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Abstract

Extraction of geometrical  features of biological  structures  is  an active research topic. 

Accurate tracking algorithms provide valuable  quantitative  data which not  only helps 

reduce manual labor, but also helps biologists answer a range of basic-science questions. 

This thesis presents a hybrid algorithm for the centerline extraction of axons in a stack of 

cross-sectional images acquired from a laser scanning confocal microscope. In our work, 

recovery of  neuronal  structures  from such datasets  helps  biologists  address  questions 

regarding the pattern of synapse elimination at neuromuscular junctions in a developing 

muscle in mammals. Although many algorithms for centerline extraction exist in practice, 

none are designed for this particular application. The data acquired using fluorescence 

microscopy contains many artifacts such as blurred boundaries, non-uniform intensities 

of  fluorescent  radiations  and the presence  of  noise,  which make the tracking process 

difficult.  A  robust  segmentation  algorithm  based  on  probabilistic  region  growing  is 

introduced, which uses the shape and intensity information of the axons in the cross-

sections to minimize the errors in tracking. The final result of the tracking algorithm is a 

three dimensional centerline model. We demonstrate our algorithm on three datasets and 

compare its performance with the repulsive snake algorithm. 



Chapter 1

Introduction

A new algorithm for the analysis of axons from sequential fluorescent microscopic image 

stacks  is  developed  in  this  thesis.  The  algorithm presented  here  needs  minimal  user 

interaction to accurately detect the centerlines of the axons in the dataset. The raw data 

available for analysis consists of stacks of cross-sectional images of the axons obtained 

from  neonatal  mice  using  laser  scanning  confocal  microscopes  (Olympus  Flouview 

FV500 and Bio-Rad 1024) [1]. The goal of the developed algorithm is to build a three 

dimensional model of the centerlines of the axons present in the dataset.

1.1 Background

The pattern of synapse elimination at the neuromuscular junctions is considered, by some 

biologists, to be indicative of the changes occurring in the developing brain of a mammal. 

In a developing muscle, the axonal branches of several motor neurons compete with each 

other at neuromuscular junctions, which results in withdrawal of all branches but one [1], 

[2]. Quantitative information, such as orientation, length and width, of the axons present 

in  the dataset  is  critical  in  addressing a  variety  of  questions regarding the pattern  of 

retraction of motor axons during synapse elimination in a  developing  muscle.  Since  the 

size  of  the  datasets  is  large, accurate  algorithms are needed  in order  to  obtain useful 

results  in  manageable  time. The  centerline extraction  from  axons  is also an important 

1



CHAPTER 1. INTRODUCTION 2

step in separating spines from the dendrite shafts using the grass-fire algorithm [3]. The 

following section provides an overview of the algorithms in practice. 

1.2 Comprehensive review of existing and related work

The existing segmentation and tracking algorithms can be broadly categorized into three 

groups:

● Tracking in a two dimensional projection image.

● Tracking in a sequence of cross-sectional images.

● Tracking in a three dimensional domain.

A common approach to detect the centerlines of tubular objects in a stack of cross-

sectional images is to reduce the dimensions of the data followed by centerline detection 

using edge information [4]. From an imaging point of view, the data reduction step, also 

known as Maximum Intensity Projection (MIP), is nothing but finding a 2-D image that is 

easiest to work with. 

A fully automatic directional template based approach was introduced in [4] to track 

the centerlines of retinal fundus images. Basically,  the edges and the orientation were 

found by correlating the image with the templates defined in quantized directions. The 

centerlines were then estimated in an iterative manner using the orientation and edge 

information.  Though  this  method  is  easily  implementable  and  is  very  efficient,  the 

performance deteriorates with an increase in dataset complexity and degradation in the 

quality of images. 
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Another approach to detect the centerlines and the width of objects is  curvilinear 

structure  detection [5].  Gaussian  masks  were  used  to  approximate  derivatives  of  the 

image to achieve sub-pixel accuracy in extraction of geometrical features. This algorithm 

treats the image as a function of its co-ordinates and exploits the geometric properties of 

the  objects.  The  edges  are  first  detected  by  using  derivatives  of  a  Gaussian  kernel 

followed by a linking algorithm to find the centerlines. Though highly accurate in finding 

the edges and centerlines, this algorithm is computationally intensive.

Graph-search based techniques, such as the live wire algorithm [6], can also be used 

to track the centerlines in the MIP image. After the user selects the starting point on the 

image, the algorithm interactively finds the boundaries of the objects in the image. More 

specifically, after a point is manually defined, the algorithm computes the shortest path to 

every other pixel in the image based on a predefined cost function. NeuronJ [7], a plug-in 

to the freely available software, ImageJ [8], uses this technique to find the centerlines of 

elongated objects in the image. Although fast, they fail to extract the centerlines when the 

objects adjacent to each other do not have clearly defined boundaries. Moreover, when 

the dataset being analyzed is complex in nature, the start and end points of the axons in 

the MIP image may not be clear to the user and hence, this method is prone to errors. An 

example of such an MIP image is shown in Figure 1.1.

Though  most  of  the  MIP-based  algorithms  are  easily  implementable  and  are 

computationally  very  efficient,  they  are  unable  to  track  the  objects  when  they  are 

complex or seem to cross-over in the MIP image. 
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Figure 1.1 – Maximum intensity projection image of axons in a dataset.

The second class of algorithms tackles the tracking problem by analyzing the dataset 

in the cross-sectional domain. The methods that fall in this category are generally more 

precise and complex in nature than the MIP-based algorithms discussed earlier. These 

algorithms track the centerlines of the objects sequentially and track cross-sections of all 

the objects present in the dataset at the same time. The sequential images of the cross-

sections of the objects in the dataset look more or less like time-lapse microscopy images 

of  cellular  structures.  Hence,  most  of  the  algorithms  developed  for  segmenting  and 

tracking the latter, can be used to track the centerlines of tubular objects. 

A popular algorithm in use today for segmenting and tracking time-lapse microscopic 

images  is  the  snake model [9].  This  algorithm iteratively finds  the boundaries  of  the 

objects in the image by improving on a rough initial approximation of the object. The 
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snake algorithm can track objects in a sequence of images, provided the cross-sections do 

not shift too much from one slice to the next. The snake converges to the object boundary 

by minimizing an energy functional which consists of internal and external energies. The 

internal  energy corresponds to the  tension and rigidity  of  the snake and the  external 

energy attains low values near the edges of the objects. Besides being computationally 

intensive, the boundaries detected by this algorithm are inaccurate in cases where the 

cross-sections  of  adjacent  objects  have  blurred  edges.  An  improvement  over  this 

algorithm  was  introduced  in  the  repulsive  snake  model [10].  This  algorithm  uses  a 

repulsive force to correctly segment  close lying cross-sections of axons in a stack of 

confocal microscopic images. Similar to the original snake model, it has the disadvantage 

of inaccurate detection of boundaries due to the presence of imaging artifacts such as 

blurriness and noise in the image. 

The  authors  of  [11]  use  level-sets  as  the  basis  to  segment  drosophila  RNAi 

fluorescence cellular images. As opposed to the snake model, which is based on energy 

minimization, level-sets use the geometric flow to converge to the true boundaries of the 

objects from a rough approximation. The nuclei of cells are first segmented and are used 

as the initial boundaries to segment the cytoplasm of the cells. Though this algorithm is 

very accurate in segmenting the objects in the presence of noise and blurred boundaries, 

it is computationally intensive.

Reconstruct [12] is another freely available software that can be used to track objects 

in a sequence of cross-sectional images. The process of segmentation starts at a point 

defined by the user. The region starts growing in all directions from this point and stops 
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when  a  predefined  threshold  is  reached.  If  the  segmentation  results  are  found to  be 

inaccurate,  the  user  defines  the  object  boundaries.  As  the  final  result,  the  software 

provides a 3-D reconstruction of the objects for visualization and quantitative analysis. 

The main disadvantage of this software is that the user intervention is needed more often 

in  complex  datasets  since  it  is  unable  to  segment  close  lying  objects  with  blurred 

boundaries. 

The last category of algorithms track the objects in the dataset based on purely three 

dimensional techniques. The main advantage of these algorithms is that they can track the 

objects in the dataset regardless of their orientation with respect to the sampling direction 

in which the images were acquired. If the objects are oriented normal to the sampling 

direction, their shape remains fairly the same and their drift is minimal from one slice to 

the next. On the contrary, if they are oriented along the sampling direction, their cross-

sections  appear  and  disappear  randomly  and  their  shapes  take  arbitrary  forms  in  a 

sequence of slices in the dataset. 

A fully-automatic 3-D tracking method described in [13] builds on the template based 

tracking algorithm in [4]. The axons over short distances in the dataset are approximated 

by  a  cylinder  with  elliptical  cross-sections  having  a  certain  curvature  along  its  axis. 

Similar to the templates defined in [4], 3-D templates are defined in quantized directions. 

Four sets of directional templates are used to estimate the center and the orientation of the 

axon in each iteration. The centerlines of the axons are tracked iteratively by correlating 

the voxels in the dataset with these directional templates. Although being theoretically 

attractive, the implementation complexity renders this approach unfeasible in practice.
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An algorithm based on fuzzy connectivity for segmentation and analysis  of intra-

thoracic airway trees was presented in [14]. The dataset is analyzed iteratively inside a 

moving cylindrical region of interest. Inside a region of interest, this method grows two 

regions, foreground and background, simultaneously which compete for the voxels. The 

centerlines are then found by skeletonization process and  the orientation of the region of 

interest  in  the  next  iteration  is  found  using  the  orientation  of  the  centerlines.  The 

computational  complexity of this algorithm grows with an increase in the size of the 

datasets, and hence is not practical.

Usually, the resolution of the acquired images is better along the transverse axis than 

along the optical axis. Since all the algorithms mentioned in this section require a certain 

amount  of  manual  intervention  such  as,  determining  the  MIP  image  for  analysis  or 

deciding the  direction  for  sequential  analysis,  their  behavior  is  not  dependent  on the 

resolution difference. The algorithms described so far, are either complex in nature or 

unable  to  precisely  track  the  centerlines  of  the  objects  in  the  presence  of  artifacts 

mentioned earlier. The algorithm proposed in this thesis presents an accurate and easily 

implementable method to track axons in 3-D datasets in spite of the degradation in the 

acquired images. 

1.3 Outline of the approach

The basic approach of hybrid tracking algorithm is to track well-separated axons in the 

MIP image and adopt more computationally demanding algorithms when the centerlines 

of  the  axons  seem to  intersect  each  other.  Chapter  2  describes  the  method  used  for 
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tracking the centerlines in the MIP images of the datasets. The process starts after the best 

MIP image, which has the clearest details of the axons present in the dataset, is manually 

identified.  In case of an axon cross-over, we make use of the cross-sectional views of the 

dataset. The approach adopted to track and segment the axon cross-sections is described 

in Chapter 3. Chapter 4 presents the tracking results of the hybrid algorithm in three 

datasets. A 3-D model of the axon centerlines are shown in this chapter along with the 

centerlines in the MIP image. The results are validated with the manual tracking results 

obtained using the software, Reconstruct.

1.4 Contributions of the work

As mentioned earlier, the cross-sectional images are analyzed when the centerlines of the 

axons intersect each other in the MIP image. The  seeded watershed algorithm [15] is 

used to segment the axon cross-sections. Unfortunately, it is unable to accurately segment 

the axons when the boundaries are blurred or when adjacently lying axon cross-sections 

have  a  considerable  difference  in  intensities.  An  enhanced  version  of  the  seeded 

watershed algorithm called “Guided region growing algorithm” is developed here. The 

basic watershed algorithm is based entirely on the intensity information of the objects in 

the image and hence, leads to improper segmentation of the objects in the presence of the 

artifacts  mentioned  earlier.  The  guided  region  growing  algorithm  is  based  on  the 

watershed algorithm, but guided by constraints. A probabilistic model is trained using the 

features  extracted  from the  previously  segmented  cross-sectional  slices  to  guide  our 

algorithm to the correct object boundaries. The robustness of the guided region growing 
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algorithm is  demonstrated  by  comparing  the  segmentation  results  with  the  repulsive 

snake model in Chapter 4. Apart from being easily implementable, the hybrid algorithm 

presented  here  accurately  tracks  the  centerlines  of  the  axons  with  minimal  user 

intervention.



Chapter 2

Two Dimensional Template Based Tracking

The data to be analyzed are in the form of cross-sectional fluorescence microscopic slices 

of axons which when stacked together and viewed from a particular angle, gives us a 

rough picture of the axons present in them. In simpler datasets, the centerlines can be 

tracked using the  Maximum Intensity Projection (MIP) image. The third dimension can 

then be  found by searching the  data  stack  for  the  bright  intensity  pixels.  MIP-based 

tracking algorithms work only when the axons are well-separated, which is often not the 

case. Thus, axon cross-over is often encountered when tracking them in two dimensions. 

Since they never intersect in three dimensions, we resort to a different approach in such 

special cases. This method is detailed in Chapter 3. Figure 2.1 shows the basic flow of the 

algorithm:

Figure 2.1 – Basic flow of the algorithm.

10
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2.1 The Concept of Maximum Intensity Projection

In a 3 dimensional dataset, the MIP can be visualized along any direction. As the name 

suggests,  the  MIP  along  a  direction  is  nothing  but  a  projection  of  the  maximum 

intensities along that direction on a plane perpendicular to it. Consider a simple dataset 

which consists of cross-sectional slices of only two axons.  Figure 2.2 illustrates the 3D 

dataset obtained by stacking these cross-sections together. In our case, MIP is visualized 

along the three orthogonal directions. 

Figure 2.2 - An example of a stack of cross-sectional images of two axons. 

The above figure shows the MIP plane along one of the orthogonal directions, where 

the axons look like elongated tubular structures, and the cross-sectional plane, where their 

cross-sections look like circles or ellipses in the ideal case or compact "blobs" in practice. 

The dotted lines shown above are the centerlines of the axons present in the dataset. Each 

center point in the MIP plane corresponds to a cross-sectional slice. An example of a 

segment of the data where the cross-sectional analysis is performed is shown by solid 
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blue  lines.  The  algorithm begins  after  the  user  identifies  the  best  MIP  plane  which 

contains the clearest details about the axons present in the data stack. Figure 2.3 shows 

the three possible MIP images in a data stack:

Figure 2.3 - Maximum intensity projection images. (a) MIP along Y-axis. (b) MIP along Z-axis. (c) MIP 

along X-axis.

The MIP image along the Z-axis is  clearest  and hence is the easiest  and the best 

image for centerline tracking.

(c)

(a) (b)
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2.2 Automating the Process

In order to automate the process of tracking, seeds are  introduced in the MIP image [4]. 

These are the valid points on the image where the algorithm can start tracking. The pixels 

in the image are classified either as valid seed points lying inside the axon or as pixels 

belonging to the background. The image is low-pass filtered to remove noise. In order to 

categorize the pixels, a grid of predetermined resolution is drawn on the MIP image. The 

resolution of the grid is determined by visual inspection. This should be high enough to 

detect ample number of seed points in each axon in the MIP image. The mean and the 

standard deviation of the intensities are computed over the pixels lying on the intersection 

points of the vertical and horizontal grid lines. For a pixel to be categorized as a seed 

point, its intensity should exceed a threshold defined by:

T=

where,    is  the mean and    is  the standard deviation of the intensities  of the 

pixels.  For  these  seed  points  to  be  valid,  all  their  immediate  neighbors  should  have 

intensities higher than the threshold mentioned above. This minimizes the possibility of a 

seed point being detected due to noise in the image. 

To reduce the errors in tracking, it is helpful if these seed points lie towards the center 

of the axons. Edges of the axons, with the seed points as centers, are detected and are 

used to align the seeds towards the centerline. Template based tracking is used for this 

purpose which is described in detail in the next section. Figure 2.4 illustrates this process 

of detecting and aligning the seed points on two datasets.
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Figure 2.4 – Automatic detection and alignment of seed points. (a) Seed points detected on a grid. (b) Seed 

points after alignment towards the center.

The  red  points  in  Figure  2.4 (a)  are  the  seed  points  detected  on  a  grid  with  a 

resolution of 20 pixels. Figure 2.4 (b) shows the seeds aligned towards the center of the 

axons. After the edges are detected at all the seed points in the image, the maximum and 

(a)

(b)
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minimum values of the sum of the edges are used to update the maximum and minimum 

width of the axons in the MIP image for further analysis.

2.3 Template Based Centerline Detection

The  detection  of  centerlines  of  axons  in  the  MIP  image  begins  with  the  process  of 

template matching. Directional templates are defined for each quantized direction and are 

correlated with the image in order to detect the edges, orientation and the centerlines of 

the axons present in the image. To facilitate accurate detection of the centerlines, the MIP 

image is preprocessed to improve the contrast at the edges. Laplacian filter is used for the 

purpose of edge enhancement.

2.3.1 Directional Templates

Tracking the centerlines of the axons is primarily based on the two dimensional detection 

of the edges and angle of orientation. Sixteen directional templates for each edge are 

defined with a resolution of 22.5o. These directional templates act as a smoothing filter 

along the orientation of the axons and as a differentiator across the edges of the axons. 

Figure 2.5 shows the directional templates for left edge defined over the first quadrant. 

Each of these templates is rotated by multiples of 90o to initialize the templates for rest of 

the 12 directions.  The templates  for detecting the right edge are defined similarly by 

reversing the signs of the templates for the left edge. 
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Figure 2.5 – Directional templates for the left edge at (a) 0o (b) 22.5o (c) 45o (d) 67.5o

The directional templates are designed such that the sum of squared weights is the 

same in  any direction.  This  makes the comparison of  the correlation responses  from 

different directional templates fair. These templates are used to detect the edges and the 

orientation of the axons and hence the centerlines. The algorithm begins with the first 

seed point in the image. The edges are calculated by computing the correlation of the left 

and right directional templates with the image at varying distances from this seed point. 

The distance is varied normal to the orientation that the template was designed for, until it 

reaches a distance of M /2 , where M is the maximum width of the axon present in 

the MIP image, which is determined by visual inspection.  The correlation response of the 

template with the image can be written as:

C l , , d=∑ I . Lx−dcos , y−dsin

(b)

(c) (d)

(a)
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where, d is the distance from the center in the direction normal to   ,  L  is the 

left  template  defined at  the angle   ,  I  is  the image and  x , y   are  the co-

ordinates of the center. The maximum left template response at an angle,    , can be 

written as: 

C l , , max= max
d∈0,1,. .. , M /2 

C l , d ,

and hence, the left edge  is determined as:

Dl , = argmax
d ∈0,1,. .. , M /2

C l , d , 

The right edge is found in a similar fashion.

Initially, since the orientation of the axon is unknown, the process is repeated for all 

16 directions. The direction in which the template's response is maximum is declared as 

the orientation of the axon at that point. This can be written as:

= argmax
∈0o , 22.5o , ..., 337.5o 

C l , ,max 

Once the angle of orientation is  found, the center  point  for the next iteration can be 

predicted by moving along this direction by a distance of  pixels. This can be written 

as:

x i1= x i− . sin & y i1= y i . cos 

Choosing a large value of the step size,  , reduces the computation time. But, there are 

chances of the center point jumping to a close lying axon. This parameter is set according 

to the dataset under analysis. In any dataset, to avoid the centerlines from jumping to a 

nearby axon, the value of  should not exceed the minimum width of the axons in the 
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image.  The  process  for  detecting  the  edges  and  angle  of  orientation  is  repeated  as 

described earlier at the new center point. Since the changes in the axon orientation are 

known to be fairly smooth, the search can be limited to a range of  ±22.5o from the 

current angle of orientation instead of all 16 directions.

The predicted center points will not be aligned at the actual center if the  axon is not 

oriented at exact multiples of 22.5o. This causes errors in tracking. To circumvent this 

problem,  the  position  of  the  center  point  is  corrected  using  the  left  and  right  edge 

information. This correction factor can be written as: 

x=D r−Dl .cos /2 & y=Dr−Dl . sin/2

The modified center point can thus be written as:

x i1=x i1x & y i1=yi1 y

The process of prediction of the center point and its correction after the detection of 

the left and right edges is illustrated in Figure 2.6.

Figure 2.6 – The prediction and alignment of the center point.                 
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As the new center points are detected in the above mentioned fashion, seed points are 

searched in its vicinity. The seed points are searched in a circular area with the radius set 

to the step size  . If the seed points are found, they are labeled with the current axon 

number. This process makes sure that the center points are inside the axon. The alignment 

of the seed points, as mentioned earlier in this chapter, reduces the chances of a seed 

point being missed out during this process. The algorithm is terminated for the current 

axon if the predicted center point lies outside the image. 

The process is also repeated to trace the axon in the backward direction. If no seed 

points are found in the vicinity of the centerlines after a predefined number of iterations (

 ), the centerline is declared invalid. This parameter was experimentally found to be 

20 . Once found invalid, the centerline of the axon currently being traced is deleted 

and all the seed points marked by this axon are cleared. Another criterion for terminating 

the process is if the sum of the maximum responses from the left and right templates falls 

below a particular threshold defined as:

T=361 F av−Bav

where,  F av is the average foreground intensity and  Bav is the average background 

intensity which are calculated in the automatic seed detection step using the points lying 

on the grid.   is a factor that determines how the algorithm will behave to changes in 

the template response. A higher value will terminate the algorithm prematurely whereas a 

lower value will lead to false detections. In our case, the value of   is selected to be 

0.5. Since the template response to a unit change in intensity is 36, it is used to calculate 
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the threshold. 

After the centerline for an axon is either completely detected or deleted due to the 

above mentioned constraints, the algorithm begins with the next seed point in the image. 

This way all the seed points are labeled as the axons are traced. The centerline for the 

traced axon consists of the set of points [ x i , y i] . All the axons are considered to be 

traced  if  the  number  of  unmarked  seed  points  in  the  image  falls  below  .  This 

minimizes the possibility of the algorithm starting at a seed point that maybe located 

outside the axon due to noise in the image. This parameter is computed as =l / .

, where l  is the minimum length of the axon present in the image. This is determined 

by the user after a visual inspection of the MIP image. 

2.4 Estimation of The Third Dimension

The two dimensional template based tracking described earlier in this chapter helps detect 

the two co-ordinates of the axons in the dataset. In order to build the three dimensional 

model for the centerlines of the axons, we need to find the third dimension which can be 

done by searching for the bright pixels in the cross-sections corresponding to each center 

point in the MIP plane. The two co-ordinates of each center point on the MIP plane help 

in locating the slice in the stack and the line of search where the centers of the axons will 

lie in the cross-sectional plane.  In order to find the location of the centers of the axons in 

this  plane,  a  local  maximum intensity  search is  performed.  Figure  2.7 illustrates  this 

process. If more than one point is found by this process, the one with the least deviation 

from the previous center is declared as the third co-ordinate.
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Figure 2.7 - Local maximum intensity search. 

This method fails to track the axons when the centerlines of two axons intersect each 

other in the MIP plane. This problem is discussed in detail in the next chapter. 



Chapter 3

Slice-Based Tracking

Though the two dimensional template based tracking method described in Chapter 2 is 

computationally efficient, it cannot track the centerlines when the axons seem to cross-

over in the MIP image. A cross-over is detected by the algorithm when the centerline of 

the axon currently being traced intersects the centerline of an already traced axon in the 

MIP image.  Figure 3.2 illustrates this phenomenon.  In order to deal with this situation, 

we have developed an algorithm that works directly on the cross-sectional information.  

Since this method presented in this chapter is computationally expensive as compared 

to the algorithm in Chapter 2, it is applied to only a few sections in the dataset where 

there is an ambiguity due to the cross-over. Once the axons are found to be well separated 

in three dimensional space, the template-based tracking is used again to track the axons. 

The cross-sectional  images of the axons suffer  from blurriness  and intensity non-

uniformity which make the segmentation, and hence the tracking, difficult. Hence, all the 

cross-sectional  images being analyzed  by the slice-based tracking method have to be 

preprocessed to minimize the effects of these artifacts. This is done using the Hessian 

method of adaptive smoothing [17]. This helps in noise removal from the raw image and 

at the same time, enhances the features of the objects in the image as shown in Figure 3.1.

22
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Figure 3.1 - Preprocessing the cross-sectional image. (a) Raw image. (b) Processed image.

The  axon  cross-sections  are  segmented  using  seeded  watershed  algorithm [15]. 

Similar to the seeds introduced in the MIP image, another set of seed points are used here 

which serve as the starting points for the seeded watershed algorithm. The introduction of 

seed points is necessary since the traditional watershed algorithm suffers from a serious 

drawback of over-segmentation. Hence, seed points have to be specified for every cross-

sectional slice being analyzed. The  mean-shift [16] algorithm  is  used  to  estimate  the 

seed  points.  A  guided region growing approach is adopted in cases when the seeded 

watershed algorithm fails to segment the axon cross-sections. 

The process of analyzing the cross-sectional slices begins by identifying the cross-

section where the axons are well separated. This is defined as the location in the MIP 

image where the centers of the axons in question are separated by more than a certain 

distance, d, defined as:

d=d currentd traced 

(a) (b)



CHAPTER 3. SLICE-BASED TRACKING 24

where, d current  and d traced  are the diameters of the current and the intersecting axon. 

They are determined by using the left and right edge information from the template-based 

MIP tracking algorithm. This location is shown by the blue line in Figure 3.2. 

     Figure 3.2 – Axon cross-over in the maximum intensity projection image.

Since each point on the centerlines of the axons in the MIP image correspond to a 

cross-sectional slice, as shown in Figure 2.1, we pull out the corresponding slice from the 

data stack to initiate the process of segmentation. Once the axons are found to be well 

separated again in three dimensional space, the template-based tracking is used to track 

the axons in the MIP image.

Once the cross-sectional slice is identified to being the segmentation, the initial center 

points of the axons are extracted  by the third dimension search, as described in Section 

2.4.  Since the position of the axons in the cross-sections change with successive slices, 

we need to track all the axons present in the slice at the same time. It can be observed in 

Figure  3.2,  that  only  two  axons  have  been  traced  so  far  before  a  cross-over  is 
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encountered.  Hence,  only  two  seed  points  can  be  automatically  found  in  the 

corresponding cross-sectional  slice  by the third  dimension search.  The centers  of  the 

remaining axons are manually identified. The process of seed point detection along with 

the segmentation results are shown in Figure 3.3 . 

Figure 3.3  - Local maximum intensity search. (a) The line of search. (b) Seed points found by local  

maximum intensity search. (c) Manually identified centers. (d) Segmentation using seeded watershed 

algorithm.

3.1 Seed Point Estimation

The centers found in the current slice serve as the initial seed points for the next slice. 

The axon cross-sections will most probably be shifted from their position in the previous 

cross-sectional  slice.  Hence,  the  centers  of  the  axons  from the  previous  slice  cannot 

directly be used as seed points, and need correction. The mean-shift algorithm, which is 

based on the intensity information of the axon cross-sections, is used to estimate the seed 

points.

(a) (b) (c) (d)
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3.1.1 The Mean-Shift Algorithm

The  mean-shift  algorithm works  on  the  principle  of  a  moving  kernel  for  seed  point 

detection and uses the intensity information of the objects in the image to calculate the 

centers. The kernel is a circular window with each position in the kernel having the same 

weight. The kernel with radius R is defined as:

K c ={1,if ∥x−c∥≤R
0,if ∥x−c∥R

where,  c is the center of the kernel and x is any point in the image. The kernel is 

first centered at the initial seed point obtained directly from the previous slice and the 

new center is calculated as:

mi1=
∑
p
K  p− mi. g  p .p

∑
p
K p− mi . g p

where,  p  is any point in the image,  g  p  is the intensity at point p and i is 

the iteration count.  In the next iteration, the center is updated with the calculated mean 

and the kernel is now placed at this point and the process is repeated until the algorithm 

converges, i.e. until the shift in mean  mi−mi−1  reduces to zero. In order to avoid 

infinite  looping,  the  algorithm is  terminated  once  the  number  of  iterations  reaches  a 

particular threshold. 

In the presence of a close lying brighter axon, the mean shift tends to estimate the 

seed point towards the edges of the actual axon cross-section.  Figure 3.5(a) shows one 

such case. It can be seen, as shown inside the yellow ellipse, that the seed point of one of 
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the  axons  has  moved  completely  into  the  neighboring  axon.  This  results  in  wrong 

segmentation of axons, which is shown in Figure 3.5(b). Thus, constraints are imposed on 

the mean-shift algorithm. Firstly, the mean-shift is applied to axons in a window. Figure

3.4 shows the trajectory of the mean-shift algorithm applied to a single axon cross-section 

inside a window. The size of the window is set to the diameter of a circle having the same 

area as the segmented axon cross-section in the previous slice. Since the change in the 

position and shape of the axon cross-sections is known to be fairly smooth, it can be 

reasonably assumed that the axon cross-section does not shift from its position in the 

previous slice by more than its radius. 

          Figure 3.4 – Trajectory of the mean-shift algorithm.

The maroon cross indicates the initial seed point. The series of blue crosses show the 

trajectory of the algorithm and the final seed point is shown by the red cross.  The next 

constraint is placed on the radius of the kernel as:

R= minr , a 
2
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where, r  is the radius of a circle with the same area as the segmented region and a  

is  the  minor  axis  after  fitting an  ellipse  to  the  segmented  region.  This  also  helps  in 

minimizing the errors in finding the seed points  when the axon has irregular  shapes. 

Figure 3.5(c) shows the results of the mean-shift algorithm with the above mentioned 

constraints.  Figure  3.5(d)  illustrates  the  corresponding segmentation  results  using  the 

seeded watershed algorithm.

Figure 3.5 – Seeds estimated by the mean-shift algorithm. (a) Seeds found without constraints.  

(b) Segmentation results using seeds in (a). (c) Seeds found using constraints. (d) Segmentation results  

using seeds in (c).

3.2 Segmentation

In  addition  to  finding  the  centers  of  the  cross-sections  of  axons  in  the  image, 

segmentation  is  also  used  to  extract  boundaries  of  the  axons  in  the  dataset  for  both 

visualization  and analysis.  The watershed  algorithm [15]  treats  an  image  as  a  three-

dimensional map, the co-ordinates as the first two dimensions and the intensity as the 

third. If an image is viewed this way, it contains valleys and mountains. Three regions are 

(a) (b)

(d)(c)
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defined on such a landscape: (1) regional minima which serve as starting points for the 

algorithm to begin, (2) points where if a drop of water is placed, it will certainly flow 

towards the regional minima (also known as the catchment basin), and (3) points where if 

a  drop  of  water  is  placed,  it  is  equally  likely  to  flow  towards  any  of  the  minima 

surrounding it ( also known as watershed lines). 

The  algorithm begins  by  filling  water  starting  from the  regional  minima.  As  the 

catchment basins fill up, at some point they overflow into the neighboring basins. A dam 

is built at these locations to prevent the water from overflowing. The dams built this way 

after the landscape is completely immersed in water, form the boundaries of the objects 

in the image.

3.2.1 The Seeded Watershed Algorithm

As mentioned earlier,  the traditional  watershed algorithm suffers  from a drawback of 

over-segmentation.  The cause of  over-segmentation  is  the  presence  of  many regional 

minima in the image. Since the watershed starts filling water in the image from these 

points, the number of regions after the segmentation depends on the number of regional 

minima. In order to avoid this, the image is morphologically modified to have regional 

minima only at the seed points. Thus, the seeds act as the starting point for the watershed 

algorithm to begin. The water in the catchment basins starts rising from these seeds and 

the boundaries are formed once the water begins to overflow into the adjoining basins. 

Figure 3.6 illustrates the segmentation results in a cross-section containing five axons 

before and after the imposition of seeds:



CHAPTER 3. SLICE-BASED TRACKING 30

Figure 3.6 - Segmentation of axons using watershed algorithm. (a) Original image. (b) Segmentation 

without imposition of seeds. (c) Image after imposition of seeds. (d) Segmentation using watershed after 

imposition of seeds.

3.2.2 Guided Region Growing

Since the watershed algorithm makes use of only the intensity information of the objects 

in the image, a segmentation error may result when the axon cross-sections have very low 

intensity and are lying close to a brighter axon.  Figure 3.7 shows one such instance. It is 

assumed that the axons do not change drastically in shape from slice to slice and hence, a 

segmentation error is declared if the area of the axon differs by more than 50% from the 

previous  slice.  The  seeds  detected  by  the  mean-shift  algorithm are  shown  in  Figure

3.7(a). Instead of seed points, seed regions can be used to improve the performance of the 

seeded watershed algorithm. Figure 3.7(b) shows the seed regions initialized to an ellipse 

whose major and minor axis are set to half their values determined in the previous slice, 

centered at the seed points detected by the mean-shift algorithm. As seen in Figure 3.7(c), 

the seeded watershed algorithm is unable to resolve close lying axons having a significant 

difference  in  intensities,  as  shown  in  the  yellow  ellipse.  A  guided  region  growing 

(a)

(c) (d)

(b)
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algorithm is introduced in this section which is used to segment such images.

This algorithm is based on the watershed algorithm, but is guided by constraints. It 

uses a probabilistic approach to segment the axons in the image. Since the axons do not 

vary too much from slice to slice, a fair amount of similarity is assumed between cross-

sections  of  the  axons  in  consecutive slices.  This  forms the  foundation  of  the  guided 

region growing algorithm. The following steps briefly outline the algorithm:

● Extract  features  from  'N' previously segmented slices  of the  dataset  using 

seeded watershed algorithm.

● Build the probabilistic model that will guide the region growing algorithm.

● Start  the  region growing from the  seed points  in  the  image based on the 

likelihood calculated by the model.

The various parameters involved as discussed here. 

Deciding the training set 'N'

Selecting the number of training samples is important, since a large number of samples 

will  average  out  the  variations  in  the  cross-sections,  which  will  result  in  improper 

segmentation.  Lesser  number  of  samples  means  larger  variances  which  causes  the 

likelihoods to lie in either of the two extremes. In our case, we have chosen training 

samples from 10 previously segmented slices. 

Deciding the features

The features are extracted from the previously segmented slices after fitting an ellipse to 
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the segmented axons.  Popular features that are usually used for training the model are 

length of major axis, length of minor axis, perimeter, average intensity,  difference in  

centers from one cross-section to the next, area and orientation.  Since the axon cross-

sections have irregular shapes and varying intensity, only a few features can actually be 

useful  in our case.  The selected features have to be such that  there is  an increase in 

likelihood only if the region grows into a particular shape and at a specific angle. It was 

found that  the  orientation  and perimeter  are  sufficient  features  to  properly guide  the 

algorithm to converge to the actual shape of the axons in the cross-section.  

Building the probabilistic model

After extracting the above mentioned features from the previously segmented images, 

they are fit to Gaussian distribution and are used to train the model. The mean and the 

covariance matrices are computed for each axon present in the image based on these 

features. The similarity of the shape and size of a cross-section of an axon in any two 

slices is dependent on the distance between them. In other words, the similarity between 

the cross-sections of an axon lying close together is more than those that are far-spaced. 

Thus, the feature vectors used for training are weighted to imply the similarity between 

the  objects  in  the  current  slice  and  the  training  feature.  These  weights  are  set  to

wn=eN−n1  ,where, n  is the distance between the current slice and the slice where 

the features were extracted from and N  is the number of slices used to train the model. 

As it can be seen, the influence of the feature vectors decreases exponentially as we move 

away from the current slice. The weights are then normalized as wn=w n/W , where 
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    W=∑
n=1

N

w n

The weighted mean for the feature vectors are then calculated as:

w=∑
n=1

N

wn. f n

where f n  is the feature vector of the segmented axon cross-section, n slices away from 

the current slice. The weighted covariance matrix is then computed as: 

Rw=∑
n=1

N

w n . f n− w
T∗ f n− w 

After the training samples are obtained from 'N' previous slices, they are used to train 

the probabilistic model. The likelihood of occurrence of a region with a particular feature 

vector, f , is computed as:

Once the model is built this way, it acts as the central force driving the region growing.

Guided region growing

As mentioned before,  the watershed  algorithm begins filling  water  from the regional 

minima. Thus, the number of regions into which the image will be segmented, depends 

on the number of seeds in the image. The algorithm begins with the regions shown in 

Figure 3.7(b). As pixels are analyzed, they are marked with a label which indicates the 

region to which they belong. 

p f=
1

2∣ Rw∣
1/2 e

−1
2 { f − w

T Rw
−1 f − w}
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The water is filled in the image based on a threshold that is increased in subsequent 

iterations.  In  order  to  make  the  algorithm less  computationally  demanding,  only  the 

pixels lying inside a region of interest are considered for analysis. The image pixels are 

first categorized into three groups based on their intensities. The image is then binarized 

with a threshold determined as:

                                                      T= I lowI mid 
2

          

where, I low  and I mid  are the groups corresponding to low and medium intensities. 

This helps avoid errors in binarization when the axons have low intensities.

The threshold in the first iteration is set to one level higher than the lowest intensity 

pixel  in  the  region  of  interest.  All  the  pixels  in  the  image  that  are  lesser  than  this 

threshold are considered to be submerged in water in the current iteration. 

A list of unlabeled pixels is maintained for all the pixels that are submerged so far. 

For each of the regions in the image, connected components are searched from this list. 

Each of these pixels in the list is individually added to the regions and the likelihood of 

the new region is  computed using the probability  mode.  The pixel  is  retained in the 

region if there is an increase in the likelihood, and removed otherwise.

The same process is repeated until the threshold reaches to the maximum value of the 

pixel  in  the  region  of  interest.  Figure  3.7 compares  the  segmentation  results  of  our 

algorithm with the seeded watershed algorithm. Figure 3.7(d)-(e) compare the blown up 

version of the segmentation results of the seeded watershed algorithm and guided region 

growing algorithm. 
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Figure 3.7 - Segmentation of axons using guided region growing. (a) Original image with seeds found 

using mean-shift. (b) Seed regions. (c) Boundaries using seeded watershed algorithm with seed regions.  

(d) Magnified version of boundaries in (c). (e) Boundaries detected with guided region growing.

As it can be seen in Figure 3.7(e), in spite of the low intensity of the axon, as shown 

in the yellow ellipse in Figure 3.7(c), the guided region growing algorithm is successfully 

able to determine the boundary. It should be noted that, accurate detection of the centers 

of the axons, especially the faint and small ones, is crucial in preventing propagation of 

error to subsequent slices. Apart from wastage of computation time, wrongly detected 

axons directly affect the underlying biological issue. 

The algorithm for  solving  the cross-over  of  axons as  described in this  chapter  is 

repeated until the centerlines of the axons which were crossing over in the MIP image are 

resolved. After all the axons in the dataset are tracked this way, two types of segments of 

centerlines result: fragments tracked using two dimensional centerline tracking and those 

tracked using slice-based tracking. Since the centerlines tracked in the MIP image have 

no cross-over ambiguity,  the third dimension of each of the centers can be found by 

(a) (b) (c) (d) (e)
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searching for the local maximum intensity pixels in the corresponding slices. In the latter 

case, the two co-ordinates of the centers tracked in the cross-sectional slices along with 

the slice number give us the three dimensions of the centers.  The results  of the 3-D 

centerline reconstruction are illustrated in the next chapter and are validated with manual 

tracking results.  In order to demonstrate the robustness of the tracking algorithm, the 

guided region growing algorithm is compared with the repulsive snake model.



Chapter 4

Results
Three datasets were analyzed using the algorithm described in this thesis. The centerlines 

of the axons are presented in both, two dimensions, in the MIP image, and in the three 

dimensional  domain.  The  various  parameters  that  were  manually  initialized  for  the 

datasets are:

● The number of cross-sectional slices in the dataset and their prefix.

● The maximum width of the axons in the MIP image.

● The resolution of the grid for the automatic detection of seeds in the MIP image 

for the 2-D directional template based tracking. 

● The initial  seed points  for  the segmentation algorithm in the first  axon cross-

section each time when an axon cross-over is detected. 

The results  are  validated  with  the  manual  reconstruction  results.  The axons were 

manually tracked using Reconstruct, a freely available software on the internet. Finally, 

we compare the performance of the guided region growing algorithm with the repulsive 

snake model on one cross-sectional image from each of the three datasets. 

The first  dataset  contained 4 axons in total  with 256 cross-sectional  images,  each 

having a resolution of 141 x 512 pixels. The cross-sectional images were sampled along 

the Y direction. Figure 4.1 shows the MIP image along with the cross-over of axons  in 

the   MIP  image.  The  maximum width  of   the  axon was  set   to  20  pixels  and the 

resolution of the grid for the MIP image was set to 10 pixels.

37
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Figure 4.1 – Dataset one. (a) The MIP image. (b) Cross-over of axons. 

Figure 4.2(a) shows the  manual reconstruction of the axons. Approximately 50% of 

the  dataset  was  tracked  using  the  cross-sectional  tracking  algorithm.  The  average 

deviation of the centerlines detected by our algorithm from the manually tracked results 

was found to be 1.755 pixels. The 2-D MIP and the 3-D model of the centerlines are 

shown in Figure 4.2(b)-(c).

(a) (b)
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Figure 4.2 – Tracking results on dataset one. (a) Manual tracking results. (b) Centerlines in the MIP 

image. (c) 3-D model of the centerlines.

(a) (b)

(c)
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The second dataset contained 6 axons with 256 cross-sectional images, each having a 

resolution of  43 x 512 pixels. The cross-sectional images were sampled along the X 

direction.  Figure 4.3  (a) shows the MIP image for this dataset.  The cross-over of the 

axons in the MIP image is shown by the white ellipse in  Figure 4.3 (b).

Figure 4.3 – Dataset two. (a) The MIP image. (b) The phenomenon of cross-over.

The maximum width of the axon was set to 40 pixels and the resolution of the grid for 

the MIP image was set to 15 pixels. Figure 4.4 shows the tracking results for the dataset. 

The average deviation of the centerlines detected by our algorithm from the manually 

tracked results was found to be 1.6431 pixels. Approximately 75% of the dataset was 

tracked using the cross-sectional tracking algorithm. The 2-D and the 3-D centerlines are 

shown in Figure 4.4(b)-(c). 

(a) (b)



CHAPTER 4. RESULTS 41

Figure 4.4 – Tracking results on dataset two. (a) Manual tracking results. (b) Centerlines in the MIP 

image. (c) 3-D model of the centerlines.

(a) (b)

(c)
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As it can be noticed, as the complexity of the dataset increases, a major part of the 

centerlines  of  the  axons  are  tracked  using  the  cross-sectional  information.  The  final 

dataset contained 7 axons with 256 cross-sectional images, each having a resolution of 

42 x 512 pixels. The cross-sectional images were sampled along the X direction. Due to 

the complex nature of the dataset, the centerlines of the axons are tracked entirely using 

the cross-sectional images. Hence, the centers of the axons in the  first cross-sectional 

image were manually identified. Figure 4.5(a) shows the MIP image for the dataset. The 

manual tracking results for this dataset is shown in Figure 4.5(b). Figure 4.5(c)-(d) show 

the 2-D MIP and 3-D model of the centerlines  of the axons. In comparison with the 

manual tracking results, the average deviation of the tracked axon centerlines was found 

to be 1.8141 pixels.

(a) (b)
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Figure 4.5 – Tracking results on dataset three. (a) The MIP image. (b) Manual reconstruction. (c)  

Centerlines in the MIP image. (d) 3-D model of the centerlines.

In order to demonstrate the accuracy and robustness of the proposed method in this 

thesis, the segmentation results are compared with that of the repulsive snake model. In 

this algorithm, the user has to define the initial boundaries and the centers of the axons in 

the first cross-sectional image of the dataset. The snake then iteratively evolves to the 

individual boundaries of the axons by minimizing the energy functional. The following 

figures compare the repulsive snake model and the guided region growing models. Since 

the datasets mentioned earlier in this section contain hundreds of cross-sectional images, 

one cross-section from each of the datasets is used to compare the two algorithms.  Figure

4.6 shows the results of the two algorithms in the first dataset. 

(c) (d)
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Figure 4.6 - Comparison of segmentation results in dataset one. (a) Repulsive snake model. (b) Guided 

region growing.

It can be seen that the boundaries of axons detected using the repulsive snake model 

are  not  accurate  when  the  axon  cross-sections  suffer  from  intensity  non-uniformity. 

Hence, the centers of the axons found in this manner are inaccurate which results in the 

propagation of error to subsequent slices. The guided region growing, on the other hand, 

is more robust in handling such situations.  Figure 4.7 compares the two algorithms in 

another such image from the second dataset. 

(a) (b)
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Figure 4.7 - Comparison of segmentation results in dataset two. (a) Repulsive snake model. (b) Guided 

region growing.

Due to the imaging artifacts, the repulsive snake model is unable to evolve to the true 

boundaries of the axons in the image. This is overcome by the guided region growing 

algorithm by using the shape information from the previous slices. Figure 4.8 compares 

the two algorithms in the final dataset.

Figure 4.8 - Comparison of segmentation results in dataset three. (a) Repulsive snake model. (b) Guided 

region growing.

(a) (b)

(a) (b)
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Conclusion and Future Work

The  centerlines  of  axons  in  three  datasets  were  tracked  using  the  hybrid  algorithm 

presented in this thesis. It was able to find the centerlines of the axons in spite of the 

imaging  artifacts  present  in  the  acquired  images.  A  significant  improvement  in  the 

performance of the traditional region growing algorithm (seeded watershed algorithm) 

was demonstrated by incorporating constraints. The performance of the guided region 

growing algorithm was compared with the repulsive snake algorithm, and was found to 

be more successful in tracking the axons accurately in the datasets. 

The  scope  of  improvements  in  the  approach  presented  in  this  thesis  can  be 

summarized as follows: 

● The  pixels  in  each  iteration  in  the  guided  region  growing  approach  can  be 

reordered to find alternate paths to grow individual regions based on the highest 

probability among the arrangements. 

● Modifications to the algorithm can be made to track the branching of axons in the 

datasets. Either manual or automatic identification of the branch points can help 

track  more  complex  datasets.  Manual  identification  would  involve  user 

intervention whenever two axon cross-sections come close to each other. On the 

other hand, automatic labeling can be done by exploiting the fact that the axons 

split or merge only in  a specific direction in the dataset. For example, in our case,
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the axons can split only in the direction of sampling of the cross-sectional images. 

In  other  words,  splitting  and merging  are  mutually  exclusive  phenomena  if  a 

specific direction along the sequence of cross-sectional images in the dataset is 

considered. This could be used to minimize errors in classification of close lying 

axons. 

● As mentioned earlier in Chapter 1, if the axons are aligned along the sampling 

direction in which the cross-sectional images were acquired, their cross-sections 

appear  and  disappear  randomly  and  their  shapes  take  arbitrary  forms.  The 

algorithm can be altered to analyze such axons as well.  More specifically,  two 

approaches could be adopted in such cases:

1. Re-sample the dataset normal to the orientation of the axons, so that the cross-

sections of the axons remain fairly the same throughout the dataset. 

2. Subdivide  the  dataset  into  smaller  and  simpler  ones,  so  that  the  tracking 

results of these individual data stacks can be merged together.

The guided region growing algorithm presented in this thesis can also be used to track 

other  tubular  structures  in  a  sequence  of  cross-sectional  images.  Apart  from  being 

computationally inexpensive, the algorithm is easy to implement and at the same time, 

accurate.
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