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Abstract. We compare, through simulations, the performance of four linear

algorithms for di�use optical tomographic reconstruction of the three-dimensional

distribution of absorption coeÆcient within a highly scattering medium using the

di�use photon density wave approximation. The simulation geometry consisted of

a coplanar array of sources and detectors at the boundary of a half space medium.

The forward solution matrix is both underdetermined, because we estimate many

more absorption coeÆcient voxels than we have measurements, and ill-conditioned, due

to the ill-posedness of the inverse problem, caused by the source-detector geometry,

scattering, attenuation, and the near �eld nature of the measurements. We compare

two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated

SVD and CG algorithms. We compare three-dimensional reconstructions to two-

dimensional reconstructions which assume all inhomogeneities are con�ned to a known

horizontal slab, and we consider two \object-based" error metrics in addition to mean

square reconstruction error. Our results show that the subspace techniques are superior

to the algebraic techniques in localization of inhomogeneities and estimation of their

amplitude, that two dimensional reconstructions are sensitive to underestimation of

the object depth, and that an error measure based on a location parameter can be a

useful compliment to mean squared error.

Keywords: Photon density wave imaging, volumetric reconstruction, linear

methods, inverse problems z
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1. Introduction

Over the past ten years there has been considerable research into the use of near

infrared light to image inside the human body, a technique known variously as Di�use

Optical Tomography (DOT), Photon Migration Imaging (PMI), and Di�use Photon

Density Wave (DPDW) imaging (see (Arridge, 1999) for a recent review). One of the

primary goals of this research is to image the distribution of the optical absorption

coeÆcient, which at near infrared wavelengths (700-900 nm) is primarily in
uenced

by hemoglobin in its various forms. Thus a mapping of the density of hemoglobin

can be inferred from an image of the absorption coeÆcient. Recently considerable

work has been done developing linear, nonlinear, and back-propagation techniques

for constructing these images. Nonlinear techniques such as those developed by

(Arridge et al., 1992), and (Jiang et al., 1996), are attractive because they minimize

the number of assumptions regarding both the medium and the physics, but they are

computationally very expensive. Back-propagation, which has been explored by groups

such as (Colak et al., 1997) and (Matson et al., 1997), is computationally economical

but sensitive to noise and does not deal well with multiple absorbing objects. Linear

perturbation techniques attempt to specify the imaging problem as a perturbation to

a known or estimated background medium and thus pose the relationship between the

absorption coeÆcient and the measured data as a linear system of equations. Linear

methods include both the Born and Rytov approximations and have been explored by

(O'Leary et al., 1995) and (Chang et al., 1995), among others.

The linear inverse problem is ill-posed due to absorption and scattering in the

medium; the mathematical consequence is that the matrix representing the forward

solution will be ill-conditioned. Thus some type of regularization or stabilization

technique is required to obtain physically realistic results. Once a linear forward

model is assumed, the inverse problem can be approached in a linear algebraic context.
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A number of linear algebraic techniques have been applied to linear DOT imaging.

However there have been few, if any, systematic comparisons of these methods as

applied to DOT. In this paper we present such a comparison. Speci�cally, we examined

the performance of two representatives each of two classes of linear reconstruction

techniques, algebraic and subspace methods, in a simple re
ective imaging geometry.

The algebraic techniques we examined were the Algebraic Reconstruction Technique

(ART) and the Simultaneous Iterative Reconstruction Technique (SIRT) (Kak and

Slaney, 1988), and the subspace techniques were the Truncated Singular Value

Decomposition (TSVD) and Truncated Conjugate Gradient (TCG) algorithm (Hansen,

1998). The algebraic methods have been widely used for DOT as well as many other

tomographic problems, are simple to understand and program, and can be relatively

computationally eÆcient on certain classes of problems. The subspace techniques are

often regarded as being more accurate in many applications of linear algebra. The

main purpose of this investigation was to quantify the performance of these two classes

of reconstruction methods in the DOT framework. In this context we address some

related issues such as the choice of, and sensitivity to, the required regularization

parameter which controls the amount of regularization applied in a given method. We

point out that although the discussion in this paper is framed entirely in terms of a

linear forward model, many non-linear algorithms depend on a succession of linear

problems which may need to be regularized, so we believe that the results obtained

here may well be more widely applicable.

In many DOT imaging scenarios, three-dimensional volumetric reconstruction

of a region of tissue under study is computationally challenging. Additionally,

such reconstructions often require more parameters to be estimated than the

number of measurements available, so that the resulting problem is mathematically

underdetermined. Many investigators have dealt with this problem by assuming that
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all absorption inhomogeneities lay in a known planar slice in the volume (Cheng and

Boas, 1998, Chang et al., 1995, Jiang et al., 1996). By assuming the background values

are known or can be estimated, the number of unknowns is dramatically reduced and,

geometrically, the inverse problem is reduced to estimation of absorption coeÆcients

in a two-dimensional slice. The e�ect of this assumption on the accuracy of the inverse

solution has frequently not been carefully tested, especially in the case where the

assumption is itself not accurate. A second purpose of the current work, then, is to

quantify the performance of full three-dimensional reconstructions in comparison to

two-dimensional planar reconstructions.

In a simulation scenario where the goal is to �nd and quantify a region of absorption

inhomogeneity in an otherwise homogeneous three-dimensional volume, it is not clear

that simple error measures such as the mean squared error over the volume between

a reconstruction and the true distribution is the best measure to use; in applications,

for instance, one may be more interested in estimating the location or peak amplitude

of the inhomogeneity. As a secondary objective of this work, then, we compare three

di�erent error measures on our reconstructions to determine whether, or when, simple

mean square error measures are adequate.

In summary, then, this work has three goals:

�To compare algebraic and subspace reconstructions in the same imaging scenario,

�To compare full three-dimensional volumetric reconstructions to reconstructions

which assume an inhomogeneity is con�ned to a known two-dimensional slice,

and

�To compare mean squared error with more object-oriented ad hoc error measures.

The paper is structured as follows. In Section 2 we describe the simulations and

propagation model we used for the study. In Section 3 we present the details of the

four reconstruction algorithms we compared. In Section 4 we show both qualitative
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and quantitative comparisons of the reconstruction techniques under the simulation

scenario described, and in Section 4 we describe our observations and conclusions.

2. Methods

All of the results presented in this study were calculated from computer simulations of

detector measurements. Our study simulated a half space region of di�use media with

a single spherical inhomogeneity embedded in the region. Using computer simulations

we were easily able to exercise precise control over parameters of interest such as

signal-to-noise ratio and object position.

2.1. Discrete DPDW Model

A model of light propagation in a highly scattering medium is necessary both to

compute the simulated 
uence at the detectors and to map the 
uence values back

to the spatial absorption function. The solution to either problem provides a forward

model; however in studying inverse solutions the forward model used for the �rst

computation (i.e. the forward computation of simulated 
uence) may not be the

same as that used for the second computation (i.e. the inverse solution). In this

subsection we describe brie
y the mathematical approach we used to compute our

forward models (for more detail, see (Kak and Slaney, 1988, O'Leary, 1996)); in

subsequent subsections we describe the distinct forward models we computed based on

this general mathematical model.

One useful and commonly employed model for the photon 
uence in a highly

scattering medium is the Helmholtz frequency domain di�usion equation (O'Leary

et al., 1995, Ishimaru, 1997, Fishkin and Gratton, 1993)�
r2 +

j! � v�a(r)

D

�
�(r) =

�v

D
S(r); (1)

where �(r) is the photon 
uence at position r, �a(r) is the spatially varying absorption
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coeÆcient, v is the electromagnetic propagation velocity in the medium, ! is the

frequency in radians/sec, and S(r) is the source function. D is the di�usion coeÆcient,

given by

D =
v

3�0
s

;

where �0
s
is the reduced scattering coeÆcient. Note that this equation only considers

spatial variations in the absorption coeÆcient and is functionally di�erent if D is

spatially varying. Using a perturbation approach we �rst rewrite (1) as�
r2 +

j! � v�o
a

D
�
v��a(r)

D

�
(�i(r) + �s(r)) =

�v

D
S(r); (2)

where we have written the absorption function as a sum of the background absorption,

�o
a
, and a spatially varying perturbation ��a(r), and the 
uence as the sum of the

incident �eld, �i(r), due to the source acting on the background medium and a

scattered 
uence, �s(r), due to the inhomogeneities.

Subtracting the homogeneous medium equation (described by (1) with �a(r) = �o
a
)

from (2) we are left with the equation for the scattered 
uence

�
r2 + k2

o

�
�s(r) = ��k2(r) (�i(r) + �s(r)) ; (3)

where k2
o
=

j!�v�
o

a

D
and �k2(r) = v

D
��a(r). Using a Green's function approach and

the assumption that �i(r) � �s(r), we can approximate the scattered �eld by the

integral equation

�s(r) �

Z
V

G(r; r0)�i(r
0)�k2(r0) dr0; (4)

providing a linear relationship between the scattered 
uence and the absorption

perturbation. The Green's function for the half space medium is

G(r; r0) =
�1

4�jr � r0j
ejkojr�r

0
j +

1

4�jr � r0
i
j
ejkojr�r

0

i
j; (5)

where r0
i
is the image point of r0. Re
ection across the boundary is discussed below.

This linearization, which is based on ignoring the contribution of the scattered

�eld on the right side of (3), is known as the �rst Born approximation. Physically it

amounts to treating each point in an inhomogeneity as if it existed in isolation from the
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rest of the inhomogeneity, ignoring the contributions of perturbations of the scattered

�eld from one part of an inhomogeneity on the �eld incident on another part. x

Thus, for each source we calculate the incident �eld everywhere in the domain using

the Green's function and then calculate the scattered �eld present at each detector

using (4). Since (4) gives a linear expression relating �k2(r), the spatially varying

perturbation of the background medium, to the measured scattered �eld, �s(r), we

can discretize the problem into a system of linear equations of the form

Ax = b (6)

where each row ofA corresponds to a di�erent source-detector pairing and the columns

of A index small volumes (voxels) within the region of interest V . The elements of A

are integrals of the Green's function multiplied by the incident �eld for the speci�ed

source detector pair over the corresponding voxel. The vector x is a discretization of

�k2(r) for each voxel and b is a vector whose elements are the detector scattered �eld

measurements for each source-detector pair. We evaluated the integrals in (4) by using

a pulse basis for the functions G(r; r0) and �i(r).

We modeled our sources as point sources one mean free path length into the medium

(Haskell et al., 1994). The air-tissue boundary for the incident �eld and in (4) is

accounted for using an extrapolated boundary condition (Haskell et al., 1994). This

extrapolated boundary condition speci�es a zero Dirichlet boundary at a distance out

of the medium speci�ed by

zbnd =
2

3�0
s

�
1 +Reff

1�Reff

�
;

where Reff is the e�ective re
ection coeÆcient from inside the medium. For a value

x We also note that to use this approach for inverse calculations one needs to be able to measure the

scattered �eld alone. In simulations one simply computes only the scattered �eld; in practice, of course,

this is usually impossible. Hence some approximate homogeneous �eld is estimated and subtracted from

measurements.
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of Reff we used 0.4664, which we computed by linearly interpolating for an index

of refraction of 1.37 from Table 2 in (Haskell et al., 1994). We accounted for the

boundary condition by re
ecting both the modeled sources and the equivalent source

term �i(r)�k
2(r) across the boundary. This resulted in a Green's function for the half

space given by (5).

In this study we used the approach just described both to generate simulated

measured data and to model the forward system upon which the inversion was based.

However, as described below, the speci�c forward model was di�erent in the two cases

because the spatial discretization of the model was di�erent.

2.2. Computational Geometry

We modeled a semi-in�nite slab of tissue with a single spherical absorption

inhomogeneity and a re
ective imaging geometry. A number of di�erent positions and

sizes of the absorption anomaly were examined with similar results. All the results

presented here used a 1 cm radius anomaly centered 2.5 cm deep in the tissue, as

shown in Fig.1.

2.2.1. Source and Detector Parameters The re
ective source-detector

geometry we examined simulated a single planar array placed on the surface of the

di�use medium. k The detectors formed a four by four array with a 2 cm spacing

in both dimensions. The sources were positioned in the interstitial spaces between

the detectors, forming a three by three array also with 2 cm spacing. The sources

were amplitude modulated at a frequency of 200 MHz. A schematic of the geometric

layout of the sources and detectors for the simulations is shown in Figure 1. Shown in

Figure 2 are two examples of a single slice through the volume of the true absorption

k This geometry models a measurement system currently being constructed in one of our laboratories.
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Figure 1. A schematic of the geometric layout of the simulations in this study. The

sources and detectors lie along the tissue-air boundary (z=0 cm). The entire volume

was 7cm x 7cm x 5.5 cm deep. The absorption anomaly is 2.5 cm into the medium

at x=2 cm and y=3 cm. The grid size used to discretize the volume for some of the

inverse computations is illustrated by the grid shown in the �gure.

perturbation. Figure 2(a) shows a vertical slice through the center of the anomaly in

the X-Z plane. We use this representation for the full three-dimensional reconstructions

because it can capture the depth performance of the algorithm in a single image. Figure

2(b) shows a horizontal slice though the center of the anomaly in the X-Y plane. We

use this representation for two-dimensional slice reconstructions.

2.2.2. Volume Discretization When solving the forward problem we calculated

the simulated scattered 
uence by discretizing a region just surrounding the absorption

inhomogeneity with a �ne cubic grid 1 mm on a side, requiring a 21x21x21 grid to cover

the 1.0 cm radius anomaly. We did not need to discretize outside of this region because

of the homogeneous background medium assumption.

In contrast, when we solved the inverse problem we assumed that the location of



Linear DOT Reconstruction Comparison 9

Y = 3

0 1 2 3 4 5 6

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a)

Z = −2.5

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b)

Figure 2. (a) A vertical plane of the absorption function showing the true object

image. This plane is through the center of the object (Y=3 cm). (b) A horizontal

plane of the absorption function showing the true object image. This plane is through

the center of the object (Z=2.5 cm).

the anomaly within the medium is unknown. Thus the entire volume under the source

detector array was discretized uniformly for the forward model used in the inverse

reconstructions. Speci�cally, the volume modeled, as shown in Fig.1, was a cube 7 cm

x 7 cm by 5.5 cm deep discretized into voxels. These voxels were 0.5 cm on a side in the

X and Y dimensions and either 0.5 cm or 2.0 cm deep in the vertical (Z) direction. In

addition to the full three dimensional discretization as described in Section 1, we also

examined reconstructions using only a single horizontal plane of voxels centered on the

anomaly. In this method, the source terms, the unknowns in the inverse solution, were

assumed to be zero outside the chosen horizontal slice during the inverse computation.

Thus the size of the relevant linear system and the required computations are greatly

reduced.

In all our reconstructions a �ner discretization was used in forward calculations

and a coarser one used for the inverse reconstruction. Additionally, in some of

the single-slice reconstructions the thickness of the slice is less than the thickness

of the inhomogeneity and thus there is further model mismatch in the inverse
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reconstructions. In the sequel, when we compare reconstruction accuracy using the

full three-dimensional forward model and the single slice forward model for inverse

solutions, we will refer to the former case as F3D (full 3D) and the latter as 2DS (2D

slice).

2.3. Medium Optical Parameters

The di�use medium optical parameters for our experiments were selected to simulate

human tissue. Speci�cally, the background scattering coeÆcient, �s, was taken as

100 cm�1 and the mean cosine of the scattering angle as 0.9, resulting in a reduced

scattering coeÆcient, �0
s
, of 10 cm�1. The background absorption coeÆcient was

derived from an assumed hemoglobin concentration of 0.0920 mM and an oxygen

saturation of 90%, resulting in an absorption coeÆcient of 0.041 cm�1 at a wavelength

of 780 nm. The absorption anomaly simulated a hemoglobin concentration of 0.368

mM and an oxygen saturation of 60%, resulting an absorption coeÆcient of 0.18 cm�1

or 0.139 cm�1 above the background.

2.4. Noise Model

We modeled the noise present at each detector as an independent Gaussian random

variable with zero mean and a standard deviation relative to the total 
uence at the

detector. Speci�cally the noise standard deviation used in these results was calculated

using the formula:

�(i) = �(i)10�
SNR

20 ; (7)

where �(i) is the noise standard deviation for the ith source-detector pairing, �(i) is the

total 
uence (incident + scattered) computed at the detector and SNR is the signal-

to-noise ratio in dB. This noise model is based on the assumption that shot noise from

the sources is the dominant source of measurement noise. It is clear from (7) that noise
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does not have a constant variance across measurement pairs, and therefore the noise

must be \whitened" to �t the assumptions of the subspace techniques . Whitening

was accomplished by weighting the system by the inverse covariance matrix, expressed

mathematically as

DAx = Db; D = diag
�
�(i)�1

�
:

3. Reconstruction algorithms

There are two important characteristics of this inverse problem that reconstruction

algorithms must take into account. First, the 3-D linear system model (6) is typically

very underdetermined. Examples we present in this study have 16 detectors and

nine sources, for a total of 144 source-detectors pairs. Each source detector pair

provides an in-phase and quadrature measurement at 200 MHz, providing a total of 288

measurements. The number of unknowns (the number of voxels) is as large as 2156,

and thus we have up to seven times as many unknowns as measurements. Second, this

inverse problem in its continuous form is ill-posed. The absorption coeÆcients do not

vary smoothly with the data, resulting in an ill-conditioned forward operator A. This

is typical of integral operators with smoothing kernels (Hansen, 1998). Therefore the

solution must be regularized if it is not to be dominated by reconstruction noise.

3.1. Algebraic Techniques

The types of algorithms we examined for solving the linear system (6) fall into two

classes, algebraic techniques and subspace techniques. Members of the �rst class solve

(6) by projecting an estimate of the solution onto the hyperplanes represented by rows

of the linear system. Included in this class are ART and SIRT (Kak and Slaney,

1988). ART sequentially projects a solution estimate onto hyperplanes de�ned by the

individual rows of the linear system. This projection becomes the estimate of the
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solution for the next iteration. This can be expressed mathematically as

x̂i = x̂i�1 �
x̂T
i�1ai � bi

aT
i
ai

;

where x̂i is the i
th estimate of the object function, ai is the i

th row of the matrix A,

and bi is the ith measurement. Once we have projected onto all rows, we cycle the

index back to the �rst row. SIRT is implemented in a similar manner except that

instead of projecting the estimate onto each row in turn, the component vector that

would be projected out is averaged over all rows and then subtracted from the original

estimate. Mathematically this is written as

x̂i = x̂i�1 �mean(
x̂T
i�1ai � bi

aT
i
ai

):

SIRT has generally been observed to generate smoother reconstructions of the object

function due to the averaging over a number of projections, at a cost of slower

convergence. For underdetermined systems, such as the one we are considering,

algebraic techniques will converge to a point on the hyperplane satisfying the linear

system that is nearest to the initial guess (Kak and Slaney, 1988). Regularization is

accomplished by limiting the number of iterations in both algebraic techniques. The

choice of how many iterations to perform is a diÆcult topic for these methods; here

we avoided the problem by choosing the best regularization (optimal truncation) using

prior knowledge of the true solution.

3.2. Subspace Techniques

The �rst subspace technique that we examined was the TSVD algorithm. This

algorithm is derived from the Singular Value Decomposition (SVD) of the m � n

system matrix A. The SVD of the system matrix is given by

A = U�VH; U 2 C
m�m ; � 2 R

m�n ; V 2 C
n�n

where U and V are unitary matrices and � is a diagonal matrix with values

�i;i = �i � 0. The �i are known as the singular values of A and the decomposition is
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written such that

�1 � �2 � ::: � �r �r+1; �r+2; :::; �min(m;n) = 0;

where r is the rank of A. Poorly conditioned matrices such as the ones resulting

from discretized ill-posed problems have a very wide range of singular values. This

ill-posedness is evident in the singular value spectrum of a typical DOT forward

matrix, shown in Figure 3, which displays a range of 7 orders of magnitude in the

singular values. The TSVD aglorithm computes the reconstruction by using only the

largest t non-zero singular values and singular vectors to approximately solve Ax = b.

Mathematically this can be written as

x̂ = Vt�
�1
t
UH

t
b

where Vt and Ut are the �rst t columns of V and U respectively, and ��1
t

is the

inverse of the square diagonal submatrix of the largest t singular values. The value

t, the truncation parameter, controls the amount of regularization in the the inverse.

More information on the SVD and TSVD can be found in Golub and Van Loan (Golub

and Loan, 1989) and Hansen (Hansen, 1998). In this context we note that in Figure 3

there is no useful gap in the spectrum that might indicate an obvious choice of a good

low-rank model. Truncating at the small jump in the plot of singular values around

index 70 did not produce good reconstructions.

The TCG algorithm is derived from the conjugate gradient algorithm in a similar

manner to the way TSVD follows from the SVD. The Conjugate Gradient algorithm is

an iterative technique to solve a symmetric positive de�nite linear system of equations.

For ill-conditioned systems we can regularize by stopping, or truncating, the iterations

before we reach full convergence (Hansen, 1998). Thus for TCG the number of

iterations computed controls the amount of regularization. For most measurement

geometries the system matrix A is not symmetric positive de�nite, a requirement for

the conjugate gradient algorithm to be guaranteed to �nd a solution. However we can
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Figure 3. Singular value spectrum of a typical forward DOT forward matrix.

apply the conjugate gradient technique to the normal equations given by

AHAx = AHb:

For computational reasons we do this without explicitly computing the normal

equations, as given in Table 1 (derived from Shewchuk's (Shewchuck, 1994)

implementation).

3.3. Regularization parameter selection

With any regularization technique, one of the primary issues is the selection of the

parameter that controls the trade{o� between �delity to the data and some constraint

on the result. There is a large variety of methods available, divided between a priori

methods which use prior knowledge about the solution, the noise, or both, and

a posteriori methods which use only the measurements and forward model. For the

subspace techniques we use a well-known a posteriori method, the L-curve technique

(Hansen, 1998), which for subspace methods graphs the log of the 2-norm of the
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bp = AHb; d = r = bp; Æ = rT � r; Æo = Æ; x̂ = 0;

for j = 1 : niter

q = AH(Ad)

� = Æ=(dT � q)

x̂ = x̂+ �d r = r� �q

end

Æo = Æ

Æ = rT � r

d = r+ Æ

Æo

d

end

Table 1. Conjugate gradient algorithm for the normal equations. Note that the

normal equations are not computed explicitly. Rather the necessary matrix vector

product is �rst computed and then the transposed matrix is right multiplied by the

resulting vector for each instance where the normal equations are needed.

residual versus the log of the 2-norm of the estimate while varying the regularization

parameter. Thus the regularization parameter itself is represented only parametrically

in this graph. An example of an L-curve generated from a TCG reconstruction at a

signal-to-noise ratio of 20 dB is shown in Figure 4. We generated this graph by plotting

the residual norm and reconstruction norm over 300 iterations of the algorithm. The

\corner" of the resulting curve is taken as a good choice of regularization parameter

because it identi�es a point at which there is a balance between increase in the residual

norm and increase in the solution norm. The diamond drawn on the graph shows the

point we manually selected as the L-curve corner, which corresponded to 12 iterations.

As mentioned earlier, for the algebraic techniques a posteriori methods such as the

L-curve do not work well because standard measures of error such as the residual error

or solution norm do not change monotonically as we iterate, so we simply present the

best possible esult for these methods.
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Figure 4. L-curve for a TCG reconstruction at a signal-to-noise ratio of 20dB. The

diamond at the corner of the graph identi�es the point that was selected as the corner

of the L-curve.

4. Results and observations

In this section we present results and observations of applying the four reconstruction

techniques described in Section 3 to the simulation scenario described in Section

2. Example reconstructions are shown �rst to present a qualitative idea of the

reconstruction performance of each of the methods. Following this, we report

quantitative performance measures for a range of signal-to-noise ratios. Finally,

we illustrate the sensitivity of the reconstruction performance to the selection of

regularization parameter.

4.1. Example reconstructions

Figure 5 shows a set of images of the reconstructed absorption coeÆcient in a single

vertical (X-Z) plane through the center of the object (Y = 3 cm) at a signal-to-noise

ratio of 20 dB. The true object is shown in Fig. 2(a). The F3D model was used for the

inversion with a 0.5 cm grid in all dimensions. Comparing the true absorption image
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with the reconstructions, it is evident that all of the reconstructions show a roughly

correct image of the object and that all of the reconstruction techniques underestimate

the depth and amplitude of the object. Note that the scale for the reconstructed images

is less than that for the true absorption function. Figure 5(a) is the reconstruction

using a single iteration of ART (i.e. one iteration cycle through all 288 rows of the

system matrix). An object centered approximately at X = 1.5 cm and Z = -1.75 cm

with an amplitude of around 0.04 cm�1 is visible. The object does not appear to have

the same area as the true absorption function nor does the reconstruction extend as

deep. Figure 5(b) shows a reconstruction using the SIRT algorithm with 26 iterations.

Qualitatively this reconstruction appears very similar to the ART reconstruction.

Figure 5(c) shows a reconstruction using the TSVD algorithm employing 56 singular

values. This reconstruction clearly produces a larger amplitude absorption coeÆcient

compared to the algebraic techniques. Additionally, the object center appears at

about 2 cm depth, about a quarter centimeter deeper than the algebraic techniques.

Thus in both aspects, amplitude and position, it is closer to the true absorption

function. Figure 5(d) displays the reconstruction for the TCG technique using twelve

iterations, which is qualitatively very similar the TSVD reconstruction. In comparing

the algebraic and subspace methods we point out that for the subspace techniques the

number of iterations or singular values was chosen by manually identifying the corner

of the L-curve without using knowledge of the true solution while for the algebraic

techniques we chose the best solution after comparing to the true solution.

Figure 6 shows a pair of 2DS reconstructions using the TCG algorithm, again

at a SNR of 20 dB. Figure 6(a) was generated using a 2.0 cm width reconstruction

plane with the number of iterations again chosen by the L-curve method. Figure

6(b) was generated using a 0.5 cm width reconstruction plane which underestimates

the true width of the object. For the 0.5 cm width reconstruction plane the L-curve
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Figure 5. Reconstruction examples for all four reconstruction techniques at a 20

dB SNR. Each image shows a vertical plane through the center of the absorption

anomaly (Y = 3 cm). (a) is the ART algorithm result using one iteration. (b) is the

SIRT algorithm result using 26 iterations. (c) is the TSVD algorithm result using 56

singular values. (d) is the TCG algorithm using 12 iterations.

did not provide useful information on selecting the regularization parameter; this is

an indication that the large amount of error in the model will make regularization

diÆcult. Therefore For this case we selected the number of iterations that minimized

the actual mean square error. For both cases the center of the reconstruction was the

true center of the absorption anomaly. We note that the 2DS reconstruction shown is

reasonably accurate in the �rst case but signi�cantly overestimates the object size in
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Figure 6. 2DS reconstruction with (a) 2.0 cm thick voxels and (b) 0.5 cm thick voxels

at a SNR of 20 dB. Both reconstruction were generated using the TCG algorithm. The

2.0 cm thick voxels used 7 iterations. The 0.5 cm voxels used 2 iterations. Unlike the

reconstruction shown in Figure 5 these reconstructions are shown in a X-Y plane.

the second case.

4.2. Performance Measures

As noted in Sec. 1, a secondary objective of this work was to compare several error

measures. We considered the standard mean square reconstruction error over the entire

volume, but also devised measures designed to quantify the position and amplitude of

the reconstructed object directly. More precisely, we used the following three error

measures:

Mean squared error: (MSE): The �rst performance measure we evaluated was

mean square error, given by the expression

MSE = meani2V ((�
true

a
(i)� �est

a
(i))2):

Object centroid error: (OCE)We evaluated the error in the estimated position

of the reconstructed object relative to the true position of the absorption anomaly.

Speci�cally, we set an \object thresholded" at 50% of the maximum amplitude in the

reconstruction. We considered the largest amplitude voxel as an initial \detected
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object", and then iteratively built up a larger \detected object" by including in

the object any neighbor of a current \object voxel" whose amplitude was above the

threshold. The search �nished when there were no more voxels which were neighbors

of voxels classi�ed as object voxels whose amplitude was above the threshold. Once the

object was detected, we computed its centroid as the weighted average of the position

of the object voxels, with the amplitude of these voxels as the weights.

Amplitude error: (AE): The third performance measure we calculated measured

the peak amplitude error of the reconstructed absorption coeÆcient over the known

position of the object. We simply calculated the di�erence between the maximum

value of the true object and the maximum value of the reconstructed object over

the support of the true object. We note that in general for all the reconstruction

methods we considered, the amplitude of all voxels generally increases with decreasing

regularization, so for AE errors we always used the regularization parameter which

minimized the MSE.

We used these three error measures, MSE, OCE, and AE, to quantitatively compare

reconstruction techniques as a function of SNR. SNR was varied and at each SNR

we computed reconstruction estimates for ten independent realizations of the additive

noise. We then averaged the value of each performance measure over the realizations for

each reconstruction method. As above, for the algebraic techniques the regularization

parameters were selected by �nding the minimum MSE reconstruction for the given

SNR. With the subspace techniques the regularization parameter was selected using

the L-curve whenever the L-curve method proved useful. There was one case (the 0.5

cm width 2DS reconstructions) where the L-curve did not provide useful information

even for the subspace techniques, as described below.

Figure 7 shows the graphs of the MSE versus SNR for all four F3D reconstruction

techniques with (a) showing the 0.5 cm grid discretization and (b) showing the 2.0 cm
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Figure 7. MSE for the F3D reconstructions. Panel (a) shows the 0.5 cm vertical cell

size reconstruction, (b) shows the 2.0 cm vertical cell size reconstruction. Data points

are means over ten realizations and error bars show +/- one standard deviation over

the realizations. See text for details.

discretization in the vertical direction. Each line in the �gure shows the mean value of

the MSE over the ten realizations for a speci�c reconstruction algorithm. The error bars

show the standard deviation over the realizations. With a 0.5 cm grid reconstruction

the two subspace techniques outperformed the two algebraic techniques, with TCG

slightly outperforming TSVD, over the whole range of signal-to-noise ratios. ART

shows a marked degradation in performance below 30 dB SNR. A MSE value for ART

at a 10 dB signal-to-noise ratio was computed but was signi�cantly outside the range

of the graph. In the 2.0 cm case the subspace methods outperformed the algebraic

methods except at high SNR (> 30 dB) where ART provided the same performance as

TCG. At lower signal to noise ratios the disparity between the best algebraic method

(SIRT) and the worst subspace method was even greater than for the 0.5 cm vertical

cell size case. It is also interesting to note that above 40dB signal-to-noise ratio there

is no improvement in the MSE with higher SNR for this case.

Figure 8 shows the MSE curves for the equivalent 2DS reconstructions. Note that

the vertical scale of these graphs is ten times larger than for the previous two graphs.
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Figure 8. MSE for the 2DS reconstructions. Panel (a) is shows the 0.5 cm vertical

cell size reconstruction, (b) shows the 2.0 cm vertical cell size reconstruction. Data

points are means over ten realizations and error bars show +/- one standard deviation

over the realizations. See text for details.

Comparing 2DS and F3D results, we see that the MSE of the 2DS reconstructions

is much larger than that of the F3D reconstructions. A curious result of the 2DS

reconstructions is the lack of change in MSE of the subspace techniques with change

in SNR. At present we do not have a good understanding of this phenomenon.

Figure 9(a) shows the OCE for the four reconstruction techniques for a F3D with a

0.5 cm vertical step size and Figure 9(b) shows the equivalent result for the 2.0 cm 2DS

reconstruction. As with the MSE error measure the 0.5 cm vertical step size provided

the best performance for F3D reconstructions and a 2.0 cm vertical step size provided

the best performance for 2DS reconstructions. For this reason, from here on we present

only these two cases. The results are generally similar to those of the MSE curves.

Speci�cally, the two subspace techniques outperform the algebraic techniques over the

whole range of SNRs and the OCE for the algebraic techniques degrades signi�cantly

below 30 dB SNR. The mean of the planar reconstruction is lower than for the full

three-dimensional reconstruction. We note, however, that the planar reconstruction

used a priori information for the depth dimension, which is the largest component

of positional error in the F3D reconstruction. Also, the standard deviations of the
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Figure 9. Panel (a) shows OCE for a F3D reconstruction with a 0.5 cm vertical step

size. Panel (b) shows OCE for 2.0 cm thick planar reconstruction.

algebraic 2DS reconstructions were very large.

Figure 10(a) shows the AE performance for the F3D 0.5 cm reconstruction while

Figure 10(b) shows the AE for the 2.0 cm 2DS reconstruction. As with the previous

measures, the subspace techniques outperform the algebraic techniques over the range

of SNRs evaluated. ART at 10 dB SNR for the F3D reconstruction appears to have

a signi�cant increase in performance, but upon examination of the reconstructions we

found that this was just due to spurious noise in the region of the absorption object. In

other words, despite the low value of the AE measure, there was very little resemblance

between the true object absorption function and those generated by ART at a 10 dB

signal-to-noise ratio, as indicated by the MSE curves in Fig. 7(a).

4.3. Regularization Parameter Sensitivity

Although we computed an L-curve for all of the reconstruction algorithms and

scenarios, we found that the L-curve only identi�ed a useful truncation parameter

for the subspace techniques. Because the algebraic techniques do not monotonically

reduce the residual error as the iterations progress, the L-curve graphs for ART and
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Figure 10. Panel (a) shows AE for the F3D 0.5 cm step size reconstruction. Panel

(b) shows AE for the 2.0 cm 2DS reconstruction. Note that for the 2DS case the curve

for ART is o� the scale of the graph.

SIRT generally had multiple corners. We did, however, use the L-curve for selecting the

regularization parameter for the two subspace techniques for the F3D reconstructions.

For these techniques we can study how well the corner of the L-curve identi�ed the

\best" regularization parameter. To illustrate this comparison, for the two subspace

techniques we graphed the MSE versus the regularization parameter over a range of

SNRs for the F3D cases. The results are shown in Figure 11. For all cases it can been

seen that the L-curve performed well at identifying a regularization parameter that

was close to optimum in terms of minimizing the MSE.

As a comparison of the regularization sensitivity for the algebraic techniques we

show a plot of the MSE versus regularization parameter in Figure 12. From these

plots we can see that at low SNRs the algebraic techniques are very sensitive to

the regularization parameter and show a dramatic change in MSE with truncation

parameter. At high SNRs the opposite behavior is evident.
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Figure 11. Regularization parameter sensitivity for the two subspace reconstruction

techniques over a range of SNRs. One MSE curve is shown for each SNR.The diamond

on each curve displays the regularization parameter we chose (without knowledge of

the MSE curve) by simply manually selecting the corner of the L-curve. Panel (a)

gives the results from the TSVD algorithm whereas panel (b) shows results from the

TCG algorithm.

5. Conclusions and future work

In this paper we have presented a comparison of four of the most commonly used linear

reconstruction techniques for di�use photon density wave imaging applied to a three-

dimensional re
ective geometry reconstruction problem, reconstructing both the full

three-dimensional volume and a single plane within the volume. Our results showed

that the subspace techniques are superior to the algebraic reconstruction techniques in

estimating both the amplitude and the position of an inhomogeneity as well as in the

overall �delity of the absorption function reconstruction. This was true even when we

used a priori knowledge of the true object function to select the optimal mean squared

error regularization parameter for the algebraic techniques while we used only the

a posteriori L-curve to select the regularization parameter for the subspace techniques.

We have also shown that for the highest level of quantitative accuracy a full three-

dimensional reconstruction is necessary. Additionally, mismatch in the width of a two-
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Figure 12. Regularization parameter sensitivity for the two algebraic reconstruction

techniques over a range of SNRs. One MSE curve is show for each SNR. Panel (a) is

the results from the ART algorithm, the 10 and 20 dB curves are out of the range of

the plot. Panel (b) is from the SIRT algorithm.

dimensional slab reconstruction can have a signi�cant adverse e�ect on the quality of

the reconstruction, as is evident in Figures 6 and 8.

By using the OCE error measure we identi�ed further di�erences in performance

between the subspace and algebraic techniques that were not evident with only a

MSE performance measure, particularly at low SNR. This conclusion was supported

by direct observation of the reconstructed images at low SNR. We observed that even

though the algebraic methods gave fairly good MSE performance at low SNR, the

images looked nothing like the true object. The OCE measure identi�ed this for low

SNR in the F3D cases. Additionally, the large standard deviation of the OCE measure

of the algebraic methods, particularly in the 2DS cases, indicated the poor performance

of these techniques. We found that the AE measure did not prove as useful because it

was fooled by spurious noise in the region of the object.

Through sensitivity studies we veri�ed that the L-curve is a useful tool in selecting

the regularization parameter for the subspace techniques in the three-dimensional

re
ective geometry reconstruction problem, at least when model mismatch is limited
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to moderate di�erences in discretization.

In future work we plan to repeat this comparison, still using a Born forward

model for the inverse, with measured experimental data, so that we can explore the

e�ects of increased model mismatch on ability of each method to produce quality

reconstructions. Another area of work we will investigate is the development of

a scheme with a spatially varying regularization parameter. Observations of our

results indicate that there is a signi�cant decrease in the level of reconstruction noise

with depth. In particular there tends to be signi�cant reconstruction noise near the

surface. Thus a spatially varying regularization parameter might be a way to take this

observation into account to improve the reconstruction accuracy and reliablility.
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