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Abstract

Non-invasive detection and localization of objects in the near field of a receiver array
have been of interest to many researchers in recent years. Some of the most promising
application areas for this technology include landmine remediation, where relatively small
metallic or plastic objects are located a few centimeters from the sensors, and hazardous
waste remediation, where relatively large metallic objects (eg. steel metal drums) are located
on the order of meters from the sensor array. In this thesis, we consider a form of this problem
where a plane wave illuminates the region of interest, which is assumed to be a homogeneous,
possibly lossy medium containing one or more targets located in the near field of an array
of receivers.

In the first part of the thesis we deal with the forward scattering problem in order to
obtain an efficient, flexible, and stable algorithm. The forward problem refers to calculation
of the scattered fields given the scatterer geometry and properties, and the incident field.
Because we intend to use the forward solver as a part of information extraction algorithms,
it should lend itself to repeated uses while keeping the computational complexity within
practical limits. Specifically, we are interested in development and verification of a recursive
algorithm capable of computing scattered fields from multiple dielectric and/or metallic
objects in the near field of the array. These conditions are typical of mine detection problems

for which the scattered field is observed in the near field, and a mixture of metallic and



dielectric objects may be present in the same medium. For this purpose, we present an
alternative tessellation scheme and a modification to Chew’s well-known recursive T-matrix
algorithm

In the second part of the thesis, we deal with the inverse problem and introduce algo-
rithms that can detect and localize subsurface objects for near-field measurement geometries.
The inherent array structure of the problem suggests that the high resolution array process-
ing techniques quite popular in signal processing community would be well suited for the
subsurface detection problem. Based on such a technique, called the Multiple Signal Classifi-
cation (MUSIC) algorithm, we present two subsurface detection algorithms: computationally
simple, but approximate, subarray processing, and computationally intensive, but accurate,
matched field processing. Finally, we derive the Cramér-Rao performance bounds for the
multiple object detection scenario where the observations are made in the near field. Ana-
lytical bounds of estimated object coordinates are then validated by running Monte-Carlo

experiments for the MUSIC-based estimator.
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Chapter 1

Introduction

Non-invasive detection and localization of subsurface objects is an important application
area for research on object detection. Potential practical applications include mine field
remediation [1-3], waste drum recovery [1, 3], pipeline localization [4], archaeological site
characterization [4], etc. Among these, mine field remediation and waste drum recovery
have become very popular in recent years and these applications will be the main focus of
the research presented in this thesis.

The detection and localization problems require two computation tools: forward scatter-
ing and inverse scattering codes. In the electromagnetic forward scattering problem, given
the scatterer geometry and the excitation (incident field), the scattered field is determined
by solving Maxwell’s equations. Even though there are many simplified scattering models

for the forward problem [5-9], these are limited in scope, and for the most general problems
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exact forward solvers are needed [10-17]. Within a detection and localization context, in-
verse scattering means determining object geometry for known incident and scattered fields.
Most inverse problems need fast and efficient forward solvers, since the forward problem
is solved repeatedly [1,8,18-22] in such algorithms. The inherent difficulty in solving the
inverse problem is aggravated in subsurface detection because the scattered field can only
be observed at limited locations, such as on the earth surface for ground penetrating radar
(GPR) applications.

The research presented here spans both sides of the object detection problem: in the first
part we will deal with the forward problem in order to obtain an efficient, flexible, and stable
algorithm. The forward solver should lend itself to repeated uses while keeping the compu-
tational complexity within practical limits. Specifically, we are interested in development
and verification of a recursive algorithm capable of computing scattered fields from multiple
dielectric and/or metallic objects in the near field. These conditions are very typical of mine
detection problems employing GPR-type measurement geometries, for which the scattered
field is observed in the near field, and a mixture of metallic and dielectric objects may be
present in the same medium. For this purpose, we present an alternative tessellation scheme
and a modification to Chew’s well-known recursive T-matrix algorithm [14,15,23-27].

In the second part, we will deal with the inverse problem and introduce algorithms that
can detect and localize subsurface objects for GPR-type measurement geometries. The
inherent array structure of the GPR problem suggests that the high resolution array pro-

cessing techniques [28,29] quite popular in signal processing community would be well suited
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for the subsurface detection problem. Based on such a technique, called the Multiple Sig-
nal Classification (MUSIC) algorithm, we will present two subsurface detection algorithms:
computationally simple subarray processing, and computationally intensive, yet accurate,
matched field processing [30-32]. Of particular interest here are problems for which we know
the shapes of the targets. This assumption is quite reasonable for practical applications
such as mine detection and waste drum recovery. The physical phenomenon associated with
forward scattering for detection part is further simplified by ignoring the air-earth interface.
However, the inverse algorithms themselves are independent of the forward solver, and can

be used when air-earth interface is present.

1.1 An Overview of Forward and Inverse Scattering

Algorithms

In general, all inverse problem algorithms are associated with a forward solver, which produce
the scattered field given the incident field, object characteristics and locations, and the
medium of propagation. In most inverse problems, the Born approximation [5] is used as
the forward solver. The Born approximation is attractive since it uses a linear forward
scattering model, based on the assumption that the scatterers do not disturb the medium of
propagation significantly. Therefore, it is appropriate for cases where the dielectric contrast
between the scatterer and the background is small. The Born approximation may also be used

in an iterative scheme to improve the performance [18,33] of the inversion algorithm. There
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are other simplifications to the scattering model similar to the Born approximation which
attempt to relax the small perturbation limit such as the extended Born approximation [6]
which improves upon the Born approximation by introducing a computationally manageable
yet highly accurate non-linearity in the scattering model [19] appropriate for low frequency
problems. The advantage of using any of these approximations, of course, is the simplification
in the scattering model which results in computationally less demanding algorithms. Some
inverse scattering algorithms, on the other hand, use exact forward solvers such as the method
of moments, finite differences, fast multipole methods and the transition matrix (T-matrix).
Even though these techniques ideally solve the exact problem, finite precision arithmetic,
discretization and truncation may introduce a certain amount of error in the fields which are
calculated.

The most popular of the exact techniques, the method of moments (MoM) [10], is based
on a fine discretization of the region of interest and requires the inversion of a large dense
matrix to calculate the scattered field. As this task requires O(N?) calculations where N
is the number of grid points, MoM is known to be computationally quite intensive. The
fast multipole technique [11] developed recently can reduce the complexity of MoM-type
problems, and can be used alternatively as a fast forward solver. Finite difference techniques
are also frequently used as forward solvers and like MoM rely on a full space discretization.
Although the resulting matrices are sparse, one still faces the delicate task of specifying an
absorbing boundary condition to terminate the computational grid. Unlike finite difference

techniques, the T-matrix approach does not require an absorbing boundary condition and
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substitutes the discretization of space with harmonic expansions of the fields, thereby re-
ducing the number of unknowns for a wide range of problems. Furthermore, due to spatial
discretization, finite difference and MoM methods are used in inverse problems where pixe-
lated reconstructions (i.e. images) are required. The T-matrix method, on the other hand,
can be used within object-based localization framework.

Chew and co-workers have pioneered the development of a number of fast, recursive T-
matrix algorithms for determining the scattered fields in a variety of scenarios [14,15,23-27].
These methods basically function by tesselating electrically large objects into small sub-
scatterers whose individual T matrices can be well represented using low-order harmonic
expansions. A recursive formula then is used to aggregate the effects of all the sub-scatterers
to compute the fields.

In subsurface object detection most often a pixel-by-pixel map of the region of interest is
produced and the detection is then performed by post-processing the image [4,8,20-22,34].
However, since the inverse problem is inherently ill-posed, this image-then-detect approach is
quite sensitive to noise. While the ill-posedness can be off-set through regularization [35,36],
typical regularization methods result in smooth images thereby making the detection all
the more difficult. On the other hand, making use of the fact that the ultimate goal of
the problem is the localization of objects with known structures, we can reparameterize the
problem within the object-based detection framework [1,37-41] where a small parameter
vector containing the coordinates of the objects is identified. By constraining the degrees of

freedom in this manner, ill-posedness is substantially reduced and the resulting algorithms
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prove to be robust to noise.

1.2 Contributions

In this section, we review the contributions of this thesis to the forward scattering, and

object detection and localization areas.

1.2.1 Forward Scattering

For the forward scattering problem, we desire to solve scattering problems in the near field for
the linear array geometry shown in Fig. 2.1. Specifically, we are interested in the development
and verification of a recursive algorithm capable of computing scattered fields from multiple
dielectric and/or metallic objects in the near field. For simplicity, we considered an F,
polarized plane wave incident on a two dimensional problem geometry in which multiple
scatterers each possessing a circular cross-section (i.e., infinite circular cylinders) are located
in an infinite medium of constant complex permittivity. Rather than decomposing each full
scatterer into a large number of small sub-objects, the goal here is to develop a recursion
based on higher-order harmonic expansions for the individual, large objects. The result is an
algorithm comprised of a small number of high dimensional T-matrix computations rather
than a large number of low dimensional recursions with the idea that the former approach
will be more efficient than the latter. For the near-field calculations, however, we show that
the higher-order expansions result in instabilities in the original recursions developed by

Chew. By modifying these recursions, we obtain a stable algorithm which is capable of both
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near and far-field computations. Finally, we demonstrate that this approach retains the low
asymptotic computational complexity of the method in [15] but in practice requires far fewer
floating point operations.

In addition to this contribution, we will also show that the original T-matrix recursions
can be used for metallic scatterers by tesselating such objects along their circumferences with
small metallic cylinders. In [26,27,42], Giirel et al. use metallic strips and patches, whose
individual T matrices are found via MoM. Alternatively, we use small sub-cylinders along
the perimeter of conducting scatterers for tessellation [16]. The advantage of tesselating
conducting objects with small metallic cylinders rather than strips or patches is that one
need not use MoM to find the T matrices of individual metallic cylinders.

The contributions in this area can be summarized as:

e Definition and determination of an “optimum scattering origin” for the recursive T-

matrix algorithm in the near field,

e Modification of the original recursive algorithm in order to circumvent a convergence

problem that stems from near field observations and the optimum scattering origin,

e Introduction of an alternative tessellation scheme for metallic scatterers for recursive

T-matrix algorithm.

1.2.2 Detection and Localization

For the detection and localization part we introduce algorithms that are especially useful for

ground penetrating radar (GPR) type measurement geometries of Fig. 2.3. The algorithms
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presented here are some of the earliest applications of high resolution array processing in the
subsurface object localization area. The only previous work in this area before this thesis is a
work by a group of European researchers [43]. The work in [43] concentrates on polarimetric
radar imaging with MUSIC algorithm. Our work is different in that we take an object-based
approach rather than an imaging approach. Therefore, the localization algorithms presented
in this thesis are the first ones that detect and localize subsurface, near field objects using
the MUSIC algorithm.

Of particular interest here are problems for which we know the shapes of the targets. This
assumption is quite reasonable for practical applications such as mine detection and waste
drum recovery. The subarray processing (SAP) does not require the knowledge of electrical
characteristics and the number of targets for detection and localization. The matched field
processing (MFP) based algorithm, however, does require the knowledge of these quantities.
For practical problems like mine detection, the electrical properties of the targets are usually
known as well as the shapes. The number of objects in the region of interest can be estimated
using signal processing techniques like information theoretic criterion of Akaike [44,45] or the
Minimum Description Length (MDL) criterion [46,47]. Alternatively, the number of objects
in the region can be determined by first using SAP which will also give rough estimates of
the object locations. These rough estimates can then be used to initialize the MFP.

To be precise, the problem we address in this part is the localization of single or multiple,
cylindrical objects, buried in a known, homogeneous, lossy background. The objects can all

be metallic, all dielectric or a collection of both. The physical phenomenon associated with



CHAPTER 1. INTRODUCTION 9

forward scattering for detection part is further simplified by ignoring the air-earth interface.
However, the algorithms themselves are independent of the forward solver, and can be used
when air-earth interface is present.

The subarray processing involves two processing steps. First, we partition the receiver
array such that the scattered field from the targets are locally planar at each sub-array, then
use the so-called MUSIC algorithm [48] for plane waves to obtain a set of directions of arrivals
(DOA) for each locally planar wave. By triangulating these angles, a collection of crossings,
crowding the expected object locations, are acquired. Second, we extract clusters of the
crossings which are then declared estimates of object locations. In this second stage, the
crossings are modeled as Poisson distributed points, which have a large rate parameter around
the targets and a low rate parameter elsewhere. The target locations can be determined by
applying hypothesis testing to see whether target-sized windows have high rate parameter
of a target or low rate parameter of the background. We demonstrate the performance of
this approach for the detection and localization of multiple mine-like and drum-like targets
located in the near field of the receiver array. For mine-like targets relative positions of the
objects are changed to see the effect of object geometry on detectability. We show that the
detectability improves and false alarm rate decreases when the objects are located far apart.
For drum-like targets, we demonstrate the effect of relative depth as well as relative distance
between objects on detectability.

For the matched field processing based algorithm, we modify MUSIC so that the direction

vector is composed so as to model the type of wavefront which is impinging on the array.
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Therefore, the problem of non-planar wavefronts is overcome, and an estimate of both angle
and range can be produced.We demonstrate that using MFP, single and multiple objects
can be localized very accurately over a wide range of soil and signal to noise ratios. In
addition, we derive the Cramér Rao performance bound for both single and multiple object
cases. Our Cramér-Rao Bound derivation adapts the results in [49], and accounts for near
field observations. Analytical bounds on estimated object coordinates are then validated by
running Monte-Carlo experiments for the MUSIC estimator.

Previously published work in this area can be categorized in two groups: distributed
source localization and near field point source localization. In the area of distributed source
localization, Valaee et al. [50] introduced a MUSIC-based localization algorithm that para-
metrically localize far field distributed sources. In [50], the far field sources are modeled with
bell shaped distributions characterized by their peak position and 3dB beam-width. They
successfully localize coherent and incoherent sources. Our work is different from their work
in that the sources (or scatterers) in our problem are in the near field of the array. Fur-
thermore, even though the sources in our work are extended as in [50], our source model is
governed by the electromagnetic scattering, not by bell shaped shaped source distributions.
In the area of near field source localization, previous work has been limited to independently
radiating, point sources [51-54]. Coherent source issue in near field localization is also dealt
with in [52]. In [51,52], independent, spherical sound and noise sources are located using
MUSIC based array processing methods. In [53] and [54], a similar near-field source localiza-

tion scenario is considered, and performance bounds for coordinate estimates were derived
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for MUSIC and higher order ESPRIT based algorithms, respectively. In this thesis different
from previous work, we consider extended multiple sources whose radiation pattern depends
on the relative positions of other scatterers.

The contributions in this area can be summarized as:

e Introduction of MUSIC-based subarray processing for localization of both single and

multiple objects,

e Introduction of MUSIC-based matched field processing for localization of both single

and multiple objects,

e Derivation of analytical Cramér-Rao bounds, and verification of these bounds with

Monte-Carlo simulated error variances.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 contains background material for
T matrix algorithms. Single scatterer T-matrix method, and multiple scatterer recursive
T-matrix algorithms are described in detail. In addition, the multiple signal classification
algorithm (MUSIC) for plane wave incidence is explained in this chapter. In Chapter 3, a
modified recursive T-matrix will be given along with an alternative tessellation scheme for
conducting objects. In Chapter 4, we describe the subarray processing (SAP), and discuss the
Poisson modeling of crossings. In Chapter 5, we explain the matched field processing (MFP)

for localization of single and multiple targets. We also discuss the signal coherence issue,
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and attempt to decorrelate the autocovariance matrix using frequency diversity. Finally, in

Chapter 6, we summarize the results and contributions of this thesis, and indicate future

research directions.



Chapter 2

Background

In the first part of this chapter, a brief overview of the T matrix theory and the recursive
T-matrix algorithm of [33] will be presented. Because of its efficiency in calculating scattered
fields from simple shapes, the recursive T-matrix method is an appropriate forward solver
for subsurface detection of objects which are modeled well by simple shapes. Thus, it will
be our choice of forward solver throughout this work. Since in later parts of the research
we have modified this algorithm, it is appropriate to review the technique here, while our
contributions to the forward solver are presented in Chapter 3. In the second part of this
chapter, we describe the Multiple Signal Classification (MUSIC) algorithm for determining
direction of arrival (DOA) of plane waves and its application to subsurface object detection
when the objects are infinitely far from the receiver array. Since the MUSIC algorithm forms
the basis for both our detection algorithms, we felt it necessary to review the theory behind

MUSIC here, before we introduce our algorithms in Chapters 4 and 5.

13
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2.1 T Matrix Background

As we have mentioned in Chapter 1, inverse scattering algorithms need fast and efficient
forward solvers. In this work, the T matrix based recursive algorithm will be used as the
fast forward solver, since it is very efficient in finding the scattered field from simple shapes.

Around the late 1960s, Waterman developed the T matrix theory for acoustic scattering
problems [55] for single scatterer, and later extended the results for electromagnetic scattering
problems [56]. Then, Peterson and Strom developed an iterative scheme that employed the
T matrix theory [57,58] to find the fields from multiple scatterers. Since their work, T matrix
theory has been widely used in acoustic and electromagnetic scattering problems [59]. Chew
and co-workers have pioneered the development of a number of fast, recursive T-matrix
algorithms for determining the scattered fields in a variety of scenarios [14,15,23-27]. These
methods basically function by tesselating electrically large objects into small sub-scatterers
whose individual T matrices can be well represented using low-order harmonic expansions.
A recursive formula then is used to aggregate the effects of all the sub-scatterers to compute
the fields. Here, we will review the T matrix theory and describe the recursive T-matrix

algorithm.
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2.1.1 Single Scatterer T Matrix

The total scalar electromagnetic (or acoustic) wave in a homogeneous background with a

homogeneous scatterer is given by':

() = () + 7 (r) (2.1)

where 1)*"(r) is the wavefield incident on the scatterer and ***(r) is the field scattered from
the object.

Applying the Poincaré-Huygens principle and the Gauss theorem we can write the total

field outside the scatterer as [58]:

() =" () + /SdS’{M(T_’)V’g(kIE =) = [V (e)]g(klr — )} (2.2)

where S is a piecewise smooth surface enclosing the scatterer, v», and Vi) are the total field
¥(r) and its gradient on the outer surface of the scatterer, and g(k|r — r’|) is the free space
Green’s function. The vectors r and 1’ are from the scattering origin to observation points
and to source points on the scatterers, respectively. The Green’s function can be expanded

in terms of cylindrical basis functions (in 2-D) as follows [58]:

glklr = 2'l) = =35 S n(kes) Rgtha(hre) (2:3)

where t,(kr) = H?(kr)e=/"® are the basis functions representing traveling waves and
Ry, (kr) = J.(kr)e=i"® are the basis functions representing the standing waves. Here,
Ry stands for “regular part of”, H(*)(z) is the nth order Hankel function of second kind,

Jn(2) is the nth order Bessel function, and ry (r.) means the larger (smaller) of r and r’.

'The time factor of e/** is suppressed
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Based on the same decomposition, the scattered and incident fields can be expanded
as [58]:
P (r) = zn:fn%/)n(z) =y" [ il > ] (2.4)
and
Pie(r) = Zn: a, Ry (r) = Rgp" a (2.5)

where 1 and Rg are column vectors filled with ¢,,(r) and Rgi,,(r), respectively and T stands
for transposition.

The T-matrix now is defined as [55, 58]:
/ =Ta (2.6)

The elements of T can be found by using (2.2), (2.3) and the boundary conditions. For a

detailed analysis of the single object T-matrix method, the reader is referred to [55,56, 58].

2.1.2 Recursive T-matrix Algorithm

The recursive T-matrix algorithm [15,33,60] uses the basic principle of single scatterer T-
matrix formulas in that for each object, the scattered fields from others are assumed a
part of total incident field. This way for every scatterer a T-matrix can be assigned. The
recursion starts with the T-matrices of individual scatterers, then one by one scatterers are
incorporated into the equation and the T-matrices are updated until, for every scatterer, the
final form of the T-matrix, including all multiple scattering effects, is obtained.

Formally, for L scatterers, the harmonic expansion of scattered field, similar to (2.4), can
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be written as [15]:
L

P () = DT (r) Ty Bipa (2.7)

=1

where Ty is the T-matrix for ith object in the presence of L scatterers and g, is the
translation matrix used to translate same type basis functions between scattering coordinate
center (z5,ys) and tth object’s local coordinate center (z;,;), i.e. standing waves in ¢th local
coordinate system to standing waves in Oth (scattering) coordinate system; or traveling waves
in 7th local coordinate system to traveling waves in Oth (scattering) coordinate system. The
translation matrix @ contains Bessel functions and complex exponentials. For details about

this matrix see Appendix A.

y Receiver Array
X
&:3) Y
% h Incident
B . . Planewave
DT ~ |(§:9) N

<
<

6/9) o
0§ %3 ) X LR ﬁ(ﬁ:q) §

OS
(XS’yS) - Oo1 [30,1

Figure 2.1: Near-field geometry and translation matrices

Fig. 2.1 pictorially shows the coordinate systems and how the translation matrices work.
Expansion of the scattered field in (2.7) is valid if all observation points are outside the circle

enclosing all scatterers. Following Chew’s derivation, the recursive construction of Ty can
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be written as [15, eq.10-11] :

n -1 n
Tos1(41)Bns10 = |T— Ty O an+1,z’T¢(n)ﬂi,an,n+1] Toy1(1) [ﬂn+170 + Y a1, T Bio

i=1 i=1
(2.8)
and
Titn+1)Bi0 = Tin)Bio + Titn)B: 0041 Tt (1) Bryr 0 (2.9)
wheren =1,2,..., L, =1,2,...,n and o, ; i1s the translation matrix used to change different

basis functions between reference coordinate systems (Fig. 2.1), i.e. standing waves in nth
local coordinate system to traveling waves in ith local coordinate system. For definition,
and structure of the matrix a, the reader is referred to Appendix A. The recursion starts
with the individual T-matrices, Ty(y), of the scatterers, i.e. the T-matrix of the 7th scatterer
when there are no other scatterers in the medium.

Because of the requirements on the loci of observation points imposed by (2.4) for single
objects and (2.7) for multiple objects, the scattering origin Os in Fig. 2.1 should be carefully
selected. The field expansions require that the scattering origin (s, ys) relative to O, must
be selected such that there must be at least one circle, centered at (zs,ys), encircling all
objects with no receivers inside it. When the observation points are in the far field, selection
of the scattering origin is not critical, since it is guaranteed that the receivers are outside
the limiting circle. For near field observations, however, the scattering origin needs to be
selected using the criterion presented in Section 3.2.1.

Theoretically the matrices o, 3, T are of infinite dimension. T-matrix algorithms trun-

cate these matrices with finite values N and M such that the residual error is below the
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machine precision or acceptable levels. Here N represents the number of harmonics used to
expand the fields at the scattering origin and M represents the number of harmonics used
to expand the fields in the objects’ local coordinate systems. Thus, the T-matrix is of size
M x M, B, is of size M x N and «; 41 is of size M x M. The parameters N and M are
related to the distance of scatterers from the scattering origin and the radii of the scatterers,
respectively. As the distances between scatterers and the scattering origin increase, N needs

to be increased, and as the radii of scatterers increase, M needs to be increased [15].

2.2 Multiple Signal Classification (MUSIC) Algorithm

The MUSIC algorithm is one of the most thoroughly studied and best understood subspace
based direction finding methods. It was originally developed by Schmidt [48] in 1979. The
performance improvement of MUSIC was so significant that it became an alternative to most
existing estimators, e.g. classical, and MVDR (Minimum Variance Distortionless Response)
beamformers. Later on, Stoica et al. [49,61] derived Cramer-Rao bound for the MUSIC
algorithm and investigated the relationship between MUSIC and maximum likelihood (ML)
estimators.

Like all other direction finding techniques, MUSIC assumes that the sources are located
infinitely far away such that the wavefronts at the receiver array are planar (Fig. 2.2). Based
on this assumption, MUSIC determines the angle at which a plane wave is incident on the

sensor array. Usually a uniformly spaced, N-element linear array samples M distinct plane
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Figure 2.2: Array processing when the sources are infinitely far away from the sensor array

waves (M < N) and the measured data at the sensor outputs are *:

y = Ax +n, (2.10)

where A = [a(01),a(0z), -+, a(fn)] with a(fy,) = [e7/Fdcostm  gmi2kdcoshm . o=jNkdcostm]T
d is the distance between consecutive receivers, k is the wave number in the medium of
propagation, x is M x 1 vector comprised of 1’s, and n is spatially and temporally white
Gaussian noise.

The experiment as represented by the data model in (2.10) is repeated many times in

order to determine the statistics of y. In particular, if L. experiments are performed, then

the maximum likelihood estimate of the spatial autocovariance matrix R is given by:

. 1 &
R=—3 vyl (2.11)
=1

where y; is the data measured at the [th experiment, and superscript H denotes the conju-

gate transpose. The MUSIC algorithm is based on eigenspace decomposition of the spatial

?The time factor of e/*? is suppressed
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autocovariance matrix R, into the signal and noise subspaces. Thus, we can write R as [28]:

A

R = UA,UY + U, [67)07 (2.12)

where U is the estimated signal subspace matrix and contains the M “signal eigenvectors”,
and U, is the estimated noise subspace matrix and contains N — M noise eigenvectors of

A2

multiple noise eigenvalue 6°. The projection operator onto the noise subspace is defined

as [28]:

A

I, = 0,0} (2.13)

The basic idea behind the MUSIC algorithm is that the reciprocal of the “distance” be-
tween the estimated noise subspace and the true noise subspace has sharp peaks around the
DOAs. Thus, if one plots this quantity versus all possible angles, estimates of DOAs can be
determined by the maxima of the angular spectrum. The spatial spectrum of the MUSIC

algorithm is, then, given by [28]:

a(6)"a(0)
P 0) = = 2.14
music () a(0)"T1,a(0) (2.14)
where a(f) = [e7/Fdcost  gmiZkdcost o=iNkdcosOIT j5 the direction vector.

It is important to realize that the conventional use of MUSIC implicitly assumes infinitely
distant radiators so that the scattered field has planar wavefronts at the sensor array. Thus,
the elements of the direction vector a(f) in (2.14) are complex exponentials indicative of plane
wave signals. However in subsurface detection applications, the receivers are in the near-
field region of the radiating sources, resulting in non-planar wavefronts, Fig. 2.3. Therefore,

in order to use the array processing techniques in subsurface detection either the direction
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Figure 2.3: Array processing problem geometry

vector a(f) in (2.14) should be filled with non-planar waveforms as in Chapter 5, or the
problem with non-planar wavefronts should be circumvented as in Chapter 4. Both these
approaches reconfigure the plane wave MUSIC such that the target localization problem
becomes determining not only the DOA, but also the range of the target from a point on

the array.



Chapter 3

Forward Scattering Model

In this chapter, we will present our contributions to the forward scattering model, the recur-
sive T-matrix algorithm. First, an alternative tessellation scheme for conducting scatterers
is introduced to further reduce the complexity of the algorithm, which makes it useful for
cases when both dielectric and metallic scatterers exist in the same medium. Then, it is
demonstrated that recursive T-matrix algorithm, originally used for calculating scattered
fields at the far zone, cannot be directly used for near field scattering problems. The scat-
tering origin has to be carefully selected to minimize the number of harmonics used in the
field expansions and, at the same time it should not violate the harmonic expansion given
in (2.7). Given the scatterer and receiver geometry, we present the formula to determine
the “optimum” scattering origin which minimizes the number translation harmonics, thus
minimizing the computational cost. It is also shown that the “optimum” scattering origin

creates a convergence problem in the addition theorem [62] identities used in the recursive

23
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T-matrix algorithm. With the modification introduced in this section, the convergence prob-
lem 1s circumvented so that the recursive algorithm can be used with near field measurement
geometries of Fig. 2.1. It is important to be able to calculate the scattered field in the near
field, since for most shallow subsurface detection problems like mine detection, the scattered

field is observed in the near field.

3.1 An Alternative Tessellation for Conducting Scat-

terers for Recursive T-matrix Algorithms

Traditionally, the recursive T-matrix algorithm has been applied in one of two manners.
In the case of dielectric scatterers, the whole object was decomposed into small cylinders,
low order harmonic expansions were used to represent the fields from each object, and the
recursive algorithm was used to solve the scattering problem [14,15,25,33]. For metallic
objects, the equivalence theorem was used to decompose the surface of the scatterer into
small strips, moment methods were then employed to find the individual T-matrices for each
strip, and the same T-matrix recursions were used to solve the overall scattering problem
[24,26,27,42]. By combining these two approaches, it is possible to calculate the scattered
field from a collection of both metallic and dielectric objects. For subsurface detection
problems, the ability to calculate the scattered field from both metallic and dielectric objects
is important. Typical examples may involve calculation of the scattered fields from metallic

and dielectric mines buried side by side, or a mine that is comprised of both metallic and
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dielectric parts. Thus, we attempt to further simplify the use of the recursive T-matrix
algorithm with conducting objects by eliminating the need to use MoM to find the individual
T matrices. Since all scatterers are finely tessellated, this technique can be used to find the
scattered fields not only from simple shapes but also from more complex shapes at the

expense of increased computation time.

Figure 3.1: Tessellation of metallic cylinders along their perimeters

In this part of the research, we have demonstrated that based on the equivalence theo-
rem, the recursive T-matrix algorithm given in (2.8) and (2.9) can be used to calculate the
scattered fields from metallic objects by placing small metallic cylinders on their perimeter
as depicted in Fig.3.1. We have shown that [16] one may make use of tessellation with cylin-
ders and still obtain highly accurate solutions. In particular, by using cylinders, the need
to use MoM to find individual T matrices is eliminated since one may employ the closed-
form harmonic expansion method to find the individual T matrices [60] of scatterers. Even
though the examples in the next section depict the scattering from only conducting materi-

als, this tessellation approach can also be used when both metallic and dielectric scatterers
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are present in the same medium as shown in Section 3.2.4.

3.1.1 Numerical Results

We now verify that replacing metallic objects with small metallic cylinders along their
perimeters actually produces the results reported in the literature or results obtained an-
alytically. First we define the terms used in this section. The normalized scattering field

pattern is defined as:

| ()] }
F(¢) =10logyo$ lim 27r 5= (- 3.1
(@) g{Hm ([ (o)) 31)

Normalized power density, or the “gain”, is defined as:

. e ()]
G = lim . 3.2
20 = M T e (P -

In all examples the cylinders are embedded in free space with an K, polarized plane wave
incident on them. The first example is the scattering from a single circular cylinder of radius
0.8X (ka = 5). As seen in Fig. 3.2(a), the cylinder is approximated by 60 smaller cylinders
along its circumference which corresponds to a sampling 12 cylinders per wavelength. The
normalized scattering field pattern, F'(¢), obtained from the recursive algorithm is plotted
against the analytical solution in Fig. 3.2(b). The second example is the scattering from two
circular cylinders with radii of 0.8\ (ka = 5) and separated by a distance 2.55\ (kd = 16).
As in previous example, each cylinder is approximated by 60 small metallic cylinders with 12
cylinders per wavelength. Fig. 3.3(a) shows the scattering geometry and Fig. 3.3(b) compares

the normalized scattering patterns obtained using the recursive T-matrix algorithm with
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Figure 3.2: Comparison of normalized scattering field pattern calculated using the recursive
T-matrix algorithm with the analytically calculated one.

those given in [63]. The last example shows the normalized power densities for a slanted
rectangular cylinder for two different sizes. The geometry is shown in Fig. 3.4(a) and the
far field power densities, Gg(¢), for ka = 3 and ka =5 (a = 0.48) and a = 0.8, both with
a = 2b) are depicted in Fig. 3.4(b). For both cases, the perimeter is sampled at approximately
13 cylinders per wavelength. In this figure, the scattering patterns are compared with the
results reported in [64]. As these plots have shown, the scattered fields from metallic objects
can be found by replacing these objects with smaller cylinders along the perimeter and then
using the recursive T-matrix algorithm given by (2.8) and (2.9). All examples here show the
scattering from only conducting materials. The dashed curve Fig. 3.8 in Section 3.2.4 depicts
an example where both metallic and dielectric scatterers are present in the same medium,

and the metallic scatterer is tessellated with small cylinders along its circumference and the
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algorithm with [64].



CHAPTER 3. FORWARD SCATTERING MODEL 29

dielectric scatterer is tessellated with small cylinders over its cross-section.

3.1.2 Summary

We have presented a new application of the recursive T-matrix algorithm to calculate the
scattered field from a single or multiple metallic cylinders of arbitrary shapes. Using the
equivalence theorem each metallic object is replaced with small metallic cylinders along
its perimeter, then scattered fields are calculated using the recursive T-matrix algorithm.

Results are verified with those in the literature and analytical calculations.

3.2 A Modified Recursive T-Matrix Algorithm for Near

Field Scattering

This part of the research was motivated by the desire to obtain a fast, accurate forward
modeling code for ground penetrating radar type geometries illustrated in Fig. 2.1. As
discussed in Chapter 1 this application requires the computation of near field values of
scattered field arising from mixtures of dielectric and metallic objects. To effectively handle
these requirements, we propose a formulation of the recursive T-matrix algorithm based on
the representation of the scattered field from each full object using high order expansions
(i.e. large M) in the recursions in (2.8) and (2.9).

In principle, this approach supports the computation of scattered fields from arbitrary
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collections of dielectric and metallic objects. In fact, we demonstrate that this is true specif-
ically for far-field calculations. Unfortunately, the use of higher order expansions results in
an instability in a particular harmonic expansion formula upon which the original recursive
T-matrix algorithm is based when near field computations are required. In the remainder
of this section, we describe explicitly this difficulty and propose a modified recursion which
by-passes this addition formula and results in a stable method for solving the problem of

interest.

3.2.1 Determination of Scattering Origin

Unlike most radar applications, in a GPR measurement geometry the scattered field is gen-
erally observed in the near or intermediate field. Since the harmonic expansions upon which
the recursive T-matrix algorithm is based have validity regions (see eqn.(2.4)), there are cer-
tain limitations as to where the scattering origin can be placed relative to the receiver array.
In this section, we will briefly discuss how the scattering origin is determined, when the
object locations and radii are given for the GPR-type configuration in Fig. 2.1. The triplet
(x4, yi; a;) represents @ and y coordinates of the center and radius of the ith circular object
relative to the global origin O, and L is the number of objects buried under the receiver
array.

Because of the requirements on the loci of observation points imposed by (2.4) for single
objects and (2.7) for multiple objects, the scattering origin (z,y;) relative to O, must be

selected such that there must be at least one circle, centered at (s, ys), encircling all objects
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Figure 3.5: Scattering Origin Regions

with no receivers inside it. The dashed circle in Fig. 2.1 depicts such a circle. Assuming a

linear receiver array, the condition to choose the scattering coordinate system is:

R. < |ys| (3.3)

where

R, = max {\/(:1:5 —zi)?+ (ys —vi)* + az} ) (3.4)

1e{1,2,...,.L}
This condition must be met by individual objects as well as by all objects collectively.
Therefore, we can rewrite the condition in (3.3) and (3.4) as the intersection of regions as

follows:

(25,9s) € {(:E,y)l Ol Vi@ =z + (y — )2 < ly| - az} : (3.5)

In fact, each term under the intersection sign in (3.5) defines the region under an upside-
down parabola. Fig. 3.5 depicts the parabolic regions for three objects. Placement of objects
in this figure is very typical of a mine detection problem. In this geometry, any point inside

the shaded area, representing the intersection of all three parabolic regions, can be selected
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as the scattering origin. Ideally, we can place the scattering origin at y;, ~ —oo. This
choice of (zs,ys) will always satisfy the condition in (3.3). However, the order of harmonics
used in the T-matrix algorithm is proportional to the distance between scattering origin
and object centers [15], i.e. N o kr; where N is the harmonic used for translations to and
from the scattering origin, k is the wave number and ¢ = 1,2, ..., L. Therefore, the optimum
scattering origin should be within this shaded area and as close as possible to the objects in
order to minimize the harmonics used for translations. As we show in Section 3.2.2, with this
choice of (z,,ys), the distances between object centers and the scattering origin can be very
close, which causes convergence problems in the addition formulas of T-matrix algorithm.
In Section 3.2.3, we describe a modification in the recursive T-matrix algorithm that lets us

use the algorithm with optimum choice of scattering origin.

3.2.2 Problems With Higher Order Harmonic Expansions

The convergence problems alluded to earlier can be traced to the fact that equation (2.8)
uses the identity

Apq = 6p,0a07q if |£q| Z |Ep| (36>

which in turn requires the ordering of the objects such that |ry| < |ry| < ... <|rz|. By using

definitions of a4, B, and o, [33,58], we can write the (m,m’)th entry, [a, ] as:

m,m’’

N
H (g, e =m0 = Jim 37 (ke [)e @A 5D (] |4
— 00 TL:—N

(3.7)
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where r,, = |r,,le7% =1, —r, and r; = |r;]e7??, i = p,q. This truncated sum does not

converge if r, = r, + ¢ where || is small as compared to |r,| and |r |, and if m —m' is a
large number (—M < m < M and —M < m' < M.) Fig. 3.6 shows the convergence of the
series in (3.7) for the corner entries of (3.6) for M = 5, i.e. max{m — m'} = 10. Here we
have three curves, showing the convergence for 6 = 0.1r,, 6 = 0.25r, and 6 = 0.5r,. M > 5
and ¢ < 0.1r, are typical parameter choices for the problems of interest in this research. It
is clear from this figure that as the magnitudes of two vectors get closer, the convergence
rate slows. Chew et.al. [24] suggested a windowed addition theorem (which is originally
developed for H, polarized scattering) to overcome this problem, but the implementation of
this method introduces two new variables to choose in order to set the width and shape of

the window. In addition, the implementation of windowed summation introduces errors in

the sum for vectors for which the convergence is not a problem.

— 50%
0'H . 250%
10%

Truncated sum

L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

N

Figure 3.6: Convergence pattern of the truncated sum in the addition formula for M=5.

It should be noted that not all valid scattering origins for a given problem give rise to

this convergence problem. Indeed, trial and error will quickly demonstrate that, for a given
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collection of scatterers, there exist scattering origins where the original T-matrix recursions
work just fine. These points are typically far from the scatterers, thereby requiring large N in
the recursions, and moreover there does not appear to be an easy a priori means to determine
whether a chosen origin will or will not give rise to a convergence difficulty. Thus, in the
following sections, we introduce a modified recursion which bypasses the convergence issue
for all valid scattering origins thereby allowing us to use the closest valid origin (i.e. smallest

N) to solve the problem.

3.2.3 Modified Recursive T-Matrix Algorithm

The recursion in (2.8) and (2.9) takes place over the quantities Ty,)3; o, and we have deter-
mined that the convergence problem stems from (3.6). Therefore, to eliminate the need to
use this identity, we go one step back in the derivation of the recursion formulas, and write

(2.8) as [15, eq.7-8]:

n -1 n
Tn—}—l(n—}—l)ﬂn_}_lp = (I—- Tn+1(1) Z an+1,z’Ti(n)ai,n+1] Tn—|—1(1) [ﬂnﬂp + Z Oén+1,z'Tz’(n)ﬂi,o
=1 =1
(3.8)
and (2.9) as:

Ti(n+1)5¢,o = Ti(n) [5@0 + ai,n—l—lTn—f-l(n—}-l)ﬂn-I—l,O] (3-9)

without using (3.6). Since (3.6) is not used in (3.8) and (3.9) we can base a new recursion

on these two equations and the identity:

52',050,2' =1 (3-10)
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where 3,5 1is M x N, By;is N x M, and (3.10) holds as long as N > M which is always
true as long as objects are not overlapping. By using (3.8), (3.9) and (3.10) the modified

recursion equations can be written as:

n -1 n
Tn—l—l(n—l—l)ﬁn_}_lp = |I- Tn+1(1) Z an—}—l,iTi(n)ﬂi70ﬂ07iai,n+l‘| Tn—l—l(l) [ﬂn+170 + Z an—l—l,iTi(n)ﬂip
=1 =1

(3.11)

and
Ti(n+1)ﬂi,0 = Ti(n)ﬁi,o + Ti(n)ﬁi,oﬁo,iai,nﬂ Tn+1(n+1)ﬂn+170- (3.12)

Note that the recursion is still over the same block, T;,)3; o, but since (3.6) is eliminated
these new recursion equations do not suffer from convergence problems.

As reported in [15] the original recursive T-matrix algorithm has a complexity of O(M?N)
per recursion. It is easily shown that the modified algorithm also has a complexity of
O(M?*N) per recursion with a slightly larger constant in front of M*N resulting from extra
multiplications to obtain Ty, from Ty, 8; 5. To calculate the scattered field from L objects,
L(L — 1)/2 recursions are required. Therefore, the overall complexity of both the recursive

and modified recursive algorithm is O(L?*M?*N).

3.2.4 Numerical Results

We now verify the modified algorithm against published results and then provide a collection
of examples that are relevant for near-field applications. As most previously published results
for scattering problems involve far-field computations, in verifying our approach we also

demonstrate its ability to handle far-zone calculations. Where appropriate, we compare the
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Figure 3.7: Comparison of echo width with [65] for two equal dielectric cylinders

computational cost of our higher-order, modified recursive algorithm (HO-MRA) against
two alternate T-matrix approaches. First, we implement the lower-order, original recursive
algorithm (LO-ORA) of [15] for near and far-field problems. For far-zone problems with
mixed dielectric and metallic scatterers, we consider high-order (i.e., large M) forms of the

original recursions (HO-ORA) (2.8) and (2.9), where, because of the far field assumption,

the instability problem is not an issue.
Before we proceed, we define the normalized echo width as [65]:

2

: (3.13)

27r

on(¢) = lim ~

T—00

77Z}Sca (E)
¢inc(£)

where A is the wavelength in the medium of propagation.
We first calculated the scattered field due to two dielectric cylinders placed in free space,

each with relative dielectric constant of 2.6, and radius of 0.5A. The distance between the
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cylinders is 3 (Fig. 3.7(a).) An E, polarized plane wave is incident from 0°. Fig. 3.7(b) shows
the square root of the echo width calculated using the HO-MRA of this section (solid line),
the LO-ORA of [15] (dashed line) and results in [65] (circles). Since HO-ORA produced
essentially the same fields as HO-MRA, the results of this approach is not shown here.
Fig. 3.8(b) shows a similar comparison for a mixed object case depicted in Fig. 3.8(a),
i.e., one cylinder is metallic and the other is lossy dielectric with ¢, = 4 — 35. In this
example, to calculate the scattered field using LO-ORA, the conducting scatterers have to
be tessellated along their perimeters. In [26,27], Giirel et al. use metallic strips and patches,
whose individual T matrices are found via MoM, with LO-ORA. Adapting their approach,
one can tessellate conducting scatterers with flat or curved metallic strips in the examples.
Alternatively, [16] uses small sub-cylinders along the perimeter of conducting scatterers for

tessellation. We have used the second approach with LO-ORA to calculate the scattered
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Figure 3.9: Scattered electric fields from 3 dielectric objects

field since it does not require the use of MoM. As in the previous example, the square root
of the echo width obtained using the modified algorithm, LO-ORA and that reported in [65]
are very close.

Now, we present scattering examples that are representative of near-field applications.
All objects are assumed to lie in a homogeneous, lossy background (e, = 6eg, o, = 5 x 1072
S/m); the operating frequency is 1 GHz and a plane wave is incident from 907, see Fig. 3.9(a).
We first find the scattered field from 3 dielectric objects with diameters 7.5 em as shown in
Fig. 3.9(a). All objects have a relative permittivity of 2.5. The scattering origin has to be
placed far away from the receiver array (z; = 0.5 m, y, = —1.25 m), because the objects
are close to the receivers, which in turn requires a large value, 120, for N. For this case, we
calculated the scattered field using both the LO-ORA and HO-MRA defined in Section 2.1.2

and Section 3.2.3, respectively. Fig. 3.9(b) shows the normalized scattered fields observed
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along the receiver array using the HO-MRA (solid line) and the LLO-ORA (circles). It is

clear from this figure that both approaches yield very similar fields.

The second near-field example depicts a mixed object case since the objects at the sides

are metallic and the object at the center is dielectric with a relative dielectric constant of

2.5, Fig. 3.10(a). The locations of the objects are the same as the previous example, and the

scattering origin is still at (x5 = 0.5 m, y; = —1.25 m). As a result N = 120, and since the

object radii are relatively small M = 12. The normalized scattered field observed along the

receiver array for mixed object case is shown in Fig.3.10(b). As in the far-field example, for

LO-ORA implementation, metallic objects are tessellated using the approach in [16].

We now compare computational costs of the HO-MRA, LO-ORA, and HO-ORA. To

ensure a fair comparison, whenever a tessellation is required, we set the density of sub-

scatterers to be close to that used in [15]. Performance of each approach is measured by the

1
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HO-MRA | LO-ORA | HO-ORA
Fig. 3.7 0.6 1150 0.64
Fig. 3.8 1.9 766 1.9
Fig. 3.9 18.94 857 c/p
Fig. 3.10 18.95 393 c/p

40

Table 3.1: Cost comparison for recursive algorithms. All numbers in FLOPS/10°, and ¢/p
means convergence problems in near field calculations

HO-MRA LO-ORA HO-ORA
Fig. 3.7 | L=2,M=7,N=23 | L=398,M=1,N=23 | L=2,M=7,N=28
(z5,y5)=(0,0) (25, 15)=(0,0) (25, 15)=(0,0.3\ )
Fig. 3.8 | L=2,M=10,N=40 | L=249,M=1,N=40 | L=2,M=10,N=44
(z5,y5)=(0,0) (z5,95)=(0,0) (25, 75)=(0.3),0)
Fig. 3.9 | L=3,M=12,N=120 | L=93,M=2,N=120 c/p
(s,y5)=(0.5,-1.25) | (x5, ys)=(0.5,-1.25)
Fig. 3.10 | L=3,M=12,N=120 | L=63,M=2,N=120 c/p
(zs,y5)=(0.5,-1.25) | (x5, ys)=(0.5,-1.25)

Table 3.2: Parameter list for Table 3.1
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floating point operations (flops) required to calculate the scattered field. Table 3.1 shows the
flop count of all three recursive T-matrix algorithms that can be used to find the scattered
fields from multiple, spatially separated cylinders. Table 3.2 shows the number of scatterers
L, number of harmonics M, N and the location of the scattering origin (x5, ys) used in these
examples.

The first two rows of Tables 3.1 and 3.2 correspond to examples from the two-dimensional
scattering literature. For these cases, all observation points are in the far field so that the
convergence problem alluded to earlier is not an issue. As seen from Table 3.1 LO-ORA’s
flop count is quite large as compared to HO-MRA and HO-ORA. The reason behind this
large cost is that numerous sub-scatterers are required for each cylinder. One would expect
the computational complexity of HO-ORA to be less than that of HO-MRA since the latter
needs extra multiplications to obtain Ty, from Ty,)3;,. However, since the scattering
origin is placed at a different location in HO-ORA to prevent the convergence problem, the
number of harmonics N has to be increased accordingly, which increases the flops required
for HO-ORA considerably.

The last two rows of Table 3.1 show the flops needed to find the scattered field for near-
field examples and Table 3.2 shows the number of scatterers, harmonics and the locus of the
scattering origin used in these examples. Unlike previous examples, these geometries require
measuring the scattered field in the near field with a linear receiver array, which restricts
the regions where the scattering origin can be placed. As we have shown in Section 3.2,

the choice of optimum scattering origin results in convergence problems in HO-ORA for
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near-field geometries. Alternatively, LO-ORA can be used in these problems, however, one
has to spend approximately 45 and 21 times more flops than it is needed for HO-MRA for

examples in Fig. 3.9 and Fig. 3.10, respectively.

3.2.5 Summary

We have presented an efficient, stable, recursive T-matrix algorithm to calculate the scattered
field from a heterogeneous collection of spatially separated objects. The algorithm is based
on the use of higher-order multipole expansions than those typically employed in recursive
T-matrix techniques. The use of these expansions introduces instability in the recursions
developed in [15,33] specifically in the case of near-field computations. By modifying the
original recursive algorithm to avoid these instabilities we arrive at a flexible and efficient
forward solver appropriate for a variety of scattering calculations. The algorithm can be
applied when the objects are dielectric, metallic, or a mixture of both. We verify this method
for cases where the scatterers are electrically small (fraction of a wavelength) or relatively
large (1-2 X). While developed for near-field calculation, this approach is applicable for far-
field problems as well. Finally, we demonstrate that the computational complexity of this

approach compares favorably with comparable recursive algorithms.



Chapter 4

Detection and Localization: Subarray

Processing

In this chapter, we will present the Subarray Processing (SAP) approach for detection and
localization of subsurface objects. In Section 4.1 we will define the problem and motivation
behind the algorithm. In Section 4.2, we present the details of the algorithm, i.e. the partition
of the array and DOA determination, crossing analysis and clustering, target extraction,
and frequency diversity. We continue this chapter by presenting the numerical examples in

Section 4.4, and conclude with a summary in Section 4.5.

4.1 Introduction

The localization problem of particular interest is shown by the measurement geometry in

Fig. 2.3. A plane wave illuminates the region of interest assumed to be a homogeneous,

43
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possibly lossy medium containing one or more targets located in the near field of an array of
receivers. The array structure of the receivers in Fig. 2.3 implies that the high-resolution ar-
ray processing methods [28,29] would be appropriate for the near-field localization problem.
Adapting such methods to the problem of interest here presents a collection of interesting
challenges. First, these array processing techniques typically assume that the sources are in-
finitely far away so that the waveform received on the array is planar. For our problem, since
the objects are located relatively close to the receiver array, this key assumption is not valid.
Second, for such near-field objects both range as well as the direction of arrival has to be
determined in order to localize the object. Finally, a problem common to both the near-field
and far-field array processing algorithms is that the number of incident waveforms/targets
is not known a priori.

To deal with the non-planar nature of the wavefronts over the array in this chapter, we
partition the receiver array into sub-arrays, such that the scattered field is locally planar
at each sub-array, i.e. the scatterer is in the far-field of the sub-array. Then, using high
resolution array processing techniques, each sub-array identifies a single direction of arrival
(DOA) corresponding to the most dominant scatterer in the vicinity of that sub-array. The
localization of the objects in terms of their ranges and bearings is achieved by triangulating
the directions of arrival from all subarrays which in turn results in a crossing pattern of
DOA intersections. Examination of typical crossing structures reveals that there are two
distinct patterns where the crossings are either dense or sparse. Dense crossing regions

clearly indicate object locations and are distinguished from “background” regions where the
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crossings are sparse. The problem of object detection and localization then is reduced to the
processing of the crossings obtained from our triangulation procedure.

For this purpose, we introduce a simple yet accurate stochastic model describing the
spatial distribution of DOA crossings. Such modeling is warranted for two reasons. First,
due to the noise in the data, the DOA intersection points are inherently randomly distributed
in the plane. Second, such modeling forms a solid basis for algorithm development and
quantitative performance analysis in the form of detection and false alarm rates.

In this work, we model the two classes of crossings (dense vs. sparse) using a pair of
spatial Poisson distributions [66]. The Poisson model in the target region has a large rate
parameter while that of the background region is considerably smaller. Based on these target
and background models, we develop a hypothesis testing technique for the joint estimation
of the rate parameters and the localization of dense crossing regions which indicate the
existence of targets. Simple post-processing of the hypothesis testing results provides both
the number of targets and estimates of their locations. Finally, we verify that the Poisson
model is in fact a rather accurate description of the spatial distribution of crossings.

We demonstrate the performance of this approach for the detection and localization of
multiple mine-like and drum-like targets located in the near field of the receiver array. For
mine-like targets relative positions of the objects are changed to see the effect of object
geometry on detectability. We show that the detectability improves, and false alarm rate
decreases as the objects are located far apart. For drum-like targets, we demonstrate the

effect of relative depth as well as relative distance between objects on detectability.
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Figure 4.1: Single object localization with SAP: metallic mine-like object in lossy background

4.2 Algorithm

A key element of the work in this thesis is the development of a sub-array processing
method for detection of multiple objects in the near field of an array. In Section 4.3, we
examine such a technique for detection and localization of single metallic and dielectric
objects. As illustrated in Fig. 4.1 (and as is generally the case), the localization problem
in Section 4.3 is straightforward since typically all crossings are densely packed within the
radius of the object. Therefore, the location of the object can be inferred quite easily. For
multiple objects, however, the crossing pattern is quite complicated, since DOAs of different
objects create unwanted crossings as shown in Fig. 4.2. The clusters of object crossings are

embedded in this unwanted background crossings, and have to be extracted carefully.
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Before introducing the details of our approach, we want to briefly describe the algorithm

with the help of flow chart in Fig. 4.3. The algorithm proceeds as follows:

1. Sub-array processing: At this stage of the algorithm, we partition the receiver array

so that the observed scattered field is locally planar at each sub-array. The directions

of arrival (DOAs) are found using MUSIC as if planar waves are impinging on the sub-

arrays. The criterion for which the impinging waves are locally planar over the subarray

aperture is presented in Section 4.2.1. The DOAs are then triangulated to obtain the

crossing pattern. This stage of the algorithm is repeated several times for plane waves
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at different temporal frequencies to improve performance and resolution. The crossing
patterns obtained at different frequencies are overlaid to yield an aggregate crossing

pattern which is, then, passed onto the second stage of the algorithm.

2. Crossing analysis: In the second stage, the crossing pattern is modeled with two
Poisson counting processes, corresponding to target and background regions. After
estimating the required rate parameters using the crossing data, a hypothesis testing
procedure is employed to determine a set of “window” regions corresponding to areas

containing targets.

3. Target extraction: At the final stage of the algorithm, the individual detection
windows are aggregated into a number of spatially disjoint groups. The total number
of groups indicates the estimated number of targets, and average coordinates of centers

of all windows in a group indicate the estimated center of the corresponding target.

4.2.1 Sub-array Processing

The direction finding algorithms traditionally assume plane wave incidences and determine
the DOA associated with each plane wave. For near-field problems, however, both DOA
and the range of the source (in our case scatterer) should be acquired. Here, we describe
a sub-array processing (SAP) scheme which only requires one-dimensional search in DOA
space of each sub-array. The idea behind the sub-array processing is that if the aperture of
the sub-array is small enough, the scattered field impinging upon it can be assumed locally

planar. Planar wavefronts are a consequence of scatterers being in the far field of the receiver



CHAPTER 4. DETECTION AND LOCALIZATION: SUBARRAY PROCESSING 49

array. Therefore, given the subarray span, D, we can determine the distance beyond which

the scatterer is in the far field using [67]:

(4.1)

where A is the wavelength in the medium of propagation. Any source located farther than
the limit given in(4.1) is in the far field of the subarray, and thus the wavefields emanating
from that position will have approximately planar wavefronts at the subarray aperture. For
practical problems, however, the distances between the scatterers and the subarrays are not
known. Therefore, the subarray span should be chosen small enough to guarantee that the
expected distances to the targets are more than the limit given in (4.1). Once the planar
wavefronts are guaranteed at the subarrays, the plane wave MUSIC can be used to find
DOAs at each sub-array, and by triangulation, it is possible to localize the scatterers.
When there are M > 1 objects in the vicinity of the array (it is assumed that the number

of sensors in each subarray is always greater than M), we have two options in terms of how

MUSIC is employed:

1. Each sub-array finds M DOAs for all locally planar waves scattered from M objects,

or

2. Each sub-array finds one DOA for the locally planar wave dominant in the total scat-

tered field (Fig. 4.2 shows M = 2 case).

Given M objects and S sub-arrays, for each operating frequency the first and second options

result in 0.55M(SM — 1) and 0.55(S — 1) crossings, respectively. The first option creates
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many unwanted crossings when DOAs belonging to different objects intersect. In addition,
we have to know the number of objects under the array to use this option. On the other
hand, the second option does not require the knowledge of number of objects, and the
scattered fields from targets closer to the sub-arrays, particularly in a lossy medium such as
soil, dominate the total scattered field at the sub-arrays. This option may fail to find DOAs
for objects for which the scattered fields are at comparable strengths. For some cases, it
may also prevent determination of a DOA for a weak scatterer, if there is a strong scatterer
nearby. Given all these pros and cons, the latter option seems more practical especially when
one wants to avoid estimating the number of scatterers first, and is used in the remainder of
this chapter.

Once one DOA at each sub-array is determined, all DOAs are triangulated to estimate the
target locations. Fig. 4.2(a) shows the triangulation of DOAs, and (b) shows the crossings.
In contrast to the single object case, for multiple objects, the crossing pattern may get quite
complicated since DOAs belonging to different objects also intersect each other to create
unwanted crossings. Thus, a second level of processing is required to extract the clusters

indicating the estimated object centers.

4.2.2 Crossing Analysis

In this section we present an approach that models the DOA crossings with Poisson point
processes. Inspecting Fig. 4.2(b), we see two distinct regions where the density of the cross-

ings are quite different: in the first region (background region) the crossings are sparse, and
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in the second region (target region) the crossings are dense. By exploiting this difference, it is
possible to isolate target locations. Hence, we introduce a Poisson model for DOA crossings
which has a large rate parameter (intensity) in target regions and a small rate parameter in
the background region.

Formally, for a given crossing pattern, we count the number of crossing Y;, 3 = 1,2,---, N,
in a window of size w, X w,, where N, is the total number of non-overlapping windows, w,
and w, are the width of the windows in z and y directions, respectively. The windows must

be non-overlapping to guarantee the independence of random variables Y;.
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Figure 4.4: Fitness to Poisson model for the example of Fig. 4.6. Solid lines are fitted to

data using linear least squares

In order to ensure that Y; is Poisson distributed, we tested for fitness to Poisson dis-
tribution by using the graphical technique presented in [68]. The technique proposes that
for each count k observed in Y;, we plot k versus (In k! + In F}) where F}, = Eﬁy:yl Y; = k]

is the number of data values Y; equal to k. If the fit to the Poisson model is satisfactory,

then the plot should form a straight line with slope approximately In A, where X is the rate
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parameter of the distribution. When we apply this test to a typical crossing pattern, instead
of a straight line, we observed the curve in Fig. 4.4. By examining this curve, we notice that
it can be decomposed into two parts, each roughly corresponding to a straight line. The first
part is when the crossing count k is small (between 0 and 2), and the second part is when
k is large (greater than 3.) It is clear that these two regions correspond to the background
process which is expected to have a small count of crossings, and the target process which
is expected to have a large count of crossings. Furthermore, using these two approximately
linear regions, we can decouple background and target processes by identifying k; and Fj;
for the background, and k; and Fj; for the target regions where &k, = 0,1,2, k; = 3,4, -- -,
N,

Fip = Eﬁy:yl [Y; = k] and Fy; = 57,2, [Y; = ky]. Then, the rate parameters for the background

and the target regions are given by their maximum likelihood estimates [68]:

1 2
M=+ > kyF, (4.2)
b kb=0
and
. 1 &
At = N E ki Ft, (4.3)
i k=3

where Ny = 37, Fp and Ny = 34, Fy;. Having estimated j\b and j\t, the probability mass

functions in the background and target regions can be expressed as:
N N 1 A
fx(k|Background, \y) = P{X = k|Background, Ay} = He_A")\f (4.4)

and

N N 1 S
fx(k|Target, \;) = P{X = k|Target, \;} = He_At)\f. (4.5)
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To extract crossing clusters, we sweep the region of interest with a test window of size
w, X wy. It 1s important that the area of the test window is equal to the area of the non-
overlapping windows used in estimating the rate parameters. At each location of the test
window, we count the number of crossings 7}, 3 = 1,2, -+, Nyst, where Ny is the total
number of overlapping sweep windows in the region of interest. The number of overlapping
test windows Ny defines the resolution of detection, and it is greater than V,. Since we are
going to test each T} one by one, the use of overlapping windows is allowed. The hypothesis
test permits us determine whether the test window is over a background region or over a

target region. The hypothesis test is then formally written as:

e Hy: T is Poisson distributed with a small rate parameter j\b,

e Hy: Tj; is Poisson distributed with a large rate parameter j\t.

Based on this hypothesis test, if Hy is true, we decide that the window belongs to a back-
ground process with a small intensity. However, if H; is true, we declare that the window
belongs to a target process with a large intensity and call it a detection.

The generalized likelihood ratio for the hypothesis test is formed in terms of the proba-

bility mass functions of (4.4) and (4.5) as:

ATy = LxalHr )
Ix(T;[Ho, Ap)

The decision is, then, made based on the generalized likelihood ratio test:

n{A(T)} =T} 3 K, (4.6)
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where the decision threshold, K, is found from a specified false alarm rate Py, using (4.7)
below. This means that all windows which have K or more crossings in them will be declared
as target locations. The probability of false alarm Py, can be written in terms of the decision

threshold K and probability mass function of background process in (4.4) as :

Pj, = f: Fx (k| Ho, X). (4.7)

k=K

Given the decision threshold K, the probability of detection for the Poisson model developed
in this section is given by:

Py = fj Fx (k[ Hy, A). (4.8)

k=K

It might be argued that since target windows are obtained via thresholding, there would
be no need for a Poisson-based model as described in this section. A plain thresholding
scheme on DOA crossings would also locate the targets successfully. However, the Poisson
model provides a solid groundwork for a detailed statistical analysis. With the model, it
is possible to define probabilities of false alarm and detection. Based on these statistical
analyses, it is possible to make educated predictions about the performance of the system

under different conditions.

4.2.3 Target Extraction

Hypothesis testing with the Poisson model results in detection windows as shown in Fig. 4.6.
By looking at this figure, a human operator may conclude the target locations and their
numbers. However, we want the detection algorithm to do these decisions and calculations

for us automatically. In effect, we want the algorithm to yield the number of targets in
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the region of interest and their estimated locations, rather than the intertwined pattern of
detection windows.

The pattern of detection windows suggests that the detection windows belonging to the
same targets overlap. Therefore, we classify the detection windows so that all overlapping
windows form a distinct group. The number of targets is, then, equal to the number of groups
and the estimated object centers are obtained by averaging the coordinates of the windows
in each group. The grouping algorithm we use, therefore, proceeds as follows. Start with the
first window on the list of detection windows and place it in the first group. For each of the
other windows, test if they overlap with any window in the kth group for £ = 1,2,---, G,
where (. is the number of currently available groups. If the window overlaps with only one
group, add it to that group. If the window overlaps with more than one groups, merge those
groups, and reduce the number of current groups (. accordingly. If the window does not
overlap with any windows among (. groups, then form (G, + 1)th group with that window
and increment G.. When all detection windows are classified, (G, gives the number of objects,
and averaged coordinates of all windows in each group give the estimates of center of the

objects they represent.

4.2.4 Frequency Diversity

Frequency diversity is often used in detection applications for two important reasons: to
increase the resolution (high frequencies) and to allow radar signals to penetrate deeper into

the medium (low frequencies). Therefore, with a wide frequency range, one can ideally get
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more resolution in the vicinity of the radar, and more penetration to probe deeper objects.
To take advantage of these benefits, we use our sub-array processing algorithm in a multi-
frequency scheme. For each frequency the sub-array processing described in Section 4.2.1
is carried out to obtain the DOAs and the crossing pattern. Then, these multiple crossing
patterns are overlaid to give an aggregate crossing pattern which is modeled as the Poisson

counting processes in Section 4.2.2.

4.3 Single Object Localization Examples

In this section, we will present examples about single object localization using the sub-array
processing. The main difference between multiple and single object localization is that for
single object case, the DOA crossings tend to cluster in one region. We can obtain the
estimated target centers by directly averaging the crossing coordinates. Therefore, there
is no need for the crossing analysis with Poisson distribution presented in Section 4.2.2 or
the target extraction presented in Section 4.2.3. Frequency diversity may be employed to
improve the detection performance. However, since we consider simple detection examples,
we will only use 1.0 GHz operating frequency in this section. The scattered field is observed
along a 16-element uniform, linear receiver array. We considered three detection scenarios.
The first case involves a relatively small metallic object (SM), the second case is a small
dielectric object with relative permittivity 2.5 (SD) and the third case is a larger metallic
object (LM). The first two cases correspond to mine detection problems where objects are

relatively small (7.5 ¢cm in diameter) and buried shallow (the centers are 15cm below the
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array). The last case corresponds to waste container detection problem where the object is
larger (60cm in diameter) and buried deeper (the center is 120cm below the array). For the
SM and SD experiments the sensor array spans a 30cm distance as opposed LM case where
it spans 75cm. In all examples in this section, the objects are positioned at the mid-point of

the array, and the signal to noise ratio is defined to be:

E."E,
Mo? '’

Snr —

where Eg is the scattered field measured over M-element receiver array, and o2 is the noise

variance. The estimation error is defined as:

V(A2)? + (Ay)?

a

(4.9)

FError =

where Az and Ay are the difference between true center coordinates (zo,y0) and estimated
center coordinates (Z,9) and «a is the radius of the target.

The first group of results show that the SAP can successfully localize the objects within
their supports under different soil properties. Fig. 4.5(a-c) shows the 10 base logarithm of
estimation error for SM, SD, and LM cases. The objects are estimated within their support
when the error measure given by (4.9) is less than one, or its 10 base logarithm is less
than zero. The white boxes in these figures indicate conductivity and relative permittivity
combinations corresponding to realistic soil conditions [69]. It is clear that SAP can locate

the targets within a fraction of their radii for all three cases, for all soil conditions.
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Figure 4.5: The estimation error plotted against background and signal to noise ratio vari-
ations. The images in (a)—(c) represent the base 10 logarithm of the error. Thus, values
below zero indicate that the center of the object can be localized to within the support of

the target.
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4.4 Multiple Object Localization Examples

In this section, we present applications of sub-array processing to the detection of multiple
mine-like and multiple drum-like objects. In order to simplify the scattering phenomenon
associated with the detection problem, both mine-like and drum-like objects are modeled
with simple, circular objects. The system parameters for both applications are kept constant
to provide a better comparison of the method between applications. In order to introduce
frequency diversity, the objects are illuminated with plane waves at three different frequen-
cies: 1.2, 1.0 and 0.8 GHz. The frequency range used is typical of that used in practical
subsurface sensing systems. The scattered field is observed along a 33-element, uniform,
linear receiver array which spans an aperture of 1.5 m. The sensors are assumed to be ideal,
isotropic receivers, and the inter-element spacing of the receivers are chosen such that it
is less than half a wavelength for the soil characteristics [69] at the frequencies used. The
receiver array is divided into 11 three-element sub-arrays for the processing. Selection of
array and subarray parameters should guarantee that the scattered fields would have planar
wavefronts at each subarray. Using the criterion given in (4.1), we find that the far field limit
is approximately 17.2, 14.4, and 11.5 cm at 1.2, 1.0 and 0.8 GHz, respectively. It should be
noted that for most cases, the minimum distance between an object and a subarray is more
than 15 ¢m, which clearly indicates that the wavefronts over each subarray aperture are ap-
proximately planar. The objects are placed in a lossy, homogeneous background which has
the same electrical characteristics of 5% moist San Antonio clay loam or 10% moist Puerto

Rico clay loam (e, = 6eg, 05 = 5 x 1072 S/m) at around 1.0 GHz [69].
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For the simulations, the definition of signal to noise ratio (SNR) is not obvious. In
practical problems, SNR is imposed by the nature of the system noise. However, in computer
simulations we want to reference the noise power to a fixed quantity that does not change
as the positions of the objects change. For this purpose SNR is referenced to the scattered
field strength of a single, cylindrical, metallic object placed at the same depth as the objects,
in the same lossy medium. The radius of the reference scatterer is the same as the radii of
the targets. With this definition, the noise power is always proportional to the power of
reference scattered field, not the power of the field scattered from targets, which changes as
the positions of objects change.

In all examples the exact scattered field due to multiple objects embedded in a homoge-
neous, lossy background is calculated using the recursive T-matrix algorithm [16, 17,26, 33]

to keep the computational requirements at reasonably low levels.

4.4.1 Multiple Mine-like Objects

In these examples, we placed two mine-like objects, each with 7.5 cm. diameter, 15 cm.
under the receiver array. Even though the algorithm is capable of detecting more than two
objects, 1t seems likely that for practical purposes no more than two mines will be placed in
the array’s aperture of 1.5 meters. We have not explored the performance of the processing
with respect to varying depth objects, assuming that mine-like objects will be placed at
uniform depths under the array.

The first example demonstrates the utility of the sub-array processing in detecting and
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(b) Detection windows overlaid on true object positions

Figure 4.6: Multiple mine-like object detection with SAP: object on the left is metallic and
object on the right is dielectric with ¢, = 2.5. o’s and #*’s denote subarrays

localizing both a metallic and a dielectric object in the same medium. For this purpose, a
metallic object and a dielectric object with dielectric constant of 2.5 are placed at (20, —15)
cm and (80, —15) cm, respectively, in the homogeneous background described before, Fig 4.6.
Signal to noise ratio is fixed at 10 decibels. Fig 4.6 shows the directions of arrivals, and
detection windows when probability of false alarm is 107%, which corresponds to a crossing
threshold of K = 7. The two circles in this figure denote the objects, and the intertwined

squares, due to overlaps in test windows, depict the estimated target windows. The detection
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windows are then used in the grouping algorithm described in Section 4.2.3. As expected
two distinct groups of overlapping windows indicated that there are two objects beneath
the array. The estimated center for the objects are found to be (19.52,—14.02) c¢m and
(80.10, —14.82) cm. Consequently, both metallic and dielectric objects are detected within

acceptable estimation error margins.

y
X= 725cm Receiver Array x=;125 cm
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Figure 4.7: Multiple mine-like object detection with SAP: geometry for the example about
the effect of relative distance between objects. Both objects are perfect conductors

Next, we consider an example that demonstrates the detectability of objects and the
performance of SAP as relative positions of the objects change. In this example, both
objects are assumed to be metallic in order to see the influence of relative distance between
same type of objects on detectability and estimation error. For this purpose, we fixed the
location of the first object at (z,y) = (=40, —15) cm. The other one is moved from = = 0
cm to x = 125 cm in the lateral direction while its depth is kept at the same level as the

fixed object, Fig. 4.7. The signal to noise ratio is assumed to be 30 decibels.
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With this geometry, the moving object i1s always located under the array, and thus de-
tected for all combinations of relative positions. Detection of the fixed object, on the other
hand, is challenging since it lies outside the span of the array. Fig 4.8 shows the average
simulated probability of detection of the fixed object over 100 Monte-Carlo simulations as
the other object is moved under the array when probability of false alarm is set to 1072,
As it is clear from this figure, the fixed object can be detected only if the other object is
well away from it. The fixed object may also be detected with less than 10% probability
when the moving object is located between © = 0 and = 20 cm. This is due to the fact
that for these relative locations, both objects are close enough so that DOAs belonging to
the moving object create crossings around the fixed object as well as the moving object.
In fact, because of this effect, the region between the two objects is incorrectly detected
as targets, and thus false alarm rate is large when relative distance between two objects is
small, Fig. 4.9. Simulated Py, g as depicted in Fig. 4.9 approaches to the false alarm rate
set at the beginning of the simulation (dashed line), as the relative distance between the
objects increase.

We have also investigated the effect of relative distance on estimated object centers. For
this purpose, we plotted the averaged estimation error in z-direction (Azx = T4rye — Testimated)
versus the averaged estimation error in y-direction (Ay = Y4rue — Yestimated) for both fixed and
moving objects in Fig. 4.10(a-b). The estimated object coordinates are obtained by averaging
100 Monte-Carlo simulations. For the case when the objects are located at (-40,-15) cm and

(125,-15) cm, the estimated object centers are (-43.32,-16.17) cm and (126.09,-15.05) cm. For
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Figure 4.8: Probability of detection of the fixed object when the other object moves under
the receiver array

the same case, the standard deviations over all Monte-Carlo simulations are (2.269,1.587) cm
and (0.297,0.163) cm. As expected, the mean center and the standard deviation for the object
located outside the span of the array is worse than those for the object located at the right
edge of the array. The dashed circles indicate the boundaries of the objects. The closer the
symbols (o’s or ¢’s) are to the center, the smaller is the estimation error. Since the moving
object is always detected, each small circle in Fig. 4.10(a) corresponds to a different position
of the moving object. As seen from this plot, the estimation error of the moving object is
only a small fraction of the radius. Small circles outside the object boundary (dashed circle)
correspond to locations where the moving object is close to the fixed object. Each small
circle and diamond in Fig. 4.10(b) corresponds to a relative position when the fixed object is
detected. The small circles denote the error in estimated centers when the moving object’s
x-coordinate is greater than 95 cm, and small diamonds correspond to other locations of the

moving object for which the fixed object is detected. The loci of small circles and diamonds
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Figure 4.9: Probability of false alarm, when the moving object is located under the receiver
array at various positions, dashed line shows the desired false alarm rate of 107>

clearly imply that as the relative distance between the objects gets larger, the estimation
error in the position of the fixed object gets smaller.

The last example in this section will be the localization of randomly placed objects. For
this purpose, two metallic mine-like objects are located randomly in —25 < = < 125 cm and
—30 <y < —10 cm. The z and y-coordinates of the objects are obtained from independent
random variables uniformly distributed over the ranges specified. If the random positions
result in overlaps of objects, we repeated the random experiment to generate a new set of
object positions. The signal to noise ratio is 30 dB as before, and 1000 Monte-Carlo simula-
tions have been performed. We repeated this experiment for three different probabilities of
false alarm, 1071, 107> and 107%. These false alarm rates correspond to different threshold
values for the hypothesis test described by (4.6).

There are several issues associated with localization of randomly placed objects. The
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Figure 4.10: Estimation errors in object centers, each symbol corresponds to a different
position of the moving object. Number of symbols in (b) is considerably less, since the fixed
object is not detected for all positions of the moving object, see Fig. 4.8.

first one is that SAP cannot always detect both objects, since for some cases the objects
are far too closer for SAP to resolve them. In fact, Fig. 4.11 shows a histogram of distances
between two objects whose coordinates are obtained from a uniform random variable. As
clear from this figure, for almost half of the realizations, the distance between the scatterers
is less than 50 cm. We define a Py, 30 as the probability of detection of both objects. An
estimated object center is assumed to be a detection if it is within a diameter length. We also
define Ny, as the number of realizations for which the SAP concluded that there are two
targets in the region of interest. For other cases, the SAP detects only one object, or none

at all. We define V,,. as the number of realizations for which SAP determines that there is
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at least one object in the region of interest, and Py one as the probability of detection of one
object. Table 4.1 denotes these parameters for different preset false alarm rates. The poor
performance of SAP in these cases is attributed to the way we selected the random positions

of the objects. As Fig. 4.11 shows, for most cases the objects are too close to resolve.
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Figure 4.11: Histogram of distances between two objects whose coordinates are obtained
from independent, uniform random variables

Piy | < K > | Niwo | Paetpoth | None | Paet,one
1071 1.15 323 0.134 509 0.322
1073 2.86 494 0.375 650 0.513
1076 4.55 518 0.422 719 0.571

Table 4.1: Results of localization of randomly located objects. < K > is the mean threshold
averaged over 1000 realizations.

In Fig. 4.4.1, we show the performance results for randomly positioned objects. The
figures on the left depict the distance separating the two objects versus the estimation
error for three different false alarm rates. Histograms on the right show the distribution of

estimation errors for the plots on the left. The dashed lines indicate the radii of the objects,
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and the dotted lines indicate the diameter of the objects. These figures clearly indicate that
as the relative distance between objects increase, the detection performance of SAP increases
with a noticeable threshold between 50 and 60 cm.

As mentioned before, the random placement of the objects is a quite difficult test for SAP,
since the objects can be very close most of the time, Fig. 4.11. While finding the random
positions, we only prevented the overlap of objects. However, it might be a better idea to

impose a larger minimum separation between two objects to measure the performance of

SAP.

4.4.2 Multiple Drum-like Objects

In this section, two drum-like objects, each with 50 cm. diameter, are placed at various
depths from the receiver array. Since drums are made of metal, the objects are assumed
to have infinitely large conductivity. The signal to noise ratio is set at 10 decibels. The
detection windows for a typical case is shown in Fig. 4.13. In this example one object is at
(—40, —125) cm and the other is at (140, —125) cm, while the lossy, homogeneous background
is the same as previous example. The threshold of detection corresponding to a false alarm
rate of 107® is found to be K = 6. Fig. 4.13(b) depicts the detection windows obtained
after hypothesis testing. These windows are then processed by the grouping algorithm of
Section 4.2.3. As expected, we found two overlapping window groups which imply that there
are two objects in the region of interest with centers located at (—40.02,—111.70) ¢cm and

(139.93, —108.46) cm.
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Figure 4.12: SAP results of randomly placed objects for P;, = 0.1 [(a)—(b)], P;, = 1072
[(c)—(d)], and Ps, = 107° [(e)—(f)]. The dashed lines indicate the radii of the objects, and
the dotted lines indicate the diameter of the objects
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Figure 4.13: Localization of two metallic drum-like objects with SAP, o’s and *’s denote
subarrays
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Figure 4.15: Probability of detection of the moving object, when the fixed object is located
at (-40,-125)cm. The solid line and dashed lines show the probability of detection when the
moving object is at depth -125 ¢m and -137.5 cm, respectively.
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As the second example of this section, we considered keeping one of the objects at a
fixed location, and moving the other object around below the array. The first object is fixed
at (—40,—125) cm, and the other is moved from = = 40 cm to x = 240 cm in the lateral
direction at two different depths, -125 cm and -137.5 c¢m, Fig. 4.14. The SNR is set to 30 dB.
Contrary to the mine-like object example, in this case the fixed object is at an advantageous
location and detected with a probability of 1.0 regardless of the position of the moving object
in the defined region. The moving object is hard to detect, since it is placed either outside
the span of the array most of the time, or deeper than the fixed object. Fig. 4.15 depicts
the average probability of detection of the moving object over 100 Monte-Carlo simulations
for two depths when probability of false alarm is set to 1072, It is clear that as the moving
object is placed far from the array, it is less likely to be detected. Relative to the depth of
the fixed object, if the moving object is placed deeper, it has to be nearer to the array to
be detected. Simulated probability of false alarm (Pf, sim) for this example is zero for all
positions of the moving object, since both objects are too far apart to cause a false detection
window.

We have also investigated the effect of relative distance and depth on estimated object
centers. For this purpose, we plotted the estimation error in z-direction (Az = x4pye —
Testimated) Versus the estimation error in y-direction (Ay = Ytrue — Yestimatea) for both fixed
and moving objects for two depths in Fig. 4.16(a-b). The estimated object coordinates
are obtained by averaging 100 Monte-Carlo simulations. The dashed circles indicate the

boundaries of the objects. Circles shows the estimation errors when both objects are at the
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same depth, and diamonds show those when the moving object is a half radius deeper than
the fixed object. Symbols (circle/diamond) inside the dashed circle indicate the estimation
errors less than the radius of the object. In Fig. 4.16(a-b) it is observed that as the moving
object gets far from the array, the estimation error in position of the moving object increases,
and that in position of fixed object becomes smaller. Placing the moving object at a deeper
location increases the estimation error in its position, and slightly improves that in fixed

object’s position.
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Figure 4.16: Estimation errors in object centers, each symbol corresponds to a different
position of the moving object. Number of symbols in (b) is less than that in (a), since it is
not detected for all positions of the moving object, see Fig. 4.15.
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4.5 Summary

In this chapter we presented an algorithm that can detect and localize an unknown number
of objects in the near field of a linear sensor array. The issues related to near-field scattering
were overcome by partitioning the full array into sub-arrays so that the non-planar scattered
field becomes locally planar at each sub-array. DOAs corresponding to these locally planar
waves were then determined using array processing techniques. Triangulation of such DOAs
resulted in a pattern of dense and sparse regions of crossings which are modeled with a pair
of spatial Poisson distributions. Estimated object locations and the number of objects are
finally obtained by applying a hypothesis test to Poisson models and then extracting groups
of spatially disjoint detection windows.

We demonstrated the performance of the algorithm using simulated data. The usefulness
of this algorithm was exhibited for both mine-like and drum-like objects. For mine-like
targets, we showed that the algorithm can detect and localize multiple targets with different
electrical properties. Then, we demonstrated the detectability of such objects when relative
distance between them changes. We concluded that the detectability improves as the objects
are located farther from each other while staying within a reasonable distance from the
array. In addition, it was shown that theoretical and simulated probabilities of false alarm
and detection were in agreement. For drum-like targets, we demonstrated the usefulness of
the algorithm for detection and localization of multiple objects. Furthermore, the effect of
relative distance and relative depth on detectability was treated. Results of this analysis

supported the results obtained for mine-like objects.



Chapter 5

Detection and Localization: Matched

Field Processing

The algorithms presented in this chapter modify the conventional direction finding array
processing techniques, and use the spatial complexities of the fields to determine both the
range and the bearing of the targets in the region of interest. For multiple object localiza-
tion, we considered both the case when the electromagnetic interactions between objects are
taken into account and also when they are ignored. Examples of typical object localization
geometries are given in Section 5.5.

We also compute explicitly the analytical expressions for the Cramér-Rao bounds (CRB)
for position estimates in Section 5.4. The Cramér-Rao Bound gives the lower bound for the
variances of the estimates, and thus, specifies the lowest possible error variance that can be

attained with an unbiased estimator. The theoretical Cramér-Rao bounds are then verified

75
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using Monte-Carlo simulated error variances in Section 5.5. A summary of the chapter will

be presented in Section 5.6.

5.1 Introduction

In this chapter, we solve the object localization problem described in Section 4.1 with a
completely different approach. Here, instead of using conventional plane wave MUSIC, we
use the MUSIC method in a matched field processing [30] framework to account for non-
planar wavefronts.

As we discussed in Chapter 4 in detail, knowledge of the DOA is sufficient for char-
acterizing a planar wavefront, since the range of the radiator for this case is infinity. For
the near-field target localization problem, however, the fields impinging on the array have
non-planar wavefronts. Therefore, the scattered field in this case should be characterized
by both the range and the bearing variables in order to localize a target. Matched field
processing (MFP) [30] has been successfully used for localization of point sources in ocean
acoustics. MFP is an array processing technique that uses the spatial complexities of the
fields to localize sources, and thus allows for estimation of both the range and the bearing
of the objects.

Here, we present a MFP-based algorithm that localizes multiple, extended near-field scat-
terers when electromagnetic interactions are taken into account. The physical phenomenon
associated with multiple scattering is modeled exactly, and the model is formulated in target

coordinates explicitly using the recursive T matrix algorithm [16,17,33]. For single object
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localization, we use the Mie series expansions [70] to calculate the scattered field over the
receiver array. For localization of multiple scatterers, we have two options. We may ignore
the electromagnetic interactions between targets, and treat the problem as if a number of
independent, single scatterers are scattering the incident electromagnetic field. While the
resulting method has the same order of computational complexity of the single object case,
its accuracy deteriorates as objects get closer and the multiple scattering effects become more
prominent. Furthermore, scattering from multiple, independent, single scatterers results in
the signal coherence issue which will be addressed in detail in Section 5.3.2.

The second option in localizing multiple objects is to take multiple scattering effects
into consideration. While this approach is more computationally costly than the former, by
modeling the non-trivial interactions of wavefields among scatterers, we improve our ability
to resolve closely spaced scatterers. In fact, it can easily localize the targets in geometries
where the former approach fails to resolve the target positions.

Finally, we will derive the Cramér-Rao bounds for the multiple object detection scenario.
Our Cramér-Rao Bound derivation adapts the results in [49], and accounts for near field ob-
servations. Analytical bounds of estimated object coordinates are then validated by running
Monte-Carlo experiments for the estimator presented in this chapter.

The remainder of the chapter is organized as follows. In Section 5.2, we introduce the
data model used in the algorithm. In Section 5.3, we introduce the matched field processing
for localization of single and multiple objects. The Cramér-Rao lower bound for MFP is

derived in Section 5.4. Numerical examples are presented in Section 5.5, and in Section 5.6,



CHAPTER 5. DETECTION AND LOCALIZATION: MATCHED FIELD PROCESSING T8

we conclude with a summary.

5.2 Data Model

The near field measurement scheme depicted in Fig. 2.3 is considered. The objects are
buried in a background for which the constant electrical characteristics (relative permittivity
and conductivity) are assumed known. A transverse magnetic (TM) polarized plane wave,
F;(r), impinges on the objects, inducing surface and volume currents which in turn radiate
a scattered field, Fs(r)'. An important assumption in our approach is that the material
properties and the shapes of the objects are known a priori, since in most of the practical
problems of interest we have a general idea of these properties. We also assume that the
number of scatterers is known. Thus, we are particularly interested in finding only the
positions of these targets.

The scattered electric field from N objects is spatially sampled by a uniformly spaced,
linear array with M isotropic receivers, M > N. When the multiple scattering effects are

taken into consideration, the measured data at the sensor outputs can be written as:
y = Ax +n, (5.1)

where A = [Egy(r1,...,rn) Eg(r1,...,rn) ... Eqn(ry, ..., rn)]. Each vector Eg;(rq,...,rn)
is M x 1, and denotes the scattered field observed at the array due to the :th object, in the
presence of all other (N — 1) scatterers, ¢« = 1,2,..., N. The vector Eg;(r1,...,ry) can be

calculated using the modified recursive T-matrix algorithm presented in Chapter 3. For time

TAll analysis is in the frequency domain, and thus the e/*? time dependence will be dropped.
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domain applications, the vector x contains the narrow band time variations. Since we do
our analysis in the frequency domain, and suppress e/f, x = [I 1---1]T. The ith column
of matrix A depends not only on the position of the ith object, but also that of (N — 1)
other objects. Therefore, for practical purposes, we may replace Ax in (5.1) with an M x 1
vector B = Eq4(ry,ra---rn) = Eqi(r1,...,rn8) + Eso(ry, .. .,rn) + ..o + Egn(re, ... rn),
which denotes the total scattered field at the receiver array.

The recursive T matrix algorithm [16,17,33] can be used to calculate the exact scattered
field Eg;(r1,...,ry) due to the ith object in the presence of other objects. The algorithm
described in Chapter 3 is designed for the efficient solution of near field scattering problems
with a heterogeneous collection of metallic and dielectric objects. In addition, the recursive
T-matrix algorithm can be written in a closed form, which enables us to take derivatives
analytically. This property is especially useful in obtaining gradients and derivatives in the
multi-dimensional parameter search and in the Cramér-Rao Bound analysis presented in
Sections 5.3.3 and 5.4, respectively.

As mentioned in the introduction of this chapter, electromagnetic interactions between
the objects may be ignored to reduce the computational complexity. For this case we have

the same data model as in (5.1), except that the matrix A is redefined to be

A = [Eq(r1) Es(rz2) - Es(rn)] (5.2)

where each M x 1 vector E¢(ri) denotes the scattered field due to a single object located
at rj, 2 = 1,2,---, N, and is calculated using the Mie series. Therefore, each column of A

contains the scattered field that is a function of position of only one particular object. The
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vector X is the same as before, x = [1 1---1]7.

5.3 Matched Field Processing for Object Localization

Matched field processing was introduced to use the spatial complexities of the relevant fields
to localize sources in underwater acoustics or to infer parameters of the ocean waveguide
itself [30]. In a similar manner, plane wave MUSIC outlined in Chapter 2 can be modified
so that the direction vector is filled with the type of wavefront impinging on the array [1,2].
As a result, the problem of non-planar wavefronts caused by near field scattering is resolved,
and both the range and angle of the scatterer can be estimated. We have divided this section
into three parts: in the first we will describe single object localization. Even though single
object localization is a subset of multiple object localization, we present it separately in order
to explain the multiple object case more clearly. The second part will deal with multiple
objects, but the electromagnetic interaction between objects will be ignored. In the last
part, we will treat multiple object detection problem when the multiple scattering effects are

taken into account.

5.3.1 Single Object Localization

By using the spatial distribution of the scattered field, we can fill the so-called direction
vector in plane wave MUSIC with non-planar scattered fields to locate the near field objects.

By modifying the spatial MUSIC spectrum in (2.14), we form the following spectrum:
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E«(r, )7 Eq(r,0)
Eq(r, 0)HIL,Eq(r, 0)

PMUsjc(T,e) = (53)

where the new “direction” vector (actually, the locus vector in r and 0 space) Eq(r, ) is now
filled with the type of wavefront expected to impinge on the receiver array. For the single
object localization problem the vector Eq(r, ) is filled with the scattered field when an object
is located at r = (r,6). Then, the location (7, é) maximizing the MUSIC spectrum in (5.3)
is selected as the estimated object center. Because a two dimensional search requires that
the exact scattered field be calculated at each point of the parameter mesh, this technique is
in general computationally intensive. In the event that the object to be detected is modeled
as a simple shape, however, computing the exact scattered field can be relatively simple.
When the targets are modeled as infinitely long cylinders in two dimensions, the scattered

field from such objects due to a plane wave can be calculated using the Mie series [67,70]:

ES(P, ¢) _ Z an7g2)(kp)€jn(¢+w—¢inc) (5‘4)

where Hﬁbz)(.) is the Hankel function of the second kind of order n representing cylindrical
outgoing waves, k is the wavenumber in the homogeneous, possibly lossy, background, and
®ine 18 the incidence angle of the plane wave. The coefficients ¢, are determined from the
boundary conditions when p is equal to the radius of the cylinder. For computer implemen-
tations, the infinite sum in (5.4) is truncated at a finite value beyond which the coefficients
¢, are below machine precision. Here p and ¢ denote the coordinates of the receivers since
(5.4) assumes that the center of the cylinder is located at the origin. In implementing the

MUSIC spectrum in (5.3), however, translations from object-to-receiver coordinate system
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(p, @) to array-to-object-position coordinate system (r, ) are required. These translations
do not significantly alter the computational load or functional form implied by (5.4).

To summarize, the MUSIC-based MFP algorithm proceeds as follows:

1. Using the data model in (5.1), perform L, single-frequency scattering experiments
each producing a snapshot vector, y;, composed of the observed scattered fields over

the receiver array
2. Estimate the autocovariance matrix R using (2.11)

3. Perform an eigenanalysis on R to find the noise-subspace projector using 1L, (2.12)
and (2.13)

4. Carry out a two-dimensional search in the target position space (r,6). For each point
(rg,0x) on a predefined range and angle grid, fill in the locus vector Eg(r, 0;) with the
scattered field due to an object placed in that location, and calculate the associated
value of Pyusic(ry, k) in (5.3)

5. Choose (7, é) as the estimate of the target location as the grid point with the largest

Pyrusic.

Fig. 5.1(b) shows the MUSIC spectrum for the mine-like object localization scenario when
a small metallic object in 7.5 ¢cm diameter is placed 15 cm below the array as depicted in
Fig. 5.1(a). The 33-element linear, uniform receiver array spans an aperture of 1.5 meters.
All sensors are assumed to be ideal, isotropic receivers. The operating frequency is 1.0 GHz
and the plane wave is incident with 90 degrees. The lossy, homogeneous background has the

same electrical characteristics of 5% moist San Antonio clay loam or 10% moist Puerto Rico
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Figure 5.1: MFP localization example: single metallic object in a lossy, homogeneous back-
ground

clay loam (€, = 6eg, o = 5 x 1072 S/m) at around 1.0 GHz [69]. The signal to noise ratio
(SNR) is fixed at 0 decibels. As Fig. 5.1(b) depicts, the location of the object (r = 15em,
6 = 90°) is indicated with a very sharp peak. We note that the prominent peak structure
of the spectrum in this example is representative of a wide range of other cases for which
the background electrical properties, target electrical characteristics and the signal to noise
ratios are varied. For this purpose, in [1] the background dielectric constant is changed from
3 to 18 and the the background conductivity is changed from 5 x 1072 to 0.3 % For each
of these background properties, the signal to noise ratio is varied from 0 to 40 dB, for both

metallic and dielectric scatterers with a relative permittivity of 2.5. In all cases, we observed

a sharp peak as in Fig. 5.1(b).
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5.3.2 Multiple Object Localization: No Interaction

In this section, we describe multiple object localization when the electromagnetic interaction
between objects are ignored. While neglecting the interactions reduces the computational
demand of localization considerably, it may introduce large estimation errors if the inter-
actions are in fact sizeable. Therefore, we need a criterion that tells us when the multiple
scattering effects between objects can or cannot be ignored. For this purpose, we derived
the analytical expressions for the interaction terms between two infinitely thin scatterers in
Appendix B. As we will show in Section 5.5.1, the normalized interaction terms for filamen-
tary objects bound those for the extended objects for a wide range of distances. Thus, the
simple expression in Appendix B can be used to determine the degree of interaction between
two scatterers in terms of their spacing and the electrical properties of the medium of prop-
agation. By selecting a desired interaction level, we may calculate the minimum distance
between scatterers that satisfy this a priori level. If the actual distance is smaller than the
minimum distance, then we should not ignore the interactions between scatterers, and use
the technique presented in Section 5.3.3 to accurately localize the objects.

Assuming that the objects are located relatively far apart, so that the interactions among
them can be ignored, the multiple object localization becomes similar to having multiple
plane waves incident on the array for plane wave MUSIC. For this case, the scattered field
due to one object is independent of the positions of the other objects. Because of the
structure of x in (5.1), the rank of the covariance matrix of x, P = E{xx"}, is one, and so

is the rank of R. Thus, the signals impinging on the array are coherent since the fields are the
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same wavefronts emanating from different locations. It is well known that the performance
of subspace based methods degrades severely for resolving coherent signals. Therefore, these
coherent signals should be decorrelated before using MUSIC. To increase the rank of the
spatial autocovariance matrix, i.e. to decorrelate the signals, we will use frequency diversity
as described in the next paragraph.

Since the number of targets, N, in the region of interest is known, we repeat the scattering

experiment as represented by (5.2) at N different frequencies. Thus (2.11) becomes:
A 1 & =
R; = IZYHYH (5-5)
=1

where yy; is the data vector observed at the ¢th operating frequency, f;, and R, is the spatial
autocovariance matrix at f;, 2 = 1,2,---, N. Then, the rank enhanced autocovariance matrix
Ry is obtained by

A JEEARA

R, = N;RZ (5.6)
In Appendix C, we prove for two objects (N = 2) that in the limiting case of infinitesimal
object radius, frequency diversity does, in fact, increase the rank of the autocovariance matrix
f{d to two.

Once the signals are decorrelated, we form the MUSIC spectrum given in (5.3), where
the locus vector Eq(r, 6) is filled with the scattered field due to a single scatterer located
at (r,0). The scattered field is calculated using the Mie series in (5.4). Since the scattered
field due to one object is assumed independent of position of other objects, it is sufficient
to search for target locations in two dimensions, i.e. (r,#)-space. The signal subspace of

rank enhanced covariance matrix Ry is of dimension N. Therefore, there will be N peaks in
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the two dimensional MUSIC spectrum corresponding to estimated target locations (71, él),
(fo,02), ..., (Fn,0N).

To summarize, the no interaction case proceeds as follows:

1. Using the data model in (5.1) with A defined as in (5.2), perform L scattering exper-
iments at each operating frequency, f;, 2 = 1,2,..., N. Observe the snapshot vector,
Vi, over the receiver array

2. Estimate the autocovariance matrix Ry using (5.5) and (5.6)

3. Perform an eigenanalysis on R, to find the noise-subspace projector II, similar to
eigendecomposition of R in (2.12) and (2.13)

4. Carry out a two-dimensional search in the target position space (r,6). For each point
(rg,0x) on a predefined range and angle grid, fill in the locus vector Eq(ry, 0;) with the
scattered field due to an object placed in that location, and calculate the associated
value of Pyusic(ry, k) in (5.3)

5. Choose (71, él), (g, 92), ooy (P éN) as the estimates of the target locations at which

Pyusio has its N largest local maxima.

5.3.3 Multiple Object Localization: With Interaction

In this section, we describe multiple object localization using MUSIC when the electromag-
netic interactions between objects are completely taken into consideration. This case is in
fact a multi-dimensional equivalent of single object detection. We may aggregate all scat-

terers into one, large scatterer whose electrical characteristics are defined by positions of
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individual scatterers. Therefore, the total scattered field observed over the receiver array
depends on the location of each individual scatterer. Since this case can be modeled with
an equivalent single scatterer problem when we account for the multiple scattering effects,
signal coherence will not be a problem.

For object localization, then, we form the following MUSIC spectrum:

Ei(ri.ro,....vN) T Es(ry, 19, . ... TN
Puusio(ri, 01,r9,02,. .. v, On) = SUILULER ;A UL TRHLL) (5.7)
Eq(ri,ro, ..., rn)FILEg(rq,r2,. .., 1N)
where the locus vector Eq(ry,ra,...,ry) denotes the total scattered field due to objects

located at r;, 1 = 1,2,...,N. The locus vector E¢(ry,rs,...,ry) can be efficiently filled
by using the recursive T-matrix algorithm [16,17,33]. In order to find the positions of
the objects, then, we perform a multi-dimensional search in location space of all objects,
(r1,601),(r2,602),...,(rn,0n). The coordinates (71, él), (2, ég), oo (P, éN) at which the spec-
trum (5.7) reaches its maximum give us the estimated target locations.

The computational complexity of this approach is considerably larger than the no interac-
tion case because of two interrelated reasons: repeated use of the forward scattering model
many times for the 2/N-dimensional search, and the extra cost of taking electromagnetic
interactions into account in the exact forward model. To keep the computational load at
reasonable levels, we used the recursive T-matrix algorithm given in Section 3.2 to calculate
the scattered fields due to multiple objects. To further reduce the computational load, we

used an efficient search routine based on steepest descent [71] with variable step-size that
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quickly converges, typically in 7-10 iterations for problems of interest, to the estimated tar-
get locations. Once this routine converges to the general target area, however, we switched
to a simplex search routine to save the cost of gradient calculations. This switch is needed
since it takes almost the same number of iterations for a steepest descent based search and
a simplex search to give a stable answer, and the per-iteration cost of the simplex search is
far cheaper than that of the steepest descent based search.

To summarize, the multiple object detection with electromagnetic interaction case pro-

ceeds as follows:

1. Using the data model in (5.1), perform L scattering experiments. Observe the snapshot

vector, y;, over the receiver array
2. Estimate the autocovariance matrix R using (2.11)

3. Perform an eigenanalysis on R to find the noise-subspace projector 1L, using (2.12)
and (2.13)

4. Carry out a 2N-dimensional search in the position space {(r1,61), (r2,02),...,(rn,0n)}
of all targets. For each point {(r1g,01%), (rok, 021), ..., (ryk, Ong)} during the search, fill
in the locus vector Eg(ri, ro, . .., rag) with the scattered field due to objects placed at
that point using the recursive T-matrix algorithm, and calculate the associated value
of Pyusic(rik, 01k, rok, 02k, - -« "NE, Ong) i (5.7)

5. Choose (71, él), (72, ég), ooy (P éN) as the estimates of the target locations at which

Pyusic 1s maximized.



CHAPTER 5. DETECTION AND LOCALIZATION: MATCHED FIELD PROCESSING 89

5.4 Cramér-Rao Performance Bounds on Object Lo-

calization

The Cramer-Rao Bound (CRB) [72] provides very valuable information about the lower limit
for the variance of any unbiased estimator. In order to find the CRB, however, one needs
a closed form expression for the log-likelihood function. In this section, we will extend the
results in [49] to find the Cramér-Rao bounds for the near field, multiple object detection
geometries. Since the additive noise in (5.1) is white and Gaussian distributed, the log-

likelihood function can be written as [49]:
1 & "
In £ = constant —2M Llno — — Y [y — Ax]"[y — Ax] (5.8)
i)

where o2 is the noise variance, M is the number of receivers and L is the number of data
vectors used for estimating the covariance matrix R in (2.11).
Given the log-likelihood function, the Fisher Information Matrix (FIM) can be written

as:

J = E{yyT} (5.9)

where ¢ = [2In£ 2InL dInL 9InL

T . . . .
T B0 B Ay |*. The FIM is then expressed in matrix form as:
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FTl 1 FTl 6 " F7’17’N F7’19N
Fé’17’1 F91 6 T Fé’1 TN Fé’1 fn
J=1 oo : (5.10)
FTNTl F7’1\16’1 F7’N7’N F7’N9N
F91\17’1 F9N91 T F9}\77’N F91\19N

where I',, = E[agggqﬁ], {p,q} = {r1,01,72,02...7n,0x}. The entries of the FIM are [49]:

I, == > Re{x"D/'D,x}, (5.11)

where D, = % and D, = %. The columns of matrix A contain the scattered fields as
defined in (5.1), and since the scattered fields are calculated using the recursive T-matrix
algorithm, derivatives of A with respect to object positions, D, and D,, can be easily
obtained (see Appendix D for details). Since x is constant over L experiments, (5.11) can
be further reduced to:

2L
r,, = ?Re{xHDfqu}. (5.12)

The Cramér-Rao Bound by definition is, then, the inverse of the FIM:
CRB(r1,01,...,rn,0n) = J 7. (5.13)

The ith diagonal entry in the Cramér-Rao Bound expression in (5.13) gives the Cramér-Rao
lower bound for the ith variable in the parameter set {ry,01,r2,0,...ry5,0x}. In Section 5.5,
we will verify the analytical expressions given by (5.13) with Monte-Carlo simulated error

variances.
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5.5 Examples

In this section, we present numerical examples on localization of multiple objects and verifi-
cation of Cramér-Rao lower bounds with Monte-Carlo simulations. In order to simplify the
scattering phenomenon associated with the detection problem, the targets are modeled as
simple, circular objects. The system parameters are kept constant throughout the examples
to allow meaningful comparisons. The scattered field due to an incident plane wave (see
Fig. 5.2 for incidence angle) is observed along a 33-element, uniform, linear receiver array
which spans an aperture of 1.5 m. The sensors are assumed to be ideal, isotropic receivers.
Unless otherwise noted, the operating frequency is set to 1.0 GHz. The objects are placed in
a lossy, homogeneous background which has the same electrical characteristics as 5% moist
San Antonio clay loam (& = 6eg, 0, = 5 X 10_2%) at around 1.0 GHz [69]. In all examples
the scattering simulations are repeated 250 times to estimate the autocovariance matrices,
ie. L =250 in (2.11), (5.5) and (5.12).

In order to show the performance of the algorithms, we consider two object geometries. In
the first case (Fig. 5.2(a)), the objects are located quite far from each other. For this object
geometry, due to the lossy background, the interactions between the targets are very weak.
In the second case (Fig. 5.2(b)), the objects are located closely, and the electromagnetic
interactions between the objects are very strong.

For the simulations, the definition of signal to noise ratio (SNR) is not obvious. In
practical problems, SNR is imposed by the nature of the system noise. However, in computer

simulations we want to reference the noise power to a fixed quantity that does not change
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Figure 5.2: Example geometries used in multiple object localization

as the positions of the objects change. For this purpose SNR is referenced to the scattered
field strength of a single, cylindrical, metallic object placed at the same depth as the objects,
in the same lossy medium. The radius of the reference scatterer is the same as the radii of
the targets. With this definition, the noise power is always proportional to the power of
reference scattered field, not the power of field scattered from targets which changes as the
positions of objects change.

In the examples the scattered field due to multiple objects are calculated using the re-
cursive T-matrix algorithm in [17]. The scattered field due to a single object is calculated

using the Mie series given in (5.4).

5.5.1 Multiple Object Localization: No Interaction

As described in Section 5.3.2, all scatterers are assumed to be scattering the incident plane

wave alone. Therefore we used the Mie series as the forward solver. The issue of signal
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coherence is solved by using two operating frequencies, 1.0 and 1.2 GHz. The autocovariance
matrix at each frequency is estimated using (5.5), and the rank enhanced autocovariance
matrix is calculated using (5.6). For a wide range of target locations, we have verified that
the autocovariance matrix Ry has two distinct signal eigenvalues that are quite different from
the noise eigenvalues. The order of magnitude difference, of course, depends on the signal-
to-noise ratio. At the 20 dB SNR level used in this example, the smallest signal eigenvalue
is approximately two orders of magnitude larger than the largest noise eigenvalue.

Since ignoring electromagnetic interactions may result in unwanted estimation errors, we
investigated the interaction between two extended objects and compared the results with
filamentary objects. For this purpose, we increased the distance between scatterers over a
range from eight centimeters to one meter by fixing one object’s position, and changing the
other’s. We then plotted the normalized interaction term given by (B.2) for both extended
objects and the filamentary objects as depicted in Fig. 5.3(a). The interaction term for
filament objects is obtained using the analysis presented in Appendix B. Since the simple
interaction term given in the appendix is for a single receiver, for extended objects, the
interaction terms are computed over the receiver array and then averaged. It is clear from
this figure that for both extended and infinitesimally thin objects, the interaction terms decay
very similarly. To indicate the correlation between estimation error and the separation, we
plot the estimation error against the distance between scatterers in Fig. 5.3(b). Comparison
of Figs. 5.3(a) and (b) reveals the expected result that both estimation errors and interaction

terms decay as the objects are located farther apart. We have obtained similar results for
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other cases where the objects are located deeper. Figs. 5.3(c) and (d) show the same results as
Figs. 5.3(a) and (b) when the objects are 25 cm away from the receiver array. This indicates
that one may use this simple interaction criterion to decide whether the no-interaction case

would result in acceptable estimation errors.
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Figure 5.4: Localization of two targets located 1 meter apart, electromagnetic interactions
are ignored

We then form the MUSIC spectrum in (5.3) for well separated objects, as shown in
Fig. 5.4. As the figure depicts, the target locations are indicated by two peaks that are easy
to distinguish from the background. Figs. 5.3(a) and (b) depict that when the objects are 1
meter apart, the interaction becomes insignificant, and the estimation errors are very small.
The spectrum for the closely packed object case is shown in Fig. 5.5. It is clear from the
figure that the no interaction approach fails for this case. This is expected, since the no
interaction model ignores the multiscattering effects that are very strong for closely spaced
scatterers. Indeed, as observed from Figs. 5.3(a) and (b), both the interaction term and the

estimation error are quite large when the objects are 10 cm apart.
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Figure 5.5: Localization fails when the target centers are 10cm apart in the no interaction
case

5.5.2 Multiple Object Localization: With Interaction

We have applied the algorithm given in Section 5.3.3 to localize the targets for the two
geometries: well separated and closely spaced objects. The signal to noise ratio was fixed at
20 dB and the autocovariance matrix, and the projection operator onto the noise subspace
were calculated.

To determine the positions of the two targets, we searched for the maximum of the
spectrum Pyusic(ri, 61,72,02) given by (5.7) in (rq, 01,72, 04) space. To find this maximum
we use a steepest descent algorithm [71] with variable step sizes in x and y-directions. We
have chosen a different step size in x and y-directions since the rate of convergence in the y-
direction is significantly slower than that in the z-direction. The difference in the convergence
rates in = and y-directions stems from the fact that the spectrum in (5.7) changes more
drastically in z-direction than it does in y-direction, and therefore, a larger step size in y-
direction is needed to balance the convergence. At each iteration of the steepest descent,

we search for new step sizes in x and y-directions that maximize the spectrum most. We
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(a) Object @ (25,-15)cm (b) Object @ (125,-15)cm

Figure 5.6: Convergence of four-dimensional search into the true object coordinates when
the objects are 1 meter apart, *’s indicate the initial guess, and the large circle indicates the
support of the objects

observed that this approach can quickly converge to the general maximum area (in around
7-10 iterations). However, after the initial quick convergence, many iterations are required
to locate the precise maximum point. Therefore, after 7 or 10 iterations of steepest descent,
we switched to a simplex search [73], and achieved rapid convergence almost as quickly as
the steepest descent.

Fig. 5.6 shows the intermediate object positions at each iteration during the multi-
dimensional search. The objects are located one meter apart, and the initial guesses are
denoted with *’s. Although not clear from this figure, as the number of iterations increase,
the location estimates get closer to the true estimates at (25, —15) and (125, —15) cm. Fig. 5.7

shows the object positions at each iteration during the simplex search when the objects are
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Figure 5.7: Convergence of four-dimensional search into the true object coordinates when
the objects are 10 cm apart. *’s indicate the initial guess, and large circles indicate the
support of the objects

closely spaced. The distance between the targets for this case is 10 cm. Again the ini-
tial guesses are indicated with *’s, and as the number of iterations increase, the location

estimates get closer to the true estimates at (70, —15) and (80, —15) cm.

5.5.3 Verification of Cramér-Rao bounds

In this section, we will compare the analytical Cramér-Rao Bound results obtained in Sec-
tion 5.4 with the Monte-Carlo simulated error variances. For this purpose, the algorithms
described in Sections 5.3.1 and 5.3.3 were run 500 times at each signal to noise ratio. For
each Monte-Carlo simulation, the multi-dimensional search routine requires initial values for
the positions of the targets. Thus, to supply the algorithm with an initial value, we used
the subarray processing described in [3]. The subarray processing can efficiently estimate

the object locations, but it is less accurate than the matched field processing. Once we



CHAPTER 5. DETECTION AND LOCALIZATION: MATCHED FIELD PROCESSING 99

& —— CRBforr
-=- CRB for 8
MC error var. r

-1
10 F o
o MC error var.8

MC Simulated Error Variance, (m) for r and (radians) for@
I
5,

L L L L L L L L
-20 -15 -10 -5 0 5 10 15 20

Figure 5.8: Comparison of analytical CRB with Monte-Carlo simulations for single object
geometry given in Fig 5.1(a)

initialize the object positions with subarray processing, we perform the multi-dimensional
search described in the previous section. The position vector maximizing the spectrum is
declared as the position estimate and the error variances are calculated from the estimates.

Fig. 5.8 shows the comparison of analytical CRB calculated for a single object using
(5.13) with 500 Monte-Carlo simulations of the algorithm described in Section 5.3.1. The
solid line is the CRB for the radial position of the object, measured in squared meters. The
dashed line denotes the CRB for the angular position, measured in squared radians. The
radial and angular positions are referenced to the center point of the array. Monte-Carlo
simulated error variances for range and bearing variables are shown on the same plot with o
and ¢ symbols, respectively.

Fig. 5.9 compares the Cramér-Rao bounds with simulated error variances for multiple
object geometries of Fig. 5.2 using the algorithm of Section 5.3.3. Fig. 5.9(a) shows the

comparison for two objects located one meter from each other, and Fig. 5.9(b) show the
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Figure 5.9: Comparison of analytical CRB with Monte-Carlo simulations for multiple object
geometries given in Fig. 5.2

comparison when the objects are 10 centimeters apart. Again, the solid and dashed lines are
the CRBs for radial and angular positions of the objects, respectively. The range variables
have the unit of squared meters, and the bearing variables have the unit of squared radians.
As before, both coordinate variables are defined with respect to the center point of the
array. The symbols o and ¢ show the Monte-Carlo simulated error variances for the range
and bearing variables, respectively. For this case, since there are two targets present in the
region, there are two symbols at each SNR value. The problem geometry is symmetric, and
thus one would expect that the error variances should be the same. Indeed, for analytical
Cramér-Rao bounds calculated from (5.13), the bounds for coordinates of both objects are
the same. For the simulated error variances, however, we can notice different values for

the range variables in Fig. 5.9(a) and the bearing variables in Fig. 5.9(b). The difference
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in simulated variances is more pronounced for low signal to noise ratios, which, we believe,
implies that more Monte-Carlo simulations are needed at those SNR values.

In both Fig. 5.8 and Fig. 5.9, we observe that the simulated error variances approach
the lower limit provided from the Cramér-Rao bounds as the signal to noise ratio increases.
This is expected by the results reported in [49] which states that MUSIC is an efficient
estimator for large SNR values. The results presented here, therefore, reveals the fact that
at high signal to noise ratios MUSIC is an efficient estimator for near field object localization

problems, too.

5.6 Summary

In this chapter we presented a matched field based high resolution array processing tech-
nique for localization of near field targets. The algorithm is presented in three parts: single
object localization, multiple object localization ignoring the interactions between objects,
and multiple object localization taking multiple scattering into account. When the inter-
actions are ignored, the computational load is alleviated since the electromagnetic model
is simpler Mie series scattering and a two-dimensional search in parameter space suffices
to localize all objects. The drawbacks, on the other hand, are the necessity to take care
of the coherent signal issue, and the failure to resolve and localize closely spaced targets.
When the electromagnetic interactions are accounted for, these drawbacks are remedied, but
the computational load due to multi-dimensional search, and complex, multiple scattering

forward model increases considerably.
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We have also calculated the analytical Cramér-Rao Bound expressions for coordinates
of multiple objects when the interactions are taken into consideration. These lower bounds
are then verified with Monte-Carlo simulated error variances. We have shown that as the
signal to noise ratio increases, simulated error variances approach the lower limit set by the

Cramér-Rao bounds.



Chapter 6

Contributions, Future Work, and

Conclusions

We begin this chapter by reviewing the contributions presented in this thesis in the area
of forward electromagnetic scattering, and array processing-based object localization algo-
rithms. In Section 6.2, we discuss extensions and future research opportunities based on
the ideas presented in the thesis. Finally, in Section 6.3, we will draw conclusions from this

work.

6.1 Contributions

The research presented in this thesis is comprised of two distinct parts. In the first part,
Chapter 3, we dealt with the electromagnetic forward scattering problem to obtain an effi-

cient, flexible, and stable algorithm. In the second part, Chapters 4 and 5, we introduced two
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signal processing algorithms based on high resolution array processing. The second part of
the thesis extensively used the efficient forward solver developed in the first part. However,
the algorithms developed in the second part are independent of the forward solver, and any
other forward solver can be used instead of the recursive algorithm presented in Chapter 3.

We will, therefore, present the contributions of this thesis in two categories.

6.1.1 Forward Scattering

Motivated by the ground penetrating radar type measurements, for the forward scattering,
we wanted to solve scattering problems in the near field for a uniformly spaced, linear array.
The main difference between the recursive T-matrices reported earlier [14,15,23-27] and the
work presented here is that this previous work was interested in obtaining the scattered fields
in the far field, whereas we are interested in the scattered fields in the near field. As a result
of this difference in the position of observation points, we presented two new ideas in order

to make the recursive T-matrix algorithm a useful tool for near field measurements.

e Because of the requirements on the loci of observation points imposed by harmonic ex-
pansions of the fields (2.7), the scattering origin relative to scatterers and the receivers
should be carefully selected. We have derived expressions for valid scattering origin
regions given a linear receiver array and scatterer positions. We have pointed out that
the trivial solution for this problem would impose placing the scattering origin at the

infinity. However, this choice would imply the use of infinitely large harmonics in the
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field expansions. Therefore, we defined an optimum scattering origin in the valid scat-
tering origin region, that minimizes the number of harmonics in the field expansions,

thereby minimizing the computational complexity.

e The optimum choice of the scattering origin, however, may result in convergence prob-
lems in a particular addition formula used in the recursive T-matrix algorithm as
discussed in Section 3.2.2. In order to circumvent the convergence issue in the addition
formula, while using the optimum scattering origin, we introduced a modification the
recursion equations in Section 3.2.3. The modified algorithm is shown to have the same

order of computational complexity as the original algorithm.

e In addition to these two contributions in the near field, we have also developed an
alternative tessellation scheme for metallic scatterers in Section 3.1. The reported
work in the literature [24, 26,27, 42] tessellated metallic objects by decomposing the
surface of the scatterer into small strips and patches. The Method of Moment (MoM)
was then employed to find the individual T-matrices of these strips and patches. We,
on the other hand, suggested using small metallic cylinders to decompose the scatterer
surface. We have shown with numerous examples that the alternative tessellation
scheme also results in highly accurate solutions. By using cylinders, the need to use
MoM to find individual T-matrices is eliminated since we can use the closed form
harmonic expansions to find the individual T matrices of the cylinders. Furthermore,
for problems involving both metallic and dielectric objects, only one type of tessellation

unit, 1.e. a cylinder, can be used to decompose all objects. Without this contribution,
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metallic objects would have to be tessellated with strips, whereas dielectric objects

would have to be tessellated with cylinders.

6.1.2 Detection and Localization

The localization problems of interest in this thesis assume some level of knowledge of the
targets we are trying to detect. For example, in land-mine remediation, and hazardous
waste drum recovery, we generally know the shapes and electrical properties of the targets.
Therefore, we can use the object-based framework to parameterize the detection problem.
The inherent array structure of the measurement geometry coupled with the object-based
approach suggested that high resolution array processing would be well suited for the near
field detection problem. We have developed two algorithms for this purpose: quick and

efficient subarray processing, and more computationally demanding matched field processing.

e This work is one of the first in the subsurface object localization area that uses high
resolution array processing. The only previous work in this area that has been brought
to our attention is a work by group of European researchers [43]. The work in [43]
concentrates on polarimetric radar imaging with the MUSIC algorithm. Our work is
different in that we took an object-based approach rather than an imaging approach.
Therefore, it is safe to say that the localization algorithms presented in this thesis are
the first ones that detect and localize subsurface, near field objects using the MUSIC

algorithm.
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e The subarray processing divides the receiver array into subarrays so that the scattered
fields impinging on each subarray is locally planar. Then using the conventional MUSIC
algorithm, we determined the directions of arrivals (DOAs) of the planar surfaces, and

triangulating these DOAs we estimate the target locations.

e For single target localization, all triangulated DOAs intersect at a very compact region
in the vicinity of the target. For multiple targets, however, the crossings can be quite
complex and dispersed. The target regions can still be recognized by a large number
of crossings in a small region, but those dense crossing regions should be discriminated
from background crossings. For this purpose, we modeled the crossings in the target
and background region with two Poisson distributions with two rate parameters: the
large rate parameter indicating the target regions, and the small rate parameter indi-
cating the background crossings. The Poisson model provided a solid groundwork for a
detailed statistical analysis. We introduced a hypothesis test, and defined probabilities

of detection and false alarm.

e The matched field processing makes use of the spatial complexities of the fields to
localize the targets. The direction vector of the plane wave MUSIC is replaced by
the locus vector which contains the scattered fields observed along the receiver array.
Since the matched field processing requires calculation of scattered fields repetitively,
it 1s computationally demanding. In general, in order to localize N targets, a 2/N-
dimensional search in range and bearing space of all targets is required. However,

if the targets are far from each other, we may ignore the electromagnetic interaction
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between them, and reduce the 2/V-dimensional search to a 2-dimensional search, at the

expense of incurring a signal coherence problem.

o We have also addressed the signal coherence problem when multiple scatterers inde-
pendently scatter the incident plane wave. For this purpose, we employed frequency
diversity, Section 5.3.2, which obtains a decorrelated autocovariance by using scattering

experiments at multiple frequencies.

e Furthermore, we have derived analytical Cramér-Rao Bound expressions for multiple
object, near field object localization. These analytical bounds agreed quite well with
the Monte-Carlo simulated error variances. Qur simulation results are also a multiple
dimensional verification of those in [49] which reports that MUSIC estimator is efficient

for the large signal to noise ratio operating regimes.

6.2 Future Work

Even though the work presented in this thesis provides interesting ideas about subsurface
object detection, the issues we dealt with suggest numerous avenues for possible extensions
and future work. In this section, we provide an overview of such ideas in order to shape the

future of the work presented in the thesis.
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6.2.1 Forward Scattering Model

In the area of the forward scattering model, the following provides a list of possible research

directions:

e As shown in Appendix A, the translation matrices a and @ are inherently Toeplitz
matrices. Additional efficiency and speed up in the recursive T-matrix algorithms

might be obtained by exploiting the Toeplitz structure of these translation matrices.

o While taking the derivatives of the scattered fields using recursive T-matrix methods,
we noticed that the translation matrices show certain structures that can be exploited
in future work. For example, the nth order derivative of 3 with respect to its argument

can be written in terms of other matrices obtained by shifting rows of 8 up and down.

anﬁ 1 n 7 —n+2t
= (—1ygi-m, (5.1
1=0

where B{="*%} is obtained by shifting the rows of 8 up (resp. down) if the superscript

—n + 2¢ is positive (resp. negative).

e The recursive T-matrix algorithm in its present form cannot take the air-earth interface
into account. It would be extremely useful to alter the recursive algorithm such that
air-earth interface is included in the formulation. In fact, [74] reports a T-matrix
approach to find the scattered field from buried inhomogeneities. Kristensson and
Strom’s work may form a basis to extend the recursive T-matrix algorithm to layered

media.
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e [t would also be beneficial to extend the results of the modified T-matrix algorithm
to three dimensional geometries. Chew et al. [23] reported a recursive T-matrix al-
gorithm in three-dimensions by tesselating objects into small spheres. As with the
two-dimensional case, however, computation of near field quantities directly from [23]
might rekindle the convergence problem described in Section 3.2.2. Thus, extension of
the modified algorithm to include near field scattering in three-dimensions would be

valuable.

6.2.2 Detection and Localization

To improve detection and localization algorithms, the following items will be considered for

the future:

e Since the detection algorithms presented are model based, sensitivity to the model
parameters will be crucial to estimate the performance of the algorithms under different
conditions. Therefore, we intend to analyze the sensitivity of localization performance

to object radius, object shape, and object and background material properties.

e In Section 4.4 we presented an example on detection performance of SAP for randomly
located objects. We noticed that the uniform distribution of random object locations
resulted in non-uniform distribution of relative distance between them. The non-
uniform distribution of relative distance, in fact, favored smaller distances as depicted
in Fig 4.11. As a result, SAP performed badly in this example. In the future, we would

like to repeat the same experiment by enforcing the distribution of relative distance to
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be uniform.

e In [49], the authors derive a closed form error variance of MUSIC estimator. It would
be appropriate to perform a similar analysis for multiple object, near field MUSIC to

obtain the error variance explicitly.

e MFP for multiple objects will also require that the number of targets buried under the
receiver array is known a priori. For our preliminary work in MFP, we assume that this
information is provided to us. However, in the future, we would like to estimate the
number of objects in the region of interest by using signal processing techniques like
Akaike’s information theoretic criterion [44,45] or the Minimum Description Length

(MDL) criterion [46,47].

o The last extension we would like to suggest will be the generalization of the linear array
used in the algorithms into a two-dimensional array. In order to achieve this goal, the
last item in Section 6.2.1 will have to be realized to calculate the scattered fields from

three-dimensional objects.

6.3 Closing

In this thesis, we have considered two complementary sides of object localization. In the
first part, we have developed an efficient, flexible, and stable recursive T-matrix algorithm
for electromagnetic forward scattering. This algorithm allows us to determine the scattered

field over a linear receiver array when scatterers are located relatively close to the array.
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Furthermore, we demonstrated that conducting scatterers tessellated with small metallic
cylinders along their perimeters can be used in the recursive T-matrix algorithms.

In the second part, we developed two localization algorithms that used the forward models
developed in the first part. The algorithms developed in the second part are based on
a high resolution array processing technique, the multiple signal classification (MUSIC)
algorithm. Of the two algorithms developed, subarray processing can localize the targets
very efficiently. The other algorithm, the matched field processing, localizes targets very
accurately at the expense of increased computational complexity. We have shown that the
Monte-Carlo simulations agree quite well with the analytical Cramér-Rao Bound expressions,
and that the MUSIC estimator becomes efficient as the signal to noise ratio increases.

While we believe that the contributions in this thesis indicate improvements in the near
field object localization problems, it is also true that the results obtained here open new

avenues for further research in the same area.



Appendix A

Translation Matrices

Both translation matrices 8 and a have the same form, except that they contain Bessel
functions and Hankel functions, respectively. Here, we briefly show their structure, and
how they are constructed efficiently. For detailed analysis, interested readers are referred
to [33,58]. Further information can be obtained by referring to “addition theorem” sections
of books on Bessel functions, e.g. [62]. Both matrices translate the wavefields in the direction
indicated by their subscripts. For example, 8, , translates the standing waves from the gth
coordinate system to the pth coordinate system. Similarly, e, , translates the traveling waves
from the ¢th coordinate system to the pth coordinate system. The direction of translation is
denoted by the vector a, , = a, — a,, where a, and a, are vectors from the scattering origin
to the gth and the pth local origin, respectively. The matrices 8, , and a, , are functions of

this vector, a, , = ap,/0,,. Then, the (m,n)th entry of 8, and ay,, can be written as:

Py
[ﬂpva]mm = Jm—n(kapq)e_j(m_n)epq (A1)
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and

[ap7Q]m n = H(z)

m—n

(kapq)e_j(m_”)gpq (A.2)

where J,,_,,(.) is the Bessel function of order (m — n), H?

m—n

(.) is the Hankel function of
second kind of order (m — n), k is the wavenumber in the medium of propagation, and
=V

Assuming that the fields in the pth coordinate system are expanded with M harmonics,
and those in the gth coordinate system are expanded with N harmonics. The resulting 3, ,
and a, , matrices would be (2M 4 1) x (2N + 1), since both M and N run from negative to
positive values. Some entries in these matrices are repeated. Therefore, instead of generating
each entry one by one, we can develop a more efficient strategy. We noticed that the indices

of these matrices at each entry are:

1,1 1,2 1,3 - 12N+ 1

2,1 2,2 2,3 ... 22N+1

3,1 3,1 3,3 -~ 32N +1 : (A.3)
OIM +1,1 2M +1,2 2M +1,3 -+ 2M +1,2N + 1

Since (A.1) and (A.2) imply that at the (m,n)th entry, Bessel and Hankel functions are of

order (m — n), we write the difference of indices at each entry:
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0 —1 —9 —9N

1 0 1 - —2N4+1

9 1 0 e —IN 42 (A.4)
OM 9M —1 2M —2 ... —9N 4+2M

which clearly shows that consecutive rows of the translation matrices differ only by leftmost
and rightmost entries. Thus, instead of forming each entry one by one, we form a vector
using (A.1) and (A.2) with (m —n) running from —2N to 2M. Then, as suggested by (A.4),
we take 1 X (2N 4 1) sub-vectors of this 1 x (2N + 2M + 1) vector, and form every row of

the translation matrices by shifting the sub-vector (2M + 1) times.



Appendix B

Bound on Electromagnetic

Interactions

In this appendix, we derive the interaction terms between two infinitesimally thin scatterers.
To quantify the relative difference between the exact scattered field at a receiver (i.e. the
field obtained when all electromagnetic interactions are taken into account) and the field

computed when multiple interactions are ignored, we define an interaction term as:
(B.1)

where Efj) is the scattered field due to the first object in the presence of the second object,
and Ky is the scattered field from the first object when there are no other scatterers around.
The field that takes the electromagnetic interactions into account can be computed exactly

using the T-matrix algorithm, or using the simplified expressions in this appendix. The
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normalized interaction term is then defined as:

164]

b= —————.
max{|61|}

(B.2)

Using the definition of the normalized interaction in (B.2), we calculate the electromag-
netic interactions between two infinitesimal scatterers here, and then compare these simple
interaction terms with those of extended objects in Section 5.5.1.

First we derive the scattered field from two filamentary objects separated by a distance
d, when they are excited with a plane wave, e/**. With a simple approach, schematically
shown in Fig. B.1, we account for the multiple scattering between these objects iteratively
by assuming that there is no interaction between them. Consider the scattered field radiated
by the first object. The field scattered from the first object due to the plane wave is obtained
by setting n = 0 in (5.4):

Eg = coH® (kr) (B.3)

where ¢y depends on the object radius, and r is the distance between the scatterer and

PW Incident on #1 Scattered from #1 is Incident on #2 Scattered from #2 is Incident on #1
o (] (] o o (]
Object #1 Object #2 Object #1 Object #2 Object #1 Object #2
Step 1 Step 2 Step 3

Figure B.1: Finding the scattered field due to a filamentary object by incorporating the
electromagnetic interactions between two scatterers step by step. Steps 2 and 3 are repeated
infinitely many times successively to account for all interactions

the observation point. When the field in (B.3) arrives at the location of the second object,
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it becomes cOHéQ)(kd), where d is the distance between them. Then, still assuming no
interaction, we use cOH(gZ)(kd) as incident field on the second object, and find the scattered

ﬁeld due to the wave scattered fI’OHl the ﬁI’St object as.
1D =d H(Q) k B.4
512 0440 ( T) ( . )

where dy = CO[COHéZ)(kd)]. When the field in (B.4) arrives at the location of the first object,
it becomes dOHSZ)(kd). Using this as the incident field on the first object, we calculate the
third term as:

E5121 = 60H£2)(k7")

where eg = ¢g [dOHéQ)(kd)]. By carrying no-interaction scattered fields between scatterers in
this manner, the scattered field due to the first object, in the presence of the second is given

in the form of an infinite sum:
ED = B+ Bz + Ban + EBam + ...,
or
EY =3 co {1+ coHP (kd) + [coHS (kd))* + [ HS (k) + ..} HS (k). (B.5)
Using (B.3) and (B.5) in (B.1) the interaction term can be expressed as:
81 =Y coHS (kd) + [coHS (kd)]? + [co HS (k) + . ..

which can be written concisely as:

5 _ o (kd)
1 = .
1 — coH{P (kd)

(B.6)
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Normalized interaction term ¢ signifies the similarity between no-interaction and with-
interaction fields can be easily obtained using (B.6) in (B.2). When é — 0, it means that the
interaction between scatterers is small, and a large ¢ indicates that the interaction between

scatterers is considerable.



Appendix C

A Simplified Proof for Frequency

Diversity

In this appendix, we will show that under simplifying assumptions the frequency diversity
described by (5.5) and (5.6) increases the rank of the autocovariance matrix. Consider the
data model:

yi=si+n; (C.1)

where s; is the noise-free scattered field due to a scatterer at frequency f;, n; is the white,
Gaussian noise as before, and y; is the observed data vector at frequency f;, 2 =1,2,---, N.
To simplify the problem, we will assume that the number of scatterers is limited to two
(N = 2), and the scatterers are infinitesimally thin.

The exact expression for the rank enhanced autocovariance matrix, Ry is:

1
R;=_F {yivi +vyi'} (C.2)
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which can be written as:

1
R, = B s,si + 5,88+ 2071] . (C.3)

For two scatterers, the frequency diversity should ensure that the signal subspace of Ry is two
dimensional. To see the conditions for which the signal subspace of Ry is two dimensional,

we rewrite (C.3) as:

R, = - [s;8,] +0°LL (C.4)

For signal subspace of R, to be two dimensional, the matrix S should have rank two which 1s
possible if vectors s; and s; are linearly independent. Since the maximum likelihood estimate
of the rank enhanced autocovariance matrix Ry in (5.6) is asymptotically equal to the exact
matrix Ry, the proof for Ry is valid for R, for large snapshots, i.e. L. — oo. In the rest of
the appendix, we show that R; has a two dimensional signal subspace, by proving that s;
and s, are independent.

For this purpose, we show that the scattered fields due to the filament scatterers observed
at two points, A and B, in space at two distinct frequencies, f; and f;, are independent. Thus,
the data vectors measured over an array at more than two points will also be independent.
The general Mie scattering series given in (5.4), is reduced to the following expressions for

filament scatterers:

B4 = coH (kara) B = doH (kyra) (C.5)

Eﬁ = CoH(g2)(k17"B) Eg = dOHO(Q)(kQTB)

where r4 and rg denote the observation points, coefficients ¢q and dy are dependent on the
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frequency and object properties, HéQ)(.) is the zeroth order outgoing Hankel function, and

k; 1s the wavenumber at f;, ¢ = 1,2. We will show that the vectors

£ Eg
S1 = and SS9 = (06)
E3 E5
are independent, i.e. equations
EA =abF4 and FEB =aFEB (C.7)

cannot be satisfied as long as f; # f.

Equations (C.5) and (C.7) imply that:

cOHéz)(ker) = adOHéQ)(ker) and COHéZ)(ker) = adoHéZ)(kQTB) (C.8)

which can be written as

(C.9)

Properties of Hankel functions require that |H52)(k1r)| and |H52)(k27“)| are monotoni-
cally decreasing, and they do not intersect at any r. These two properties and the fact
that the ratio of HéZ)(klr) to HéZ)(kQT) is not a constant imply that if we choose a 4 such
that Héz)(ker) = ’yHéQ)(kQTA), then there would be no rg which satisfies HéQ)(ker) =
’}/HO(Z)(]CQTB) unless ky = ky and v = 1. Therefore, the vectors given in (C.6) are mutually

dependent only when k; = ks, 1.e. f1 = f5.



Appendix D

Derivatives of Fields in Recursive T

Matrix Algorithm

In this appendix, we will describe the details of differentiating the scattered fields with

respect to object coordinates, (r;,0;), ¢ =1,2,..., L. We will use the variable p to replace r

and @ in order not to write similar expressions for both r and 6. For example, 82’;%& would

8¢SC(I SQZ}SC(I
mean both 5 and S5
As described in Chapters 2 and 3, the scattered field in terms of T-matrices can be

written as:
L

V() = 300" (r) Tir)Bi0a (D.1)

=1
which can be equivalently written by translating the observation point coordinates from local
(¢th) coordinate system to global coordinate system as:
Lo
@Z)ML(E) = Zﬁ (E)ﬁo,z’Ti(L)ﬁi,OQ (D-Q)

=1
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where Tz is the T-matrix of the sth object in the presence of L scatterers. Then, we write

the derivative as:

sca L aTZ ‘o P 0
o = Zﬁ%ﬂ)ﬂw%ﬂ’@—l— QT(E) Bo Ty(1)Broa (D.3)

Ipx i=1 Pk Ipk
where £k =1,2,..., L.

Using the recursion equations (3.11) and (3.12), we can write Ty, as:

_ -1 _
Trr)Bro= |- Tra) L/Z:_i aL,i’Ti’(L—l)ﬂi/,OﬂO,i’ai',L] Troy [ﬂL,O + le_:i arp i Tir-1)B:,
. . (D.4)
and
Ti)Bio = Tinr.-1)Bi o + Tir.-1)Bir oBo v i 1 T1r1)Br, 0- (D.5)

where +' = 1,2, L. — 1. In these expressions 3’s a’s and T;/;_)8’s are dependent on object
positions. The T matrix of a single object, Ty, is independent of object locations. To

simplify the derivatives, we write (D.4) as:

Trr)Bro=U"Trw)V,

where
L-1
U=1-Try Z aL,i'Ti'(L—l)ﬂi',oﬁo,i'ai',L
/=1
and
L-1
V =080+ > ar ' Tir-1)8; ¢
/=1

We then write the derivative of T8, as:

@TL(L)ﬂLO ou—1! 1 ov
— = TV +U " Troy—
Ok EI L)V + L(1) o
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or equivalently:

0T r1)Bro L oU av
=U'" —Ty /U'V4+U'T
8Pk Ipk H tHa 8Pk
For derivatives of U and V', we have two cases:
1. k<L
aU 8T/ 1 ﬂ 0 Iy,
P 0—Tray |02 ap #50 w0, — =5 Tr(r.-1)By 080,k Ok,
—ar 1 Trr-1)Bro Zk agr, — o T ﬂkOﬂOkS?p};L
aV -1)Bio  Oary
i ’ =T y(r—
@pk ZGL 3pk + BT k(L-1)Bxo
2. k=1
aU L-1 aaL 4 aaz’ L
—=0-Tyu Y, T8y 080t — ara T 18y 0Boi—F——
apk =1 a Pk Pk

v 9Br.0 Lz:_laam/
pe — Opr i ppk

Ti1-1)Bi -

The derivatives of the translation matrices 3 and a can be taken easily using the defini-

tions of these matrices given in Appendix A, and the identity [62]:

2[Qp-1(az) — Qpya(ax)),

0, (ar) = 1

dx

where @ is either the Bessel function .JJ or the Hankel function H, and a is a scalar.
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These general expressions are greatly simplified for two scatterers. For reference, we

present the derivatives for two scatterers. Equation (D.2) can be written as:
P = ﬁTﬁo,lTlm)ﬁl,oQ + ﬁTﬁo,QTZ(Z)ﬁzoﬁ

and (D.3) for k£ = 1,2 can be written as:

a sca ﬂ ﬁ aT ﬁ
@pl apl 8271

a sca aT ﬂ ﬁ ﬂ
(0 — ﬁTﬁogMQ ﬁ [ﬂTz 2)52 o+ ﬂo ) 2(2) OL229)P20 “
o op: Ip2
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