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Preface

In this thesis we address the issues related to the application of broadband elec-

tromagnetic induction (BEMI) methods to the characterization and classi�cation of

buried landmines. We consider the development of a tractable, physical model to

describe an BEMI system and associated statistical signal processing algorithms to

extract from BEMI data collected over a grid of points in the neighborhood of the

object information regarding the location, orientation and structure of a buried ob-

ject by estimating its dipole moment spectra. Algorithmically, we shall discuss two

methods for extracting this information from the data. The �rst is an exact maximum

likelohood estimator of the DMS, location, and orientation paramaters. As the ML

approach is computationally intensive, we have also built a fast paramater extraction

technqiue whose performance is quite comprable to that of the ML estimator.

In the case of low metal content mines where the SNR can be a problem, we

also have developed and veri�ed new clutter mitigation techniques. Current clutter
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processing basically amounts to background subtraction; i.e. data collected in a re-

gion near the mine is averaged and subtracted from data taken over the mine. This

approach ignores much of the spatial correlation in the background clutter and all cor-

relation from frequency to frequency. Thus, here we develop a more complete stochas-

tic model and assoiated estimation/subtraction processing methods which takes into

account these correlation e�ects.

We verify the peformance of our models and algorithms using both simulated data

and real sensor data collected with the GEM-3 instrument for high metal and low

metal content mines.
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Chapter 1

Introduction

Electromagnetic induction (EMI) systems represent one of the more common sensing

technologies for the detection and localization of buried metallic objects including

landmines and unexploded ordinance(UXO). While many system, such as the EM61,

operate essentially in the time domain using pulsed induction principals, there has

been signi�cant interest recently in the use of swept frequency measurement systems

to perform so-called broadband electromagnetic induction (BEMI). Indeed, work in

[1] indicates that data taken over a band from tens of Hertz to tens of kHz convey

information not only about presence of absence of an object but can also be used to

determine object shape, size, orientation, and material characteristics; i.e. to perform

object characterization.
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CHAPTER 1. INTRODUCTION 2

1.1 Background

In the last years, considerable e�ort has been dedicated to the processing of both

time and frequency domain EMI data. Most of the work has paid attention to the

problem of object detection (is there anything over there?) with some developments

on the problems of discrimination and classi�cation (If there is, how is it like?). Most

methods make use of a physical model for the scattering of low frequency electro-

magnetic �elds from UXO-type objects within a statistical signal processing context.

These statistical methods o�er a solid theoretical and algorithmic basis for the use

of estimation procedures to decide parameters in the physical models and hypothesis

testing methods to detect and discriminate the object. A concise overview of the

work most relevant to that being presented here is given in the following paragraphs.

In the area of frequency domain EMI, signi�cant new work has been devoted

to the electromagnetic induction spectroscopy (EMI) technique [16, 18, 20]. The

fundamental idea for EMI is to gather a vector of frequency domain EMI samples

directly over a target. Discrimination is achieved by comparing that vector to a

library of previously obtained sample waveforms and selecting the library element

providing the closest equivalent. The method is encouraged by the experimental

observation that clutter objects have markedly di�erent spectra from UXO. As this

process is rather robust to uncertainly in object burial depth [18], no work has been

given an account on robustness of EMI to errors in sensor location over the target.
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In the same way, little e�ort has been spent to the use of BEMI for processing data

collected at multiple points in space. Lastly, the BEMI solution recommended to the

unknown orientation problem has been to gather data using orthogonal orientations of

the sensor over the target as a means of synthesizing data from an random orientation.

While experimental results of synthesis have been given for a 37mm projectile [16],

the wider validity of this method and its applicability to discrimination are far from

obvious both in the theory and in practice.

In [15], the authors show an exact EMI scattering model founded on a body of

revolution integral equation solution to Maxwell's equations. Their work gives a the-

oretical base for the utility of a frequency response model as a superposition of single

pole transfer functions or decaying exponentials in the time domain. Before using

these poles as features for separating clutter from UXO, the pole-based discrimina-

tion methods of [13] compare experimental spectral data against spectra constructed

using these pole-only models; that is like BEMI, discrimination is done in the data

domain rather that in feature space. While in principle these poles should be in-

dependent to orientation, the representative poles used to characterize a particular

object were obtained experimentally by averaging the estimates from data taken with

the object at three orientations. Similarly, the position and orientation dependence

of the expansion coe�cients for each 1-pole portion of the model was dealt with a

rather ad hoc manner by normalizing the data. The precise scattering model of [15]
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has also been used to generate target signatures for the detection methods of [13].

There a Bayesian statistical framework was used to average out uncertainties in ob-

ject position. In [14] Gao et al. took into account other detection methods which

could process either the full frequency domain signature at one point over target(like

BEMI) or the energy in the signal from multiple points; on the other hand no methods

for processing the full set of data collected over all of space have been given details

from this group.

1.2 Contributions

In this section, I review the contributions of this thesis to the solution of two problems

related to the application of BEMI systems to the characterization and classi�cation

of buried objects. The �rst problem considered in this thesis is that for high metal

content (HMC) objects, the signal arising from the object under investigation is larger

enough than the signal arising from volumetric inhomogeneties in the electromagnetic

properties of the earth (permitivity and conductivity). Therefore, I assume that

this signal contains data and noise. However, for the second problem involving low

metal content (LMC) objects, the signal from the earth can be of the same order or

magnitude as much as the signal from the object so this \clutter data" is entered the

signal data additively besides the data and noise.

In this thesis, I consider the development of a tractable, physical model to describe
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an BEMI system and associated processing methods to extract from BEMI data infor-

mation regarding the location, orientation and structure of a buried object. Assuming

that the incident EMI �eld is uniform over the support of the object, the model ap-

proximates the scattering properties of the object in terms of dipole-pole moment

spectra (DMS) which can be used to easily determine the �elds observed by the EMI

receiver. From an inversion perspective, the idea underlying the work in this thesis

is that successful estimation of these moment spectra can form the basis for object

classi�cation and identi�cation. Also, it is noted that, unlike general �nite element,

boundary element, or �nite di�erence type scattering models, the one considered here

is particularly well suited for the processing tasks at hand because it is parameterized

directly in terms of the quantities of interest: the DMS, the co-ordinates of the object

center, and the three rotation angles used to de�ne the orientation of the scatterer

relative to a global, Cartesian frame.

In the following chapters, I have presented two approaches. The �rst approach

for the �rst problem is for the estimation of the dipole moment spectra (DMS), the

co-ordinates of the object center, and the rotation angles from EMIS data for HMC

objects. Under this approach, the data are linearly related to the dipole moment spec-

tra and non-linear functions of the object location and rotation angles. I determined

the object center and rotation angles by using a low-dimensional non-linear optimiza-

tion method and employed a linear least square inversion procedure to determine the
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estimates of DMS.

The second approach is for the estimation of the DMS, the co-ordinates of the

object center, and rotation angles from BEMI data after removing the estimation

of clutter from the signal for the case of LMC objects. Under this approach, I �rst

estimated the distribution of clutter by using a stochastic model. Then, I determined

the parameters of the target after cleaning the signal.

In the second approach, it is proposed to model the clutter as a correlated random

�eld which can be described using a polynomial regression model the structure of

which is motivated by examination of real clutter data collected with a GEM-3 [3, 5]

sensor. The estimate then subtract processing strategy I propose is designed to reect

the way in which BEMI-type sensors are employed in the �eld. Currently clutter

mitigation amounts to subtracting from data taken in the immediate vicinity of the

object target-free secondary data taken on the boundary of this area. Thus, the

correlation structure of the clutter is not properly accounted for in the mitigation

procedure. Moreover, this approach completely ignores the fact that the sensor is

often calibrated in a region close to a suspected target. Thus any information which

the calibration data may be able to yield regarding the clutter structure over the

object is also absent from the processing.

Here I consider a model-based approach to BEMI clutter mitigation. The data

from the calibration region as well as the boundary of the object region are all used
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to estimate and remove the clutter in the data containing object signal.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 contains problem formulation

and physical model used. In chapter 3, I introduce the processing methods . In

chapter 4, simulated and real data results will be given. Finally, in chapter 5, I

summarize the results and contributions of this thesis, and indicate future research

directions.



Chapter 2

Problem Formulation and Physical

Model Used

In this thesis, a physical model is considered to describe a BEMI system and associated

processing methods to extract the location, orientation and structure of a buried

object from the BEMI data . In the �rst section, I describe a generalized form of an

BEMI forward model based on the work of Das et. al [2].

Given this sensor model, I consider two problems. The �rst problem is the char-

acterization and localization of the high metal content(HMC) mines. I examine

estimation-theoretic methods for determinng an object's center, its orientation, and

scattering characteristics (as de�ned by a spectrum of low order multipole moments)

8
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from low frequency spectroscopic data obtained over a grid of spatial locations. Un-

der this model, the data are the linear function of the dipole moment spectra and

the non-linear function of the object location and rotation angles. An e�cient esti-

mation procedure based on a low-dimensional non-linear optimization routine for the

determination of the object center and rotation angles is employed with the linear

least squares inversion procedure which determines the estimate of the dipole moment

spectra.

The second problem is low metal content(LMC) mine characterization from BEMI

data. For HMC, we can ignore the interface and assume additive white sensor noise

model. However, for LMC, new processing techniques are needed. In particular, for

these cases the signal arising from the interface and volumetric inhomogeneities in the

electromagnetic properties of the earth (permittivity and conductivity) can be of the

same order or magnitude if not larger than the signal arising from the object under

investigation. Moreover, this \clutter signal" is known to enter the data additively

suggesting one method of mitigating the clutter would be to estimate and subtract it

from the data.

I propose to model the clutter as a correlated random �eld which can be de-

scribed using a polynomial regression model the structure of which is motivated by

examination of real clutter data collected with a GEM-3 [3, 5] sensor. The estimate

then subtract processing strategy I propose is designed to reect the way in which
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BEMI-type sensors are employed in the �eld.

Here I consider a model-based approach to BEMI clutter mitigation. As shown

in Fig. 2.4, there is the calibration data and the data taken on the boundary of the

object region. The latter one is used to estimate the clutter signal on the interior

of the object region. Here I assume that the boundary data doesn't contain any

mine signal. Second assumption is that there is some correlation between one region

and another region in the clutter data. In the processing method the data from the

calibration region as well as the boundary of the object region are all used to estimate

and remove the clutter in the data containing object signal. After cleaning the data in

this manner, I describe a new set of methods for estimating the object characteristics:

location, orientation, and DMS.

2.1 Physical Model

In this thesis I consider an extension of a physical model for EMI proposed in [2]

describing the scattering of low frequency electromagnetic radiation by spherical or

spheroidal objects of known conductivity and permeability. As seen in Fig. 1 the

transmitters and receivers are taken to be square coils (not necessarily co-located)

with sides of length 2A. The target center is located at r0 = (x0; y0; z0) in the

x � y � z coordinate system. For the problems of interest in this work the e�ects

of the low conductivity ground typically can be ignored [2] so that the entire sensor
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system is taken to reside in free space.

The physical model is based on the assumption that scattering characteristics of

the object of interest can be approximated using a low order dipole model. The

electromagnetic force EMF, s, induced in a single turn receive coil located at rrec by

an object at r0 is given as the scalar product:

s =
i!�o

I
gTM (2.1)

where g is a 3 � 1 vector holding the x, y, and z components of the magnetic �eld

produced at r0 by a current I owing in the receive coil, gT indicates the transpose

of g, ! is the operating frequency, i =
p�1, and �0 is the permeability of free space.

As described in Appendix A of [2], the vector g is a function only of rrec � r0, the

relative position of the object and the sensor.

The tensor, M , de�nes the dipole scattering characteristics of the object. To de-

termine the structure ofM , I note that the magnetic �eld generated by a transmitting

coil will cause a magnetizable target to polarize in such as way as to weaken the �eld

in its interior. The precise structure of the magnetic moment induced in the object

depends on its electromagnetic and geometrical parameters and the induced magnetic

�eld of the transmit coil at r0 in the following way

M = �0�f (2.2)
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Figure 2.1: One sensor comprising sensor coils and target object.

where � is the normalized polarizability tensor, f is the excitation �eld vector eval-

uated at the dipole position and has a similar functional form to that of g, and

�0 = 3�r�1
�r+2

is the sensitivity factor for a sphere.

In this work I consider targets to be well modeled as ellipsoids. In the event that

the target's axes are parallel to those of a global Cartesian co-ordinate system � can

be represented by the matrix as follows:

� =

2
666666664

�1(!)

�2(!)

�3(!)

3
777777775
: (2.3)

The three frequency dependent �'s (here referred to as moment spectra) each are
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associated with one of the principal axes of the ellipsoid. For a sphere, all three

are identical and closed form expressions can be found for all orders of dipoles [1].

In [2], scattering from spheroids was considered. In such cases, two of the �'s are

the same, and closed form expressions for their dipole moment structure can only

be found in the case of ! = 0. More recently, the work in [15] indicates how one

might employ multiple poles in the complex frequency plane to accurately model the

scattering process for arbitrary objects. Generally, the problem of determining the

moment spectra given the axis lengths and material of the object is an open problem

and one which we are currently pursuing. Here I assume that such a correspondence

can be found and concentrate instead on the estimation of � from a given set of data.

In the event that the ellipsoid is rotated relative to the global co-ordinate system,

it is necessary to mathematically express the components of g and f in the frame of

the ellipsoid as follows. A Cartesian co-ordinate system x � y � z is attached to the

ellipsoid. I have both �eld vectors g and f line in the same coordinate system. A

second system x
000�y000�z000

, whose axes coincide with the ellipsoid axes can be found

by doing the following rotations. It is �rst rotated through the angle of � about the

z-axis. I obtain the new system x
0 � y

0 � z
0

. Next the new system is rotated about

y
0

-axis through the angle of �, resulting other system x
00 � y

00 � z
00

. To complete

transformation, the axes are rotated about x
00

through the angle of  , and I �nd the

last system x
000 � y000 � z000

, coinciding with the ellipsoid axes. All rotations are shown
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Figure 2.2: Angle transformations about three coordinate axes.

in Fig. 2. This sequence of transformations is described by the rotation matrix,

R =

2
666666664

cos � cos� cos � sin� � sin �

� cos sin�+ sin� sin � cos� cos cos�+ sin� sin � sin� sin� cos �

sin sin�+ cos sin � cos � � sin cos�+ cos� sin � sin� cos� cos �

3
777777775

(2.4)

The matrix R is incorporated into the model as follows

s =
i!�0�0

I
gTRT�Rf (2.5)
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where the vector Rf represents the components of the transmitted �elds in the co-

ordinates of the rotated ellipsoid with an analogous interpretation for Rg.

In this work, I are concerned with processing methods based on multi-frequency

data from obtained from multiple transmitter/receiver locations. Assuming I collect

M frequency samples from each of N combinations of transmitters and receivers

positions then I can write the kth frequency sample at the nth position as

sn;k =
i!k�0�0

I
gn

TRT�kRfn + wn;k (2.6)

where wn;k is measurement noise. From this data set, our processing objectives are the

estimation of clutter parameters for low metal content metal case and mine parameters

for all cases and �nally classi�cation of objects. In the next section, I describe the

clutter model.

2.2 Clutter model

For low metal content objects a simple additive white Gaussian noise model is not

satisfactory. The interaction of the transmitted signal with the background medium,

usually negligible for sensing metal objects, become prominent here. These e�ects are

manifest in the form of additive, correlated noise in the signal which I term \clutter".

In this work I develop a stochastic model describing the distribution of clutter which

provides for the spatial correlation seen in this portion of the sensor signal.
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As shown in Fig. 2.3 the simulated clutter data makes use of the stochastic model

I will develop in the following paragraphs.
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Figure 2.3: Simulated Clutter Data.

Speci�cally, I consider the following polynomial regression model in the spatial

variables xi and yi, the x and y position of the ith sensor to describe this clutter at

frequency !k:

c(xi; yi; !k) =
X
p;q

�p;q;kx
p
i y

q
i + ni;k (2.7)

where the �'s are unknown, random expansion coe�cients, and ni;k represents resid-

ual, \white" variations not captured by the regression. Collecting the clutter samples
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at all locations and all frequencies into a signal vector I write the overall model as

c = X� + n: (2.8)

For M frequencies X = IM 
X 0 where IN is the N � N identity matrix, 
 denotes

the Kronecker product and X is the block diagonal matrix obtained from all the X 0's,

where the element of X 0 for (i; j)th position is xpi y
q
j , � is the vector containing �p;q;k,

and n is the noise vector.

Figure 2.4: Clutter Model.

I use (2.8) to describe the distribution of clutter over two regions of space: a

calibration area and a region containing an object to be characterized. As illustrated
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in Fig. 2.4 the clutter mitigation procedure I propose makes use of all the calibration

data and the data taken on the boundary of the object region to estimate the clutter

signal on the interior of the object region. One supposition here is that the boundary

data do not contain any mine signal. Another is that there is some correlation in

the clutter from one region to the next which can and should be exploited in the

processing. Thus, I introduce a simple statistical model linking the � vector from

the clutter region to that of the object region. Formally, over the calibration region

I write the clutter as

c0 = X0�0 + n0 (2.9)

while over the object area I have

c1 = X1�1 + n1 =

2
6664
X1;b

X1;i

3
7775�1 +

2
6664
n1;b

n1;i

3
7775 : (2.10)

with X1;i built from points interior to the mine region, X1;b from the boundary points

(marked by \X" in Fig. 2.4), n1;i interior noise samples and n1;b boundary noise

samples. To complete the model of the clutter I assume that the vector �1 is �

N(0; �2�I), and I hypothesize that �0 and �1 are related via random walk type model

of the form

�0 = �1 + n2 (2.11)

Finally, for simplicity I take nj � N(0; �2j I) for j = 0; 1; 2 in 2.9{ 2.11.
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In the light of these models, I describe the details of estimation processing methods

in the following chapter.



Chapter 3

Processing

In this chapter, I �rst show how to estimate the parameters of the clutter and mitigate

it. Finally, I describe the target parameter estimation algorithms.

In the previous chapter the clutter model was developed as a correlated random

�eld which can be described using a polynomial regression model. Unlike currently

clutter mitigation methods that usually amounts to subtracting from data taken in

the immediate vicinity of the object target-free secondary data taken on the boundary

of this area, here I consider a model-based approach to BEMI clutter mitigation in

which the data from the calibration region as well as the boundary of the object

region are all used to estimate and remove the clutter in the data containing object

signal.

The �rst target parameter estimation algorithm, algorithm-I is the \optimal"

20
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statistical algorithm and is designed for extracting the information; the DMS, the co-

ordinates of the object center, and the three rotation angles of the object from BEMI

data. Under this model, the data are linearly related to the multipole moment spectra

and non-linear functions of the object location and rotation angles. This function

form is exploited in the construction of an e�cient estimation procedure based on a

low-dimensional non-linear optimization routine required for the determination of the

object center and rotation angles (6 variables in all). Embedded within this routine

is an associated regularized, linear least squares inversion procedure which implicitly

determines the estimates of the MMS.

Relative to the statistically optimal algorithm-I, the other one, algorithm-II is

theoretically suboptimal but faster and still highly accurate.

3.1 Clutter estimation and mitigation

Given the clutter model described in the previous section, our �rst objective is to

�nd an estimate of �1 given c0, and c1, so that I can estimate the clutter data for the

whole mine present region. Toward this end, I substitute (3.13) into (3.11) to obtain;

c0 = X0�1 +X0n2 + n0 (3.1)



CHAPTER 3. PROCESSING 22

Combining this with (3.12), yields the complete clutter model

2
6664
c0

c1

3
7775

| {z }
c

=

2
6664
X0

X1

3
7775

| {z }
D

�1 +

2
6664
I 0 X0

0 I 0

3
7775

| {z }
E

2
666666664

n0

n1

n2

3
777777775

| {z }
n

(3.2)

with En � N (0; K) and K = E blockdiag (�20I; �
2
1I; �

2
2I) E

T . Eq. (3.2) provides a

linear model relating all of the clutter data of interest to the expansion coe�cients

over the region containing the object. Using this model, the linear least squares

estimate of �1 based on the clutter data taken over the calibration region and the

boundary of the mine region is [5]

�̂1 = (DT
r K

�1
r Dr)

�1DT
r K

�1
r M0c (3.3)

where M0 is a selection matrix that extracts from c the c0 and c1;b subvectors, Dr =

M0D, and Kr = M0KM
T
0 . Then, the estimate of the clutter data for the interior of

the mine present region is

ĉ = X1;i�̂1 = X1;i(D
T
r K

�1
r Dr)

�1DT
r K

�1
r M0c � M1c: (3.4)

I mitigate the clutter in the signal as follows: Collecting the data over all frequen-

cies and positions I write the model in (2.6) as;

s = s0 + c1;i + ! = s0 +M2c+ ! (3.5)
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with s0 the vectorized form of the �rst term in (2.6), c1;i clutter on the interior of

the object region, n noise andM2 the matrix which extracts from c the c1;i subvector.

The noise vector ! is N(0; �2!I). Then, subtracting ĉ from the data vector s yields

the clutter mitigated data, or cleaned data, �s,

�s = s0 +M2c� ĉ+ ! = s0 + (M2 �M1)c+ ! � s0 +Mc+ !

Thus, the cleaned data are N(s0; K�s) with (after some algebra)

K�s = MKcM
T + �2!I

Kc = �2�D
TD +K

3.2 Target parameter estimation

3.2.1 Algorithm-I

The model developed in the previous chapter is particularly well suited to the pro-

cessing task at hand. First, the position of the target appears only in the vectors

g and f and the orientation angles are seen in the matrix R. While the data are

non-linear functions of these variables (six in all) the analytical nature of the model

makes determination of these quantities relatively straightforward using a non-linear

optimization routine. More importantly, the shape and electrical characteristics of

the object are encoded in the moment spectra �i which are linearly related to the
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data. Thus, determination of these large vectors (three complex valued unknowns

per frequency) reduces to a linear least squares problem the solution of which can be

obtained in closed form. In the following section, I provide a more detailed descrip-

tion of how these observations are exploited in the design of an e�cient processing

scheme.

First of all, I manipulate the model to a form that is more suitable for processing.

Because �k(!) is a complex quantity in general, so is sn;k. Thus, after cleaning

the data and separating it into real and imaginary parts, I make explicit the linear

dependence of the data on the dipole moments as follows

2
6664
�sRn;k

�sIn;k

3
7775 =

2
6664
aRn 0

0 aIn

3
7775

| {z }
An

�k +

2
6664
wR
n;k

wI
n;k

3
7775 (3.6)

�k = [�R1;k �
R
2;k �

R
3;k �

I
1;k �

I
2;k �

I
3;k]

T (3.7)

where superscript R indicates real part and superscript I indicates imaginary part.

The aRn and aIn are 3�1 vectors depending on (a) r0, (b) the locations of the transmitter

and receiver, and (c) the rotation angles, � = [�  �]. These vectors can be obtained

from fi; R; gj after some straightforward algebra. Finally, the vector �k hold the

real and imaginary parts of the samples of the three dipole moment spectra for the

ellipsoid at frequency !k.

Stacking the data from all transmitter-receiver pairs for all frequencies gives the
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discretized data model:

�s = A(ro; �)�+ w: (3.8)

ForM frequencies A = IM
A1 where IN is the N�N identity matrix, 
 denotes the

Kronecker product and A1 is the block diagonal matrix obtained from all the An's.

Note that for if we collect data from a total of N transmitter/receiver pairs then Ai

is a 2N by 6 matrix and A is 2NM � 6M . Finally, the noise vector, w, to be zero

mean and Gaussian random variables with variance K�s.

Eq. (3.8) is used in a penalized least squares approach to determine the location

of the object, r0, the orientation angles, � and dipole moments, �: Estimates of these

quantities, denoted as r̂0, �̂, and �̂ respectively, are de�ned as those values which

minimize the following cost function:

C(r0; �; �) = ks� A(r0; �)�k2K�s
+

3X
i=1

�ikLi�k22: (3.9)

In (3.9), K�s is the noise covariance matrix, kxkA � xTAx, and the Li are used to

regularize the problem by enforcing smoothness in the spectra of the dipole moment

estimates. Speci�cally, Li is built such that

kLi�k22 =
X

m2fR;Ig

MX
k=1

(�mi;k � �mi;k)
2: (3.10)

The regularization parameters �i in (3.9) are used to determine the tradeo� in the

reconstruction between the two terms in the cost function. The �rst terms enforces

�delity to the data while the second ensures smooth spectra. By providing for up
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to three such parameters, I allow for exibility in adapting the processing structure

to the problem at hand. For example, in the case that we knew we were looking for

spherical objects then all three �i function would be the same and we would require

only one �. For spheroidal objects, where two of the axes are the same, only two �i

and �i are required: one for the major and one for the minor axis. Finally, I note that

in general, the on-line determination of �i is a well-studied, non-trivial issue beyond

the scope of this thesis [6, 7, 8]. For simplicity, in the examples in Chapter 5, I assume

that � is known.

To minimize the cost function, I note �rst that because (3.9) is quadratic with

respect to �, �̂ can be explicitly stated in terms of � and r0 via

�̂ =

 
ATK�1

�s A+
3X
i=1

�iL
T
i Li

!�1

ATK�1
�s y � Q(r0; �)y (3.11)

so that I can write:

r̂0; �̂ = argmin
r0;�

C(r0; �; Q(r0; �)y) (3.12)

�̂ = Q(r̂0; �̂)y (3.13)

In our experiments I have found that C is generally quite well behaved with respect

to the the location parameters but exhibits many local minima in terms of the orien-

tation angles. Thus, I have adopted the following strategy for �rst determining rough

estimates of r0 and � and then re�ning these quantities. I begin by imposing a coarse

grid �rst on the three dimensional space of all permitted orientation angles. For each
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�-value in the grid, a 3D non-linear least squares solver is used to �nd the optimal

r0. I use that � values with the smallest overall cost and the associated estimate of

r0 for that cell to initialize a full 6D non-linear least squares scheme to �nd the �nal

values of �̂ and r̂0. Using these values, I construct �̂ according to (3.13).

3.2.2 Algorithm-II

Given �s, our aim is to estimate the parameters of the detected object: the co-ordinates

of the object center, the moment spectra, and the three rotation angles. Here I take

a two-step approach to this procedure. First, I use the data to estimate the three

location parameters of the object, (x0; y0; z0) and a collection of quantities related to

the Euler angles and the DMS. Second, I use these estimates to separately extract

orientation and DMS information. The motivation for this approach is primarily

computational. As described in greater detail below, each stage requires the solution

of a problem involving a single large parameter vector which is linearly related to

the data and a substantially smaller set of parameters for which the relationship is

non-linear. By pursing a two step strategy, I can exploit this structure to obtain

an estimation approach requiring two small non-linear search routines rather than

one larger one. Moreover, the �rst such routine for the location parameters is better

behaved in terms of local minima than the second search for the Euler angles. Thus,

I are able to e�ectively partition the overall estimation problem.
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Our approach to the �rst subproblem is to starts by de�ning the symmetric matrix

Mk

Mk = RT�kR =

2
666666664

�11;k �12;k �13;k

�12;k �22;k �23;k

�13;k �23;k �33;k

3
777777775

(3.14)

Substituting (3.15) into (2.1), \stacking" the data from all transmitter-receiver pairs

for all frequencies, I arrive at the following model for the cleaned data

�s = B(r0)�(�; �) + 
: (3.15)

where, forM frequencies B = IM 
B1 with B1 a matrix constructed from the fn and

gn vectors. The vector � is comprised of the six unique elements of each Mk. Finally,

the noise vector 
 is zero mean and Gaussian with variance K�s.

Eq. (3.15) is used in a penalized least squares approach to determine the location

of the object, r0 and � , as follows:

�̂0; r̂0 = argmin
�;r0

k�s�B(r0)�k2K�s
(3.16)

The solutions [3, 5] are found:

r̂0 = argmin
r0
k�s� B(r0)(B

T (r0)K
�1
�s B(r0))

�1BT (r0)K
�1
�s �sk22 (3.17)

�̂ = (BT (r̂0)K
�1
�s B(r̂0))

�1BT (r̂0)K
�1
�s �s (3.18)

The goal of the second processing step is to use �̂ to estimate � and �=the vector

of three Euler angles. Via (3.14), I start by using �̂ to build M̂k in the obvious
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manner. According to (3.14), I should be able to �nd a single rotation matrix which

simultaneously diagonalized all of the Mk's to produce the diagonal �k's. I use this

observation to construct the following penalized least squares cost function

C(�k; �) =
X
k

k RT (�)M̂kR(�)� �0
k kF +penalty (3.19)

where kXkF is the Frobenius norm of the matrix X,

�0
k =

2
666666664

�011;k �012;k �013;k

�012;k �022;k �023;k

�013;k �023;k �033;k

3
777777775

is the matrix containing the moment spectra and it is not generally diagonal due to

the fact that the noise in the data will prevent the exact simultaneous diagonalization

of all the Mk. With this in mind, the goal of penalty is to (a) discourage nonzero o�

diagonal entries in every �0
k and (b) to encourage smoothness in the �i;k from !k to

!k+1 [3].

Stacking the unique unknown �0i;j;k's (6 per frequency) into one large vector �0, I

write (3.19) as;

C(�; �) =k �̂0(�)� �0 k2K�s
+�1kLOD�0k22 + �2kLD�0k22: (3.20)

where �̂0 is the vector of unique elements from R(�)MkR
T (�) over all k. The Li are

used to regularize the problem by enforcing smoothness in the spectra of the multi

pole moment estimates. Speci�cally, LOD is for o�-diagonal elements, and LD is for
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diagonal elements. They are built such that

kLD�k22 =
MX
k=1

3X
p=1

(�0pp(wk)� �0pp(wk+1))
2 (3.21)

kLOD�0k22 =
MX
k=1

(�012(wk))
2 + (�013(wk))

2 + (�023(wk))
2: (3.22)

The regularization parameters �i in (3.20) are used to determine the tradeo� in the

reconstruction between the two terms in the cost function. The �rst terms enforces

�delity to the data while the second ensures smooth spectra in (3.21).

To minimize the cost function, I note �rst that because (3.21) is quadratic with

respect to �, �̂ can be explicitly stated in terms of � and r̂0 via

�̂ =
�
K�1

�s + �1L
T
ODLOD + �2L

T
DLD

��1
K�1

�s �̂0 � Q(r̂0; �)�̂
0 (3.23)

so that I can write:

�̂ = argmin
�
C(r̂0; �; Q(r̂0; �)�̂

0) (3.24)

�̂ = Q(r̂0; �̂)�̂
0 (3.25)

In our experiments I have found that C exhibits many local minima in terms of

the orientation angles. Thus, I have adopted the following strategy: I �rst impose a

coarse grid on the three dimensional space of all permitted orientation angles, then,

for each �-value in the grid, the value of the cost function C is found. I use that

� values with the smallest overall cost for that cell to initialize a full 3D non-linear
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least squares scheme to �nd the �nal values of �̂. Using these values, I construct �̂

according to (3.25).



Chapter 4

Simulated and Real Data Results

In this chapter we �rst show the simulated data results for both algorithms and the

comparison.Then, the real data results of both algorithm will be represented.

4.1 Simulated Data results

In the �rst subsection, the simulated data results are shown for Algorithm-I in the

cases of sphere, spheroid, and ellipsoid objects with and without clutter. In the next

section, we only present the results of Algorithm-II in the cases of ellipsoid with and

without clutter.

32
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4.1.1 Algorithm-I Analysis Results

In this section, �rstly, the performance of the �rst estimation approach, Algorithm-I

is demonstrated and analyzed under three mine shapes for the HMC objects without

clutter. Next, we compare it with the baseline method in which clutter mitigation

is performed by subtracting from the interior data at a �xed y, the average of the

two horizontal samples taken on the boundary, under two mine shapes for the LMC

objects with clutter. For the HMC case without clutter, we simulate data taken on

a 10� 10 grid of 100 cm 2 pixels by a monostatic transmit/receive system comprised

of square coils 5 cm on a side. Ten frequencies logarithmically spaced between 0 and

4.3KHz are used. One corner of the grid is taken to be (0; 0)m while the opposite is

at (1; 1)m.

As a �rst example of the HMC case, we consider a sphere mine located at (x0; y0; z0) =

(0:50; 0:50; :10) m1, and with radius 5cm. The medium as well as the object are taken

to be non-ferrous and the conductivity of the sphere is 106S/m. We assume that the

sphere's response can be modeled as a dipole and we the results of [1] to compute the

dipole moment spectrum (DMS). The real and imaginary parts of this spectrum are

shown as a solid line in Fig. 4.1. Because the sphere is rotationally invariant, for this

problem there is no need to estimate the rotation angles so that the problem here

reduces to determining the location and the DMS. To demonstrate the performance of

1Increasing depth here corresponds to increasing z
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our approach, we perform 100 Monte Carlo simulations at a signal to noise ratio of 20

dB. In this case, the sample mean of the estimated object center is shown in the Table

4.1. In Fig. 4.1 the dotted lines show the sample mean of the estimated DMS with

associated error bars. We see from these results that the approach is highly accurate

both in terms of estimating the the position as well as the moment spectrum.
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Figure 4.1: The real and imaginary part of estimated and real moment spectra of
sphere mine for � = 0:0001.

As a second example, we consider a spheroidal object2 again located at (x0; y0; z0) =

(0:50; 0:50; :10)m and which has been rotated using � = 0:75 radians and  = 2:30

2Note that because the object is taken to be spheriodal, two of the three principlae axes are

identical so we only need estimate a pair of rotation angles and a pair of MMS.
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Figure 4.2: The real and imaginary part of estimated and real moment spectra of
spheroid mine for �1 = 0:001 and �2 = 0:001, and for the major axis.

radians. In this case, we presently have no closed form expression for the frequency

dependent DMS of such an object. However, under the assumption that the scatter-

ing characteristics of an eccentric object will be substantially di�ererent for the major

versus minor axes, we hypotheses DMS spectra shown in Fig.4.2 and Fig.4.3 as solid

lines and examine the performance of our approch under these conditions.

In this case, we estimate the center of object, minor and major moment spectras

and two rotation angles. For spheroid object, we assume that the optimum �1 and

�2 values for the major and minor axis are known. For �1 = 0:001 and �2 = 1,
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Figure 4.3: The real and imaginary part of estimated and real moment spectra of
spheroid mine for �1 = 0:001 and �2 = 1, and for the minor axis.

after performing 100 Monte Carlo simulations at 20 SNR, the sample mean of the

estimated object center is shown in the Table 4.1. The sample mean of estimated

rotation angles are also shown in this table. The real and imaginary parts of two

estimated with errorbar and real moment spectras for major and minor axis are

shown in Fig.4.2 and Fig.4.3, respectively

As a last example for the data without clutter, we consider an ellipsoid object at

the same location as the previous examples. For this case the data that we will use is

same as the data that we used for the second example, spheroid case. For �1 = 0:001,
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Sphere Spheroid Ellipsoid
Standard Standard Standard

mean Deviation mean Deviation mean Deviation

x̂0 0.5000 0.0002 0.5003 0.0021 0.5002 0.0014
ŷ0 0.5001 0.0002 0.4996 0.0015 0.5007 0.0017
ẑ0 0.0999 0.0010 0.0971 0.0046 0.0925 0.0061

�̂ - - 0.7541 0.0354 0.7571 0.2991

 ̂ - - 2.3411 0.0805 2.5533 0.0972

�̂ - - - - 0.0515 0.2652

Table 4.1: The estimated object center and rotation angle results for Algorithm-I

�2 = 0:001 and �3 = 1, after we perform 100 Monte Carlo simulations at 20 SNR for

this case, the sample mean of the estimated object center and the sample mean of

estimated rotation angles are represented in the Table 4.1. The real and imaginary

parts of two estimated with errorbar and real moment spectras for �rst, second and

third axis are shown in Fig.4.4, Fig.4.5 and Fig.4.6, respectively. From Fig.4.4 and

Fig.4.5 we see that their MS estimations are approximately same.

All the sample mean of the estimated object center and rotation angeles for three

examples are illustrated in the Table 4.1 with standard deviations. From all results

the approach estimating the position, the rotation angle and the momemt spectrum

is highly precise.

For the data containg LMC objects with clutter, we simulate data taken on a 9�9

grid of 81 cm 2 pixels by a monostatic transmit/receive system comprised of square

coils 5 cm on a side. Ten frequencies logarithmically spaced between 0 and 4.3kHz
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Figure 4.4: The real and imaginary part of estimated and real moment spectra of
spheroid mine for �1 = 0:001, �2 = 0:001 and �3 = 1 , and for the �rst axis.

are used. One corner of the grid is taken to be (�0:4;�0:4)m while the opposite is

at (0:4; 0:4)m.

As a �rst example of the LMC case, we consider a sphere mine located at (x0; y0; z0) =

(0; 0; :10)m, and with radius 5cm. The medium as well as the object are taken to be

non-ferrous. The real and imaginary parts of this spectrum are shown as a solid line

in Fig. 4.7. Because the sphere is rotationally invariant, for this problem there is no

need to estimate the rotation angles so that the problem here reduces to determin-

ing the location and the DMS. To demonstrate the performance of our approach, we
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Figure 4.5: The real and imaginary part of estimated and real moment spectra of
spheroid mine for �1 = 0:001, �2 = 0:001 and �3 = 1, and for the second axis.

perform 100 Monte Carlo simulations at a signal to clutter plus noise ratio(SCNR)

of 20 dB. The sample mean of the estimated object center is shown in the Table 4.2

for our model and the baseline method with a standard deviation. In Fig. 4.14 the

dotted lines show the sample mean of the estimated DMS according to both meth-

ods. We see from these results that our approach is highly accurate and better when

compared with the baseline method both in terms of estimating the position as well

as the moment spectrum.

As a second example, we consider an ellipsoid object again located at (x0; y0; z0) =
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Figure 4.6: The real and imaginary part of estimated and real moment spectra of
spheroid mine for �1 = 0:001, �2 = 0:001 and �3 = 1, and for the third axis.

(0; 0; :10)m and which has been rotated using � = 1:50 radians,  = 1:50 radians and

� = 1:90 radians. In this case, we presently have no closed form expression for the

frequency dependent DMS of such an object. However, under the assumption that the

scattering characteristics of an eccentric object will be substantially di�erent among

axes, we hypotheses DMS spectra shown in Fig. 4.8, Fig. 4.9, and Fig. 4.10 as solid

lines and examine the performance of our approach under these conditions.

In this case, we estimate the center of object, moment spectra for three axes and

three rotation angles. For ellipsoid object, we assume that the optimum �1 and �2
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Figure 4.7: The real and imaginary part of estimated and real moment spectra of
sphere mine

values for the major and minor axis are known. After performing 100 Monte Carlo

simulations at 20 SCNR, all results for both models are represented in the Table

4.2. The real and imaginary parts of two estimated and real moment spectra all axes

according to both models are shown in Fig. 4.8{ 4.10.

All the sample mean of the estimated object center and rotation angles for two

examples are illustrated in the Table 4.2 with standard deviations according to both

models. From all results our approach estimating the position, the rotation angle and

the moment spectrum is highly precise and we can say that it is much better than
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Sphere Case Ellipsoid Case
Our Model Baseline Model Our Model Baseline Model

Standard Standard Standard Standard
mean Deviation mean Deviation mean Deviation mean Deviation

x̂0 -0.0001 0.0002 0.0042 0.0103 -0.0000 0.0001 0.0066 0.0111
ŷ0 -0.0009 0.0005 -0.0074 0.0042 0.0001 0.0003 -0.0059 0.0075
ẑ0 0.1002 0.0004 0.1149 0.0194 0.1001 0.0009 0.9740 0.0097

�̂ - - - - 1.6991 0.0033 1.6328 0.0061

 ̂ - - - - 1.7025 0.0037 1.7842 0.0101

�̂ - - - - 1.8705 0.0041 2.1993 0.0140

Table 4.2: The estimated object center and rotation angle results according to our
model and baseline model.

the baseline model for the certain of the moment spectras.

4.1.2 Algorithm-II Analysis Results

In this section, we �rst demonstrate and analyze the performance of the parameter

estimation of the second processing approach, Algorithm-II for one mine shape for

the HMC objects without clutter. Then, we compare it for two mine shapes for the

LMC objects with clutter to that of a baseline method. Finally, we do the comparison

of two algorithms. The simulate datum for the following simulations are same as the

previous section's.

As an example for the HMC data without clutter, we consider an ellipsoid object at

the same location as the previous examples. For �1 = 10�6, �2 = 10�3 and �3 = 10�6,

after we perform 100 Monte Carlo simulations at 30 SNR for this case, the sample
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Figure 4.8: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the �rst axis.

mean of the estimated object center is (0:5001; 0:4989; 0:0909)m with a standard

deviation of �(0:0027; 0:0042; 0:0139). The sample mean of estimated rotation angles

are � = 1:5693 radians,  = 1:5665 and � = 1:5751 radians with standard deviations

of �(0:0628), �(0:0327) and �(0:1743) respectively. The real and imaginary parts of

two estimated with errorbar and real moment spectras for �rst, second and third axis

are shown in Fig.4.11, Fig.4.12 and Fig.4.13, respectively. From Fig.4.12 and Fig.4.13

we see that their MS estimations are approximately same.

As a �rst example of LMC case, we consider a sphere mine located at (x0; y0; z0) =
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Figure 4.9: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the second axis.

(0; 0; :10)m, and with radius 5cm. Because the sphere is rotationally invariant, for

this problem there is no need to estimate the rotation angles so that the problem

here reduces to determining the location and the DMS. To demonstrate the per-

formance of our approach, we perform 100 Monte Carlo simulations at a signal to

interference plus noise ratio(SCNR) of 10 dB. In our model, the sample mean of the

estimated object center is (�0:0004;�0:0009; 0:1017)m with a standard deviation of

�(0:0003; 0:0010; 0:0021)m. In the baseline method, it is (0:0237;�0:0059; 0:1144)

with a standard deviation of �(0:0156; 0:0035; 0:0123)m. In Fig. 4.14 the dotted lines
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Figure 4.10: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the third axis.

show the sample mean of the estimated DMS according to both methods. We see

from these results that our approach is highly accurate and better when compared

with the baseline method both in terms of estimating the position as well as the

moment spectrum.

As a second example, we consider an ellipsoid object again located at (x0; y0; z0) =

(0; 0; :10)m and which has been rotated using � = 1:70 radians,  = 1:70 radians and

� = 1:70 radians. In this case, we presently have no closed form expression for the

frequency dependent DMS of such an object. However, under the assumption that the
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Figure 4.11: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the �rst axis.

scattering characteristics of an eccentric object will be substantially di�erent among

axes, we hypotheses DMS spectra shown in Fig. 4.15, Fig. 4.16, and Fig. 4.17 as solid

lines and examine the performance of our approach under these conditions.

In this case, we estimate the center of object, moment spectra for three axes and

three rotation angles. For ellipsoid object, we assume that the optimum �1 and �2

values for the major and minor axis are known. After performing 100 Monte Carlo

simulations at 10 SCNR, in our model the sample mean of the estimated object center

is (�0:0005; 0:0001; 0:0985)mwith a standard deviation of�(0:0004; 0:0003; 0:0012)m,
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Figure 4.12: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the second axis.

and in baseline model (0:0578;�0:0011; 0:1107)m with a standard deviation of

�(0:0562; 0:0025; 0:0129)m. The sample mean of estimated rotation angles in our

model are � = 1:66751 radians,  = 1:7163 radians, and � = 1:9097 radians with

standard deviations of �(0:0041), �(0:0014), and �(0:0073, respectively, and in the

other model � = 1:5050 radians,  = 1:2052 radians, and � = 2:7402 radians with

standard deviations of �(0:072), �(0:0371), and �(0:0053), respectively. The real

and imaginary parts of two estimated and real moment spectra all axes according to

both models are shown in Fig. 4.15{ 4.17.
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Figure 4.13: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the third axis.

The following two tables summarize the comparison of two algorithms. The �rst

Table 4.3 compares the estimated object center for the sphere and ellipsoid cases. The

real object center is (0; 0; 0:1)m. For the ellipsoid case it also shows the estimated

orientation angles compared the real ones,(2:4; 2:4; 2:4)radians.

The second Table 4.4 compares the average run time and MSE values for MMS, ob-

ject center, and orientation angles for the sphere and ellipsoid case. The average times

of both algorithm are close to each other for the sphere case but the Algorithm-II's is

much faster than the Algorithm-I's for the ellipsoid case. However, the Algorithm-I
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Figure 4.14: The real and imaginary part of estimated and real moment spectra of
sphere mine

is much better than the algorithm-II for the other values. In other words, there is a

trade-o� between the speed and the performance of the Algorithm-II but the reverse

analogy for the Algorithm-I for the case of ellipsoid objects.

4.2 Real Data Results

In this section, we represent the real data results for both algorithms. The �rst data

set is from GEM-3 sensor of Geophex company and second data set is obtained from

the Northeastern University CER. We use the �rst data set for Algorithm-I and the
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Sphere Case Ellipsoid Case
Algorithm-I Algorithm-II Algorithm-I Algorithm-II

Standard Standard Standard Standard
mean Deviation mean Deviation mean Deviation mean Deviation

x̂0 0.0000 0.0011 0.0002 0.0011 0.0001 0.0061 0.0016 0.0110
ŷ0 -0.0000 0.0012 -0.0001 0.0010 0.0002 0.0054 -0.0006 0.0102
ẑ0 0.0999 0.0014 0.0906 0.0049 0.1011 0.0115 0.1018 0.0181

�̂ - - - - 2.4867 0.5138 2.4882 0.8550

 ̂ - - - - 2.4765 0.4322 2.0500 0.5688

�̂ - - - - 2.3639 0.1935 2.3492 0.7515

Table 4.3: Comparison of Algorithm-I and Algorithm-II according to location center
and rotation angles

Sphere Case Ellipsoid Case
Algorithm-I Algorithm-II Algorithm-I Algorithm-II

Avg Time 43.3322 53.1447 245.2957 157.7345
MSE for � 0.0044 0.3632 4.6625 4.6943
MSE for r0 0.0001 0.0094 0.0012 0.0025
MSE for � - - 0.1868 0.3303

Table 4.4: Comparison of Algorithm-I and Algorithm-II according to the average run
time and MSE values for all variables.



CHAPTER 4. SIMULATED AND REAL DATA RESULTS 51

10
0

10
1

10
2

10
3

10
4

10
5

−1

0

1

2

3

4

5

6
The real part of  estimated(dashdot) and true(solid) moment spectra for the first axis

true MS
est. MS in our model
est. MS in baseline model

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3
The imaginary part of estimated(dashdot) and real(solid) moment spectra for the first axis

true MS
est. MS in our model
est. MS in baseline model

Figure 4.15: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the �rst axis.

second one for both algorithms and baseline method for comparison.

In the �rst data set, the GEM-3 speci�cations are in the following: the sphere

diameters are 5:1cm; the cylinder diameters are 3:2cm and their lengths are 7:6cm.

The censor coil parameters are: transmit coil radius is 24:0cm (the number of turns

is 14), the bucking coil radius is 13:3cm (the number of turns is 7), and the receiving

coil radius is 7:5cm. The frequencies used in the data are: 30, 90, 150, 210, 330, 390,

570, 750, 990, 1290, 1770, 2370, 3150, 4170, 5610, 7470, 10050, 13410, 17910, 23970.

The data were recorded on a 7 � 7 grid of 100 cm 2 pixels. The cylinder data were
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Figure 4.16: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the second axis.

taken for steel, aluminum and brass at three orientations in a hole in the ground. The

stand-o� distance is 12:5cm for the vertical and 45 degree orientations and 15cm for

the horizontal case. The stand-o� distances indicated are measured from the bottom

of the sensor to the closest point on the cylinder for all orientations.

The �gures, 4.18, 4.19, 4.20, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, show DMS re-

sults of GEM-3 data from Geophex company. Speci�cally, the �gures, 4.18, 4.19,

and 4.20 show the DMS of the cylindrical aluminum object for three axes according

to Algorithm-I. The �gures, 4.22, 4.23, and 4.24 show the DMS of the cylindrical
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Figure 4.17: The real and imaginary part of estimated and real moment spectra of
spheroid mine for the third axis.

brass object for three axes. The other three �gures, , 4.25, 4.26,and 4.27 represent

the results for the cylindircal steel object. The estimated locations of the steel object

are (0:01; 0:01; 0:1094), (0:01; 0:01; 0:1795), and (0:01; 0:01; 0:1452) compared with the

real locations, (0; 0; 0; 125), (0; 0; 0:15), and (0; 0; 0:125) for the cases of vertical, hor-

izontal, and 45-degrees, respectively.

As seen from these �gures, one of the most important results is that the DMS

estimation is invariant to orientation change, that is, no matter how the object is

put, such as, in a vertical, horizontal or 45 degree way in this real data, we get the
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Figure 4.18: The real and imaginary part of estimated DMS of cylindrical aluminum
object for the �rst axis according to Algorithm-I.

same DMS estimate for each axis. According to our model, we are supposed to have

the same DMS estimate for the sphere object and two the same for cylinders and

spheroidal type targets. Therefore, the other very important result is that we got two

same DMS estimates for aluminum, brass and steel cylindrical objects. Especially,

for the steel case two DMS are same and the third axis one is clearly di�erent than

the other two.

As a second data we use the data set for Northeastern University Magnetic Re-

searche Center.The data speci�cations are same as GEM-3 mentioned before. For

this data set, the �rst step is that after we removed the clutter data from the signal
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Figure 4.19: The real and imaginary part of estimated DMS of cylindrical aluminum
object for the second axis according to Algorithm-I.

data, we estimated the object center and then the DMS of each object for each axis

according to Algorithm-I. The solid line in the following �gures, 4.28, 4.29, 4.30,

4.31, 4.32, 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, and 4.39, shows the results of DMS

estimates using Algorithm-I. Then, we added clutter and noise to the data and we

applied Algorithm-II to obtain the DMS estimates together with our model and and

the baseline model to get rid of the clutter, and we got the other two lines with star

and diamond. All these steps are outlined in the following owchart, 4.21. The

�rst three �gures, 4.28, 4.29, and 4.30 show the results for aluminum object.The

�gures, 4.31, 4.32, and 4.33, is for striker object and 4.34, 4.35,and 4.36 for val69
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Figure 4.20: The real and imaginary part of estimated DMS of cylindrical aluminum
object for the third axis according to Algorithm-I.

mine, and 4.37, 4.38, and 4.39 for vs50 mine.

Apparently, we can easily compare all methods in these �gures. Although we are

not sure about the real DMS, we can say that the solid lines in the �gures are the

closest estimate since they are results of the cleaner data than the others. The ones

with star are closer to the solid lines than the ones with diamond so our model works

better than the baseline model.

Finally, we played the game of adding sensor noise similar to the previous case.

After cleaning the real data, we determined the DMS of the object using Algorithm-I,

shown as a solid line in the previous �gures. Then, using these DMS, we made the
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Figure 4.21: Flowchart for the second data.

noisy signal data. Next we reestimated the DMS and we calculated the mean square

errors between the latter DMS and the former DMS's. We performed 100 Monte

Carlo simulations for each case. Our goal here is that we want to see how well we

can classify using Alg-I. The results are shown in the following Table 4.5:

As �nal �gures, the �gures, 4.40, and 4.41 show the comparison of two algorithms

Aluminum Striker Val69 Vs50

Aluminujm 0.72 0.07 0.00 0.21
Striker 0.02 0.90 0.06 0.02
Vs50 0.15 0.04 0.00 0.81
Val69 0.00 0.04 0.96 0.00

Table 4.5: The classi�cation results



CHAPTER 4. SIMULATED AND REAL DATA RESULTS 58

10
2

10
3

10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

Real part of  estimated MS. Cylindrical brass object. 1st axis

frequency

m
ag

ni
tu

de

10
2

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

Imaginary part of  estimated MS. Cylindrical brass object. 1st axis

frequency

m
ag

ni
tu

de
vertical
horizontal
45−degrees

vertical
horizontal
45−degrees

Figure 4.22: The real and imaginary part of estimated DMS of cylindrical brass object
for the �rst axis according to Algorithm-I.

for the estimation of DMS. It is obtained by using the GEM-3 data. As seen from

�gures, we get almost same results from both algorithms.
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Figure 4.23: The real and imaginary part of estimated DMS of cylindrical brass object
for the second axis according to Algorithm-I.
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Figure 4.24: The real and imaginary part of estimated DMS of cylindrical brass object
for the third axis according to Algorithm-I.
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Figure 4.25: The real and imaginary part of estimated DMS of cylindrical steel object
for the �rst axis according to Algorithm-I.
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Figure 4.26: The real and imaginary part of estimated DMS of cylindrical steel object
for the second axis according to Algorithm-I.
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Figure 4.27: The real and imaginary part of estimated DMS of cylindrical steel object
for the third axis according to Algorithm-I.
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Figure 4.28: The real and imaginary part of estimated DMS of aluminum object
according to Alg-I (after cleaning the data), and according to Alg-II and Baseline
model (after adding noise to cleaned data) for the �rst axis.
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Figure 4.29: The real and imaginary part of estimated DMS of aluminum object
according to Alg-I (after cleaning the data), and according to Alg-II and Baseline
model (after adding noise to cleaned data) for the second axis.
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Figure 4.30: The real and imaginary part of estimated DMS of aluminum object
according to Alg-I (after cleaning the data), and according to Alg-II and Baseline
model (after adding noise to cleaned data) for the third axis.
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Figure 4.31: The real and imaginary part of estimated DMS of striker object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the �rst axis.
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Figure 4.32: The real and imaginary part of estimated DMS of striker object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the second axis.
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Figure 4.33: The real and imaginary part of estimated DMS of striker object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the third axis.
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Figure 4.34: The real and imaginary part of estimated DMS of val69 object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the �rst axis.
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Figure 4.35: The real and imaginary part of estimated DMS of val69 object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the second axis.
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Figure 4.36: The real and imaginary part of estimated DMS of val69 object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the third axis.
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Figure 4.37: The real and imaginary part of estimated DMS of vs50 object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the �rst axis.
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Figure 4.38: The real and imaginary part of estimated DMS of vs50 object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the second axis.
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Figure 4.39: The real and imaginary part of estimated DMS of vs50 object according
to Alg-I (after cleaning the data), and according to Alg-II and Baseline model (after
adding noise to cleaned data) for the third axis.
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Figure 4.40: The real and imaginary part of estimated DMS of cylindarical steel
object for the �rst axis according to both algorithms.
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Figure 4.41: The real and imaginary part of estimated DMS of cylindarical steel
object for the second axis according to both algorithms.



Chapter 5

Conclusion and Future Work

In this thesis, we have presented two approaches for the estimation of the DMS, the

co-ordinates of the object center, and the rotation angles from BEMI data for the

high metal content mines and for the estimation of same parameters after removing

the estimation of clutter from the signal for the case of low metal content mines.

Under these approach, the data are linearly related to the dipole moment spectra

and non-linear functions of the object location and rotation angles. For the HMC

mines, �rstly, we determined the object center and rotation angles by using a low-

dimensional non-linear optimization method. Then, we used the linear least square

inversion procedure which determines the estimates of the DMS. For the LMC mines,

we �rst estimated the distribution of clutter by using a stochastic model. Then, we

determined the parameters of target after cleaning the signal.
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While the results in this thesis are encouraging much work remains to be done in

this area. First, the closed form analytical nature of the model makes it well suited to

extensive performance analysis based on Cramer-Rao lower bounds on the variances of

the estimated we obtain for anlges, location, and DMS. Using this performance metric

allows one to start looking at issues of optimizing sensor con�gurations for particular

detection/characterization problems. Moreover, in this work we assumed that we

knew whether the targets of interest possessed spherical or ellipsoial symmetry. More

interesting is the case where we estimate three rotation angles and three moment

spectra and employ a statistical test to determine the symmetry characteristics of

the underlying target. Again, performance analysis is also of interest. Finally, from

a modeling perspective we are currently looking to techniques for mapping object

charateristics (size, shape, and material paramaters) into the � functions used in this

model. As any such mapping represents an approximation to the true physics, it

would be interesting to explore methods for doing this which explicitly minimize the

error in the approximation.
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