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Abstract
In this paper, we present an approach to the nonlinear
inverse scattering problem using the Extended Born
approximation (EBA) and based upon methods from
the fields of multiscale and statistical signal process-
ing. By posing the problem directly in the wavelet
transform domain, regularization is provided through
the use of a multiscale prior statistical model. Using
the Maximum a posteriori (MAP) framework, we in-
troduce the relative Cramér-Rao bound (RCRB) as
a tool for analyzing the level of detail in a recon-
struction supported by a data set as a function of
the physics, the source/receiver geometry, and the na-
ture of our prior information. The MAP estimate
is determined using a novel implementation of the
Levenberg-Marquardt algorithm in which the RCRB
is used to achieve a substantial reduction in the ef-
fective dimensionality of the inversion problem with
minimal degradation in performance. Additional re-
duction in complexity is achieved by taking advan-
tage of the sparse structure of the matrices defining
the EBA 1n scale-space. An inverse electrical conduc-
tivity problem arising in geophysical prospecting ap-
plications provides the vehicle for demonstrating the
analysis and algorithmic techniques developed in this

paper.

1. Introduction

The desire to characterize the composition of a
medium based upon observations of scattered radi-
ation is a common problem in a variety of applica-
tion areas [Kak and Slaley, 1987; Bates et al., 1991;

Torres-Verdin and Habashy, 1994]. Despite the ubiq-
uity of such inverse scattering problems, generating
a solution can be quite difficult due to the compu-
tational burden associated with the nonlinearity of
the problem and the fact that these problems are
highly ill-posed. In this paper, we present a col-
lection of methods for overcoming these difficulties
based upon techniques drawn from the disciplines of
multiscale and statistical signal processing. We em-
ploy estimation-theoretic analysis techniques to iden-
tify those degrees of freedom in a wavelet representa-
tion of the quantity to be reconstructed for which the
data provide significant information. Such a formula-
tion represents a natural framework for the analysis
of 1ssues such as the tradeoff between reconstruction
accuracy and resolution as well as the development
of bounds on our ability to localize spatial anomalies
in the region of interest. Direct incorporation of this
information into a nonlinear inversion algorithm cou-
pled with a multiscale implementation of the forward
scattering model result in substantial computational
savings with little loss in reconstruction fidelity. We
apply our method to an inverse electrical conductiv-
ity problem encountered in geophysical exploration
applications.

The Extended Born Approximation (EBA) devel-
oped by Habashy et al. [1993] is used to lower the
computational complexity of the forward modeling
portion of our inverse scattering algorithm. The
EBA provides a simple functional relationship be-
tween the conductivity perturbation and the scattered
field which make this model ideally suited for the com-
putationally efficient implementation of a complete,
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gradient-based nonlinear optimization algorithm for
solving the inverse scattering problem [Torres- Verdin
and Habashy, 1994]. We further improve the efficiency
of our inversion algorithm by exploiting the fact that
the matrices defining the Extended Born Approxima-
tion are of the class which are “nearly diagonalized”
by the wavelet transform [Beylkin et al., 1991].

The traditional method for overcoming the ill-po-
sedness of these inverse scattering problems is through
the use of a regularization method [Bertero et al.,
1988; Groetsch, 1984; Kress, 1989]. From an estima-
tion-theoretic perspective, the regularizer represents
a prior statistical model for the quantity under inves-
tigation [Miller and Willsky, 1995b]. Here, we demon-
strate the utility of specifying such a model directly
in the wavelet transform domain where there exist
a wide variety of scale-space modeling structures well
suited for this task [Miller and Willsky, 1995a, 1995b].
These models are useful for representing many com-
mon, naturally occurring self-similar phenomena, are
easily specified in scale-space, and for certain prob-
lems lead to fast inversion algorithms. Moreover, in
the linearized inverse scattering context, a wavelet
representation of the conductivity provided a natu-
ral basis for defining the space-varying optimal level
of detail in reconstruction as a function of the res-
olution, quality, and spatial distribution of the data
[Miller and Willsky, 1995b].

The solution to the nonlinear inverse scattering
problem is obtained as the Maximum a posterior:
(MAP) estimate of the wavelet components of the
conductivity field. Using the MAP formulation, we
generalize the results in Miller and Willsky [1995b] by
introducing the relative Cramér-Rao bound (RCRB)
for quantitatively evaluating the information provided
by the data with respect the conductivity’s wavelet
transform. At each stage of the inversion, the RCRB
is used to identify those wavelet coefficients for which
the data do and do not provide significant informa-
tion. Use of this partition leads to substantial com-
putational savings with little loss in reconstruction
fidelity.

In Section 2, we present the physical space formu-
lation of the inverse electrical conductivity problem.
Section 3 is devoted to a review of the wavelet trans-
form and a derivation of the scale-space MAP esti-
mation problem. The relative Cramér-Rao bound 1s
defined and its properties discussed in Section 4. Our
nonlinear inversion scheme is presented in Section 5
with a collection of examples discussed in Section 6.
The conclusions to be drawn from this work are pre-
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Figure 1. Inverse conductivity problem of interest
in this paper.

sented 1n Section 7.

2. Physical Space Problem Formulation

2.1. The Forward Problem

We consider a two-dimensional inverse conductiv-
ity problem illustrated in Figure 1 where there exist
a set of electromagnetic line-sources oriented perpen-
dicularly to the page emitting time-harmonic waves
into a lossy medium characterized by a constant back-
ground conductivity of go S/m and the free space val-
ues for electric permittivity, €y, and magnetic perme-
ability, pg. The objective of the problem is to recon-
struct a conductivity perturbation, g(r), in A given
noisy, pointwise observations of that component of
the scattered electric field oriented perpendicularly
to the page. These measurements are obtained along
receiver arrays positioned on the vertical edges of A
from K scattering experiments. Each experiment pro-
duces a vector of measurements, y;, comprised of the
in-phase and quadrature components of the scattered
field obtained over a single receiver array due to en-
ergy put into the medium from one of the sources
operating at a particular frequency.

As discussed in Torres- Verdin and Habashy [1994],
the relationship between g(r) and the j** element of
¥;; that is, the measured scattered field at position r;
is

yi(rj) = wipo / Gi(rj,v)g(r") Ey(x)dr' + ny(r))

(1)
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where n;(r;) represents additive noise, G;(r,r’) is the
Green’s function for the problem and E;(r) is the
component of the total electric field perpendicular to
the page. From Torres-Verdin and Habashy [1994],
F;(r) satisfies

Ei(r) = Ei(r) + wipo /A Gi(r,")g(x")E;i(x")dr' (2)

with E;(r) = Lw;poGi(r,r;) the background field
generated by a line source with current density I; po-
sitioned at r;. Finally G;(r,x’) is

/
r—r

Gir,x') = S HGY (ki olr = ') (3)
with kio = wlpo(€o + 290/w;) and Hél)(z) the zeroth
order Hankel function of the first kind.

A discrete representations of (1) is obtained using
the Method of Moments (MoM) [Harrington, 1968]
where g(r) and E;(r) are expanded in pulse bases.
Similarly a Galerkin scheme is used to discretize (2)
based upon the same same pulse basis expansions (i.e.
we use the pulse basis for both test and weighting
functions). Thus, upon discretization, (1) and (2)
reduce to

Y = Gi,sD(Ei)g + n; (4&)
E;, = El + G’Z’D(g)E’Z (4b)

where F; (resp. E;) is a vector of pulse basis expansion
coefficients for E;(r) (resp. Ei(r)), G; s (resp. G;) is
a matrix representation of the integral kernel in (1)
(resp. (2)), and D(z) is the diagonal matrix whose

(i,1)" element is the i'® component of the vector .

To alleviate the computational burden associated
with the use of (4b) and (4a) in an inversion routine
[Torres-Verdin and Habashy, 1994], we employ a for-
ward model based upon the Extended Born approxi-
mation. For the geometry of interest here, the EBA
amounts to approximating E;(r) in A as [Torres-
Verdin and Habashy, 1994]

Ei(r) = X;(r)Ei(r) re A (5)

Xitr) = [1= s [ Gilegehar | o)

Upon substituting (5) into (1) and discretizing again
using the MoM approach described previously (see
[Miller, 1994]), we obtain the model

yi = TiD(X;)g +n;. (7)
———

hi(g)

In (7), T; is a matrix identical to that associated
with the first-order Born approximation in Miller and
Willsky [1995b] and X is a vector whose n'? elements
is

(X, = (14 [0 0) ®)

where [U;](,, .y is the n'? row of the matrix U; whose
(n, m)™* elements is [Miller, 1994]

Wilto (1) / /
- Hy(k; olr — ©'|)drdr
4(Area of Ap) /An /Am o (ki ofr —x'[)drdx

with A; the j** element in the pixelation of A.

Finally, we collect the data from the K scattering
experiments into a single vector, y so that the overall
observation model is given by

y=nh(g)+n (9)
yL]and h(g) and n are defined

where yT = [yT yI ...
accordingly.

2.2. The Inverse Problem and Its Probabilistic
Interpretation

One method for recovering g from y is to define g,
the estimate of the conductivity field, as the solution
to the nonlinear least squares problem?!

g:argminHy—h(g)H%—l +||g||%TL (10)
g

where ||z||a = 2T Az. As discussed in Section 1, the
matrix L in (10) is employed to regularize the problem
and R is generally a diagonal matrix whose entries
reflect the noise levels present in the measurements,
Y.

The Gauss-Newton (GN) algorithm represents one
common method for performing the minimization in
(10) [Torres- Verdin and Habashy, 1994; Tarantola
and Valetie, 1982]. Specifically, § is generated itera-
tively starting from an initial guess §°. At the (k+1)**
stage of the algorithm, g*+! is

g =gt st (1)

1For completeness, the optimization problem should include
a positivity constraint on the conductivity. We defer consider-
ation of this question until Section 5.1.
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k

where s” is given as the solution to the linear system

(270 + [V, h(@") R [V, h(gh)] | 5+ =
[V h(a*)]" R [y — h(a")] - L7Lg* (12)

with V, h(g) the matrix whose (i, j)"* component is
Ohi(g)/9g; -

The nonlinear least-squares formulation and the
GN iteration admits a direct interpretation in the
context of optimal statistical estimation. Eq. (10)
is equivalent to the Maximum a posteriori (MAP) es-
timate [Van Trees, 1968] of g given y assuming

n; ~ N(O,r;0) (13a)
g ~ N(O(L"L)™Y (13b)

and all the noises are uncorrelated so that R =
diag(riI, o1, ... rgI).?

An estimation-theoretic approach toward inversion
is especially useful because it provides measures of
performance in terms of the second-order error statis-
tics. For the nonlinear problem of interest here, ex-
plicit expressions for this information cannot gener-
ally be obtained; however, the Cramér-Rao bound
(CRB) is a commonly used lower bound on the mean
square error performance of the MAP estimator [ Van
Trees, 1968]. For the problem defined by (9), the CRB
takes the form [ Willsky, 1990]3

-1

Pernlg) = (L7L+19, h(g)] RV, h(g)]) -
(14)
Finally, comparing (14) to (12), we see that Pcrp(g)
is the inverse of the matrix on the left hand side of
the linear system defining the Gauss-Newton itera-
tion. In Section 5, we make extensive use of this fact

to reduce the computational complexity of our inver-
sion algorithm.

3. Wavelet Domain Formulation

3.1. The Discrete Wavelet Transform

The basic idea behind the discrete wavelet trans-
form is to decompose a signal, here represented as a

2The notation « ~ A(m, P) implies that z is a Gaussian
random vector with mean m and covariance matrix P.

3 Technically, the CRB is defined to be the inverse of the
expected value of the matrix in parentheses on the right hand
side of (14) where the expectation is taken with respect to the
distribution of g. In this paper, it proves useful to consider
the definition of (14) in which the expectation is replaced by
evaluation at an arbitrary g.

vector, into a sequence of increasingly “coarser” rep-
resentations while retaining the information lost in
moving from a fine to a coarse scale. While we will
be concerned both with one- and two-dimensional sig-
nals, we describe first the wavelet representation and
notation for a 1D signal, a, of dimension 2M=. The
elements of a are termed the finest scale scaling coef-
ficients associated with a, and the vector a is denoted
by a(M,) indicating that this is a representation of @
at the finest scale, M,.

Beginning with a(M,), a coarser set of scaling co-
efficients, a(M, — 1), is obtained by passing a(M,)
through a low pass, finite impulse response filter, [,
and decimating the filtered output by a factor of two.
Thus, a(M, — 1) is “coarser” than a(M,) in that the
filtering/downsampling procedure has removed the
high frequency structure from the original signal, and
a(M, — 1) is half as long as a(M,). The detail lost in
moving from a(M,) to a(M, —1) (denoted a( M, —1))
is extracted by a high pass filter and decimation pro-
cedure. The filtering and decimation process is ap-
plied successively to the coarsened versions of a re-
sulting in a sequences of scaling coefficient and detail
vectors, a(m) and a(m) respectively, each of dimen-
sion 2™ form = M, —1,..., L, with L, the coarsest
scale at which a is represented.

As described in Daubechies [1988], filters | and h
can be constructed so that we may build an orthonor-
mal matrix,* W, relating the finest scale scaling co-
efficients to the coarsest scaling coefficients and all
detail coefficients. That is, we may write

a = Wsa (15)

where a = [a(M, — 1)T ... a(Ls)T a(Ly)T]T is the
wavelet transform of a. The n'* element of a(m) is
denoted a(m,n) and is referred to as the n'® shift of
a at scale m. Similarly, a(m, n) is the n'" element of
the vector of scaling coefficients at scale m.

The wavelet decomposition of a 2D function is ob-
tained by considering @ as a matrix and applying one
orthonormal wavelet transform to the columns and
another to the rows. We use W, to represent the
composition of these two operators. It is easily shown
that the orthonormality of the row and column trans-
forms ensures that W, is also orthonormal. Finally,
we denote a particular element of & by a(m, n) where
m and n are two-vectors indexing the scales and shifts
in the z and z directions respectively.

4We subscript the wavelet transform operator as W, to
make explicit that this is the transform for a. We will use
different wavelet transforms for the different variables.
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3.2. Multiscale Prior Models

A key component in our formulation of the inverse
problem is the use of a multiscale stochastic model for
g to regularize the inversion and to capture prior in-
formation. To motivate the particular choice of prior
model used here, consider (13b), the stochastic in-
terpretation of the regularization term in the nonlin-
ear least-squares formulation of the inverse scattering
problem. In the case where ¢ is a function of one
variable and L represents first-order differentiation,
(13b) implies that g is a Brownian motion satisfying
Lg = w with w ~ N(0,1). Work by Wornell [1990];
Flandrin [1992]; Tewfick and Kim [1992] has demon-
strated that Brownian motions and other related frac-
tal processes can be closely approximated via statis-
tical models in which the wavelet and coarsest scale
scaling coeflicients of g are independent random vari-
ables distributed according to

y(m,n) ~ N(0,x%27H™) (16a)
g(Ly,n) ~ N(O,pr,). (16b)

Here, k2 controls the overall magnitude of the pro-
cess and p determines the fractal structure of sample
paths. The scalar pr,, is chosen to be sufficiently large
number so as to avoid any bias in the estimator of the
low frequency structure of g. For these models, the
resulting covariance matrix, Py, for v is diagonal with
nonzero entries corresponding to the variances of each
component of 7.

For the case where ¢ two dimensional, we consider
the separable representation with

’Y(m, n) ~ (0’ KiﬁzQ_(ummI+szz))

for Lyo <my < Myge—1land L, ., <m, < M,.—1.
For m = L, , we take y(m,n) ~ (0,pr, k227 (#m2))
with analogous results holding when n = L, ..

3.3. A Scale-Space Representation of the Ex-
tended Born Model

We use the wavelet transform to effect a change
of basis with respect to the EBA model developed
in Section 2.1. To perform the scale-space trans-
formation, we define one wavelet transform, W,, for
the conductivity perturbation, g, and for each scat-
tering experiment a separate wavelet transform W;,
t = 1, 2, ..., K is specified. Taking advantage of
the orthonormality of the wavelet transform, (7) is

transformed as follows

Wiyi = i = Ty | [V D(Xa)Wy [ (W,07)
0; Zi(v)
+W;n;
= Qi(y)+wi

where ®;(y) = 0;Z;(y)y and E;(v) is related to v by
noting that (8) can be written as

X, = (140, WiWe) (18)

(1 + [Yil(n ’7) - .

Gathering the transform domain observation together
we obtain

n=2=&(y)+v (19)

where 1, ®(7), and v are defined analogously to the
quantities in (9).

In summary, the overall problem of interest in this
paper is the determination of the MAP estimate of
v based upon the observation model in (19) with
v ~ N(0, Py) and v ~ N(0, R) where P, is defined
in Section 3.2 and R = diag(riI,r2I,...,rxI). For-
mally, this leads to a definition of ¥, the estimate of
the conductivity’s wavelet transform, as

4 = argmin J(y) (20)
¥

where the cost function, J(7), is defined as

J() = 1In = ()llz-r + 5 (21)

While (20) is structurally identical to (10), a wavelet-
domain formulation yields a variety of benefits ex-
plored in the following sections of this paper.

4. The Relative Cramér-Rao Bound

In Miller and Willsky [1995b], the relative error
covariance matrix (RECM) was introduced as quan-
titative tool to analyze issues related to the manner
in which the physics of the linearized inverse scatter-
ing problem impact the structure of the reconstruc-
tion. Without explicit knowledge of the error covari-
ance matrix for the nonlinear inverse scattering prob-
lem, we use the Cramér-Rao bound as the basis for a
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generalized RECM. Specifically, we define the relative
Cramér-Rao bound (RCRB) as

—T/2

crp(y) = P, [Po — PcrB(7)] Po_l/2 (22)

where for the model given by (19), is
Pcrp(y) = (TT(MRT'T()+ P )™ (23)

with

T(y) =
(V2 0 o (T o) | (24)

A detailed description of the straightforward yet te-
dious calculations required to compute 7 () as well as
an expression for 7 () are presented in Miller [1994].

As with the RECM defined for the linear case,
IIcrp possesses a variety of useful properties. From
(22), Icrp is a symmetric matrix. Also, like the
RECM, the diagonal elements of IIcgp are bounded
between zero and one and provide a direct measure
as to the information content of the data with respect
to each component of 4. This property of the RCRB
provides a mechanism for defining the space-varying
appropriate level of detail to include in a reconstruc-
tion of g [Miller and Willsky, 1995b]. In particular,
for each location 7 in the finest scale representation
of g, we say that the data support a reconstruction
of g(M,, j) at scale m if there exists a component in
~ at scale m for which the data provide a sufficiently
large quantity of information; that is the diagonal el-
ement of Ilcrp associated with that coefficient of v 1s
greater than a threshold, 7 € [0,1). The finest scale
detail to include in the reconstruction at that point j
is just the finest scale for which a wavelet coefficient
may be found that satisfies the above criterion. In
addition to obtaining these detail maps, the ability of
the RCRB to provide a measure of the information
content in the data leads to a substantial reduction
in model complexity for the inversion algorithm de-
veloped in the following section.

5. A Wavelet-Based Inversion Algorithm

Based upon (11) and (12), the (k+ 1)*" step of the
scale-space form of the Gauss-Newton algorithm is

Y =at 4t (25)

and

[TTGRRTIT() + Py 6F =
TTE)R™ [n— ()] - Py 'A% (26)
which we write in a more compact form as
[P 4 P e = ot (27)

where F* = 7T (4%)R=1T (4*) and we recall from the
discussion in Section 2.2 that the matrix on the left
hand side of (26) is PE%{B('}’“).

At the k'* step of the Gauss-Newton algorithm,
we would like to use the diagonal components of
Pcrp(9%) and Py to construct the diagonal elements
of the RCRB according to (22) so that we can de-
termine and then compute only those elements of ¢
for which “significant” information exists. The diffi-
culty here is that we only have access to the inverse
of Pcrp(9*) and our desire is to avoid explicitly in-
verting this matrix. Thus, we make two assumptions.
First, at step k we assume that we know the diago-
nal elements of Pcrp($%71), i.e. the diagonals from
the Cramér-Rao bound matrix of the previous iter-
ation of the algorithm®, from which we are able to
construct the diagonal elements of crp(7571) us-
ing (22) (since Py is diagonal). Second, we assume
that HCRB(’yk_l) is close to HCRB(’yk), that is, the
bounds at successive iterations do not change dramat-
ically.

Formally, we let IIggp (77!
on the diagonal of IIcrp(9¥~1) corresponding to the
wavelet coefficient in v at scale m and shift n. Using

—1), we partition ¢* into ¢f and ¢¥, where

) be the component

CrBa(¥*
the component of ¢* at scale m and shift n is included
in ¢f if I¥zp o(7°71) is greater than some threshold
7 € [0,1). If this condition is not met, then that ele-
ment of ¢* is placed into ¢¥. Thus, ¢ contains those
components of ¢* for which significant information is
available relative to that of the prior model where the
level of significance is defined by the threshold 7.

Based upon this decomposition of ¢* | the rows and
columns of (27) are appropriately permuted so that
the linear system at step k of the Gauss-Newton al-
gorithm takes the block-partitioned form

Fli+ Py Fly ] [ s ] _ [ v} ]
7:5«’1 7:52 + Po_,:)1 =
(28)

5For the first iteration of the algorithm, we begin by explic-
itly inverting the matrix on the right hand side of (27)
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which we invert directly using the block matrix inver-
sion formula [Beyer, 1987] to obtain

o |_
S
[ oF 4+ oFFF,87FFF, 0 —QFFF,87F ] [ vy ]
-S~hFyQF s 51
(29)

In (29) @* and the Schur complement, S*, are defined
as

Qk

St = P+ TS, - F Q8 F, (31)

(Ff1+Pyi)7 (30)

and S7F = (8%)~L.

The utility of (29) through (31) arises from two ob-
servations. First, we anticipate from our work on lin-
ear inverse problems [Miller and Willsky, 1995b] that
the dimension of ¢¥ should be much smaller than the
dimension of the full vector ¢*. Hence, the cost of
computing the inverse in (30) will be small. Second,
the Schur complement matrix is well approximated
by only its diagonal components so that evaluation
of 8% requires little computation. While a detailed
verification of this approximation is provided in Miller
[1994], here we demonstrate its validity through the
accurate results obtained in our examples using the
diagonal approximation to S*. The diagonal approxi-
mation to S¥ means that ¢f may be obtained from v*
using the first block row of (29) with far fewer compu-
tations than direct inversion of F*. Moreover, rather
than setting ¢¥ to zero, the presumed diagonal struc-
ture of S* and the small size of QF imply that the
second block row of (29) can be applied to v* with
little computational overhead. Finally, because the
matrix on the right hand side of (29) is a row- and
column-permuted form of Pcrp(7¥), (29) provides an
efficient method for computing the diagonal elements
of the RCRB to be used in the nezt iteration of the
Gauss-Newton method. Specifically, the diagonals of
Pcrp(9¥) are obtained by inverting the diagonal el-
ements of S and computing the diagonal elements
of the upper left block of the matrix in (29) which is
small in dimension.

5.1. Implementation Details

To improve the convergence of the nonlinear op-
timization procedure, we implement a form of the

Gauss-Newton algorithm known as the Levenberg-
Marquardt (LM) method [Gill et al., 1981]. Essen-
tially, this approach replaces (25) and (27) by

P =48 4 (32a)

FEy (5_2 + ak)po_l F = ok, (32b)

where Py = Py/k? with k? defined in (16a). As dis-
cussed in Gill et al. [1981], proper selection of af guar-
antees that J(7%11) < J(#*) so that the LM proce-
dure does in fact converge to a minimum of the cost

¥ s0 as to minimize the

k+1

function. Here, we choose «

cost associated with the resulting °7° | 1.e.

RN
of = argmin J |:’yk + (]—"k + (k24 ak)PO_l) vk] .
(33)

We use a line minimization procedure to solve (33)
resulting in around 20 calls to the EBA forward solver
per iteration in the examples presented in Section 6.
Clearly, a more efficient implementation of the LM
algorithm would avoid much of this burden.

Physical principles dictate that the overall conduc-
tivity, go + ¢, in region A be positive. In order to
enforce this constraint on the inversion algorithm, we
assume that the i*? element of the vector g is given
as

[9]; = e — go (34)

and we estimate the vector ¥ = W,§ rather than g.
Here § is obtained by lexicographically ordering the
gi- As in Wang et al. [1994], this change of variables
only results in a slight modification to the structure of
®(v) and its gradient matrix. The general structure
of LM algorithm including the computational benefits
associated with a wavelet domain implementation, are
not affected by this substitution.

Finally, the matrices defining the extended Born
approximation are either sparse by construction (Z;
in (17) which is the wavelet transform of a diagonal
matrix) or are of the variety which are sparsified by
the wavelet transform (©; in (17) and Y; in (19)). In
the examples considered in Section 6, we explore the
effects of truncating the small elements of ©; and T;
in the performance of the inversion algorithm. For
this, we follow the strategy of Alpert et al. [1993] in
which the level of truncation is governed by a param-
eter € > 0 with zero corresponding to no truncation.
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Experiment | Source Source Receiver
number Position | freq. (kHz) Array
1-6 1-6 fro=0.1 Right
7-12 1-6 fMID =1.0 Left
13-18 1-6 frr = 10.0 Left

Table 1. Data set definitions for observation pro-
cesses of interest in the paper.

6. Examples

We now consider the problem of recovering the
electrical conductivity in region A of Figure 1 based
upon observations of scattered from the 18 scatter-
ing experiments described in Table 1. The source
frequencies are 100 Hz (used in a cross-well config-
uration) as well as 1 and 10 kHz (used to obtain
information near the left edge of 4). Region A is
100 m x 100 m with top left corner at (0,0). For
the Method of Moments discretization, A4 is decom-
posed into a 16 x 16 array of square pixels so that the
overall dimensionality of the problem i1s 256. Both
receiver arrays consist of 32 equally spaced elements
extending from z = —0.05 m to z = 100.05 m. The
left array is located at £ = —0.05 m and the right at
z = 100.05 m. The six sources are located along the
line = —0.05 m equally spaced from z = 0.05 m
to z = 99.95 m. All other parameters describing
the examples presented in this section are listed in
Table 2. We define the signal-to-noise ratio (SNR)
for the model 1; = ®;(y) + v; with n; € R and
vi ~ N(0,721), as

o7 (1))

SNR} = 5
NZ'TZ»

(35)
While the inverse algorithm is based upon the Ex-
tended Born approximation, all data are generated
using the exact physical model in (4a). Finally, for
all examples, 4% = 0.

As a first example, we examine the inverse prob-
lem for which the geometric structure of the under-
lying conductivity field is shown in Figure 2. Unlike
the linear inverse problem in which performance 1s in-
dependent of the true conductivity field [Miller and
Willsky, 1995b], in the nonlinear case expected perfor-
mance of the imaging algorithm does depend on the
configuration of the underlying conductivity profile.
As an example of this relationship, we use the RCRB-
based analysis methods and display in Figures 3(a)-
(c) the finest scales of z-oriented detail supported in

| Parameter | Value
do 0.1S/m

z Wavelet Daubechies 2-tap

xr Wavelet Daubechies 2-tap
Ny.=Ny; 16
M, .,=M,, 4
Ly.=1L,;, 2
Hz = Hz 1
PL,z = PLgx 16
ng = f’iz 0.1

Table 2.
experiments

Common parameters defining numerical

a reconstruction when the amplitude of the rectan-
gular structure in Figure 2 is 0.1 S/m, 1 S/m, and 5
S/m respectively corresponding to 1:1, 10:1 and 50:1
contrasts.® All figures were obtained using an RCRB
threshold parameter 7 = 0.50. These illustrations
demonstrate that as the amplitude of the conductiv-
ity block increases, the level of resolvable detail de-
creases. Comparing Figure 3(a) to (b) we see a drop
in the scale of detail for the region directly behind
the conductivity structure. This loss in detail is ex-
plained by the fact that the dissipation of electrical
energy in a medium is directly related to the level of
the conductivity with larger values corresponding to
greater loss.

The spatial structure of Figure 3 is related closely
to the three different frequencies used to probe the
medium. The ability to recover finer scale informa-
tion near the left vertical edge of A extends to ranges
on the order of a skindepth (16 m and 50m for the
10kHz and 1kHz sources respectively) for the two
higher frequencies. Although the skin depth for the
100 Hz source is 160m while the size of A is only
100 m, the frequency 1s sufficiently low such that only
the coarsest scale of information regarding g may be
recovered further into the medium. Finally, note that
the high detail which can be recovered near the two
vertical edges also can be partially attributed to the
singularities of the Green’s functions for this problem
which exist at the source and receiver locations. A
more detailed treatment of these issues in the context
of a linearized inverse conductivity problem similar to

8 The finest z-oriented detail for this problem is basically
constant over A due to the dense sampling pattern of the re-
ceivers along each vertical edge of the region.
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Figure 2. True conductivity profile for first example

the one considered here may be found in Miller and
Willsky [1995b].

To gauge the expected savings associated with the
use of the RCRB at each iteration of our inversion
algorithm, in Figure 4 (solid line) we plot, as a func-
tion of 7, the percent of coefficients for which the data
are deemed to supply a reasonable amount of infor-
mation (i.e the percentage of elements in y for which
the value of IIZgp ,, exceeds the threshold 7). This
illustration is obtained for the case in which the am-
plitude of the structure in Figure 2 is set to 5 S/m
and provides a benchmark for the expected perfor-
mance of the inversion routine explored in subsequent
paragraphs. Specifically, Figure 4 is generated using
the CRB matrix evaluated at the true conductivity
profile, while the CRB used at the k** step in the in-
version algorithm is evaluated at 4¥. Thus, there will
be some discrepancy between the number of coeffi-
cients retained during the execution of the algorithm

(a) Amplitude =.1 S/m

(b) Amplitude =1 S/m

0 3 0 3
5 5
2 N 50 2
5 5
1 100 1
0 50 100 0 50 100
X X
(c) Amplitude =5 S/m
0 3
5
N 2
5
100 1

0 50 100

Figure 3. Bounds on space-varying optimal level of
z-oriented detail in a reconstruction when the struc-
ture in Figure 2 has an amplitude of (a) 0.1 S/m, (b)
1S/m, and (¢) 5 S/m. All figures are computed using
a threshold of 0.5 in the RCRB analysis. The corre-
sponding z-oriented detail maps are constant over the
region A.
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Figure 4. Percentage of elements expected to be con-
sidered significant as a function of truncation param-
eter. Solid line = results for first example. Dashed
line = results for second example.

and the number indicated in Figure 4; however, as we
shall see shortly, this difference 1s small.

The estimates of the conductivity field after 1, 20,
40, and 50 iterations of the LM algorithm are shown
in Figure 5. These results are obtained with ¢ = 107°
(corresponding to EBA matrices all greater than 99%
full) and 7 = 0 so that no approximation was made in
the least-squares problems. In Figure 6, we plot the
values of the cost function J(v) in (20) and the norm
of the estimation error ||g — §*||, as a function of iter-
ation number. We observe that after fifty iterations,
the estimate of the conductivity has converged to at
least a local minimum of the cost function. More-
over, this reconstruction captures the basic features
of the true conductivity field in that we have isolated
both the location of the perturbation as well as its
amplitude.

In Table 3, the average length of the vector ¢; over
the 50 iterations of the LM procedure is shown as a
percent of the size of the problem, 256, as we vary the
parameters € and 7. As e is raised to 0.01 (resp. 0.10)
the sparsify of the EBA matrices drops to around 30%
(resp. less than 10%). Examining Table 3 we see that
for 7 = 0.5 and € = 0.01, on average only 11% of the
elements of 4% (corresponding to 28 rather than 256
degrees of freedom) are deemed important. Finally,
comparing Table 3 and the solid line in Figure 4 shows
excellent agreement between the average number of
coefficients retained at each iteration of the inversion
and the theoretical bound obtained using the RCRB
analysis based upon the true conductivity profile.

(a) Iteration = 1

(b) Iteration = 20

£ E
3044 &
> >
S Eh
S 04 ‘:et‘.\‘:‘:g}‘:‘::?f“",\ s
2 RARARRININ e g0
8 © EOSSe” 80
50 100
50
2100 0 X
(c) Iteration = 40
E E
a a
2 25
= =
B B
=3 =3
g 44
(@] (@] 0

Figure 5. Estimated conductivity structure after 1,
20, 40 and 50 iterations of the nonlinear, multiscale
inverse scattering algorithm. The true conductivity
is shown in Figure 2. Note that the z-axis scaling in

(a) is different from (b)—(d).



Miller and Willsky: Wavelet-Based Nonlinear Inverse Scattering 11

6
10

Cost (solid)
(=Y
o
al

JEny
o
IN

Norm of Estimation Error (dashed)

3
10

10 20 30 40 Sg
Iteration

Figure 6. Performance curves as a function of iter-
ation number for first example. Solid line = Value of
cost function, J(7y). Dashed line = Norm of estima-
tion error, (||lg — §*|]).

In Figure 7, we observe that this truncation proce-
dure results in little degradation in inversion perfor-
mance. Define ’yf’oe as the estimate of v obtained after
50 iteration of the LM algorithm with truncation pa-
rameters 7 and €. In Figure 7, we plot as a function
of 7 and for ¢ € {107%,1072, 1071}, the quantity

||:V8010—5 - :)/75-,05||2
P = (3)
Y0,10-5112

which provides a measure of the effects of operator
and model truncation on the reconstruction. For

€ = 107° and ¢ = 1072, we see negligible perfor-
mance degradation; however, with ¢ = 0.1 there is
some loss in fidelity. Specifically in Figure 8, we dis-

play ’yg’% 10-s- Comparing this image to that obtained

with no truncation (Figure 5(d)), shows little differ-
ence in the two reconstructed conductivity profiles.
Thus, even with this severe level of truncation, the
conductivity structure remains well localized and the
final amplitude is still close to that of the true profile.

We next examine the performance of our imaging
algorithm for a more difficult problem in which the
underlying conductivity distribution is illustrated in
Figure 9. Here, there are two structures to be resolved
each of which is smaller than that considered in the
previous example and lie further from the two verti-

€
r [[1075 ] 0.01 | 0.1

0.0 100 100 | 100
0.1 24 25 30
0.3 14 14 18
0.5 11 11 14

Table 3. The mean length of ¢; for first example
expressed as a percent of the maximum length (256
in this case) where each entry is this table is
obtained as an average over the 50 iterations of the
corresponding inversion.

eps=1e-5x x x
eps =1le-20 o o
0.4 eps=1le-1x = x |
* % * *
0.3r 1
o2 ]
Q
0.1r 1
o £ S — — ] |
-0.1— : : : : :

Figure 7. Plots of p.(7) for the first example.
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Figure 8. Final conductivity reconstruction for first
example with 7 = 0.5 and ¢ = 0.1.

cal edges where the sources and receivers are located.
In Figure 10, we display the optimal z-oriented de-
tail for this problem for 7 = 0.5. It should be noted
that both conductivity structures are in the region
for which it is anticipated that the least amount of
detail can be recovered. As seen by the dashed line
in Figure 4, the greater complexity of this problem is
captured directly by an increase in the expected num-
ber of significant wavelet coefficients for all values of
7 relative to the previous problem.

With ¢ = 107® and 7 = 0, the reconstruction
obtained for this problem after 1, 20, 40 and 50 it-
erations of our inverse scattering algorithm are dis-
played in Figure 11 and the corresponding perfor-
mance curves shown in Figure 12. We observe that
the algorithm is quite successful both in distinguish-
ing the two structures from one another as well as in
determining their amplitudes. The two reconstructed
blocks are larger in area than the true structures;
however this is consistent with the lack of fine scale
detail expected to be recoverable from the data in
these regions of A. Moreover, we observe from Fig-
ure 11(b) that valuable geometric information is em-
bedded in the reconstructed profile after only 20 it-
erations of the algorithm. In particular, the number
(two) and locations of both structures are clearly ev-
ident. In many applications, such information could
be as important as the absolute amplitudes of the

=
= 3

o
o

Conductivity (S/m)

oo

z 100 ¢

Figure 9. True conductivity profile for second exam-
ple

O 3

2.8

20 2.6

2.4

N 40 2.2
=

é 2

o 60 1.8

1.6

80 1.4

1.2

100 ‘ ‘ 1

0 20 40 60 80 100
Radial position (x)

Figure 10. Bounds on space-varying optimal level of
z-oriented detail for 7 = 0.5 in a reconstruction when
the structures in Figure 9 both have amplitudes of 1
S/m. The corresponding z-oriented detail maps are
constant over the region A.
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€
T [[10=° Jo0.01 ] 0.1

0.0 100 100 | 100
0.1 38 41 54
0.3 21 22 34
0.5 18 18 25

Table 4. The mean length of ¢; for second example
expressed as a percent of the maximum length (256
in this case) where each entry is this table is
obtained as an average over the 50 iterations of the
corresponding inversion.

structures or the final image itself. Finally, from Fig-
ure 12, we see that after 50 iterations, the algorithm
has reached at least a local minimum of the cost func-
tion; however, the still-decreasing curve of the norm of
the estimation error indicates that further iterations
may be useful particularly in refining the amplitudes
of the two structures.

In Table 4 and Figure 13, the performance char-
acteristics of the inversion method are displayed as a
function of the truncation parameters 7 and ¢. The
results here are similar to those seen in the first exam-
ple. The average length of ¢; is consistent with that
predicted by the RCRB analysis in Figure 4. The
effects of truncation on the quality of the reconstruc-
tion as measured by p.(7) defined in (36) are again
small with the reconstructed profile obtained under
the most severe truncation (7 = 0.5 and ¢ = 0.1)
shown in Figure 14. Although slightly less smooth
than Figure 11(d), this estimate of the conductivity
clearly retains all essential features of the untruncated
version.

7. Conclusions

We have presented a multiscale, statistical ap-
proach to the nonlinear inverse scattering problem

based upon the Extended Born Approximation (EBA).

We considered an inverse electrical conductivity prob-
lem arising in the field of geophysical prospecting.
The application of statistical signal processing meth-
ods to the recovery of the conductivity’s wavelet
transform lead to the quantitative analysis of issues
such as reconstruction accuracy versus resolution and
the development of bounds on our ability to local-
ize conductivity anomalies in the region of interest.
Finally, our approach allowed for the use of physi-
cally realistic, computationally efficient regularization

(a) Iteration = 1 (b) Iteration = 20

Conductivity (S/m)

100

2100 0 X

Conductivity (S/m)

Figure 11. Estimated conductivity structure after 1,
20, 40 and 50 iterations of the nonlinear, multiscale
inverse scattering algorithm. The true conductivity
is shown in Figure 9. Note that the z-axis scaling in

(a) is different from (b)—(d).
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Figure 12. Performance curves as a function of iter-
ation number for second example. Solid line = Value
of cost function, J(y). Dashed line = Norm of esti-
mation error, (||lg — §*||).
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Figure 13. Plots of p.(7) for the second example.
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Figure 14. Final conductivity reconstruction for sec-
ond example with 7 = 0.5 and ¢ = 0.1.

methods which are described most naturally in scale-
space.

We introduced the relative Cramér-Rao bound
(RCRB) matrix as a generalization of the RECM em-
ployed in Miller and Willsky [1995a, 1995b]. The
RCRB provided useful information regarding the level
of detail expected to be recoverable from a given data
set and played a central role in reducing the complex-
ity of our inversion algorithm.

The reconstruction itself was specified as the so-
lution to a Maximum a posteriori estimation prob-
lem the solution of which was obtained using the the
Levenberg-Marquardt (LM) method. At each itera-
tion of the algorithm, the RCRB was used to identify
those degrees of freedom in scale space for which the
current linear problem provided substantial informa-
tion relative to the prior model. The resulting block
partitioned form of the normal-type equations were
directly and efficiently inverted yielding not only the
solution to the linear system, but also the RCRB in-
formation required to compute the partition at the
next step of the algorithm. The computational dif-
ficulties of solving the forward problem at each LM
step were reduced significantly through the use of a
scale-space form of the Extended Born approxima-
tion. Specifically, the matrices defining the structure
of the EBA model relating the conductivity to the ob-
servations could be made up to 90% sparse with little
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impact on inversion performance.
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