support over all of
A. This particular structure indicates that no further decomposition is warranted. The next four
possibilities each allows for a single anomaly localized to the top, bottom, left and right halves
of A respectively. Because anomalies might lie both in the left/right as well as the top/bottom
halves, the sixth and seventh structures in Figure 8 are included. Since multiple anomalies may be
present in the region, the eighth configuration corresponds to the presence of one anomaly located
in the left half and one in the right while the ninth presents the analogous situation but for the
top and the bottom. Finally, for this initial decomposition only, we consider the last case where we
conjecture that no anomalous regions exists in A.

Given the 10 choices in Figure 8, we formulate a 10-ary hypothesis testing problem the solution
of which is obtained using the Generalized Likelihood Ratio Test (GLRT) discussed in Section
3.2. Using (17) we compute the values of the generalized log-likelihood function for each of the
hypotheses under consideration. From Figure 8, if Hg is chosen, no further decomposition occurs
and we conclude that there is a single anomaly covering the entire region of interest. If Hg is selected,
the algorithm terminates with the conclusion that there is no anomaly in region A. Otherwise, we
decompose that hypothesis with the largest generalized log-likelihood value.

Our scale-recursive decomposition of A continues by essentially repeating the hypothesis testing
procedure for each of the subregions indicated by the initial 10-ary hypothesis test as being of
interest. For example, consider the case where Hj is chosen. Referring to Figure 8, this selection
corresponds to an anomaly located in the left half of A. In an effort to better localize the anomalous
activity in this region, we consider an M-ary hypothesis test similar to that described in the previous
paragraph but where the underlying area involved in the decomposition is now the left half of A
rather than all of A. While the subdivision is of a rectangular region as opposed to a square area,
the form of the hypotheses fundamentally remains the same as in those displayed in Figure 8 in
that we consider the possibilities of anomalies located in the top, bottom, left, and right halves, etc.
of this long and thin structure. We note that the first of these nine hypotheses, Hy, corresponds to
the case where no further decomposition of the left half is warranted and thus serves as a means
of terminating the scale recursive search over this region of A. Instead of ten, there are only nine
hypotheses as we no longer include the possibility that no anomaly exists in the left half of A since
the previous iteration indicated that somewhere in the left side there exists an anomaly.

This nine-hypothesis GLRT is repeated recursively beginning with the regions selected in the
initial decomposition of A. This decision-theoretic localization process continues until no further
subdivision in a particular region is warranted based upon the selection of the Hy hypothesis at
some stage of the process or because no addition refinement is possible because the structures under
consideration are too small. Thus at the end of our scale-recursive decomposition of A we have a
collection of rectangular regions where anomalous structures are likely to exist. We then collect
the wavelet-domain representations of these rectangles as columns in a matrix labeled Bjqs.

To limit the number of false alarms generated by our detection algorithm, we retain only those
structures in Bj.,s corresponding to sufficiently “detectable” anomalies. Specifically, we begin
computing de, ¢, the amplitudes associated with B¢, using (14) with B; replaced by Bieqs. Next,
for each column of By, we calculate the minimum required amplitude to guarantee a set level of
performance from a detectability-type hypothesis test developed in Section 4 (here we use P; = 0.80
and Py = 0.10). The final estimated anomaly structure generated by our algorithm is composed of
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Figure 8: Geometric structures of nine possible decompositions used at each stage of our de-
composition of A. The darkly shaded regions indicate the areas where anomalous structures are
hypothesized to exist. While the figure illustrates the decomposition of a square region, analogous
subdivision schemes are used for rectangular areas as well with the fundamental idea being the
presence of anomalies in the top, bottom, left, right, etc.

those columns of Bj.,; and elements of a;.,s corresponding to anomalies whose amplitudes exceed
this required minimum and we label these estimates B and @ respectively.

6.2 Algorithm Analysis

The scale-recursive detection algorithm described in Section 6.1 requires that we be able to identify
successfully large-scale structures covering the true, smaller-scale anomalies. The results of the
distinguishability analysis suggest that the correct large-scale structures are likely to be selected.
Indeed, Figures 6 and 7 showed that the largest values of amm corresponded to those 7 in J
which overlap anomaly 7. From this, we conclude that small- scale anomalies “look” most like those
large-scale counterparts located in the same region of A.
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To further verify this intuition, we undertake a more detailed performance analysis of the GLRT
used in the detection algorithm. Specifically, we consider the case where a single anomaly, g*, of
unknown amplitude exists at some fine scale and we perform a generalized binary hypothesis in
which the two hypotheses correspond to coarse scale structures one of which covers g* and one
of which does not. We are interested in examining how the probability of correctly choosing the
overlapping structure (which we call the probability of detection for these experiments) using the
GLRT of Section 3.2 varies with the scale and position of the non-overlapping alternate as well as the
amplitude of the true anomaly. High detection probabilities reflect favorably on the GLRT-based
approach of the scale-recursive algorithm.

Following the notation of (17), let [;(n) be the statistic associated with the overlapping anomaly
hypothesis and lo(7) be the statistic for the non-overlapping case. From (15) and (16), the proba-

bility of choosing the overlapping structure given knowledge of ¥* = W,g" is

Prob [L;(n) > 0]37] = Prob [5(n) — lo(7) > 0]77] . (29)
Upon substituting (14) into (16) and using (17), straightforward linear algebra demonstrates that
the random variable L1(n) may be written as

D)= =t =i (30)
where the two-vector :C Lxl(]g
z(n) —B P! n NB 00T P10y, BL,0T P 10B,) (31)
and for 7 = 0,1
Bio = [s1B1 s0Bo] (32a)
st = Z[Pi(1+aP;)] (32b)
P; = BTG)TP 10B; +a)™! (32¢)

From (30), Prob[L1(n) > 0|7*] = Prob[ |m1( )| >n|$0( )| |7*] which is the integral of the proba-
bility density function for z(n) defined in (31) over the shaded region in Figure 9.

In Figure 10, detection probabilities are displayed for binary hypothesis tests where g* is the
structure in Figure 5(a) and the hypotheses are pairs of structures from 7. For example, the shade
of dark region in the lower left corner in Figure 10(a) is Prob[Ly(n) > 0 |7*] for the BHT where
the first hypothesis is the large structure overlapping the true, smaller size anomaly (represented
by the white region in Figure 10(a)) and the alternate hypothesis is the 8 x 8 pixel lower left corner
of A. Similar interpretations hold for the other two dark areas in Figure 10(a) and for each of the
smaller square areas in Figures 10(b)—(c). For all of these images, the ABR for the true, small
anomaly is set to 1.5. Figures 10(a)—(c) indicate the manner in which the detection performance
of the GLRT-based algorithm depends upon the scale of the hypotheses relative to that of the true
anomaly. At the coarsest scale, detection probabilities are about 60%. However, for all finer scales,
P, rises sharply with the lowest values confined to structures which are close to the true anomaly.

In Figure 10(d), we display the minimum P; at each scale as a function of true anomaly’s ABR.
For example, the points on each of the three curves at an ABR of 1.5 are the minimum P values in
each of the three images in Figure 10(a)—(c). From these curves we see that at the coarsest scale,
even at high ABRs, the detection probabilities reach about 80%. As expected, when the hypotheses
are drawn from the finer scales, the minimum P; rises quickly to close to 100%.

The results in Figures 10 indicate that if the scale-recursive anomaly detection algorithm devel-
oped in Section 6.1 correctly identifies the coarse scale structures overlapping the true anomalies,
then the detection performance at finer scales should be quite good even at ABRs less than 1.
Also, because the lowest detection probabilities at fine scales are associated with structures close
to the true structure, it is anticipated that the scale-recursive detection algorithm should be very
successful in producing estimates of anomalies which are “sufficiently close” to the truth if not
exactly the truth. This idea will be made more precise in Section 6.3.

The analysis in this section indicates that the primary difficulty associated with the algorithm is
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Figure 9: Integration region in 21 — zg space for evaluation of Prob[Li(n) > 0]7*] in (29)

that coarse scale detection probabilities can be low. To overcome the potential problem of selecting
the wrong area or areas of A for further refinement at coarse scales we modify the scale-recursive
algorithm in the following manner. At the opening stage of the algorithm, rather than accepting the
single hypothesis with the largest generalized log-likelihood value, we consider further refinement
of A based upon those hypotheses corresponding to the four largest log-likelihood values (excluding
Hy and Hg). As will be seen in Section 6.3, despite the additional computational requirements of
this approach, the overall complexity of the algorithm remains rather low. Finally, we note that one
could extend this strategy of keeping additional structures for further refinement to more than just
the first stage of the algorithm and could retain fewer or greater than four alternatives; however
for the application of interest here, the choices described above were sufficient.

6.3 Examples

In this section, we examine the performance of the scale-recursive algorithm described in Sections
6.1 and 6.2. First, we use Monte Carlo studies to verify the ability of this approach to detect
anomalous structures. The quantities of interest here are the sample probability of detection, Py,
the sample average value of the number of false alarms per pixel Pf, and the sample probability
of error, P,. We say that a particular rectangular anomaly, 7%, has been detected if there exists
a column in B which is sufficiently close to ¥*. Specifically, we define a “region of ambiguity”
associated with the anomaly structure currently under investigation. This area is constructed such
that anomaly structures identified in this region are “essentially indistinguishable” from the true
anomaly. More formally, we compute the probability of successfully distinguishing ¥* from each
member of J in a binary hypothesis test of the form in (28a)-(28b). For each such test, the
amplitudes of the two anomalies are chosen so that relative to the anomaly-free background, the
two structures are equally detectable (i.e. they individually have the same d? value as defined with
P;=0.85and Py = 0.101in (18) and (26).) A pixel in A is said to be in the ambiguity region if (1)
there exists a member of 7 which is nonzero on that pixel and (2) the probability of distinguishing
that element of J from 4* is below a given threshold, taken as 0.85 for all problems considered in
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Figure 10: In (a)-(c) detection probabilities are displayed for binary hypothesis tests where g* is
the structure in Figure 5(a) and the hypotheses are pairs of structures from 7. For each such test,
one of the hypotheses is a larger scale structure overlapping g* while the second structures is from
the same scale as the first but is disjoint from the pixels of g*. The shade of each square in (a)—(c)
is the probability of correctly choosing the overlapping structure when the alternate is the anomaly
occupying the square under investigation. The ABR for the true structure is 1.5. The minimum
Py at each scale as a function of true anomaly’s ABR is shown in (d).

this section. Finally, for an estimated structure to be called a detection the area of intersection
between it and the region of ambiguity must be at least a quarter of the area of the estimated
structure. Such a definition implies a constraint on the localization of an estimated anomaly in
both space and scale before we will call it a detection. As an example, the region of ambiguity
at P; = 0.85 associated with the anomaly structure in Figure 5 is displayed in Figure 11. The
elements of B which do not correspond to detections are taken to be false alarms and the per-pixel
false alarm rate, Pf, is defined as the total number of false alarm pixels divided by the number of
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pixels in region A. Finally, the sample probability of erroris P, = 1 — P; + Pf.
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Figure 11: Region of ambiguity for structure shown in Figure 5 for P; = 0.85.

We also examine the computational complexity of the scale-recursive algorithm. The complexity
of the algorithm is quantified in terms of the number of Generalized Likelihood Ratio Tests (GLRT's)
which must be performed in the processing of the data. As the spatial decomposition of region A
is driven by the noisy data, the number of GLRTs will vary from one data set to the next. Thus,
for a particular g*, the computational performance is based upon the average number of required
GLRTSs required per iteration of the corresponding Monte-Carlo.

Finally as discussed in Section 1, the detection algorithm results are used to improve the solution
to the full reconstruction inverse problem. From our model for ¥ in (6), the estimate of the overall
conductivity is the sum of the estimates of 7 and 7, denoted 5 and 7 respectively, where § = Ba is
provided by our scale-recursive detection algorithm. Now, the linear least-squares estimate (LLSE)
of 4 developed in [37,40] is based upon the assumption that no anomalies exist in the data; however,
the output of the detection algorithm provides additional information through % as to the structure
of the conductivity field. To make use of the information in order to improve the estimate ¥, we
define 4, as the LLSE of 5 based upon a “corrected” data set in which the effects of 7 have been
removed. Mathematically this corrected estimate takes the form

5. = POTR™ [n - @Ba} (33)
where P = (@T R=1@+ P;*)~! is the error covariance matrix for nominal LLSE. Thus, the estimate
of the overall conductivity field is

¥=%,+7=POTR'n+ [T - POTR™'0] Ba (34)
where we recognize the term POT R™17 as the uncorrected LLSE estimate [49].

Unless otherwise stated, the data upon which the examples are based are generated using the
Born-based measurements model in (2) for the scattering experiments described in Table 1. For
all cases consider, the background conductivity, go, is set to 1 S/m and at the highest ABRs of
interest, the anomaly amplitudes are only 0.7 S/m. As discussed in [25], under these circumstances
the Born approximation is known to be valid. In Section 7, we discuss issues associated with
extending the work in this paper to account for the underlying non-linearity associated with the
inverse conductivity problem. Finally, for all experiments the parameter a in (14) is set to 0.25.
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6.3.1 The Single Anomaly Case

We begin by considering the case where it is known that there is a single anomaly of unknown
amplitude and location in region A. Given that there is only one structure, the combinatorial
complexity associated with an “exhaustive search” for the anomaly is sufficiently low that we shall
compare both the detection/false-alarm performance as well as the complexity of the scale-recursive
approach against an alternate algorithm akin to a multi-scale matched filter. This algorithm detects
the single anomaly by computing the GLRT for each of the structures in family J taking that
element of J associated with the largest GLRT statistic as the estimate. Because this method
is multiscale in nature and has a fixed number of GLRTs per Monte-Carlo iteration (since there
are a fixed number of structures in ) it allows for a fair comparison against which we can judge
the performance of the scale-recursive algorithm. For the scale-recursive method, we shall account
for the knowledge that there is only a single anomaly in A by retaining only the column of B,
associated with the most likely anomaly structure. Finally, for this example, the true anomaly
structure is shown in Figure 5 and the SNR for all scattering experiments is 10.

In Figure 12 we show Py, P;, P. and the average number of GLRTs per Monte-Carlo iteration
as a function of anomaly-to-background ratio obtained after 500 Monte-Carlo iterations. The solid
lines are the results for scale-recursive algorithm and the dashed lines indicate the performance of
the multi-scale exhaustive search procedure. Figure 12(a) indicates that at low ABRs, the scale-
recursive approach tends to have a higher detection probability than the exhaustive search with a
slightly higher probability of false alarm. Even for the low ABR of 0.50, P; is well above 50% and
rises to above 90% for ABR values greater than one. At high ABRs the performance of the two
algorithms is about the same. Despite the slightly higher Pf of the scale-recursive approach, the
overall error probability is lower for the scale-recursive method at these small ABRs. Finally, from
12(c) the computational complexity of the scale-recursive characterization algorithm is seen to be
roughly constant across the ABR range at 65% that of the exhaustive search.

In Figure 13(a) we display one realization of g = g + § obtained in our Monte Carlo process at
an ABR of 1.5. Using the LLSE to perform the full reconstruction as in [40] results in the image
in Figure 13(b). By incorporating the results of the scale-recursive detection algorithm into the
inversion procedure through the use of (34), we obtain the estimate of the overall conductivity field
shown in 13(c). Thus, successful identification of the highly parameterized anomaly structures can
significantly improve localization both in space and scale and the GLRT procedure results in an
accurate estimate of the structure’s amplitude. Also, the details in the remainder of the estimate
do in fact reflect the coarse scale, fractal features of the conductivity profile in Figure 13(a).

6.3.2 The Multiple Anomaly Case

We now turn our attention to the case where multiple anomalies exist in region A.* Lifting the single
anomaly assumption causes the computational complexity of an exhaustive-search-type of approach
to be prohibitive in that one would be required to examine the likelihood of all combinations of
all non-overlapping, structures in a collection such as J assuming separately n = 1 then n = 2
through n = N,,,; anomalies exist in region A where N,,,; is a pre-determined maximum number
of anomalies. Thus, here we present only the results of the scale-recursive detection algorithm. In
particular, we explore the performance for the anomaly configuration in Figure 14.

*Note that in this multi-anomaly case, the ABR is used to determine the magnitude of each structure individu-
ally.For example at an ABR of one, the amplitude of the left anomaly is set so that if it were the only structure in
the medium, the ABR would be one.
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Figure 12: Performance curves as a function of ABR obtained after 500 Monte-Carlo iterations
for the anomaly in Figure 5(a). Solid lines = results for scale-recursive algorithm. Dashed lines =
results for multi-scale exhaustive search. The error bars are drawn at the plus/minus two standard
deviation level.

The Monte-Carlo results for this experiment are displayed in Figure 15 where the top two
curves of (a) correspond to the individual P; statistics for the two anomalies and the lowest of
the three curves is a plot of Pf. Here we see that both structures are quite easily detected with
a P; of well over 90% even at the low ABR of one. As is expected, removing the single-anomaly
assumption causes the algorithm to retain a greater number of candidate structures (including the
true anomalies) thereby raising Py above that seen in Section 6.3.1.

In Figure 15(c) we plot the average number of GLRTs as a function of ABR. Note that at
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Figure 13: Comparison of reconstructed conductivity profile using the LLSE of [40] and an estimate
based upon the output of the scale-recursive anomaly detection algorithm. The true conductivity
is shown in (a) and contains a single anomaly near the center of the region. The LLSE is shown
in (b) and the estimate obtained from (34) is illustrated in (c). Here we see that the use of the
information from the detection algorithm allows for the successful localization of the anomaly in
space and scale without sacrificing our ability to resolve the fractal features of the conductivity
profile in (a). Additionally, the GLRT procedure results in an accurate estimate of the anomaly’s
amplitude.

worst the complexity of this algorithm is still well below the complexity of the single-anomaly
exhaustive search algorithm and only about 30% greater than the complexity of the single-anomaly
scale-recursive algorithm. Thus, despite the fact that the multiple anomaly problem is, from a
combinatorial viewpoint, significantly more complex than the single anomaly case, we see that the
scale-recursive localization method represents a highly efficient and accurate means of localizing an
unknown number of structures in the region of interest.

In Figure 16, we compare the full reconstruction results obtained from the LLSE to those where
(34) is used to estimate the underlying conductivity for one run of the Monte-Carlo at an ABR of
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Figure 14: Two-region anomaly structure

1.5. From Figure 16(b) we see that the LLSE is successful in reconstructing the structure on the
left; however, the lower amplitude/more pixel anomaly is almost completely undetected. Figure
16(c) indicates that the incorporation of the information from the anomaly detection algorithm
significantly improves the localization in space as well as scale of both anomaly structures, especially
the rightmost. Finally, the anomaly amplitudes are better estimated using the GLRT method.

7 Conclusion and Future Work

In this paper, we have presented a framework based upon techniques from the areas of multiscale
modeling, wavelet transforms, and statistical decision and estimation theory for addressing a variety
of issues arising in anomaly detection problems. Beginning with a linear model relating the data
and the quantity to be reconstructed, we use the wavelet transform to take the problem from
physical space to scale space where computational complexity is reduced for a wide variety of
problems [1,4,41] and where we are able to take advantage of the rich and useful class of models
recently developed for describing the structure of the medium in the absence of anomalous activity
[21,35,47,50]. The problems of characterizing the number, positions, and magnitudes of anomaly
structures was formulated using the tools of statistical decision theory. To understand how the
physics of the problem and the constraints on the geometry of the data collection process affect our
ability to isolate anomalous regions, we defined and explored the issues of anomaly detectability and
distinguishability. This analysis led to the development of a scale-recursive algorithm employing a
sequence of Generalized Likelihood Ratio Tests for extracting anomaly information from data.

This work was presented in the context of a linearized inverse scattering problem arising in
geophysical prospecting. The same scattering model is encountered in a variety of other fields
where some form of energy is used to probe a lossy medium [18-20,22,29,31]. More generally, the
analysis and algorithmic methods developed in this work require only a measurements model of
the form in (2) and are thus relevant for any linear inverse problem (eg. computed tomography) in
which anomaly characterization is of interest.

An important extension of the work presented here is in development of algorithms and analysis
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Figure 15: Performance curves obtained after 500 Monte-Carlo iterations of scale-recursive detec-
tion algorithm for the anomalies in Figure 14. Solid lines in (a) and (b) are detection and error
probabilities for the upper left anomaly while dashed lines are for lower right anomaly. The error
bars are drawn at the plus/minus two standard deviation level. In (c), the computational complex-
ity associated with this scenario is shown by the solid line. For comparison, the dashed line is the
complexity associated with the single anomaly exhaustive search.

methods for detecting anomaly structures using the nonlinear physics governing the relationship
between the conductivity and the observed scattered electric field. The primary difficulty here is
maintaining or improving the detection/false-alarm performance of the current method while re-
taining the low computation complexity in an algorithm based upon a significantly more complex
scattering model. In [38] we present preliminary results for one form of a scale-recursive anomaly
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Figure 16: Comparison of reconstructed conductivity profile using the LLSE of [40] and an estimate
based upon the output of the scale-recursive anomaly detection algorithm. The true conductivity
is shown in (a) and contains a two anomalies. The LLSE is shown in (b) and the estimate obtained
from (34) is illustrated in (c). Here we see that the use of the detection information allows for
the successful localization of both anomaly structures and offers a significant improvement over the
LLSE in localizing the anomaly in the lower right.

characterization algorithm using the computationally efficient, nonlinear Extended Born Approxi-
mation [48]. Further work remains in the exploration of detectability and distinguishability in the
nonlinear context and the extension of this approach to higher frequency (eg. microwave) problems.

Another avenue of research is in the use of alternate methods for progressively dividing the
region of interest. The problem of anomaly detection is similar to that of image segmentation in
that the goal of both is to partition a two-dimensional grid of pixels into disjoint regions. The
primary difference between these two problems is the data. In the segmentation case the data are
the pixels in the image whereas we wish to do the anomaly localization given the significantly less
informative observations of scattered radiation. For the segmentation problem, significant work has
been performed in the use of hierarchical methods for performing this decomposition. For example,
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segmentation techniques have been developed where (a) small structures are merged into larger
regions [36,42] and (b) both splitting as well as merging operations are used in the segmentation
process [28]. Examining the utility of merge- and split/merge-algorithms for the anomaly detection
problem would be of considerable interest especially as a means of overcoming the difficulties of
detecting small-scale structures using large scale hypotheses.
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