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Abstract.

Methods for classifying objects based on spatially sampled electromagnetic
induction data taken in the time or frequency domain are developed and an-
alyzed. To deal with nuisance parameters associated with the position of the
object relative to the sensor as well as the object orientation, a computation-
ally tractable physical model explicit in these unknowns is developed. The
model is also parameterized by a collection of decay constants (or equiva-
lently Laplace-plane poles) whose values in theory are independent of ob-
ject position and orientation. These poles are used as features for classifica-
tion. The overall algorithm consists of two stages. First we estimate the val-
ues of the unknown parameters and then we do classification. Classification
is done by comparing either the raw data or some low-dimensional collec-
tion of features extracted from the data to entries in a library. The library
can be constructed using either simulated or calibration data. A maximum
likelihood method is developed and analyzed for the problem of joint pole,
location, and orientation parameter determination. Here, we examine and
compare two classification schemes. The first classification method is based
on data residuals generated from estimated signal parameters. This scheme
performs well in low SNR cases. The second is based on estimated pole val-
ues themselves, which performs well in high SNR cases. We validate our meth-
ods on both simulated and field data taken from frequency and time domain

Sensors.
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4 TAROKH, MILLER, WON AND HUANG: OBJECT CLASSIFICATION FROM EMI DATA

1. Introduction

The problem of detecting and classifying buried objects using electromagnetic in-
duction (EMI) based sensing technologies has received considerable attention in re-
cent years in a range of application areas including unexploded ordinance (UXO) and
landmine remediation. In the last decade, considerable advances have been made in
the area of EMI instrumentation yielding sensors capable of providing data both in
the time and frequency domains which convey far more information concerning the
structure of buried objects than is the case with older metal detectors. Extracting
information such as size, shape, orientation, and type of target requires the develop-
ment of advanced signal processing methods which are tied directly to the physical
model of the sensor. In this paper, we consider a number of options for the clas-
sification of buried objects given EMI data obtained at multiple points in space in
the vicinity of an already-detected object with particular attention paid to UXO and
demining applications. The problem of object detection from EMI data has received
considerable attention in recent years [Collins et al., 2000] and is more-or-less solved.
Thus, we concentrate on the related classification problem; i.e. declaring the type of
object in the sensor field of view.

Generally, classification is done by comparing either the raw data or some low-
dimensional collection of features extracted from the data to entries in a library
[Tantum and Collins, 2001]. The library itself is built from data signature vectors
[Riggs et al., 2001; Tantum and Collins, 2001] or feature vectors from all targets of

interest in a given application [Tantum and Collins, 2001; Bell et al., 2001; Barrow
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and Nelson, 2001]. The classifier takes as the selected object that element of the
library which in a sense “best fits” the data or the features.

Most all of the recent work in the area of EMI classification has been based on a
simplified physical model for the interaction of the fields with the unknown target. As
we describe in greater mathematical depth in § 2, assuming that the target scatters
the incident energy like a dipole [Barringer Research Ltd. 1976; Barringer Research
Ltd. 1979; Das et al. 1984; Das et al., 1990], information concerning the class and
orientation of the object in space is encoded in the magnetic polarizability tensor
(MPT) which is independent of the location of the object relative to the sensors.
This location information is contained in two 3 x 1 field vectors. Mathematically
the MPT is a 3 x 3 matrix which has a functional dependence on time or frequency
depending on the sensor being used. In theory, this matrix can be diagonalized by
a time or frequency independent rotation matrix indicating the orientation of the
object in space. Each element of the resulting 3 x 3 diagonal matrix (which carries
all of the time or frequency dependence) provides the scattering characteristics of the
object along each of its three principal axes and are used for classification purposes.
We refer to these as the principal axis polarizability functions (PAPFs).

The various EMI classification methods developed to date differ according to fac-
tors related to the sensors being studied and the manner in which the dipole model
is employed in the processing. Aside from [Bell et al., 2001], classification algorithms
have been concerned strictly with either time-domain EMI sensors [Barrow and Nel-

son, 2001; Tantum and Collins, 2001] or frequency domain [Norton and Won, 2001;
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Riggs et al., 2001] but not both. In [Riggs et al., 2001; Tantum and Collins, 2001],
the authors employ a parametric model for the PAPFs which takes the form of a sum
of decaying exponentials [Sower et al., 1999; Collins et al., 2000; Carin et al., 2000]
in the time domain or a sum of one-pole rational system functions each with a zero
at DC in frequency. The poles and/or decay constants are then used as the features
for classification. Alternatively, the methods of [Bell et al., 2001; Barrow et al., 2001;
Norton and Won, 2001] use no such models and treat the time or frequency samples
of the individual PAPFs as independent quantities using the entire time or frequency
domain signals for purposes of object determination.

The current collection of processing methods also differ in how they treat the fact
that, in addition to unknown object class, the orientation and location of the target
may not be known or may be known imprecisely. In [Bell et al., 2001; Barrow
and Nelson, 2001], for example, the location of the object is estimated as part of the
processing, while in [Riggs et al., 2001; Norton and Won, 2001], the unknown location
effects are included in an overall scaling of the data and not treated explicitly. A
similar approach is taken to the orientation issue in [ Tantum and Collins, 2001] while
in [Riggs et al., 2001], a different target signature is used for each orientation of each
target in the library. Finally, in [Bell et al., 2001; Barrow and Nelson, 2001; Norton
and Won, 2001], the rotation matrix is in fact determined as part of the eigen-analysis
of the polarizability tensor, however the authors do not map this rotation matrix back

to an explicit orientation of the object in space.
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In this work we construct a two classification methods based on a physical model
that is the fusion of the dipole scattering model in [Das et al., 1990] and a parametric
PAPF model elucidated in [Carin et al., 2000]. This model is analytical in the
parameters of the PAPF, the (z,vy,z) location of the object, and the three Euler
angles [Hassani, 1991] describing the rotation matrix. The relatively simple closed
form nature of the model with respect to these parameters leads us to classification
methods in which the orientation and location of the object are explicitly estimated
along with the parameters needed for classification. Thus, our approach provides
information regarding these geometric characteristics of the object. Also, the closed
form nature of the PAPF model allows our approach to be applied with equal ease
to both time or frequency domain sensor data.

The model of [Geng et al., 1999] indicates that in theory the PAPF are comprised of
an infinite number of decaying exponentials in time domain, which, in the frequency
domain, translate to an infinite number of one pole transfer functions. Unfortunately,
it is both impossible and unnecessary to estimate an infinite number (or even a large
number) of poles or decay rates. First, pole estimation in the presence of noise is
known to be a very delicate signal processing problem [Apollo, 1991]. Second, because
objects do not scatter ezactly as dipoles, it makes sense to consider reduced order
models for purposes of processing. Indeed, experimentally it has been shown that
one or two poles can typically be used to match the model to measured data [Geng et
al., 1999]. Thus in this paper, we posit a model in which each PAPF is represented

as a single decaying exponential or one-pole transfer function. Since there are three
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principal axes, we estimate three poles/decay constants as part of the classification
routine. This is similar to the one or two pole methods of [Geng et al., 1999]; however
where these approaches disregard the information in the coefficients multiplying the
decaying exponentials in time (or poles in the frequency domain), we are able to
relate these coefficients directly and analytically to the location and orientation of
the object in space.

Moreover, our method explicitly accounts for modeling error introduced by the fact
that we are not using an exact scattering model. Because a three pole model cannot
(in general) exactly represent the data, the pole values will not be independent of
object position and orientation. Rather for a given type of target, there will be a
“spread” of pole values as a function of these geometric nuisance parameters. Thus,
we introduce a simple quadratic-form classifier which compensates for this effect of
model mismatch. For the purpose of comparison, classifiers based on data residuals
are also constructed.

The physical model employed in this work was introduced in [Miller, 2001], where
a preliminary set of results demonstrated the effectiveness of the model for a limited
set, of simulated data. In this work, we study the model and the processing schemes
more extensively and develop an improved understanding of the physical model. In
particular, we investigate the effect of SNR on the performance of our residual-based
and pole-based classifiers. We find that the residual-based classifiers perform well
under low SNR, whereas under high SNR the pole-based classifiers perform well. We

validate all claims using simulated as well as field data.
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The remainder of this paper is organized as follows. In § 2 the scattering model
is discussed. A description of the processing method is given in § 3. Experiments
using both simulated as well as real data from time and frequency domain sensors is

presented in § 4. Conclusions and directions for future work are the subjects of § 5.

2. Physical Model

We consider a combination of the physical EMI model in [Das et al., 1990] de-
scribing the scattering of low frequency electromagnetic radiation by spherical or
spheroidal objects with the model in [Geng et al., 1999] which rigorously justifies the
use of decaying exponentials in time or one-pole models in frequency for problems
of this type. As seen in Fig. 1 the transmitters and receivers are taken to be coils
(not necessarily co-located) with sides of length 24 and 2B respectively '. The tar-
get center is located at ro = (zo, Yo, 20) in the £ — y — z coordinate system. We are
concerned with processing methods based on time or frequency domain sampled data
obtained from multiple transmitter/receiver locations.

Assuming we collect M time or frequency samples from each of N combinations
of transmitters and receivers positions then under the model the k-th sample at the

7-th position is

yj,k = ngRTAkaj + O'TL]"]C = Sj,lc + O'nj,k. (1)

Here, g is a 3x 1 vector holding the (z, y, z) components of the magnetic field produced

at ro by a current I flowing through the receiver coil. Also, f represents the excitation
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fields vector evaluated at the dipole position. The variable n;y is a zero mean, unit
variance random variable and ¢ is the standard deviation of the assumed additive
white Gaussian measurement noise. Functional forms for f and g are provided in
Appendix A of [Das et al., 1999]. The quantity Ay is the complex-valued polarizability

tensor for the kth frequency and has the following form:

Aw) = A2(w) (2)
)\3(&))

where Aj, Ao, A3 are associated with one of each of the principle axes of the object
and w is the operating frequency. Replacing w by ¢ will give the time domain version
of this equation. Here we consider a form of that model provided by [Geng et al.,

1999]:

Nw) =Y =123 3
(@) ZPH"‘JW )
where j = /-1, p;; is the [-th pole for the i-th axis, and a;; is the expansion

coefficient. An inverse Fourier transform yields the time-domain version of A:

Ai(t) = = aipie P u(t) (4)

1=1
with u(t) the unit step function. For cylinders and disks, [Carin et al., 2000] provides
a fast numerical method for computing the p;;. The model in (3) and (4) strictly
holds for non-ferrous objects. In the case of ferrous objects, one must add a DC offset

in frequency or a Dirac delta function in time. For notational ease, in what follows we
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concentrate on the non-ferrous case with the understanding that these small changes
need to be made for ferrous objects.

In (1), R is a rotation matrix which orients the object in the space and is used to
transform field quantities between a global frame of reference and the local frame of
the object. Here R is parameterized by 3 Euler angles [Hassani, 1991] and explicitly

takes the form:
coS ¢ cost — sin pcos¥siny — cospsiny —sin¢pcostcosty sin Psind
R = | sin¢cos 1 + cos ¢ cosd costy — sin ¢ sin 1y + cos ¢ cos ¥ cosyy — cos ¢ sin
sin 9 sin ¥ sin ¥ cos ¥ cos v
(5)
The magnetic polarizability tensor A can be diagonalized by R. Each element of
the resulting matrix holds the scattering characteristics of the object along each of
the three-principle axis.

Going back to (1), by gathering the data together from all sensors, the overall

model in compact notation can be written as

y(p,a,0) = s(p,a,0) + on, (6)

where gy is the vector comprised of the data from all sensor locations and
time/frequency samples, s is the signal vector, n the noise vector, p is the vector
of all poles in the model, a is the vector of expansion coefficients, and @ is the six
dimensional vector composed of the object coordinates and Euler angles.

As stated, this model assumes that the object behaves electromagnetically like a
dipole. The three );’s fully summarize the scattering behavior of the object and only
depend on the size, shape, and material of the object and not on the orientation and
position of the object relative to the sensor. Thus, the pole and expansion coefficients
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make good candidates for use in a classification routine. The orientation information
is explicitly contained in the matrix R while the field vectors f and g convey position
information. Due to the simple, analytical nature of this model, it is quite well suited
for use in a signal processing routine where operations like pole fitting and parameter
estimation are accomplished using optimization routines. The complexity of these
routines is substantially reduced due to our ability to use the model to compute closed
form sensitivity information; essentially the derivative of the data with respect to any
of the unknowns: poles, expansion coefficients, Euler angles or location coordinates.
Such calculations are at the heart of any parameter fitting scheme employing e.g. a
gradient descent, conjugate gradient, or Newton type of optimization scheme.
While the utility of the model described here has been validated using real sensor
data [Das et al., 1990; Sower et al., 1999; Riggs et al., 2001], as described in § 1,
generally objects do not behave exactly as dipoles. Moreover, one cannot practically
use an infinite number of poles for each A;. Rather, a single pole per axis is the most
that is typically supported by the data [Riggs et al., 2001; Carin et al., 2000; Sower
et al., 1999]. In such a case, the “effective” pole for each axis will be dependent on
the object position and orientation. The end result is that for all practical purposes,
model mismatch or required model reduction for the physical model described above
will force us to consider pole-based classifiers which explicitly account for variations
in the feature values. If such variations are small, then one expects success in using

poles (really effective poles) for classification.
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3. Processing Method

Our approach to classification starts with the construction of a target signature
library which will be used in the actual processing. For each target of interest, this
library will be comprised of the three effective pole and expansion coefficients which
define the PAPFs. Given that library, classification is a two step process. First, for
each target in the library, the data are used to estimate the unknown parameters
associated with that model: poles, expansion coefficients, object location and object
orientation. Second, using these estimates, we examine two classification schemes.
The first classifier is based on using the pole estimates alone and is expected to
work well in high signal to noise cases when we can get accurate estimates of these
quantities. The second classifier is based on the fit of the k-th model in the library to
the available data. As explained more fully in § 3.3, this approach is likely to be of
use when the noise level is relatively high. We begin by discussing the construction

of this library.

3.1. Library Construction

As discussed in § 2, the pole estimates which we use for classification will have
some orientation and position dependence which should be accounted for in the con-
struction of the library and in the processing. Let us suppose that we have data from
a known target in a known position and orientation which either has been computed
using an exact computational model or measured using an actual sensor. For the

k-th target in the library, we are going to use one effective pole per ); defined in a
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best fit manner as the solution to the following optimization problem

P77 (6), @(60), 6(0) = arg min, 4 6l|yx(60) — s(, a, O)|[3 (7)

where 6, holds the true position and orientation information, y; is the true data
vector, and p and p®ff are vectors of three pole parameters, one per A;. The symbol
“"7 above quantities indicate that these are fitted to data. We note that to be
consistent with the estimation scheme developed in § 3.2, here we do fit ¢ and 6,
however we care only about the effective pole values in constructing the library.
Additionally, the effective pole parameters are implicitly dependent on the specifics
of the sensing system we use, including frequencies of operation, time gates measured,
and spatial sampling strategy. Hence in theory each sensing configuration will require
a separate library.

While we could construct a library holding pzf f (0) for a dense sampling of points
in 6 space, here we choose a simpler approach. For the classifiers considered in § 3.3,
we look only at the first two moments of the effective pole vector averaged over 6.

Mathematically, we define the mean pole vector and the associated covariance matrix

respectively via

Pr = Q Z Peff (8)

=0 Z 10 = o) 07 (05) — p)” (9)
where the index 7 ranges over a grid of points in 6 space. Thus, the feature library we

employ for classification based on pole estimates is comprised of one three dimensional
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vector and one three by three matrix for each target of interest and each sensing

system under investigation.

3.2. Parameter Estimation

The first stage of processing is to estimate the parameters of our model for each
target in the library. We actually do this twice: the first time to obtain parameter
estimates to be used in a classifier based on data fit and the second time to obtain
estimates for a pole-based classifier.

As explained more fully in § 3.3, the classifier based on the data vector directly
makes use of the k-th residual vector, y — S, where §; is an estimate of the signal
vector for the k-th object in the library. A first approach to generating s is to solve
a problem similar to that of (7). We could then make use of the fact that if the data
did in fact come from the k-th object (which is what we will ultimately be testing),
then the poles should be p;. Thus under this scheme, we would not need to estimate
the poles (and the expansion coefficients if we were to keep track of these as well)
and we would only need to determine the elements of . While such an approach
is feasible, it ignores the fact that we have information concerning the behavior of
the pole estimates in the form of a mean vector and a covariance matrix. Hence,
rather than fixing the poles in the estimation scheme we let them float but impose
some bounds on their values in recognition of the fact that since we are going to be
testing the fitness of the data to the k-th model the poles should be constrained to be

close to the average pole value for this model. Specifically we solve the constrained
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optimization problem:

D1k 01 ks él,k = arg minp,a,OHy - 5(1’, a, 9)“3
subject to [pg]; € [[Dk]; — 2 [o%]; » [Pr; + 2 [o%];] (10)

with [pg]; the i-th element of the vector py, and [o}], the square root of the i-th element
along the diagonal of R;. Hence [oy]; is the estimated standard deviation of [py],.
The above optimization problem essentially restricts the estimates of the poles to
stay within plus or minus two standard deviations of their expected value. Again,
the philosophy underlying this choice is that since we will be using these estimates
to test the goodness of fit of the data vector to the k-th model we should encourage
the parameter estimates to stay “close” to the model.

To solve the problem in (10), we use a nonlinear least squares solver that makes
use of a constrained Gauss-Newton algorithm for finding the a local minimizer of the
objective function in the neighborhood of an initial guess. We initialize the algorithm
as follows. For the poles we use p, and we initially take the expansion coefficients
to be equal to 1.0. The initial (x,y) location of the object is taken to be that point
in space with the largest magnitude response in the data (a heuristic, but one which
seems to work well) while the initial depth is 1.0m from the sensor. The Euler angles
are initialized all to 0.0.

The second classifier discussed in § 3.3 is based on estimates of the poles. To allow

the maximum flexibility in determining these quantities, we use the following, second
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estimation scheme in which the bound constraints are lifted

ly — s(p,a,0)|)5. (11)

Dok, Qo k, 21 = arg min, 4 ¢

Again, a nonlinear least squares solver is used. This time, the algorithm is initialized
with py i, 1%, and 91,;6. We have found that by constraining the poles in the first
estimation stage, we obtain high quality estimates of the position and orientation
parameters. These estimates are then used to obtain strong overall estimates of all
relevant parameters in the second estimation step. Thus, this appears to provide an
effective means to avoid the problem of reaching a local minimum, which is often

associated with non-linear parameter estimation problems.

3.3. Classification

Given the model-based approach we have developed in this paper, there are two
natural classification schemes that can be employed. The first is based on the idea
that if the kth model is the true model then according to (6) py = y— s(Prk, d1.x, O1.k)
should be a zero mean, uncorrelated Gaussian random vector. The second compares
the pole estimates, ps to the elements of the library in a way which accounts for the
known “spread” in the pole estimates for a given target

Consider the low SNR case where p; is dominated by the additive white noise. For
a fixed o, this scenario would arise when the object under investigation is deeply
buried in which case the signal strength is significantly lowered due to the 1/r3-
type one-way amplitude loss seen in the field strength for problem of this type.

In such situations, when the k-th object is in fact the true object, the statistical
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distribution of the residuals is dominated by the zero mean, white cw term and
goodness of fit classification tests based on the zero mean nature of the residuals are
expected to do well. Alternatively, when the k-th target is not the correct object,
dsk = $(po, ag, 0o) — s(P1k, a1k, élk) will be significant thereby adding to the mean
of the p,. Hence a classifier constructed to test that the mean of p; is in fact zero
would correctly reject this hypothesis.

Next consider cases of shallowly buried objects where the SNR is high so ow is
fundamentally small. In these cases, even when the k-th object is in fact correct, the
errors caused by even slight inaccuracies in the estimates of p, @ and € will dominate
the noise so that a classifier wishing to exploit the expected zero mean nature of p
under the true hypothesis will fail. These high SNR situations however are exactly
those where we anticipate the ability to obtain good estimates of the pole structure.
Hence, classification schemes based on the pole estimates themselves are expected to
perform well here.

Motivated by the considerations outlined in the above discussion, here we define
two statistics to be used for classification. The first is based on the data residuals

and is taken as:

2
€1 = !;kN“; ~VN (12)

where N is the dimensionality of p,. The normalization of the residuals in this way
ensures that €; 5 is asymptotically distributed as a zero mean, unit variance Gaussian

random variable when the k£ corresponds to the true object. Thus classifiers based
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on tests of the closeness of €; to zero are appropriate here. To generate a classifier

based on the estimates of the poles we use
€26 = (P — Dr)" Ry (Px — Dr)- (13)
This Mahalanobis-type distance metric is expected to be close to zero when £ is true
and larger than zero when the true object is not the k-th.
Using €1, and €2, the classification rule is defined as follows: Choose the £* object
in the library for which the magnitude of €« is minimum. Here £* is selected in one
of two ways. If we just want a classifier based on the residuals, we let k* be the index

of the smallest €; ;. For a classifier based only on the pole estimates, k* is that index

minimizing €, over all .

4. Numerical Examples

Here we consider numerical tests of the classification methods described in § 3 using
two different object libraries. The first sensing system was comprised of co-located,
square transmit and receive coils one half meter on a side. These coils sampled
a one meter square area on an equally spaced 5 X 5 grid of measurement points.
Frequency domain versions of the sensor collected complex valued data (in-phase
and quadrature) at 30 logarithmically spaced frequencies between 10 Hz and 30 kHz.
For time domain, we employed a sensor that collected 60 equally spaced samples
between 107¢ s and 1073 s.

The simulated object library is comprised of four objects: a 3 inch long by one inch

diameter stainless steel cylinder (S1), a 6 inch long by one inch diameter stainless
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steel cylinder (S2), a 3 inch long by one inch diameter aluminum cylinder (A1),
and a 6 inch long by one inch diameter aluminum steel cylinder (A2). The “ground
truth” model for the scattering characteristics of these objects was obtained using the
method of [Carin et al., 2000] in which the dipole model was taken to be exact, four
terms were kept in each of the A\; summations in (4), and all expansion coefficients
were taken to be one. As cylinders are symmetric about their primary axis, these
objects have two unique A\ s. The range of values for the minimum and maximum
poles for each of the four objects in the library are given in Table 1. The effective
pole parameters for the frequency domain version of the sensing system as a function
of the object position and orientation are plotted in pole-space in Fig. 2. Each

eff eff eff)
1 3

0. p value computed from (7) for

point on the plot corresponds to the (p
the 4-th term in the summation of (8) or (9). The top plots in this figure show the
effective pole distributions for the steel targets while the bottom plots do the same
but for the aluminum targets. Note that the axes for the top and bottom plots are
distinctly different and that the points for the different objects cluster reasonably
well in pole space. Thus as is evident from the table as well as the figure, the pole
characteristics of the steel objects are quite distinct from those of the aluminum;
however the differences between the six and three inch versions of the same material
are a bit more subtle. Hence it is anticipated that we will be able to distinguish
material type better than precise object.

A Monte Carlo approach is used to analyze the performance of our algorithms for

this library. Two sets of simulations were carried out to compare the performance
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of our classifiers for high and low SNR cases. In each case 100 separate data sets
were generated where we randomized uniformly over object type, object location,
orientation and additive sensor noise (by selecting a new set of parameters according
to a uniform distribution at each Monte Carlo round). The bounds on the various
quantities are provided in Table 2. The corresponding values of the Euler angles were
chosen uniformly over their full range of definition (either 0 to 27 or 0 to m depending
on the angle [Hassani, 1991]). For our purposes SNR is calculated according to:

[lylf3

2
o?l,

SNR = 10log;, (14)

where y denotes the signal vector, [, is its length, and o denotes the noise variance.
At each Monte Carlo run, we select the burial depths of the targets randomly from
a specific interval, while keeping the noise variance o2 fixed. For the low SNR case
this interval consists of burial depths in the range of 1.00m to 2.00m, while for the
high SNR case this interval consists of burial depths in the range of 0.1m to 0.3m.
The classification results of this example, for each of the above cases, using the
two classification methods, are summarized in the confusion matrices of Tables 3
through 10. The 7, j-th element of each matrix demonstrates the number of times
that object ¢ was the true target and object 5 was declared by our processing scheme.
The results presented in these tables verify our claim with respect to the two different
classifiers. As shown here, when operating under high SNR (on the order of 20 dB or
higher), pole-based classifiers operate well, whereas residual-based classifiers operate

well under low SNR (on the order of 0 dB).
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The misclassification presented in our confusion matrices can be attributed to the
fact that the scattering characteristics of the two aluminum (or steel) targets are very
similar. Note that the target material is rarely misclassified under high SNR, while
under low SNR, the residual-based algorithm, though misclassifying target type more
often, performs significantly better than the pole-based method. It is also clear that
similar results are obtained from our algorithm regardless of the characteristics of the
sensor employed (time or frequency domain).

The second object library is comprised of 9 targets. Their scattering characteristics
were obtained from the work of Huang and Won [2003]. The data for this sensing
system comes from the GEM-3 sensor developed by Geophex. This sensor has been
used successfully in many environmental sites and can detect small targets, such as
UXO and landmines, providing high spatial resolution [Huang and Won, 2003]. The
current GEM-3 operates in a bandwidth from 30 Hz to 24 kHz. The Geophex test
site in Raleigh, NC, specially designed by Geophex Inc., is a 10m x 10m test site.
This test site, detailed in [Huang and Won, 2003| contains a total of 21 metal pipes
of various types, lengths and diameters. The authors of [Huang and Won, 2003]
obtained the ground truth data by placing the targets at two different orientations at
a single known position. Because of the lack of multiple measurements we were not
able to generate the standard deviations of the estimates of the poles. Hence for our
purposes R;, was assumed to be the identity matrix. The effective pole parameters
of these objects are plotted in pole-space in Fig. 3. Each point on the plot reflects

the (p1, P2, p3) value computed from the corresponding target in the library.
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We have separated the aforementioned nine targets into three sets of targets, des-
ignated by letters L, M and S. The letter L corresponds to targets that are deeply
buried at a depth ranging from 90 cm to 110 cm. The letter M corresponds to targets
buried at a depth ranging from 50 cm to 80 cm. Finally, the letter S corresponds to
shallowly buried targets at a depth ranging from 10 c¢cm to 30 cm.

The scattering characteristics of these targets were also acquired by the authors
[Huang and Won, 2003] at a line spacing of 25 cm using the dead reckoning method
at a height of about 20 cm above the ground. The GEM-3, in this case collected
about 8 to 10 data points per second, which resulted in a data interval of about 15
cm [Huang and Won, 2003]. The position error for such data could be as big as 20 cm
due to uneven walking speed and incorrect walking path. Also the errors associated
with the sensor height could be more than 5 cm [Huang and Won, 2003].

Table 11 summarizes the classification results for this target library. For the mea-
surement data corresponding to each true target, the column labeled “Depth” corre-
sponds to the burial depth of each target in cm. Clearly, the results presented in this
table suggest a correlation between object depth and the dominating classification
method. Specifically, we find that our L-series targets are classified perfectly using the
residual-based method (and poorly using the pole-based method); the M-series tar-
gets show mixed results, with correct classification under the residual-based method
alone for particularly deeply buried targets, both methods classifying for an object
of moderate depth, and correct classification under the pole-based method alone for

a particularly shallowly buried target; for the majority of the S-series targets, correct
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classification is achieved under the pole-based method alone. These results closely
correspond to our claim that the pole-based classifier is better suited for shallowly
buried objects, while the residual-based classifier is better suited for deeply buried

targets.

5. Conclusions and Future Work

In this paper, we have explored a number of statistically-motivated, model-based
options for object classification using spatially sampled time and frequency domain
EMI data. Preliminary results using synthetic data are promising and indicate there
is much work to be done in the future. Of specific interest are the following items:

1. Extending the classifier algorithm to be able to distinguish objects that are not
in the library (clutter items). This step can be very important for the UXO and
demining problems where there is a strong desire to correctly reject clutter items.

2. Testing the approach on field data from other EMI sensors.

3. Analytical performance evaluation of the proposed methods. By obtaining
closed form or computable values or bounds on the relevant probabilities, we can
begin to explore issues such as optimizing sensor configuration (time gates, frequen-
cies collected, spatial sampling rate) to maximize performance.

4. More rigorous error analysis. It would be useful to take a more careful, quan-
titative look at the role of parameter estimation errors as well as sensor noise in the

ultimate performance of the classification scheme.
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5. Alternate classification techniques. The pole-based classification statistic, €z
in (13) implicitly assumes that the effective pole parameters as a function of object
location and orientation cluster into an ellipsoid. The plots in Fig. 2 show that
while the effective poles for different objects do cluster, they are far from ellipsoidal.
Thus it may be useful to consider alternate classification schemes such as a linear

discriminant function.
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Notes

1. We assume square coils for convenience; with a little work, the model could be generalized to circular coils.
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Target min p; (kHz) | max p; (kHz) | min p, (kHz) | max p, (kHz)
3 inch steel 3.4 5.6 3.6 10.3
6 inch steel 3.4 4.0 3.5 6.5
3 inch aluminum 0.11 0.19 0.12 0.34
6 inch aluminum 0.11 0.13 0.12 0.21

Table 1. Pole Characteristics for objects in First Library

Min z coordinate | 0.25 m
Max x coordinate | 0.75 m
Min y coordinate | 0.25 m
Max y coordinate | 0.75 m
Min Depth —0.10 m
Max Depth —2.00 m
Table 2. Bounds for Monte Carlo Analysis
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Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True A1 |81 19 0 0
True A2 |16 84 0 0
True S1 |0 0 92 8
True S2 |0 0 22 78

Table 3. Frequency Domain Classification Results for Monte Carlo Analysis Based

on Pole Estimates Under High SNR.

Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True A1 |56 32 7 )
True A2 |29 57 3 11
True S1 |2 0 89 9
True S2 |2 0 35 63

Table 4. Frequency Domain Classification Results for Monte Carlo Analysis Based

on Data Residual Under High SNR.
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Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True A1 |34 19 45 2
True A2 |34 11 43 12
True S1 |15 19 21 45
True S2 |21 16 54 9

Table 5. Frequency Domain Classification Results for Monte Carlo Analysis Based

on Pole Estimates Under Low SNR.

Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True A1 |59 27 8 6
True A2 |33 52 9 6
True S1 |13 11 64 12
True S2 |8 14 20 58

Table 6. Frequency Domain Classification Results for Monte Carlo Analysis Based

on Data Residual Under Low SNR.
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Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True A1|79 21 0 0
True A2 |18 82 0 0
True S1 |0 0 7 23
True S2 |0 0 28 72

Table 7. Time Domain Classification Results for Monte Carlo Analysis Based on

Pole Estimates Under High SNR.

Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True A1 |54 25 9 12
True A2 |37 41 7 15
True S1 |4 1 61 39
True S2 |3 0 33 67
Table 8. Time Domain Classification Results for Monte Carlo Analysis Based on

Data Residual Under High SNR.
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Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True A1 |20 16 60 4
True A2 |32 17 38 13
True S1 |23 21 32 24
True S2 |28 18 47 7
Table 9. Time Domain Classification Results for Monte Carlo Analysis Based on

Pole Estimates Under Low SNR.

Estimated Al | Estimated A2 | Estimated S1 | Estimated S2
True Al |54 22 19 5
True A2 |17 57 15 11
True S1 |1 3 62 34
True S2 |1 4 40 55
Table 10. Time Domain Classification Results for Monte Carlo Analysis Based

on Data Residual Under Low SNR.
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True Target | Depth Pole-Based Classifier Residual-Based Classifier
Estimated Type | Result Estimated Type | Result

L1 100 M6 Misclassification | L1L2 Correct
L2 92-110 | M3M4M7 Misclassification | L1L2 Correct,
M1 47-70 | S35556S58 Misclassification | M1M2M5 Correct
M2 64-80 | S4S7 Misclassification | M1M2M5 Correct
M3 50 M6 Misclassification | M3M4M7 Correct
M4 49-60 |L1L2 Misclassification | M3M4M7 Correct
M5 70 M1M2M5 Correct M1M2M5 Correct,
M6 50 L1L2 Misclassification | M6 Correct,
M7 60 M3M4MT7 Correct M6 Misclassification
S1 10 S1S10 Correct S3555658 Misclassification
S2 10-15 | S259 Correct M3M4M7 Misclassification
S3 22-30 | S3S5S5658 Correct M1M2M5 Misclassification
S4 30 S457 Correct S457 Correct
S5 25-30 | S3S5S658 Correct M3M4M7 Misclassification
S6 30 S3S556S8 Correct M6 Misclassification
ST 30 S4S7 Correct S4S7 Correct,
S8 15-20 | S3S5S6S8 Correct S4S7 Misclassification
S9 15 5259 Correct S4S7 Misclassification
S10 10 S1S10 Correct M6 Misclassification
S11 15-20 | S11S12 Correct M6 Misclassification
SRAFT |15 511512 January Uépeoo4, 3:16pdS10 Mischsrificagion
Table 11. GEM 3 Pipe Data Results
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Figure 1. One sensor comprising sensor coils and target object.
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Pole Values for Pipe-like S1 Pole Values for Pipe-like S2
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Figure 2. Effective Pole Distribution for Steel and Aluminum Objects in Frequency

Domain.
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Average Pole Values for Geophex Pipe Targets
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Figure 3. Pole Locations for GEM-3 Data Library.
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