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Abstract

We consider geometric inversion methods designed to directly determine information concerning
the size, shape, location, and perhaps number of anomalies in a region of interest [1, 2] for diffusive
inverse problems arising in medical imaging and environmental remediation. First, a parametric
approach to the problem is derived and validated using a diffuse optical tomography (DOT) sensing
example. A second technique to identify boundaries of an unknown number of objects is based on
the idea of curve evolution [2]. This approach mathematically “shrink-wraps” a deformable surface
in 3D or curve in 2D to the boundary of one or more objects. We demonstrate the utility of this

method using an electrical resistance tomography (ERT) sensing example in three dimensions.



INTRODUCTION AND BASIC METHODOLOGY

For the sensing problems of interest here, a collection of transmitters emit a form of
time-harmonic energy into a medium. The medium is composed of a nominal background
and a collection of localized, anomalous structures. After interacting with the medium, the
diffused energy is observed by a collection of detectors also arrayed on the boundary of the
medium. For DOT [3], laser light modulated up to a couple of hundred MHz is transmitted
into tissue using optical fibers. Fibers are also used to measure the scattered light. Because
tissue is turbid, the photons obey a transport equation which, in the limiting case valid for
most all DOT applications, is approximated by a diffusion equation. Hence for DOT the
data are in the form of diffuse photon density waves. For ERT [4], electrical current at zero
frequency is injected into the medium and the receivers measure voltages along a portion of
the boundary.

For the class of problems of interest here, the placement of the sources and detectors is
limited. In many cases, they are restricted to lie on one side of the medium (a reflection
geometry). In other cases, the sources are on one side and the receivers on another (a
transmission geometry). Sometimes it is possible to position the sources on one side and
the receivers on the two adjacent sides, similar to vertical seismic profiling in geophysical
exploration. In any event for DOT, ERT and many other applications, it is not possible
to fully encircle the unknown medium, leaving us with a limited view tomographic inverse
problem. Such problems are known to be highly ill-posed making the recovery of a dense
set of pixel or voxel values a very delicate procedure. Hence we are motivated to explore
methods designed to recover reduced complexity, geometric models of the unknown the
structure of which are more closely tied to the underlying anomaly characterization goal of
the sensing problem

The physical model for diffuse wave imaging is a frequency domain diffusion equation:
V - o(r)Vo(r) + k(r,w)p(r) = sources (1)

with w the source modulation frequency. The relationship of ¢ and & to the physical prop-
erties of the medium, the physical significance of ¢, and the boundary conditions are all
application dependent. For DOT, o(r) = 1/(3us(r)), k(r) = pa(r) + jw/c [3] and ¢ is the

diffuse photon density wave. Here, 1, the optical absorption coefficient and p, the reduced



scattering coefficient, are the physical parameters of interest. Finally, Robin boundary con-
ditions are employed. For ERT, k = 0 since we are probing at DC and o, the electrical
conductivity, is the desired quantity. In this case, ¢ is the electrical potential and Neumann
boundary conditions are used at the air-medium interface[4].

Given the physical model embodied in (1), the processing goal of specific interest in
this paper is to identify the geometric structure of anomalous regions in the space varying
structure of the physical parameters of interest for the intended application. Specifically, for
ERT, we concentrate on identifying o while for the DOT we consider the case where only
perturbations in the absorption are to be characterized. In each case we seek estimates of

parameter which minimize a least squares error functional of the form:
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Here, ¢'(r;) is the hypothesized sensor response computed via a computational forward
model due to source i and detector j, and ¢.,.(r;) is the actual, observed response. The
weight w;;, if strictly real and usually related to the inverse of the variance of the noise for
that sensor.

A key element of any gradient based algorithm (e.g. steepest decent or non-linear con-
jugate gradient) for minimizing £ is the efficient computation of the functional gradient,
or Fréchet derivative, of £ with respect to a change in either o or k. In the case of k, as
shown in [5] this can be accomplished as V. E(r) = S, Re [gzgz(r)gbz(r)] where ¢/ (r), the
adjoint field due to source i, satisfies the adjoint PDE:

jw

—V - Vo (r)¢i(r) + (pa(r) + 7)¢ (r) = s(r) (3)

where the adjoint source is defined by

Z wl] ¢0bs(r]))] " 5(1‘ - rj) (4)

with v the speed of light in the medium.

For problems in which we seek to determine o, the sensitivity matrix associated with the
ith source is A; = [%]; i.e. the Jacobian matrix obtain by taking the derivatiove of each
element of the ith observation vector with respect to the values of the conductivity in every

voxel under consideration. As we discuss below, the quantity required in our calculation



is Ai(U)T(Eibs - 51) To efficiently carry out this computation, we consider the discrete
representation of the Poisson equation, Gai = 5 and following the work in [4] use the
representation
- ()73 |
Ai(0) (fyps — ) = = : G (G5 — B)- (5)
()73
Since G is a discretized version of a PDE, it is a sparse matrix as are the derivatives required

1

in (5). Finally, the adjoint field for the ith source is given the term ¢ = G Y Py — 1)

DIFFUSE OPTICAL TOMOGRAPHY

Here we consider a parametric estimation algorithm, in which the absorption distribution
is assumed to take the form of a sphere with center (z,,y,, 2,), radius 7 and absorption 12

in a known background p0:

pa(r) = pg(r) + (ua(r) = i (r)) H(O(x)) (6)
O(I‘) =’ - (1‘ - 1’0)2 - (y - yo)2 o (Z - Zo)2
where H(r) is the 3-D Heaviside step function, and O(r) is the object shape function. We

use a typical steepest decent approach to solve for the parameters where the gradient of the

error with respect to e.g. xz, is:

5’2 = / / / 2z — 2)3(0(r)V,, mEd’r (7)

with V,, Ed’r obtained from (3).

As an example, we consider the case of determining the location, radius, and contrast of
a spherical absorbing inhomogeneity within a cube with dimensions 6 x 6 x 6cm. A reflection
geometry is used, with sources and detectors interlaced on the z = 0 plane. The background
absorption is 0.05cm !, while that of the absorbing sphere is 0.3cm !, and a value of 15cm !
for us was used. In Fig. 1 we show the progression of the estimates for the object center as
function of algorithm iteration. We start from an initial point in the parameter space and,
at each iteration, conduct a line search in the direction of the gradient. Iteration 10, the

radius had converged to slightly under 1 cm and the contrast to about 0.29 cm™!.



RESISTANCE TOMOGRAPHY

For the ERT problem we assume that the medium consists of two distinct regions, the
background and an inclusion, and use surface-evolution methods to identify the boundary of
the inclusion. Denote by, D the boundary of the inclusion with conductivity ;,,. Similarly,
Oezt 18 the conductivity of the background. Let dD be an estimate of 9D, the boundary
of D. Let ¢(r) be a level set function such that dD := {r;s(r) = 0}. The ERT inverse
problem can be formulated as determining the minimum of £ over all ¢ where o(r) = oy
for ¥(r) < 0 and o(r) = 0y for ¥(r) > 0. The evolution of the level-set function 1), in

artificial time, is defined by the Hamilton-Jacobi equation of the form :
o + a(t)n - |Vi| = 0. (8)

where «a(t) is the velocity of the evolving contours in their outward normal direction n [6].

i

In most all previous work in this area, the velocity function is al(t) = F SV | A(0)T (i, —

¢'), with A the Jacobian matrix and the sum is over the observation vectors generated by N
sources. Unfortunately the physics of the problem is such that this choice of velocity causes
the level-set surface to move quickly in regions of space close to the sources and receivers
and far slower elsewhere. In other words, the sensitivity of £ to changes in 1) is artificially
low especially in those areas of space where we desire information.

To overcome this difficulty, we propose multiplying the previously defined velocity func-
tion by a positive diagonal matrix, P(¢). For pixels with significant domain derivative, the

corresponding diagonal entry of P(¢) is defined as follows:

[P(1)],; = ()| (1-0maz + (1 = w)la()]), (9)

where ayp,, is the maximum, over all [, of |a(l)| and p is a parameter smaller but close to 1.
As we discuss in the talk, this choice maintains the direction of the velocity at each point
while “equalizing” the speed dynamic range to lie between pu,q,; and ;-

We simulate a 3-D binary medium with two disjoint cylindrical inhomogeneities, Fig. 2(a).
We initiate our algorithm with a single sphere occupying basically the entire region. The
final result, shown in Fig. 2(b), demonstrates the capability of the algorithm to reconstruct

the unknown shape even for a poor initial guess.



CONCLUSIONS

In this paper, we have presented the basic formations and initial examples of geometric
methods for the solution of inverse problems using diffuse wave data. Methods employing
both parametric and non-parametric parameterizations of the unknown have been consid-
ered. At the heart of both approaches is the use of adjoint field techniques for sensitivity
calculation. Our future work in this area is focused on the validation of these methods using
real sensor data as well as the extension of the approaches to lift some of the simplifying

assumptions.
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FIGURE CAPTIONS

1. Figure 1 Shape-based inversion results for DOT problem. Center of hypothesized

absorber at each iteration

2. Figure 2 Shape-based inversion results for ERT problem. 1 voxel=1 m3
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(a) The actual shape of the inhomogeneity

(b) The final shape estimate.
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