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Abstract: In this paper we give an approach for directly localizing and
characterizing the properties of a spatially localized absorption coeÆ-
cient perturbation as well as course scale structure of the background
medium from a sparsely sampled, di�use photon density wave�eld. Our
technique handles the issues of localization and characterization simul-
taneously by working directly with the data, unlike traditional tech-
niques which require two stages. To acquire both the structural and
quantitative information simultaneously, we model the unknowns as
a superposition of a slowly varying perturbation on a background of
unknown structure. Our model assumes that the anomaly is delineat-
ed from the background by a smooth perimeter which is modeled as
a spline curve of unknown knot sequence. The algorithm proceeds by
making small perturbations to the curve which are locally optimal. The
result is a global, greedy-type optimization approach designed to en-
force consistency with the data while requiring the solution to adhere,
via regularization, to prior information we have concerning the likely
structure of the anomaly. At each step, the algorithm adaptively deter-
mines the optimal weighting coeÆcients describing the characteristics
of both the anomaly and the background. The success of our approach
is illustrated in two examples provided for a di�use photon density wave
problem arising in a bio-imaging application.
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1 Introduction

In recent years, the problem of forming bio-medical images from sparse observations of
di�use photon density wave data (DPDW) has received considerable attention, [1, 4, 5,
3]. A common goal of such processing is the detection, localization, and characterization
of regions in the body, which we refer to as anomalies, that have optical properties (space
varying absorption coeÆcient, �a(r), and scattering coeÆcient, �s(r)) that are di�erent
from those of the surrounding tissue. By extracting such information about anomalies
from the DPDW data, one can potentially draw medically useful conclusions related to
the 
ow of blood in an area, the presence of a tumor, etc.

A typical approach to these problems is the \image-then-detect" method, where
the �rst step is to use measured DPDW data to form an image in two dimensions, or
volumetric rendering in 3-D, of a subcutanous region of interest. This step is followed
by image postprocessing via standard techniques to extract and analyze anomalous
areas. Thus, the prime diÆculty with these methods is the need to �rst form a pixel
by pixel reconstruction of the underlying region, as this step requires the solution to an
inverse scattering problem. Since the inverse scattering problem itself is highly ill-posed
in the sense that small changes in the data can have dramatic, adverse a�ects on the
estimated solution, no matter which model (Born, Rytov, etc.) is used to approximate
the solution to the inverse scattering problem, the computed solution will be hopelessly
contaminated by noise artifacts. In order to lessen the sensitivity to noise, some type of
regularization technique must be employed. Any number of techniques is possible { our
speci�c choice is described in x3.

A further diÆculty with standard approaches is that a small amount of measured
DPDW data is used to recover the preliminary image of a large number of pixels. Our
approach to the imaging problem is fundamentally di�erent in that we reformulate
the problem directly in terms of only a small number of parameters describing the
shape, location and contrast of the anomaly as well as the value of the background.
As a result, we are able to localize anomalies directly without postprocessing. Our
formulation of the problem requires the minimization of a functional with respect to
a small number (relative to the total number of pixels reconstructed) of parameters,
ensuring the eÆciency of the method.



The idea of reducing the number of unknowns by clever parameterization is not
new. The authors began to explore this approach for DPDW data in [9]. Another such
method that has been applied to DPDW problems is presented in [2]. In that work,
the authors use the di�usion equation approximation with piecewise constant di�usion
and absorption to model the forward problem. They assume that the �nite values of
the di�usion and absorption are known a priori, and they seek information about the
geometry of the the smooth region boundaries where the functions are discontinuous.
In other words, they try to solve for the few, unknown parameters that describe the
boundaries of each of their curves. Our method is signi�cantly di�erent than the method
in [2] for several reasons. We aim to reconstruct maps of the absorption within only two
regions, the anomaly and the background. However, we do not need to assume the
values of the absorption in di�erent regions a priori: we obtain such information as we
simultaneously reconstruct boundaries of the two regions. In the purest form, our model
does not restrict the absorption perturbation within the two regions to be constant,
although we make that simpli�cation for the results presented here. The method of
parameterization of the boundaries in our work and the work in [2] is di�erent. Unlike
the method in [2], our method incorporates regularization that helps combat the ill-
conditioning and the underdetermined nature of the problem. Finally, the results we
present here are for a di�erent geometry than the one used in [2].

The remainder of this paper is organized as follows. In x2, the mathematical model
for the di�use photon density wave system of interest is presented. We describe our
algorithm in x3 and provide numerical examples in x4. Finally, we discuss conclusions
and future work in x5.

2 Models

2.1 Forward DPDW Model

In this paper, we consider information extraction algorithms based on the �rst-Born
approximation to the frequency domain, integral equation [9, equation 1] formulation of
the di�usion equation describing the 
ux of the optical modulation envelope. Speci�cally,
for a point source located at position rs, the model we have is

y(rk) = �
v

D

Z
V

G(rk ; r
0)G(r0; rs)g(r

0)dr0 + n(rk) (1)

where V is the region where the anomaly is assumed to exist (see Fig. 1), G(r; r0) is the
Green's function for the problem at hand, and g represents the space varying perturba-
tion in the absorption coeÆcient about a known deterministic background used in the
speci�cation of G. The number D is the di�usion coeÆcient and v is the propogation
velocity in the medium. Our Green's function is constructed using the extrapolated
boundary condition of [6]. We assume that the transmitters can be modeled as point
sources on the air-tissue interface. Unlike the work in [9], we consider here a transmis-
sion geometry, so the scattered di�use photon wave�elds are measured by an array of
Nr point receivers located below the bottom air-tissue interface (refer to Figure 1).

In this work it is assumed that we have a total ofNs point sources where the scattered
�elds generated by each source are observed over an array of Nr receivers. Thus, for
the ith source, we have a data vector, yi, of length 2Nr comprised of the in-phase
and quadrature components of the measured scattered wave�eld. Using a method of
moments procedure to discretize (1) with pulse basis functions to represent g(r) [8], we
have the discrete equations

yi = Gig+ ni; i = 1 : : : ; 2Nr; (2)



where Gi is the discretization of the Born kernel associated with the ith source, g is the
vector of pulse basis expansion coeÆcients for g(r), and ni is the noise vector. Finally,
all yi are collected into a single vector, yT =

�
yT1 : : :y

T
Ns

�
to arrive at the discretized

data model
y = Gg+ n (3)

with G and n obtained by \stacking" the Gi and ni.

anomaly

Receiver Array

Source Array

Tissue

Fig. 1. Source/receiver con�guration in the transmission geometry .

2.2 A Model for g(r)

The model we use here to describe g(r), the unknown perturbation in the absorption
coeÆcient, was originally described by the authors in [9]. Here, g(r) is written as

g(r) � S(r)B1(r)a1 + (1� S(r))B2(r)a2; a1; a2 2 Rp�1; (4)

where S(r) is an indicator function that is one over the (unknown) support of the object
and zero elsewhere. The vectors a1; a2 hold the expansion coeÆcients that e�ectively
determine the weight of each function. The 1 � p vectors Bi i = 1; 2 have as their
components functions bi;j(r); j = 1; : : : ; p which are the expansion functions. In other
words, we model the variation of g over the anomaly as a linear combination of certain
functions and the variation of g on the background as a di�erent linear combination of
functions. The particular choice of the bi;j depends on the application. In this paper,
for instance, we assume that there is a homogeneous anomaly of contrast a1;1 against a
homogeneous background of value a2;1: thus, B1 = b1;1(r) = b2;1(r) = B2 = 1. In other
words, we assume g is piecewise linear. Use of higher order polynomials, trigonometric
functions etc. provides greater 
exibility in capturing true, underlying inhomogeneities,
but adds a small amount of computational complexity to the problem. In this paper,
the objective of the problem is to determine the structure of S and the ai given a data
vector y related to g via (1) and assuming the Bi are known.

In order to determine the support of the anomaly, and hence the S(r), we de�ne the
contour of the anomaly as a B-spline curve b(s):

b(s) = [x(s); y(s)] =

N�1X
i=0

Bki(s)[xi; yi]; s 2 [0; L] (5)

for a given set of xi; yi expansion coeÆcients, or control points, and a set of periodic,
quadratic, Bki(s). Each Bki(s) has support over a subinterval [ki; ki+3] 2 [0; L], and the
sequence fk0; : : : ; kN�1g is called the knot sequence. Since the basis was taken to be



periodic, [x0; y0] = [xN�2; yN�2] and [x1; y1] = [xN�1; yN�1]. According to our model,
if (x; y) is a point outside the curve, S(r) = 0, otherwise, S(r) = 1.

From the point of view of discrete implementation of our model, S will be a diagonal
matrix which functions as the discrete equivalent to S(r) in (4). If the center of the lth
pixel in the discretization is inside the closed curve c(s) then we set Sll = 1, otherwise we
set Sll = 0. De�ne the matrices B1, B2 to have columns given by B1(xj ; yi), B2(xj ; yi)
(with (xj ; yi) denoting the pixel center coordinates) ordering lexicographically �rst by
increasing i then by increasing j. With these de�nitions the discrete version of (4) is

g = [SB1 (I� S)B2]

�
a1
a2

�
� Qa (6)

3 Algorithm Description

Our algorithm seeks a good approximation to g(r) by successively improving approx-
imations to a1; a2; and S. Let b

�(s) denote the true contour of the true anomaly, and
let b0(s) denote an initial guess1 to b�(s). We note that most likely, the number and
locations of distinct control points of b�(s) and b0(s) will be di�erent.

The b0(s) de�nes an initial guess at S, which we use to estimate a1; a2 as the mini-
mizers of

J(a1; a2) := kG[SB1; (I� S)B2]

�
a1
a2

�
� yk2: (7)

Note that if the number of columns inB1 andB2 are small (as is the case for problems of
interest here) compared to 2NsNr, the height of GQ, this problem is quickly and easily
solved. The total cost associated with b0(s) (hence, with our estimate of the solution
g0(r)) therefore is

J(a1; a2) + �
(b0); (8)

where the �rst term enforces �delity to the data while the second denotes the regularizer.
The regularizer enforces a priori information we have about the shape of the anomaly
and serves also to stabilize the least squares solution. In this work, we chose 
(b) to be


(b) =
K�2X
i=1

(xi � xi+1)
2 + (yi � yi+1)

2 (9)

where (xi; yi) denotes the ith pair of control points for the current estimate, b(s); of
b�(s). The idea is that large gaps between adjacent control points are penalized more,
thereby discouraging the algorithm from choosing non-physical anomalies. For example,
since there are neither sources nor receivers on the sides of the domain we are trying
to reconstruct, without regularization we are more likely to reconstruct tall, narrow
anomalies in presence of noisy data. Clearly a value of � that is too large or too small
will cause the reconstruction to be under or over dependence on the data, respectively.
We do not address the selection of a near optimal parameter here, but refer the interested
reader to the abundance of literature on the subject (see [7] and the references therein).

The algorithm proceeds by perturbing the curve b0(s) in a fashion to be described
shortly to obtain a �nite collection of new curves, computing the associated cost (and
a1; a2) for each new curve from (8), and then selecting the new estimate, b1(s), of
b�(s) as a curve which gave the minimum cost over all the perturbations, provided that
minimum is less than or equal to the current cost for b0(s). The curves are obtained by

1An initial guess might be obtained, for example, by taking an image reconstructed by standard
techniques, like TSVD, and postprocessing the resulting images to get a rough outline of the anomalous
area.



taking each of the K � 2 distinct control points of b0(s) and moving them by a �xed
amount h in the vertical, horizontal, and diagonal directions. Thus, there are 8 possible
moves for each of the K � 2 distinct control points, resulting in at most 8(K � 2) new
curves for which the cost is computed. Then b1(s) is selected from among these curves
and the process is repeated2 until the cost can no longer be reduced by making these
types of perturbations to the control points of the current estimate bk(s). The algorithm
is outlined in Figure 3.

Anomaly Recovery Algorithm

k := 0
While (current-cost can still be reduced), set k = k + 1 and do

� For i = 0; : : : ;K � 3 do

1. select control point p := (xi; yi)

2. For each of 8 moves of p by �h do

(a) update p by a move

(b) form c(s) from other control points and new version of p

(c) �nd cost of c(s) and return corresponding âi

(d) if cost < current-cost
bk(s) := c(s); current-cost := cost; [ak1 ; a

k
2 ] := [â1; â2]

(e) elseif cost = current-cost
if c(s) is di�erent from all previous bk(s), then
set bk(s) := c(s); [ak1 ; a

k
2 ] := [â1; â2]

end while

Fig. 2. Anomaly Recovery Algorithm

4 Numerical Experiments

All our experiments were conducted in Matlab using double precision, 
oating point
arithmetic. We used Matlab's Spline Toolbox to create and manipulate the b-splines.
The region of interest is 3cm in width and 3cm in depth, and the region is discretized
into a 31 � 31 pixel image. There were 10 sources across the top of the region and 10
receivers along the bottom. Thus, we created one 100� 312 system matrix G for each
of the 2 modulation frequencies 0 and 200 MHz. The 200 MHz matrix was decomposed
into 2 real matrices of the same dimension by treating the in-phase and quadrature
components individually. The 3 matrices were then stacked to generate a larger matrix
G, whose dimensions were 300� 312.

In both examples, we assumed that the object was a homogeneous perturbation on
a homogeneous background of unknown value. Hence, the matrices B1 and B2 were
both taken to be m� 1 matrices with entries of all ones. Therefore the two coeÆcients
a1 and a2 were both estimated during the minimization of the cost function in (8).
This is di�erent from the work reported in [9] where the a2 was taken to be zero both
in forming the data and during the reconstruction phase. Recall that g(r) represents
the space varying perturbation in the absorption coeÆcient, �a, relative to the the
background coeÆcient used to determine G. In our experiments, we used �a = :05=cm
and �0s = 10=cm to construct G.

2perturbations that would take b1(s) back to b0(s) are disallowed



To generate the data, b�(s) was taken to be a quadratic spline curve de�ned using
6 distinct control points and S� was the corresponding discrete indicator matrix. With
a�1; a

�

2 as the true values of the anomaly and background, respectively, the noise-free
data was formed as the matrix-vector product Gg with g in (6) and G described above.
This generated a data vector of length 300, the �rst 100 points of which corresponded
to 0 MHz, the second 100 to the in-phase at 200, and the 3rd to the quadrature at 200.

We added shot noise to the data as follows. For a particular source and receiver
pair the noise component nsr(!) (at any given frequency !, for either an in-phase or
quadrature component) is given by

nsr(!) = �sr(0)v1 (10)

where v1 is a number chosen from a normal distribution with mean zero and variance
one3. Here �sr(0) is proportional to the total signal strength at DC:

�sr(0) =
p
�j~ys(r) + ~yincs (r)j (11)

where we denote by ~ys(r) the noise-free scattered �eld corresponding to source s, receiver
r, at DC and we use ~yincs (r) to denote the incident �eld at source s, receiver r at DC.
We denote the 300-length, noise-contamined data vector by y and the noise-free data
by ~y. The value of the signal to noise ratio that we give in the examples corresponds to

SNR = 10 log10
kyk22
knk22

:

Since the noise is not white, we must replace J(a1; a2) in (7) by

J(a1; a2) := k��1
�
G[SB1; (I� S)B2]

�
a1
a2

�
� y

�
k2:;

where ��1 is a diagonal matrix with 1=�sr(0) placed appropriately along the diagonal.
In our examples, we compare the solution computed using our algorithm with the so-

lution obtained via the commonly used truncated singular value decomposition (TSVD)
method [7]. Essentially, if G =

Pn

i=1 �iuiv
T
i is the singular value decomposition of the

matrix G, the TSVD regularized solution for truncation index j; j � n is gtsvd =Pj

i=1

u
T

i
y

�i
vi: We refer to the best, or optimal, TSVD solution as the one correspond-

ing to the index j which gives the smallest relative error in the 2-norm with the true
solution.

4.1 Example 1

The contour of the anomaly, b�(r), in this example is the solid green curve in Figure 3 a.
We determine our discrete, noise-free data vector ~y by using b�(r) to generate S, setting
a1 = 17; a2 = �1, forming gtrue according to (6), and setting ~y = Ggtrue. Physically,
this these values correspond to a background perturbation in �a from the known value
of :05=cm by �:01=cm and a perturbation in �a within the anomaly of :17=cm. The
discretized true image is shown in Figure 3b. We then added a noise vector n to the
data to generate the noisy data y = ~y+n: The noise was determined as described above
so that the SNR relative to the data was 20dB.

Figure 3c shows the optimal TSVD solution using the noisy data. Notice that the
TSVD reconstruction incorrectly shows the anomaly to be much larger than it should
be, and that the computed value of the anomaly is less than 1=5 of what it should be.

3We use a di�erent distribution for each of the three data subvectors.
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True image, example 1
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TSVD solution, example 1
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Shape−based reconstruction, example 1
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Fig. 3. From left to right, top to bottom: a) Contour curves for b�(r), b0(r), bk�(r) b)
True image of the perturbation in the absorption coeÆcient c) TSVD reconstruction
of the absorption perturbation d) our reconstruction of the absorption using h = 1
and � =6e-9.

The relative 2-norm di�erence error between gtrue and gtsvd (that is, the relative root
mean squared error (RMSE)) is kgtrue � gtsvdk2=kg

truek2 =6.6e-1.
Since the TSVD solution was already available, we used this to initialize b0(s) for

our algorithm. Thus, the red curve in Figure 3a shows b0(s) to be an approximation
to the outline of where the anomaly appears to be in the TSVD reconstruction, which
we obtained by postprocessing the TSVD image manually. We set h, the amount to
perturb the control points, to 1mm in our algorithm and took � =6e-9 in (9). The �nal
estimate of the contour, bk�(s), that is reached by the algorithm is the blue curve in
Figure 3b; that is, no other curve is locally more optimal than that curve. The total
reconstruction obtained using our algorithm to determine both bk�(s) and a1; a2 is
displayed in Figure 3d. The relative 2-norm error between the true and our computed
solution is 3.2e-1, which is a factor of two improvement in the error over the TSVD
solution.



4.2 Example 2

For our second example, the contour of the anomaly is given by the blue curve in
Figure4a. The value of g(r) inside the anomaly, a1 was 20 and the value of the pertur-
bation on the background, a2, was -2. The true solution, illustrated in Figure4b, and
noisy data y were formed as described in example 1 with the noise computed for a 25
dB SNR.

Figure4c illustrates the TSVD solution. Notice that the value of the anomaly was
between 1/4 and 1/3 of what it should have been, and that the anomaly looks to be
smeared from top to bottom, as in the �rst example. This latter phenomenon is to be
expected due to the \averaging" nature of the TSVD method and the lack of data at the
sides of the region of interest. The relative error between the true solution and TSVD
solutions is only 8.6e-1.

Again, because the TSVD solution was available, we manually took an estimate of
the outline of the reconstructed anomaly to serve as the initial guess at the contour,
b0(s). The curve b0(s) is displayed as the red curve in Figure4a. As in the �rst example,
we set the curve perturbation h to 1mm. For this example, we took � =1e-7.

From the initial estimate, our algorithm took 46 outer iterations until the cost could
no longer be reduced any further locally. The �nal estimate of the contour is shown in
blue in Figure4a, while the reconstructed image is displayed in Figure4d. Note the vast
improvement of our reconstruction over that obtained by TSVD. We estimate a1 as 21.2
and a2 as -2. The relative error between the true solution and the estimate obtained by
our algorithm was 5.1e-1. Also, the shape of our reconstructed anomaly is only o� by
9 pixels with respect to the shape of the true anomaly. Recall from the discussion at
the beginning of this section that b�(s) was de�ned with 6 distinct control points while
our reconstruction assumed only 5 distinct control points. We believe that if we use
more control points for b0(s), we could have reconstructed the irregular contour more
accurately. The trade-o� for using more control points in the reconstruction is the time
it takes to execute one outer iteration.

5 Conclusions and Future Work

In this work, we presented an e�ective technique for simultaneously solving the image
formation and object characterization problems from DPDW data with a particular
Gaussian noise model. The success of our method was based on the underlying model
for the perturbation of the absorption coeÆcient. Our model formulates the problem
in terms of only a small number of unknowns: namely, those that describe the b-spline
contour of the anomaly and those that describe the values of the perturbations over both
the anomaly and the background. Our examples illustrated that our reconstructions
contain signi�cantly more qualitative and quantitative information than the commonly
used TSVD reconstructions. Further, although our algorithm was implemented in serial,
it is in fact highly parallelizable in that the cost evaluations at any given iteration can be
performed in parallel. Thus, it is computationally feasible to consider more complicated
structures (i.e. those with more control points that would each need to be perturbed
during an iteration). Finally, the model and algorithm presented here are readily adapted
to account for non-linear scattering models that arise when the Born approximation
is no longer valid. In the future we hope to report results for non-linear scattering
models and to generalize this work for scattering problems and 3D reconstructions.
The generalization of our approach to multiple anomalies is straightforward if initial
estimates of boundaries of such anomalies can be found; more work needs to be done to
generalize our method to �nd multiple anomalies with a single boundary as a starting
guess.
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True image, example 2
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TSVD solution, example 2
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Reconstructed image, example 2
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Fig. 4. From left to right, top to bottom: a) Contour curves for b�(r), b0(r), bk�(r) b)
True image of the perturbation in the absorption coeÆcient c) TSVD reconstruction
of the absorption perturbation d) our reconstruction of the absorption using h = 1
and � =1e-7. .



We note that it is possible to add and delete knots from our description of the
contour as well as specify more complicated basis functions B1 and B2, thereby allowing
reconstruction of more complex anomalies and backgrounds. The question of how to
choose � appropriately is also an important issue. All these considerations were beyond
the scope of this work and remain areas for future research.


